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Personnel Scheduling: Models and Complexity

Peter Brucker · Rong Qu · Edmund Burke

Abstract Due to its complexity, its challenging features, and its practical relevance,

personnel scheduling has been heavily investigated in the last few decades. However,

there is a relatively low level of study on models and complexity in these important

problems. In this paper, we present mathematical models which cover specific aspects

in the personnel scheduling literature. Furthermore, we address complexity issues by

identifying polynomial solvable and NP-hard special cases.

1 Introduction

De Causmaecker et al. [17] classified companies according to different personnel schedul-

ing problems. The corresponding scheduling problems lead to different models. The

classification is:

– permanence centred planning

– fluctuation centred planning

– mobility centred planning

– project centred planning.

The number of personnel needed, for example, for police services and hospitals,

is usually defined in advance [4][13]. Corresponding personnel scheduling problems

are called permanence centred. In contrast, for warehouses or distribution centers, as

well as for call centers, fast food restaurants and postal services [2][4][5][6][22], the

personnel planning is based on fluctuating demand. Mobility centred planning occurs

when duties involve transportation. Transportation companies like airlines and railway

companies face such planning problems [9][29][32][35]. Other examples are duties of
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health and safety boards or those in connection with home health care [23]. Project

centred planning arises in companies which divide their work into projects to which

they assign different groups of employees. Typical examples are software development

and consultancy, as well as construction project [3][25][34].

As a widely recognised and challenging problem that appears regularly in the sci-

entific literature, personnel scheduling has attracted significant research attention in

both research and practice. There are general guidelines on modelling different types

of constraints in staff scheduling problems [8]. A descriptive general model for nurse

rostering problems has also been built in conjunction with neighborhood design in lo-

cal search approaches [7]. In [18], a structured model has been proposed for integrated

staff planning and rostering problems. A formal description of the short term rostering

is also presented. However, although algorithm solutions and models have been built

in solving specific problems, there are no mathematical models in the literature for

general personnel scheduling problems.

There are, however, some specific personnel scheduling models in the literature.

For example, personnel scheduling with flexible demand [31], and personnel scheduling

with restricted task changes (working place changes) [14] have been considered. As an

example of just one specific type of personnel scheduling problem, nurse rostering has

been heavily investigated in recent years and solved by using a variety of techniques,

from heuristic algorithms to exact methods [13][20][21]. The Dantzig set covering for-

mulation [15] can be used to formulate rostering problems [21]. However, such a model

is usually used to formulate a simplified problem, and is difficult to be used to cater

some common characteristics in personnel scheduling problems. It is important to de-

velop general mathematical models which cover various special cases, and underpin a

fundamental theory for personnel scheduling.

In this paper, a mathematical model which covers permanence and fluctuation

centred planning as well as the rostering part of mobility centred planning is presented.

As an example of permanence centred planning, a nurse rostering problem is briefly

discussed. Furthermore, two other special scheduling problems found in the literature

are presented. A fourth problem describes a situation in which one has to decide which

employee has to work on which days of a period of several possible days. Such decisions

have an influence on the ability to cover the demand for employees in each period of

each day. Later the mathematical model is extended to cover project centred planning

as well.

For the development of suitable methods to solve personnel scheduling problems,

it is useful to get some insight into the complexity of special cases. Very little work

has been carried out on relevant problems. In [28], the Changing Shift Assignment

Problem which arises from airport ground crew scheduling has been concerned from

the complexity point of view. A restricted version of the problem has shown to be NP-

hard. In this paper we identify cases in general personnel scheduling problems which

are either NP-hard or polynomially solvable. All polynomially solvable cases can be

solved efficiently by network flow techniques which can be used as sub-routines within

heuristic procedures for more complex problems. There is a rich literature on heuristics

which solve specific problems. Our aim in this work is to develop a general theory for

personnel scheduling. Such mathematical models allow developing general heuristics

which can be adapted to special cases. This is often more efficient than to develop

specific heuristics in specific cases. Unlike traditional scheduling, in which theoretical

models and complexity issues have been studied for long, personnel scheduling lacks

such theory.



This paper is organized as follows. The mathematical models and its special cases

are first presented in Section 2, followed by the complexity results in Section 3. In

Section 3.1 network flow formulations are presented while Section 3.2 contains the

NP-completeness results. These models can be directly applied in permanence and

fluctuation centred planning. The last section contains conclusions.

2 Models

2.1 A Mathematical Model for Personnel Scheduling

A general personnel scheduling problem can be formulated as follows.

There is a planning horizon [0, T ] divided into periods [t, t+1[ for t = 0, 1, · · · , T−1.

Within the planning horizon m tasks j = 1, . . . ,m must be performed. Dj(t) is the

number of employees needed to perform task j in time period [t, t+1[ (t = 0, 1, · · · , T −
1). It is called the demand profile for task j.

There is set E of n employees. Associated with each employee e ∈ E is a subset Qe
of tasks for which e is qualified, i.e. e can be assigned to tasks in Qe only. A working

pattern for an employee e is defined by

– a zero-one vector (we (t))T−1t=0 where we (t) = 1 if and only if e is available in period

[t, t+ 1[, and

– an assignment of a task belonging toQe for each time period [t, t+1[ with we (t) = 1.

A working pattern of an employee thus consists of tasks which the employee is

qualified to perform, at time periods the employee is available. The working patterns

are represented by binary vectors π = (π(j, t)) where π(j, t) = 1 if and only if [t, t+ 1[

is a working period in which task j has to be performed.

The working pattern concept is illustrated by the following example.

Example 1 Assume that the planning horizon are the seven days of a week and that

t = 0 corresponds to Monday. Furthermore, assume that an employee e who is qualified

for two tasks 1 and 2 works from Tuesday to Saturday (i.e. we(t) = 0 for t = 0, 6 and

we(t) = 1 for t = 1, · · · , 5) and is assigned to task 2 on Saturday and to task 1 on

the other working days. Then the corresponding working pattern π is specified by

π(1, ν) = 1 for ν = 1, · · · , 4, π(2, 5) = 1, and π(j, t) = 0 for all other values (j, t).

Note that not all possible working patterns may be feasible for an employee. The

feasible working patterns are usually specified by some hard constraints which depend

on the specific problem. The set of all feasible working patterns for employee e is

denoted by Pe.

One has to assign to employees e ∈ E feasible working patterns πe ∈ Pe such that

– the demand Dj(t) of all tasks j is covered in each period [t, t+ 1[, and

– the costs of the assignment to employees are minimized.

Additional so called ”soft constraints” may be imposed onto the working pattern

πe ∈ Pe. In this case a penalty u (πe) may be defined which measures how much pattern

πe violates the soft constraints. Possible assignment costs are

– the sum of penalties u (πe) of all assigned employees e, or



– the number of employees needed, or

– the costs for the employees which are assigned.

The mathematical model may be restricted by not allowing task changes, i.e. each

employee e must be assigned to the same task in Qe during all his working periods,

with no change of working places. In another version task changes may be restricted

in the sense that during certain time periods task changes are not allowed.

On the other hand a model with Dj(t) ∈ {0, 1} for all t can be further generalized

by the introduction of a flexible demand. In this case each task j has a duration pj
and must be processed within a time window

[
Lj , Rj

[
⊆ [0, T ] with Rj −Lj ≥ pj , i.e.

Dj(t) ∈ {0, 1} for t = Lj , Lj + 1, . . . , Rj − 1 where
∑Rj−1
t=Lj

Dj (t) = pj .

The problem can be modelled by a binary linear program. Let xeπ be a binary

variable which is set equal to one if and only if the working pattern π is assigned to

employee e. Additionally let ceπ be the costs if the working pattern π is assigned to

employee e. Then the linear program has the form

min
∑
e∈E

∑
π∈Pe

ceπxeπ (1)

subject to ∑
π∈Pe

xeπ ≤ 1, e ∈ E (2)

∑
e∈E

∑
π∈Pe

π(j, t)xeπ ≥ Dj(t), for all (j, t) (3)

xeπ ∈ {0, 1} for all e ∈ E and π ∈ Pe.

By constraint (2) at most one working pattern π is assigned to employee e. In some

cases each employee must be assigned a working pattern, and thus the inequality, i.e.

≤ 1 in (2) should be replaced by the equality, i.e. = 1. The expression at the left hand

side of (3) is equal to the number of employees assigned to task j in period [t, t + 1[

and (3) forces this number to be at least equal to the demand of j in period [t, t+ 1[.

To take care of flexible demand one has to introduce additional binary variables

yjt denoting the minimal number of employees needed by task j in period [t, t+ 1[. In

(3) one has to replace Dj(t) by yjt and the constraints∑Rj−1
t=Lj

yjt = pj for all tasks j

yjt ∈ {0, 1}
(4)

must be added.

Sometimes it is useful to generalize the binary linear program (1) to (3) by adding

the constraints ∑
e∈E

∑
π∈Pe

π(j, t)xeπ ≤ UDj(t) for all (j, t) (5)

where UDj(t) ≥ Dj(t) is an upper bound on the number of employees needed for

task j in period [t, t+ 1[. If Dj(t) = UDj(t) then exactly Dj(t) employees are needed.

The general mathematical model we defined here is similar to that by Dowsland

in [19] for nurse rostering problems. A tabu search is devised to explore all possible

pre-defined feasible shift patterns xij for nurses, xij = 1 if nurse i works on pattern j.



pij is the penalty associated with nurse i on working pattern j. The objective of the

tabu search is to find the best quality roster (of the lowest total penalty), satisfying

the covering requirement.

2.2 Project Centred Planning

In traditional scheduling theory, resource constrained project scheduling has been well

investigated [10]. In personnel scheduling, no general model exists in project centred

planning. In project centred planning, the demand Dj(t) for each task (which is usually

called activity) is not fixed for the time periods [t, t+1[ but depends on a schedule for the

tasks j. A schedule for task j is defined by a starting time Sj and a processing time pj .

Furthermore, task j is processed without interruption until the finishing time Cj = Sj+

pj .At least Dj(k) employees are needed to perform task j in period
[
Sj + k − 1, Sj + k

[
for k = 1, · · · , pj .

Additionally, there are precedence constraints (i, j) ∈ A meaning that task j cannot

start before task i finishes, i.e.

Si + pi ≤ Sj . (6)

Usually, the precedence constraints are defined by an acyclic directed graph (V,A)

where V = {1, · · · ,m} is the set of all tasks and A ⊆ V × V .

The latest finishing time Cmax = maxmj=1 Cj = maxmj=1

(
Sj + pj

)
of all tasks is

called makespan of the project.

One has to assign at most one working pattern π ∈ Pe to each employee e and to

schedule the tasks, i.e. fix the starting times Sj , such that

– all precedence constraints (6) are satisfied,

– at least Dj(k) employees are available to perform each task j in periods [Sj + k −
1, Sj + k[ for k = 1, · · · , pj

– the makespan is minimized.

We assume that all tasks are available at time 0 and that all data are integer. Then

the problem can be formulated as an integer linear program of the following form:

minimize Cmax

subject to

Sj + pj ≤ Cmax j = 1, · · · ,m (7)

Si + pi ≤ Sj (i, j) ∈ A (8)∑
π∈Pe

xeπ ≤ 1 e ∈ E (9)

∑
e∈E

∑
π∈Pe

π
(
j, Sj + k − 1

)
xeπ ≥ Dj(k)

for all j = 1, · · · ,m and k = 1, · · · , pj
(10)

xeπ ∈ { 0,1} for all e ∈ E and π ∈ Pe
Sj ≥ 0 j = 1, · · ·, m



2.3 Some Special Problems

In the following subsections 2.3.1 - 2.3.4, four problems which are covered by the

mathematical models discussed in Section 2.1 are presented. Problem 1 is a nurse

rostering problem where in a working pattern, at most one task (shift) is assigned to

each day of five weeks within the time horizon. In Problem 2, the employees have to

work in blocks of consecutive days, separated by rests of consecutive days, without

changing tasks in the blocks. In Problem 3, the demand is flexible, employees are

available within time windows, and arbitrary task changes are possible. Problem 4 is

decomposed into two levels: in the first level the working days and rest days are to be

fixed for each employee, and in the second level for each day an intraday scheduling

problem is solved which calculates for each employee working on the day a working

pattern. The first three problems are from the literature and the last problem arises in

connection with many personnel scheduling problems. Due to the general definition of

working pattern these different problems can be covered by the same model.

Some remarks on mobility centred planning can be found in Section 2.3.5.

2.3.1 Problem 1([12]): A nurse rostering problem

In a typical nurse rostering problem, one has to assign nurses to shifts within a planning

period. There may be different types of nurses and the number of different shift types

is quite small. Table 1 taken from ([12]) shows the demand for one type of nurse during

a week.

Table 1 Shift types and demand during a week.

Demand
Shift type Start time End time Mon Tue Wed Thu Fri Sat Sun

Early 07:00 16:00 3 3 3 3 3 2 2
Day 08:00 17:00 3 3 3 3 3 2 2
Late 14:00 23:00 3 3 3 3 3 2 2
Night 23:00 07:00 1 1 1 1 1 1 1

The assignment has to satisfy hard constraints and soft constraints. Hard con-

straints must be fulfilled. This is not the case for soft constraints. If they are not

fulfilled penalties are charged. Constraints are usually problem dependant. Therefore,

we list here some important constraints.

Possible hard constraints are:

1. The demand needs to be fulfilled (i.e. all requested shifts must be covered).

2. For each day, one nurse may start only one shift.

3. The maximum number of night shifts is 3 per period of 5 consecutive weeks.

4. A nurse must receive at least 2 weekends off duty per 5 week period. A weekend

off duty lasts from Saturday 00:00 to Monday 04:00.

5. Following a series of at least 2 consecutive night shifts, a 42 hours rest is required.

6. The number of consecutive night shifts is at most 3.

7. The number of consecutive shifts is at most 6.

Possible soft constraints and their penalties are:



1. For the period from Friday 23:00 to Monday 0:00, a nurse should have either no

shifts or 2 shifts (complete weekend). (penalty 1000)

2. Avoid sequences of shifts of length 1 for all nurses. (penalty 1000)

3. The rest after a series of day, early or late shifts is at least 2 days. (penalty 100)

4. For all nurses, the length of a series of early shifts should be within the range [2,

3]. It could be within another series of shifts. (penalty 10)

5. An early shift after a day shift should be avoided. (penalty 5)

6. An early shift after a late shift should be avoided. (penalty 5)

7. A day shift after a late shift should be avoided. (penalty 5)

The problem considered is to find shift assignments for nurses which satisfy the

hard constraints and minimize the sum of penalties of violated soft constraints. An

additional objective could be to minimize the number of nurses.

This problem can be seen as a special case of the mathematical model in which

the time horizon consists of all days of a period of five consecutive weeks. There are

only four task types which correspond to the shifts. The feasible working patterns are

defined by the hard constraints.

In [12], high quality partial schedules (low penalty patterns) of five weeks have

been used to construct cyclic assignments of nurses by repeatedly shifting the schedules

for nurses. A complete roster is then constructed by assigning the remaining shifts to

nurses based on the cyclic assignments for the above problem. In the literature on nurse

rostering [21], cyclic scheduling has also been studied especially in early research.

In a recent survey on nurse rostering [13], approaches of meta-heuristics, heuristics,

artificial intelligence and mathematical programming have been reviewed. Recently,

the First International Nurse Rostering Competition 2010 [26] has been launched to

encourage multi-disciplinary research in nurse rostering.

2.3.2 Problem 2([14]): A problem with restricted task changes

Another problem has been formulated as follows.

There is a planning horizon of T days d = 1, ..., T . nd tasks are to be performed on

day d. Task j needs Dj(d) employees.

Each employee performs working blocks of consecutive days, briefly called blocks,

and after each block has a rest of consecutive days called rests. Within each block the

employee performs the same task. There are B block types b. b has a duration of db
days. There are R rest types r. r has a duration of dr days.

A working pattern consists of a sequence of blocks assigned to tasks and rests,

alternating between the blocks and rests such that the total number of working and

rest days is equal to T .

There is a list of infeasible sequences of the form (b1, j1)r(b2, j2), meaning that it

is not possible to have a block type b1 assigned to task j1 followed by a block type b2
assigned to task j2 with a rest of type r in between.

Each employee works for at most s days belonging to a set of special days (including

Sundays and holidays) within the planning horizon (special day condition).

A working pattern is feasible if it contains no infeasible sequences and satisfies the

special day condition.

One has to assign feasible working patterns to the employees such that

– the needs of all tasks within the planning horizon are covered, and



– the number of employees involved is minimized.

This problem is a problem with restricted task changes because within a block an

employee cannot change the task he/she has to perform.

2.3.3 Problem 3([31]): A problem with flexible demand

The following problem is a problem with flexible demand.

The planning period considered consists of several days.

For each employee e, one has to decide which are the days off for e. Thus, after

such decisions, associated with each day d within the planning period there is a subset

Ad of employees which have to work on day d. The corresponding intraday scheduling

problem is a problem with flexible demand in which task changes are possible. It can

be described as follows.

Each employee e ∈ Ad is available during some time window [Sde , F
d
e [ which can be

empty (in case of day off for e). A shift for employee e is a time interval [V de ,W
d
e [ with

Sde ≤ V de ≤ W d
e ≤ F de and W d

e − V de ≥ md
e , where md

e is a given minimal shift length.

During each period within a shift an employee performs a task, or has a (long or short)

break, or is idle. There are maximal or minimal time distances between V de ,W
d
e , the

starting times, or finishing times of breaks. Breaks cannot be interrupted.

There are n tasks j = 1, · · · , n. Each employee is qualified for all tasks. Each

task j has a duration pdj and must be processed within a time window [Rdj , D
d
j [ with

Ddj − R
d
j ≥ pdj . Different employees may perform a task which may be divided over

different employee. Also interruptions and later processing of a task are possible. How-

ever, in each time period at most one employee processes task j and the total processing

time must be equal to pdj .

For each day d, one has to assign feasible shifts to the employees e ∈ Ad and for

each shift to assign tasks to its active periods such that

– the duration of each task is covered within its time window, and

– the total labor costs are minimal.

The labor costs are defined as follows: meal breaks are unpaid; short rest breaks are

compensated; an overtime rate is paid for the time of a shift exceeding a given limit M ;

if an employee is not given at least two days off for a week then there is an additional

pay. In [31] the problem is solved by decomposing it in two parts. At an upper level

the working days and shifts for the working days are fixed for each employee. Then for

each day it is checked whether all tasks can be covered by the shifts of the employees

working on this day. The following Theorem 4 shows that the latter problem can be

solved by network flow techniques such as, for example, the cycle cancelling algorithm,

or the network simplex algorithm [1]. To solve the overall problem a tabu search is

performed for the upper level.

The next problem is related to Problem 3. However, there are the following differ-

ences:

– instead of flexible demand the demand is given by demand profiles;

– daily shifts are defined by sets of working periods;

– rather than being qualified for any task, employees must perform tasks belonging

to a subset of tasks.



2.3.4 Problem 4: A multi-day personnel scheduling problem

A multi-day personnel scheduling problem can be formulated informally as follows.

There is a planning horizon consisting of a number of consecutive days. Associated

with each day is a set of periods in which certain tasks have to be performed. For each

period of a day and task which has to be performed in this period, a given number of

employees is needed (demand profile).

On the other side there are employees. The planning horizon must be divided into

working days and rest days for each employee.

A shift has to be assigned to each working day of an employee. Shifts consist of a

set of working periods possibly interrupted by breaks and idle times which are part of

the shift.

For each employee there is a set of tasks he can be assigned to.

A working pattern for an employee is defined by

– the set of working days,

– for each working day a shift, and

– for each working period of a shift a part of the task which can be performed by the

employee. It is possible that in a shift of the employee, different tasks are performed.

A working pattern is feasible for an employee if it satisfies a number of constraints

(which may depend on the employee).

One has to decide which employee is needed and to assign to each employee which

is needed a feasible working pattern. This has to be done in such a way that

– all tasks can be performed (i.e. the demand of tasks for employees is satisfied), and

– corresponding costs are minimized.

As in the other models possible costs are labour costs, penalty costs for violating

some (soft) constraints, or assignment costs.

The problem can be decomposed into two levels which we denote by days scheduling

and intraday scheduling level. At the days level one has to assign the working days to

employees; while at the intraday level for each employee working on the day, one has

to assign a shift, and to each working period of this shift a task for which the employee

is qualified. If the planning horizon consists of a number of consecutive days, with

time periods for each day, working patterns can be defined with respect to these time

periods on all days. Thus, Problem 4 may be considered as a special case of the problem

introduced in Section 2.1.

As mentioned above, Problem 4 arises in connection with many personnel schedul-

ing problems in the literature. The staff scheduling problem in the postal service [6]

can be classified under Problem 4, as well as fluctuation centered planning problem.

In Section 3.1 (see Theorem 1), we will show that if in the general model the

working days and shifts of all employees are fixed then a feasible assignment of tasks

(if it exists) can be calculated in polynomial time if task changes are allowed. Such

feasible assignment can be used in the evaluation step of a local search.

2.3.5 Mobility Centred Planning

The main application of mobility centred planning can be found in the area of public

transport. Typical examples are crew scheduling models for railway companies and



airlines. Vehicle (or plane) scheduling refers to optimization problems in which vehicles

(or planes) must be assigned to time-tabled trips starting and ending at some depot.

Trips are divided into segments such that at the beginning and the end of a segment a

change of personal is possible. The next step is crew scheduling which is conventionally

divided into further steps: crew pairing and crew rostering. A crew pairing is a sequence

of connected segments that starts and ends at the same base. The objective is to cover

each train or flight segment by pairings with minimum costs. The objective of crew

rostering is to assign crew members to sequences of crew pairings.

In terms of the mathematical model discussed in this paper the sequences of crew

pairings can be considered as working pattern. They have to be assigned to crew

members in such a way that each train or flight segment (which may be considered as

task) will be covered.

3 Complexity

3.1 Polynomially Solvable Cases

We describe special cases of the mathematical model which are polynomially solvable.

These problems can be formulated in connection with Problems 3 and 4 in Section 2.3.

However, they are also of interest on their own.

First, we present a lemma which is used in connection with the theorems we for-

mulate next.

Lemma 1 The special case of the mathematical model in Section 2.1in which the de-

mand of each task j is constant, i.e. Dj(t) = Dj for t = 0, · · · , T−1, and each employee

is available in all periods, i.e. we(t) = 1 for all t = 0, · · · , T − 1 can be formulated as a

minimum cost network flow problem [1].

Proof Due to the special data task changes are not needed for employees. Therefore the

problem can be formulated as a transhipment problem [30]. The underlying network

has

– a node e with supply 1 for each employee e, and

– a node j with demand Dj for each task j.

Furthermore, there is a directed arc (e, j) with costs cej if and only if j ∈ Qe. ut

The next theorem is an immediate consequence of the previous lemma.

Theorem 1 The following decision version of the mathematical model in Section 2.1

in which task changes are allowed can be solved in polynomial time: Can a set of

employees cover the given demand for the tasks?

Proof Let t1 = 0 < t2 < · · · < tr be all time instances where the demand profiles of

tasks or the availability of employees are changing. For each time interval Ik = [tk, tk+1[

(k = 0, · · · , r − 1) let Ak be the set of employees available in the interval Ik. To solve

the overall decision problem one can solve for each interval Ik the decision problem:

Can the employees in Ak cover the demand of all tasks in Ik?

Each of these decision problems has the special structure described in Lemma 1.

ut



The following theorem is due to Segal ([33]).

Theorem 2 ([33]) The special case of the mathematical model in Section 2.1 in which

there is only one task and for each employee e the working periods (shifts) are given by

one interval (i.e. we(t) = 1 for se ≤ t ≤ fe, and we(t) = 0 otherwise) can be formulated

as a minimal cost flow problem.

Proof Let T denote the set of all points t in time where either the demand D(t) for

employees changes or some shift begins or ends. Denote by t1 = 0 < t2 < · · · < ts the

ordered sequence of all elements in T .

The network (V,A) is constructed as follows. There is a node i ∈ V for each time

point ti and there are two types of directed arcs:

– requirement arcs (i, i+ 1) for i = 1, · · · , s− 1 with the demand D(ti) for employees

in the interval [ti, ti+1[ as lower capacity. Associated with these arcs are an upper

capacity equal to plus infinity and costs equal 0.

– arcs (i, j)e for each shift of each employee e from node i representing the end of the

shift to node j representing the starting time of the shift. These arcs have a lower

capacity 0 and the costs are defined by ce. The upper capacity is equal to 1.

To solve the problem one has to calculate a minimum cost circulation which satisfies

the lower and upper capacities on the arcs. ut

The next result is due to Dantzig & Fulkerson [16].

Theorem 3 ([16]) The following problem can be formulated as a minimal cost network

flow problem: All employees are available during the whole time horizon [0, T ] and each

task j has to be processed by exactly one employee during the time interval
[
sj , fj

[
⊆

[0, T ] without interruption. All employees are qualified for all tasks. One has to assign

a minimal number of employees to tasks such that all tasks are performed (if this is

possible).

Proof To formulate the problem as a minimum cost network flow problem (see Ahuja

et al.[1], p.296) consider the following network (V,A). Associated with each task j are

two vertices v1j and v2j which correspond to the starting time sj and the finishing time

fj of task j, respectively. Additionally, there are two dummy vertices denoted by 0 and

∗. The set A contains the following arcs:

– arcs
(
v2j , v

1
k

)
for tasks j, k if fj ≤ sk, i.e. if task k can be processed after task j,

– arcs
(
0, v1j

)
and

(
v2j , ∗

)
for all tasks j,and

– a return arc (∗, 0).

With the exception of the return arc (∗, 0) all arcs have a lower capacity 0, an upper

capacity 1, and cost 0. Arc (∗, 0) has a lower capacity 0, the upper capacity is equal to

the number of employees, and the cost is equal to 1. Associated with the vertices v1j
and v2j is a demand and supply, respectively, of one unit. Finally vertices 0 and ∗ are

neither supply nor demand nodes. One has to find a minimal cost flow (if it exists).

Given an optimal flow the shifts of the minimal number of employees can be con-

structed easily.

The result described in the following theorem has been used in the solution proce-

dure proposed in [31] for solving Problem 3.



Theorem 4 ([31]) For the intraday part of Problem 3, a feasible assignment of tasks

to employees (if it exists) can be calculated by a maximum flow algorithm if the shifts

of the employees are given.

Proof We assume that the day is fixed and drop the index d in the data. Let T be the

set of all Rj- and Dj- values, and all block starting and finishing times for all employees

working on the day (blocks are sets of maximal length of consecutive working periods

of a shift). Denote by t1 < t2 < ... < ts the ordered sequence of all elements in T .

The network (V,A) can be constructed as follows. The set V of nodes consists of

– all tasks j,

– all intervals[ti, ti+1[ (i = 1, · · · , s− 1), and

– a source s and a sink t.

There are three different types of directed arcs:

– arcs (s, j) with upper capacity pj ,

– arcs ([ti, ti+1[, t) with upper capacity (ti+1 − ti)Ni where Ni is the number of

employees available in time period [ti, ti+1[,

– there is an arc between a task node j and an interval node [ti, ti+1[ if and only if

[ti, ti+1[⊆ [Rj , Dj [. The upper capacity of this arc is ti+1 − ti.

The network is shown in Figure 1.

tasks intervals
≤ pj : ≤ ti+1 − ti : ≤ (ti+1 − ti)Ni

s −−−−−→ j −−−−−−−−−−−−−−−−−−−→ [ti, ti+1[ −−−−−−−−−−−−−→ t
: iff [ti, ti+1[ ⊆ [Rj , Dj [ :

Fig. 1 Network for the assignment of tasks to employees

A flow in an arc (j, [ti, ti+1[) may be interpreted as working time assigned to task

j in the interval [ti, ti+1[ .

There exists a feasible task assignment if and only if the value of a maximal flow

is equal to
∑m
j=1 pj .

If there is a maximal flow with this property then in each task node j the processing

time pj is distributed to the time intervals [ti, ti+1[ in which j can be processed and

the time j processed in [ti, ti+1[ cannot exceed ti+1 − ti. Furthermore, due to the

flow-balance constraints in the interval nodes [ti, ti+1[ the sum of these processing

times cannot exceed (ti+1 − ti)Ni. It is well known (see e.g. [11] p. 108) that under

these conditions it is possible to process the parts of tasks assigned to [ti, ti+1[ by Ni
employees if task changes are allowed. ut

In the problem formulated by Theorem 4 the role of tasks and employees can be

switched if the breaks are ignored. This leads to the following problem which again

can be formulated as a maximum network flow problem: given the total demand D(ti)

of all tasks in the time interval [ti, ti+1[, find a feasible shift assignment covering the

demands under the restriction that employee e has to work at least me time units in the

interval [Se, Fe[. Again we assume that task changes are allowed. The corresponding

network is shown in Figure 2. The label ≥ me on arcs (s, e) indicate that me is a lower



bound for the flow in these arcs. The labels on the other arcs indicate upper bounds

for the flows. The demand can be covered if and only if there exists a maximum flow

with value
∑s−1
i=1 D(ti).

employees intervals
≥ me : ≤ ti+1 − ti : ≤ D(ti)

s −−−−−−→ e −−−−−−−−−−−−−−−−−−→ [ti, ti+1[ −−−−−−−→ t
: iff [ti, ti+1[ ⊆ [Se, Fe[ :

Fig. 2 Network for assigning employees to tasks

3.2 NP-complete Cases

In this section special cases of the problems introduced in Section 2.3 are described

which are already NP-hard if formulated as optimization problems or NP-complete if

formulated as decision problems.

Special Case 1

There is only one task which needs one employee during each period t = 0, · · · , T−1

where T = 3q, and q is the number of employees available. The working pattern of each

employee consists of exactly 3 time periods which need not to be consecutive.

Can the q employees cover the demand of the task?

Garey & Johnson show (e.g. [24], p. 243) that there is a reduction from the exact

covering by 3-sets problem (X3C). This result implies that the problem to minimize

the number of employees needed to perform only one task is already NP-hard.

Special Case 2

Task j needs exactly one employee for a time interval [sj , tj [ ⊆ [0, T ]. Each em-

ployee is available the whole planning horizon [0, T ] but cannot perform all tasks.

Can q employees cover the demand of the task?

The problem is NP-complete even if task changes are allowed. This has been shown

by Kroon et al. [27] by a reduction from the 3-dimensional matching problem. By The-

orem 3, the problem is polynomially solvable if each employee can perform all tasks.

Special Case 3

There are two tasks. Each task must be performed during the whole planning hori-

zon [0, T ] by one employee in each period. There are n employees e = 1, · · · , n. Any

working pattern (we(t))
T−1
t=0 with

∑T−1
t=0 we(t) = me can be assigned to employee e.

Each employee can perform each task. Furthermore,
∑n
e=1me = 2T holds.

Are there working patterns for the employees such that both tasks are covered and

each employee performs only one task (no task changes)?



Thus, the problem of minimizing the task changes is NP-hard even when each

employee can perform each task.

NP-hardness follows from the fact that the problem is equivalent to the partitioning

problem. Indeed, both tasks can be covered if and only if there is a subset I ⊆ {1, · · · , n}
with

∑
e∈I me = T . In this case the employees e ∈ I can be assigned to one task while

the remaining employees are assigned to the other task.

4 Concluding Remarks

Personnel scheduling problems have attracted significant research attention. There was

a lack of, however, a general mathematical model which accommodates various char-

acteristics in the problem. In this paper we developed such a general mathematical

model and specific models for personnel scheduling problems. Polynomially solvable

and NP-hard cases are presented. In [21], it is said that

“New models need to be formulated that provide more flexibility to accommodate

individual workplace practices. This can then lead to the development of more general

algorithms that will be more robust to changes in the rostering requirements.”

Our aim is to underpin the theory of personnel scheduling, which unlike in tradi-

tional scheduling, needs theoretical studies on models and complexity.

Personnel scheduling problems can be formulated as integer linear programs. For

some small sized instances, LP-solvers can be used to solve the problem. Complex

problems can be solved by heuristics which combine local search and network flow

techniques.

The problem of assigning shifts to employees and employees to tasks to cover the

demand can be efficiently solved by network flow algorithms if task changes are allowed.

This can be exploited in heuristics for personnel scheduling problems. A side effect is

that employees have to switch between tasks (working places) during their shifts. These

switches may be unavoidable. Unfortunately the problem of minimizing the number of

task changes is NP-hard. Heuristics which

– assign feasible shifts to employees,

– construct (directly) schedules which allow task changes, and

– take care of the number of task changes

need to be developed and numerically tested. The results presented here could be

useful for such investigations.
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