Case Based Reasoning
Case Based Reasoning

An Example

<table>
<thead>
<tr>
<th>Tid</th>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Married</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Divorced</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Married</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Divorced</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Single</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Married</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Single</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Refund	Marital Status	Taxable Income	Cheat
No | Single | 75K | ? |
Yes | Married | 50K | ? |
No | Married | 150K | ? |
Yes | Divorced | 90K | ? |
No | Single | 40K | ? |
No | Married | 80K | ? |

Experts:
- Rules: data mining
- Cases: CBR
Objectives

Show how CBR works.

To introduce the basic components of CBR systems.

Demonstrate some examples of CBR.
Case Based Reasoning

What is CBR?

• Reasoning that adapts previous solutions for similar problem in solving new problem in hand
 • Many problem decision makers encountered are similar to old cases
 • Often more efficient to start with the previous solution to a similar problem than to generate the entire solution again from scratch
 • Experts solve problem based on previous cases
 • Court legal cases, etc
Case

- 4 Re’s
 - Retrieve
 - Reuse
 - Revise
 - Retain

Aamodt and Plaza, 1994
What is CBR?

- Case Based Reasoning
- Case representation
- Indexing of cases
- New problem
- Case retrieval
- Relevant case(s)
- Case adaptation
- Similarity measure
- Heuristics/rules for adaptation
- Solution evaluation
- Not good
- Case base organisation
- Insert case
- Adaptation

Case Base

- Organisation

Flowchart:
- Case base
 - Indexing of cases
 - New problem
 - Case retrieval
 - Relevant case(s)
 - Case adaptation
 - Similarity measure
 - Heuristics/rules for adaptation
 - Solution evaluation
 - Not good
- Insert case
- Adaptation
Case Based Reasoning

Components of CBR

- **Case representation**
 - **Problem**: describes the state of the world when the case occurred
 - **Solution**: states the derived solution to that problem, and/or
 - **Outcome**: the state of the world after the case occurred

- Text, numbers, symbols, plans, multimedia
- Usually (attribute, value) pairs
Components of CBR

- **Case representation**
 - What to store in a case
 - Appropriate *structure* to describe case contents
 - How to organise and index for effective retrieval and reuse
 - Functionality and ease of acquisition
Case Based Reasoning

Components of CBR

- **Case indexing**
 - Assign indices to cases to facilitate their retrieval
 - Features and dimensions tend to be predictive
 - The system has to retrieve the right case at the right time
 - Predictive, useful, abstract and concrete

- Abstract enough to allow for widening the future use of the case-base;
- Not too abstract to avoid retrieving too many cases
Case Based Reasoning

Components of CBR

- **Case base organisation**
 - Flat memory
 - sequentially in a simple list, array or file
 - Hierarchical organisation
 - large case base
 - only small subset needs to be considered during the retrieval
 - organise specific cases which share similar attributes under a more general structure
Case Based Reasoning

Components of CBR

- **Case base organisation**
 - Flat memory
 - Nearest neighbour
 - Weighting: by experts
 - Hierarchical organisation
 - Tree search
 - Find the node that best matches the input

\[
\sum_{n=1}^{N} w_n \text{sim}(f_n^I, f_n^R)
\]

\[
\sum_{n=1}^{N} w_n
\]
Case Based Reasoning

Components of CBR

- **Case adaptation**
 - Structural adaptation
 - adaptation rules are applied directly to the solution stored in cases
 - Derivational adaptation
 - reuses the algorithms, methods or rules that generated the original solution to produce a new solution to the current problem
 - Simple or complex techniques, depend on the problem domain
Case Based Reasoning

Development of CBR

• **Case representation**
 • Attributes that identify problems
 • Indices for storage and retrieval

• **Similarity measure**
 • Features that explain solutions

• **Adaptation**
 • Domain theory of impact of attributes on solutions

• **Case base organization**
 • A CBR system is heavily dependent on structure and content of case base
Case Based Reasoning

<table>
<thead>
<tr>
<th>Rule based system</th>
<th>Case based reasoning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rules</td>
<td>Examples, stories</td>
</tr>
<tr>
<td>Difficult to convert knowledge to rules, i.e. difficult to explain rules</td>
<td>Easier to tell stories, i.e. handles exceptions/novel cases in weak domains such as law</td>
</tr>
<tr>
<td>Failure reported when no rules are matched</td>
<td>Learning from both successes and failures</td>
</tr>
<tr>
<td>Difficult to justify the solution</td>
<td>Explanation becomes easier and pervasive</td>
</tr>
<tr>
<td>Easier to validate</td>
<td>Difficult validation</td>
</tr>
</tbody>
</table>
CBR – A modified example

- **Residential property valuation***
 - To determine an estimated value at a given location and given time
 - most common methods used by the human appraisers is to find the recent sales that are comparable with the subject property

- **Case: (attribute, value) pairs**
 - Sale Price £185,000
 - Address Wollaton Road, Nottingham
 - Living Area 2000 sq. ft
 - Lot size 20000 sq. ft
 - Bedrooms 3
 - Bathrooms 2.5
 - ...

* Adapted from (Cheetham et al. 2004)
CBR – A modified example

- **Initial retrieval**
 - A standard SQL query against a DB uses the following attributes:
 - Date of sale (within 24 months)
 - Distance (within 10 miles)
 - Living area (+ / - 25%)
 - Lot size (+ / - 50%)
 - Number of bedrooms (+/- 3)
 - Number of bathrooms (+/- 3)
CBR – A modified example

- **Similarity measure**
 - Weighted sum of attributes
 - Retrieved cases are ranked

<table>
<thead>
<tr>
<th>attribute</th>
<th>new case</th>
<th>retrieved case</th>
<th>comparison</th>
<th>weight</th>
<th>weighted sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Months</td>
<td>X</td>
<td>6 months</td>
<td>75%</td>
<td>0.222</td>
<td>0.1665</td>
</tr>
<tr>
<td>Distance</td>
<td>X</td>
<td>0.2 miles</td>
<td>80%</td>
<td>0.222</td>
<td>0.1776</td>
</tr>
<tr>
<td>Area</td>
<td>2000</td>
<td>1800</td>
<td>90%</td>
<td>0.333</td>
<td>0.2997</td>
</tr>
<tr>
<td>Lot size</td>
<td>20000</td>
<td>35000</td>
<td>75%</td>
<td>0.111</td>
<td>0.8325</td>
</tr>
<tr>
<td>#Bedrooms</td>
<td>3</td>
<td>3</td>
<td>100%</td>
<td>0.056</td>
<td>0.056</td>
</tr>
<tr>
<td>#Bathrooms</td>
<td>2.5</td>
<td>2</td>
<td>80%</td>
<td>0.056</td>
<td>0.0448</td>
</tr>
</tbody>
</table>

Similarity Measure (Sum of Weighted Sum/Sum of Weights) = 0.8279

Initial retrieval

- Location
- Date of Sale
- Living Area
- Lot Size
- # Bedrooms
- # Bathrooms

Compute similarity measure
CBR – A modified example

- Adaptation rules
 - Adjust sales price to better reflect property value
 - Additional features cause the difference between subject and retrieved case
 - Fireplaces (subject - retrieved) * 2000
 - Quality (.02*sale price) for each level of difference: (Luxury > Excellent > Good > Average > Fair > Poor)
 - Lot Area (subject - retrieved) * 1
 -...
 - Rules obtained from engineering sessions with expert appraisers

Initial retrieval

Compute similarity measure

Apply adaptation rules

Final selection

Aggregate selected cases

Estimated value

Reliability

Justification
CBR – A modified example

- Aggregate selected cases
 - combined to produce an estimate of the value of the subject

<table>
<thead>
<tr>
<th>Retrieved cases</th>
<th>Adjusted price</th>
<th>Score</th>
<th>Weighted price</th>
</tr>
</thead>
<tbody>
<tr>
<td>113-012</td>
<td>197000</td>
<td>0.95</td>
<td>187150</td>
</tr>
<tr>
<td>306-008</td>
<td>202000</td>
<td>0.88</td>
<td>177760</td>
</tr>
<tr>
<td>093-011</td>
<td>196500</td>
<td>0.78</td>
<td>153270</td>
</tr>
<tr>
<td>685-046</td>
<td>192000</td>
<td>0.64</td>
<td>122880</td>
</tr>
<tr>
<td>847-984</td>
<td>201000</td>
<td>0.58</td>
<td>116580</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>3.83</td>
<td>757640</td>
</tr>
</tbody>
</table>

Final estimate = 757640/3.83 = 199900
Case Based Reasoning

CBR Applications

- **legal reasoning** (examples Hypo, JUDGE)
 - decision making in courts are based on legal precedents
- **diagnosis** (CASEY, Protos)
 - depends heavily on case histories and the doctor’s experience with other patients and their treatments
- **design** (Clavier)
 - successfully executed artifacts for a new situation
- **scheduling** (CABINS)
- **help-desk support** (Cascade, ReMind)
- **planning** (Chef)