
Introduction to Artificial
Intelligence (G51IAI)

Dr Rong Qu

Heuristic Searches

G51IAI - Heuristic

Blind Search vs. Heuristic Searches

 Blind search

 Randomly choose where to search in the search
tree

 When problems get large, not practical any more

 Heuristic search

 Explore the node which is more likely to lead to
the goal state

 Quite often, using knowledge

G51IAI - Heuristic

Heuristic Searches - Characteristics

 Heuristic searches work by deciding which is the next
best node to expand

 Has some domain knowledge

 Use a function to tell us how close the node is to the goal
state

 Usually more efficient than blind searches

 Sometimes called an informed search

 There is no guarantee that it is the best node

G51IAI - Heuristic

Heuristic Searches - Characteristics

 Heuristic searches estimate the cost to the
goal from its current position. It is usual to
denote the heuristic evaluation function by
h(n)

 Compare this with something like Uniform
Cost Search which chooses the lowest code
node thus far (g(n))

G51IAI - Heuristic

Heuristic Searches - Characteristics

 Heuristic searches vs. Uniform Cost Search

 Uniform cost search
 expand the path with the lowest path cost
 chooses the lowest cost node thus far

 Heuristic search
 estimate how close the solution is to the goal
 not how cheap the solution is thus far

G51IAI - Heuristic

Heuristic Searches - Characteristics

 Heuristic searches vs. Uniform Cost Search

 Heuristic searches evaluation function
h(n): how close is the current node to the
solution

 Uniform Cost Search path cost function
g(n): the cost of the path thus far

G51IAI - Heuristic

Heuristic Searches - Definition

 Heuristics are "rules of thumb", educated
guesses, intuitive judgments or simply
common sense.

 A heuristic method is particularly used to
rapidly come to a solution that is hoped to
be close to the best possible answer, or
'optimal solution'.

- Wikipedia

G51IAI - Heuristic

Heuristic Searches - methods

 Tree searches (G51IAI)

 A way to reduce the search effort by pushing search in good
directions

 Not losing completeness

 Search algorithms

 Not complete

 Find good solutions quickly

 Genetic Algorithms, Tabu Search, Ant Algorithms

G51IAI - Heuristic

Heuristic Searches - Implementation 1

 Implementation is achieved by sorting
the nodes based on the evaluation
function: h(n)

 Search is based on the order of the nodes

G51IAI - Heuristic

Heuristic Searches - Implementation 2

Function BEST-FIRST-SEARCH(problem, EVAL-
FN) returns a solution sequence

 Inputs: a problem
 Eval-Fn: an evaluation function
 Queuing-Fn: a function that orders nodes by

EVAL-FN
 Return GENERAL-SEARCH (problem,

Queuing-Fn)

Heuristic Searches – Example

Hsld(n) = straight line distance between n and the goal location

Go to the city which is nearest to the goal city

G51IAI - Heuristic

Heuristic Searches - Greedy Search

 So named as it takes the biggest “bite” it can
out of the problem.

 That is, it seeks to minimise the estimated
cost to the goal by expanding the node
estimated to be closest to the goal state

Function GREEDY-SEARCH(problem) returns a solution of failure

 Return BEST-FIRST-SEARCH(problem,h)

G51IAI - Heuristic

Heuristic Searches - Greedy Search

 It is only concerned with short term aims

 It is possible to get stuck in an infinite loop

G51IAI - Heuristic

Heuristic Searches - Greedy Search

 It is not optimal
 It is not complete

Time and space complexity is O(bm); where m

is the depth of the search tree

Performed well, but not optimal

Greedy Search

UCS

Arad

Oradea
Zerind

Faragas

Neamt

Iasi

Vaslui

Hirsova

Eforie

Urziceni

Giurgui

Pitesti

Sibiu

Dobreta

Craiova

Rimnicu

Mehadia

Timisoara

Lugoj

87

92

142

86

98

86

211

101

90

99

71

75

140
118

111

70

75

120

138

146

97

80

140

Bucharest

99

80

140

177

226 (R)

310 (F)

Optimal route is (80+97+101) = 278 miles

215

258

1.Sibiu

[315 (R,P)]

278 (R,P)

286

369

336

2.Rimnicu 3.Faragas 4.Arad 5.Pitesti 6.Zerind 7.Craiova 8.Timisoara

9.Bucharest 278

GOAL!!

Fringe in RED with g

Visited in BLUE

Nodes Expanded

G51IAI - Heuristic

Heuristic Searches vs. UCS

goal

outline of graph

increasing cost

start

This region is

basically wasted

effort

goal

outline of graph

increasing cost

start

G51IAI - Heuristic

Heuristic Searches vs. UCS

goal

outline of graph

increasing cost

start

 Want to achieve this
but stay
 complete

 optimal

 If bias the search
“too much” then
could miss goals or
miss shorter paths

G51IAI - Heuristic

Heuristic Searches - A* Algorithm

 Combines the cost so far and the
estimated cost to the goal

That is fn = g(n) + h(n)

This gives us an estimated cost of the
cheapest solution through n

G51IAI - Heuristic

Heuristic Searches - A* Algorithm

 We need to have a proper way to estimate h

goal

outline of graph

start

A

B

gA

gB

hA

hB

G51IAI - Heuristic

Heuristic Searches - A* Algorithm

 A search algorithm to find the shortest path
through a search space to a goal state using
a heuristic.

f = g + h

 f - function that gives an evaluation of the state
 g - the cost of getting from the initial state to the

current state
 h - the cost of getting from the current state to a

goal state

G51IAI - Heuristic

Heuristic Searches - A* Algorithm

 A search algorithm to find the shortest path
through a search space to a goal state using
a heuristic

 h=0 A* becomes UCS

 complete & optimal* but search pattern
undirected

 h too large
 if h is large enough to dominate g then
becomes like Greedy, lose optimality

*when cost along path never decrease

G51IAI - Heuristic

Heuristic Searches - A* Algorithm

 It can be proved to be optimal and complete
providing that the heuristic is admissible.

 That is the heuristic must never over estimate
the cost to reach the goal
 h(n) must provide a valid lower bound on cost to

the goal

 But, the number of nodes that have to be
searched still grows exponentially

G51IAI - Heuristic

Heuristic Searches - A* Algorithm

Function A*-SEARCH(problem) returns a solution of
failure

 Return BEST-FIRST-SEARCH(problem, g + h)

G51IAI - Heuristic

Straight Line Distances to Bucharest

Town SLD

Arad 366

Bucharest 0

Craiova 160

Dobreta 242

Eforie 161

Fagaras 178

Giurgiu 77

Hirsova 151

Iasi 226

Lugoj 244

Town SLD

Mehadai 241

Neamt 234

Oradea 380

Pitesti 98

Rimnicu 193

Sibiu 253

Timisoara 329

Urziceni 80

Vaslui 199

Zerind 374

We can use straight line distances as an admissible heuristic as they will never

overestimate the cost to the goal. This is because there is no shorter distance between two

cities than the straight line distance.

ANIMATION OF A*.

Arad

Oradea
Zerind

Fagaras

Neamt

Iasi

Vaslui

Hirsova

Eforie

Urziceni

Giurgui

Pitesti

Sibiu

Dobreta

Craiova

Rimnicu

Mehadia

Timisoara

Lugoj

87

92

142

86

98

86

211

101

90

99

71

75

140
118

111

70

75

120

138

146

97

80

140

Bucharest

99+178=277

80+193=273

140+366=506

177+98=275

226+160=386(R)

310+0=310 (F)

Optimal route is (80+97+101) = 278 miles

1.Sibiu

278+0=278 (R,P)

2.Rimnicu 3.Pitesti 4.Fagaras 5.Bucharest 278 GOAL!!

Fringe in RED

Visited in BLUE

Nodes Expanded

0+253=253

Annotations:

 “g+h=f”

Why not 211?

315+160=475(P)

A*

Nodes Expanded:

1.Sibiu; 2.Rimnicu; 3.Pitesti; 4.Fagaras;
5.Bucharest 278

Arad

Oradea
Zerind

Fagaras

Neamt

Iasi

Vaslui

Hirsova

Eforie

Urziceni

Giurgui

Pitesti

Sibiu

Dobreta

Craiova

Rimnicu

Mehadia

Timisoara

Lugoj

87

92

142

86

98

86

211

101

90

99

71

75

140
118

111

70

75

120

138

146

97

80

140

Bucharest

Optimal route is (80+97+101) = 278 miles

UCS

Nodes expanded:

1.Sibiu; 2.Rimnicu; 3.Faragas; 4.Arad;
5.Pitesti; 6.Zerind; 7.Craiova; 8.Timisoara;
9.Bucharest 278

Arad

Oradea

Zerind

Faragas

Neamt

Iasi

Vaslui

Hirsova

Eforie

Urziceni

Giurgui

Pitesti

Sibiu

Dobreta

Craiova

Rimnicu

Mehadia

Timisoara

Lugoj

87

92

142

86

98

86

211

101

90

99

71

75

140

118

111

70

75

120

138

146

97

80

140

Bucharest

Optimal route is (80+97+101) = 278 miles

A* SEARCH TREE

Press space to begin the search

140

80

99

In terms of a search tree we could represent this as follows

5

The goal state is achieved.

In relation to path cost, A* has found

the optimal route with 5 expansions.

 Press space to end.

Si.

0+253
=253

Pi

177+98
=275

Ar

140+366
=506

Fa

99+178
=277

Ri

80+193
=273

Bu

310+0
=310 Maths:

“g + h = f”

2 3

4

1

Bu

278+0
=278

Cr

226+160
=386

Cr

315+160
=475

138

101

211

146

97

G51IAI - Heuristic

Heuristic Searches - A* Algorithm

 Clearly the expansion of the fringe is much
more directed towards the goal

 The number of expansions is significantly
reduced

G51IAI - Heuristic

Heuristic Searches - A* Algorithm

 A* is optimal and complete, but it is not all
good news

 It can be shown that the number of nodes that
are searched is still exponential to the size of most
problems

 This has implications not only for the time taken
to perform the search but also the space required

 Of these two problems the space complexity is
more serious

G51IAI - Heuristic

Heuristic Searches - A* Algorithm

 If you examine the animation on the previous
slide you will notice an interesting
phenomenon

 Along any path from the root, the f-cost never

decreases

 This is no accident

 It holds true for all admissible heuristics

G51IAI - Heuristic

Heuristic Searches - A* Example

1 3 4 1 2 3

8 6 2 8 4

7 5 7 6 5

Initial State Goal State

G51IAI - Heuristic

Heuristic Searches - A* Example

Typical solution is about twenty steps

Branching factor is approximately three. Therefore a
complete search would need to search 320 states. But
by keeping track of repeated states we would only need
to search 9! (362,880) states

But even this is a lot (imagine having all these in
memory)

Our aim is to develop a heuristic that does not over
estimate (it is admissible) so that we can use A* to find
the optimal solution

G51IAI - Heuristic

Heuristic Searches - A* Example

8 puzzle and 15 puzzle

 Online demo of A* algorithm for 8 puzzle

 Noyes Chapman’s 15 puzzle

http://www.permadi.com/java/puzzle8/

G51IAI - Heuristic

Heuristic Searches
- Possible Heuristics in A* Algorithm

H1

= the number of tiles that are in the wrong
position

H2

= the sum of the distances of the tiles from
their goal positions using the Manhattan
Distance

We need admissible heuristics (never over
estimate)
Both are admissible but which one is better?

G51IAI - Heuristic

Heuristic Searches
- Possible Heuristics in A* Algorithm

H1

= the number of tiles that are in the wrong position
(=4)

H2

= the sum of the distances of the tiles from their
goal positions using the Manhattan Distance (=5)

1 3 4 1 2 3

8 6 2 8 4

7 5 7 6 5

G51IAI - Heuristic

3 1 3 4

8 2

7 6 5

6 1 3 4

8 6 2

7 5

Heuristic Searches
- Possible Heuristics in A* Algorithm

H1 = the number of tiles that are in the wrong position (=4)

H2 = the sum of the distances of the tiles from their goal positions using the
Manhattan Distance (=5)

1 3 4

8 6 2

7 5

5

1 3 4

8 2

7 6 5

4 1 3 4

8 6 2

7 5

6

1 3 4

8 6 2

7 5

4

1 3 4

8 6 2

7 5

5 1 3 4

8 6 2

7 5

6

6 1 3 4

8 6 2

7 5

 Possible Heuristics in A* Algorithm

H2 = the sum of the distances of the tiles from their goal positions
using the Manhattan Distance (=5)

1 3 4

8 6 2

7 5

5

1 3 4

8 2

7 6 5

4 1 3 4

8 6 2

7 5

6

5 1 3 4

8 2

7 6 5

1 4

8 3 2

7 6 5

5 1 3 4

8 2

7 6 5

3

1 3

8 2 4

7 6 5

2 1 3 4

8 2 5

7 6

4

1 3

8 2 4

7 6 5

1

What’s wrong with this search?
is it A*?

3

5 1 3 4

8 6 2

7 5

 Possible Heuristics in A* Algorithm

H1 = the number of tiles that are in the wrong position (=4)

1 3 4

8 6 2

7 5

4

1 3 4

8 2

7 6 5

3 1 3 4

8 6 2

7 5

5

4 1 3 4

8 2

7 6 5

1 4

8 3 2

7 6 5

3 1 3 4

8 2

7 6 5

1 4

8 3 2

7 6 5

4 1 4

8 3 2

7 6 5

3

1 4 2

8 3

7 6 5

3

What’s wrong with this search?
is it A*?

G51IAI - Heuristic H2 looks better as fewer nodes are expanded. But why?

 Search

Cost

Depth IDS A*(h1) A*(h2)

2 10 6 6

4 112 13 12

6 680 20 18

8 6384 39 25

10 47127 93 39

12 364404 227 73

14 3473941 539 113

16 1301 211

18 3056 363

20 7276 676

22 18094 1219

24 39135 1641

Test from 100 runs with varying solution depths
using h1 and h2

5 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5

G51IAI - Heuristic

Effective Branching Factor

 Effective branching factor: average number of branches expanded

 H2 has a lower branching factor and so fewer nodes are expanded

 Therefore, one way to measure the quality of a heuristic is to find its
average branching factor

 H2 has a lower EBF and is therefore the better heuristic

 Search

Cost

 EBF

Depth IDS A*(h1) A*(h2) IDS A*(h1) A*(h2)

2 10 6 6 2.45 1.79 1.79

4 112 13 12 2.87 1.48 1.45

6 680 20 18 2.73 1.34 1.30

8 6384 39 25 2.80 1.33 1.24

10 47127 93 39 2.79 1.38 1.22

12 364404 227 73 2.78 1.42 1.24

14 3473941 539 113 2.83 1.44 1.23

G51IAI - Heuristic

Domination

 For any node: h2(n) <= h1(n)

 h2 dominates h1

 Search

Cost

 EBF

Depth IDS A*(h1) A*(h2) IDS A*(h1) A*(h2)

2 10 6 6 2.45 1.79 1.79

4 112 13 12 2.87 1.48 1.45

6 680 20 18 2.73 1.34 1.30

8 6384 39 25 2.80 1.33 1.24

10 47127 93 39 2.79 1.38 1.22

12 364404 227 73 2.78 1.42 1.24

14 3473941 539 113 2.83 1.44 1.23

G51IAI - Heuristic

Use Uniform Cost Search to find the shortest path from A to F in
the map below (not drawn to scale). You should not re-visit a
node that you have just come from.
Show at each step what fringe nodes are in the queue (5 marks).
Show the list of nodes that are expanded (3 marks).
State the shortest route you take and its cost (2 marks).
Can Uniform Cost Search guarantee to find the optimal solution
for this problem? Explain the reason. (3 marks)

12

8 16

20

15

15 25

B C

D

F

E

A

25

