Foundations of Artificial Intelligence

Case Based Reasoning

An Example

4

01855										
Tid	Refund	Marital Status	Taxable Income	Cheat		Refund	Marital Status	Taxable Income	Che	
1	Yes	Single	125K	No		No	Single	75K	?	
2	No	Married	100K	No		Yes	Married	50K	?	
3	No	Single	70K	No 🖌	~	No	Married	150K	?	
4	Yes	Married	120K	No		Yes	Divorced	90K	?	
5	No	Divorced	95K	Yes		No	Single	40K	?	
6	No	Married	60K	No	/	No	Married	80K	?	
7	Yes	Divorced	220K	No						
8	No	Single	85K	Yes	Experts: Rules: data mining					
9	No	Married	75K	No 🗡						
10	No	Single	90K	Yes		Cases: CBR				

Objectives

- Show how CBR works.
- To introduce the basic components of CBR systems.
- Demonstrate some examples of CBR.

What is CBR?

- Reasoning that adapts previous solutions for similar problem in solving new problem in hand
 - Many problem decision makers encountered are similar to old cases
 - Often more efficient to start with the previous solution to a similar problem than to generate the entire solution again from scratch
 - Experts solve problem based on previous cases
 - Court legal cases, etc

Aamodt and Plaza, 1994

Components of CBR

Case representation

- the **problem**: describes the state of the world when the case occurred
- the <u>solution</u>: states the derived solution to that problem, and/or
- the <u>outcome</u>: the state of the world after the case occurred
- text, numbers, symbols, plans, multimedia
- usually (attribute, value) pairs

Components of CBR

- Case representation
 - What to store in a case
 - * Appropriate *structure* to describe case contents
 - How to organise and index for effective retrieval and reuse
 - Functionality and ease of acquisition

Components of CBR

- Case indexing
 - Assign indices to cases to facilitate their retrieval
 - Features and dimensions tend to be predictive
 - The system has to retrieve the right case at the right time
 - Predictive, useful, abstract and concrete

- Abstract enough to allow for widening the future use of the case-base;

- Not too abstract to avoid retrieving too many cases

Components of CBR

- Case base organisation
 - Flat memory
 - sequentially in a simple list, array or file
 - Hierarchical organisation
 - large case base
 - only small subset needs to be considered during the retrieval
 - organise specific cases which share similar attributes under a more general structure

Components of CBR

n=1

 $w_n sim(f_n^I, f_n^R)$

N

- Case base organisation
 - Flat memory
 - Nearest neighbour
 - Weighting: by experts
 - Hierarchical organisation
 - Tree search
 - Find the node that best matches the input

Components of CBR

- Case adaptation
 - Structural adaptation
 - adaptation rules are applied directly to the solution stored in cases
 - Derivational adaptation
 - reuses the algorithms, methods or rules that generated the original solution to produce a new solution to the current problem
 - Simple or complex techniques, depend on the problem domain

Development of CBR

- Case representation
 - Attributes that identify problems
 - Indices for storage and retrieval
- Similarity measure
 - Features that explain solutions
- Adaptation
 - Domain theory of impact of attributes on solutions

Case base organization

A CBR system is heavily dependent on structure and content of case base

Rule based system

- Rules
- Difficult to convert knowledge to rules, i.e. difficult to explain rules
- Failure reported when no rules are matched
- Difficult to justify the solution
- Easier to validate

Case based reasoning

- Examples, stories
- Easier to tell stories, i.e. handles exceptions/novel cases in weak domains such as law
- Learning from both successes and failures
- Explanation becomes easier and pervasive
- Difficult validation

Residential property valuation*

- × To determine an estimated value at a given location and given time
- most common methods used by the human appraisers is to find the recent sales that are comparable with the subject property

• Case: (attribute, value) pairs

- × Sale Price £185,000
- × Address Wollaton Road, Nottingham
- × Living Area 2000 sq. ft
- × Lot size 20000 sq. ft

3

- × Bedrooms
- × Bathrooms 2.5

* Adapted from (Cheetham et al. 2004)

× ...

Initial retrieval

- A standard SQL query against a DB uses the following attributes:
 - Date of sale (within 24 months)
 - Distance (within 10 miles)
 - Living area (+ / 25%)
 - Lot size (+ / 50%)
 - Number of bedrooms (+/- 3)
 - Number of bathrooms (+/- 3)

- Similarity measure
 - Weighted sum of attributes
 - Retrieved cases are ranked

attribute	new case	retrieved case	comparison	weight	weighted sum
Months	Х	6 months	75%	0.222	0.1665
Distance	X	0.2 miles	80%	0.222	0.1776
Area	2000	1800	90%	0.333	0.2997
Lot size	20000	35000	75%	0.111	0.8325
#Bedrooms	3	3	100%	0.056	0.056
#Bathrooms	2.5	2	80%	0.056	0.0448
Similarity	Measure (Sum of Weigh	ted Sum/Sum of	U /	= 0.8279

Justification

Adaptation rules •

- Adjust sales price to better reflect property value
- Additional features cause the difference between subject and retrieved case Age
 - Fireplaces (subject retrieved) * 2000
 - Quality (.02*sale price) for each level of difference:

(Luxury > Excellent > Good> Average > Fair > Poor

Lot Area (subject - retrieved) * 1

with expert appraisers

similarity measure Quality **Apply adaptation Fireplaces** rules Condition **Final selection** • Rules obtained from engineering sessions Aggregate selected cases Estimated value Reliability

Justification

Initial retrieval

Compute

Aggregate selected cases

combined to produce an estimate of the value of the subject

Retrieved cases	Adjusted price	Score	Weighted price		
113-012	197000	0.95	187150		
306-008	202000	0.88	177760		
093-011	196500	0.78	153270		
685-046	192000	0.64	122880	ſ	
847-984	201000	0.58	116580		
Total		3.83	757640		
Final estimate = 757640/ 3.83 = 199900					

CBR Applications

- legal reasoning (examples Hypo, JUDGE)
 - decision making in courts are based on legal precedents
- diagnosis (CASEY, Protos)
 - depends heavily on case histories and the doctor's experience with other patients and their treatments
- design (Clavier)
 - successfully executed artifacts for a new situation
- scheduling (CABINS)
- help-desk support (Cascade, ReMind)
- planning (Chef)