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A B S T R A C T
In marine container terminals, truck dispatching optimization is often considered as the primary
focus as it provides crucial synergy between the sea-side operations and yard-side activities
and hence can greatly affect the terminal throughput and quay crane utilization. However,
many existing studies rely on strong assumptions that often overlook the uncertainties and
dynamics innate to real-life applications. In this work, we propose a dynamic truck dispatching
system for container ports equipped with the latest IoT technologies. The system is comprised
of Real2Sim simulation and a truck dispatch agent, trained through a spatial-attention based
deep reinforcement learning module, supported by an expert network. The proposed Real2Sim
framework has the ability to model the non-linear complexities and non-deterministic events
while our attention-aware deep reinforcement learning module is capable of making full use of
both historical and real-time port data to learn a high-quality truck dispatching policy under
uncertainties. Extensive experiments show our proposed method has good generalization and
achieves the state-of-the-art results on the problems derived from real-life data of a large
international port.

1. Introduction
Ocean shipping is the main transport mode for global trade. In fact, it is estimated that around 80% of global

trade by volume and over 70% of global trade by value are carried by sea and are handled by ports worldwide. As
such, the oceans provide the main transport arteries for global trade. According to projections by the International
Transport Forum (ITF) (Forum, 2021), maritime freight transport will grow at a compound annual growth rate of 3.6%
through 2050. This will lead to a near tripling of maritime trade volumes by 2050. This comes with opportunities
and challenges. It is not surprising to witness an increasing drive for more operational efficiency in existing maritime
container terminals. Over past decades, a series of container terminal related problems are investigated, such as Quay
Crane (QC) or Yard Crane (YC) assignment and scheduling, truck dispatching, berth allocation, and container storage
assignment.

Optimizations of these problems could help improve the utilization ratio of different equipment and resources,
shorten vessels’ berthing time, thus gain more business competitiveness in the container terminal. Typically, these
optimizations are Combinatorial Optimization Problems (COPs) and most of them are NP-hard. Existing studies have
largely focused on model-driven approaches, which first formulate the problem via mathematical models, and then use
various optimization algorithms to solve the mathematical model. Generally speaking, there exist two main families
of approaches for solving COPs. Exact algorithms, such as Branch-and-Bound, Branch-and-Pricing frameworks, are
based on the clever exploitation of structures of the objective and constraints functions to prune the solution space
while ensuring optimality. These algorithms can obtain the optimal solution eventually, but they may be prohibitive for
solving large problem instances because of the exponential time complexity. Alternatively, approximation algorithms,
such as heuristics and hyper-heuristics, can produce good-quality solutions within a reasonable computational time,
but without proven optimality guarantees.

Even though the approximation algorithms may work well on some classical COPs, once the problem statement
changes slightly, they need to be revised. To apply the approximation algorithms in newly encountered problems is an
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open challenge stemming from the No Free Lunch (NFL) theorem (Wolpert and Macready, 1997). In fact, one main
issue of the model-driven approach is that it normally focuses on the deterministic variants of the problem, in which
some strong assumptions are often pre-setup in the model. Since these assumptions are generally different from the
practical scenarios, as a result, the algorithms developed using the model-driven approach may be hard to deploy in
the real-world environment because of the high level of uncertainties. Taking container terminal truck dispatching
optimization as an example, the uncertainties may come from several aspects, such as the truck traveling speed, the
service time of QC or YC operations and the degree of yard congestion. Traditional model-driven approaches are
always vulnerable to these uncertain factors. The solutions generated in the off-line manner often encounter various
issues in the non-deterministic environment such as inferior service quality, increased costs, and infeasible solutions,
all of which would lead to substantial losses. Although some modelling techniques like stochastic programming can
address this issue partially, they often lead to extremely large models that tend to be intractable for most practical
problems.

Recently, Reinforcement Learning (RL) algorithms have been proved effective in sequential decision making
problems (Cui et al., 2024). The integration of deep learning and reinforcement learning (DRL), is drawing much
attention due to its remarkable achievements in video games playing (e.g. Deep-Q-learning for Atari game (Mnih
et al., 2015), AlphaStar for StarCraft II (Vinyals et al., 2019)) and board games (Alpha Go (Silver et al., 2016), Alpha
Zero (Silver et al., 2017)). Reinforcement learning can be viewed as an approximation of Dynamic Programming (DP)
(Bellman, 1957) which is a general divide-and-conquer technique for complex problems (such as COPs) by decom-
posing them into several parts (sub-problems), which have a recursive relationship. After each part has been solved,
DP provides a systematic procedure for determining the combination of results of the sub-problems in order to obtain
an overall solution. Therefore, DP is typically used for the problems when there are overlapping or recursive function
calls and the future may depend on both the current state and past states. In RL, the problem to resolve is normally
described as a Markov Decision Process (MDP). MDPs are used when sequential decision making is required. In
contrast with DP, MDP model problems where the future depends only on the current state, and not on any past states.
Technically, a problem that is deemed solvable by DP requires two main properties: overlapping sub-problems and
optimal substructure. As a matter of fact, MDP can satisfy both of the two properties. To this end, we believe RL
can provide an appropriate paradigm for finding solutions for COPs (in the equivalent DP formulations). Moreover,
since the objectives in most COPs are deterministic, it can lead to relatively simple reward mechanisms and increase
sample efficiency for RL, avoiding reward shaping that is normally adopted in complex real-world problems. As a
matter of fact, DRL has already shown promising abilities to obtain high-quality solutions to some COPs (Cui et al.,
2023; Haydari and Yilmaz, 2020; Kong et al., 2019; Mazyavkina et al., 2021).

Most of current RL researches are based on the simulation-only settings. One main drawback is that they focus
on the ideal environment and thus lack of the practical applicability. On one hand, real-world optimization scenarios
are too complicated to be fully reproduced in a simulation environment due to the lack of on-the-spot details and
information. One the other hand, to train the RL agent in the real-world environment is usually painstaking because
of extreme time cost and even infeasible for most of practical applications. To bridge such challenging reality gap,
one possible solution is to use Real2Sim transferring (Rusu et al., 2017; Tobin et al., 2017) by building high-fidelity
simulators directly from real-world data, so that the RL agent can be better adapted to the dynamics and uncertainties
in reality.

Motivated by the demand of more effective algorithms for solving challenging COPs in the maritime container
terminal, this work proposes an DRL approach for truck dispatching optimization, along with a powerful AnyLogic
simulation to mimic the real-life complexities and dynamics. The proposed approach is tailored to the truck dispatching
optimization problem taken from a real-world container terminal, which is also a special version of classic pickup and
delivery problem (PDP). Our contributions are three-fold. Firstly, a flexible truck dispatching system is developed for
real-life container ports with full-scale Internet of Things (IoT) capabilities. Our simulation system is able to sufficiently
capture real-life complexities and non-deterministic factors while the tailor-made deep reinforcement learning method
maximizes the utilization of both historical and real-time data generated from port IoT systems. These novelties result
in significant performance gains compared to the previous works. Secondly, a tailor-made neural network structure
is developed which enables the RL agent to efficiently handle state vectors of different lengths caused by diverse
training instances and better use context-aware spatial information. In addition, benefit from the novel network design,
the expert knowledge can be incorporated to further accelerate the training convergence. Compared with existing
approaches, our proposed approach show much better generalization abilities across problem instances with different
configurations. Finally, thanks to our simulation visualisation, some interesting operational insights are discovered and
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analyzed. These insights are potentially beneficial for efficient container terminal management. Because of this, our
DRL based simulation optimization also contribute to explainable AI to a certain degree.

The remainder of this paper is organised as follows: Related work is presented in Section 2. The problem description
and formulation can be found in Section 3 and the proposed solution approach is presented in Section 4. The
experimental results are reported in Section 5. Section 6 concludes the paper.

2. Literature Review
In container terminals, trucks are the most essential schedulable resources and closely connected to QCs and YCs.

A sophisticated truck dispatching rule not only improves the port throughput and operation efficiency but also leverages
the utilization of other equipment. The examined inner trucks dispatching in practice heavily rely on human experience
(heuristic approach). As one of the most simplistic approaches, dedicated dispatching policy makes trucks organized
as groups and each group serves one particular QC. Such a method is easy to implement and deploy in reality and thus
used by many real-world container terminals nowadays. However, it has been proved that fixed QC-Truck dispatching
policy can cause high empty mileage and low efficiency (Nguyen and Kim, 2012; Tao and Qiu, 2015). Other intuitive
dispatching heuristics are implemented based on some dynamic prioritized factors such as distance, estimated time or
queue length. Such dispatching rules are designed by prioritizing the task assignment and therefore are computational
efficient. However, these methods could only obtain a local optima policy due to their greedy and myopic nature. Chen
et al. (2016) proposed a manually handcrafted dispatching rule based on the supply-and-demand mechanism of QC.
Such a heuristic considered both the spatial and the temporal factors and it was proved to outperform the existing
dispatching methods that were practically deployed in Ningbo-Meshan Container Terminal. This heuristic is used as
one of the benchmarks in this work.

The simple handcrafted dispatching rules usually fail to obtain competitiveness performance since they only rely
on partial (mostly limited) observed information at each decision step. Another methodology that aims at acquiring
high-quality solutions consider such a problem as a long-time planning rather than real-time decision making and solve
it in a offline manner. In another words, all dispatching decisions are pre-scheduled without concerning the real-time
feedback. One representative approach is mixed integer programming (Qin et al., 2020a; Zhang et al., 2005). Such
methods are model-driven and work well for small problem instances, but can be computationally infeasible for large
scale cases. In contrast, meta-heuristic approaches such as genetic algorithm (Skinner et al., 2013; Xin et al., 2021a)
and particle swarm optimization (He et al., 2015; Tang et al., 2014) could overcome the massive and obtain high-
quality solutions in a reasonable computation time. Some approaches use look-ahead optimization that could shorten
the planning horizon thus reduce the computation time (Kim and Bae, 2004). Hybrid approaches that combine various
meta-heuristics are also investigated (Chen et al., 2013; Hsu et al., 2021). However, most of these research studies
overlooked the possible dynamic factors and uncertainties, thus, make them hard to be deployed in real container
terminals. Therefore, these methods improve the solution quality at expense of reduced feasibility.

One of the compromise means is Genetic Programming (GP) which yields heuristic rules rather than a specific
planning. Therefore, it could handle online dispatching and solution quality could also be improved through an
evolutionary process. Chen et al. (2020) adopted GP to solve truck dispatching problem where the solutions are encoded
as decision trees for making real-time decisions. The experiments have demonstrated that GP could reveal some hidden
factors during the evolving process and thus outperform manually handcrafted heuristic approach. However, it has a low
sample efficiency and may fail to construct the high-quality heuristic rules unless the genetic operators are fine-tuned.

Recently, using RL to solve COPs has been revisited since neural combinatorial optimization is proposed (Bello
et al., 2017). The idea is to combine RL, sequence-to-sequence learning (Sutskever et al., 2014) and pointer network
(Vinyals et al., 2015) so that the solutions of COPs can be directly obtained by a well-trained neural network.
Consequently, RL has witnessed flourish successes on several classic COPs and their variants such as TSP (Xin et al.,
2021b; Zhang et al., 2022a; Zheng et al., 2021), vehicle routing problem (VRP) (James et al., 2019; Ma et al., 2021b;
Xin et al., 2020; Zhou et al., 2023) and knapsack problem (Cappart et al., 2021; Ozsoydan and Gölcük, 2023; Tu et al.,
2023). Similar methodologies have also been promoted to multi-objective optimization for these COPs (Li et al., 2020;
Lin et al., 2022; Zhang et al., 2022b). The use of graph neural network in such a methodology is also investigated (Wu
et al., 2021). Rather than constructing a solution directly through the sequence-to-sequence model, iterative solution
perturbation can also be an alternative learning method (Chen and Tian, 2019; Lu et al., 2019).

Apart from solving canonical COPs, RL has also shown competitive ability for decision marking and optimization
problems in real-world scenarios. The pickup and delivery problem (PDP), as a representative variant of VRP is broadly
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investigated to be solved by DRL since it shows strong connections to numerous real-world optimizations including our
examined problem (a full-truckload version of PDP). The relevant methodologies are innovated by using customized
design of attention mechanism (Li et al., 2021), hierarchical RL (Ma et al., 2021a), and multi-agent RL (Zong et al.,
2022). By setting different constraints such as multiple time windows for customers, some real-world applications
such as food delivery problem (Jahanshahi et al., 2022; Zou et al., 2022) and taxi dispatching problem (Liang et al.,
2021; Liu et al., 2020; Qin et al., 2020b) are also evolved from the classic PDP. These are two most important Internet
business forms nowadays and have attracted considerable research efforts in the field of operational research. Such
problems are benefit from the advantages of RL based approaches due to their online and dynamic nature.

The examined truck dispatching problem is naturally suitable for RL-based methods (Bai et al., 2023) since it is
an online decision-making problem that can be derived from traditional PDP. However, the aforementioned works
on classic COPs are based on over-simplified dynamic details of problem environments. As a matter of fact, the
optimizations in real container terminals can be far more complex. Consider the operations in a traditional container
terminal as an example, several interconnected sub-problems would be jointly considered, including berth allocation
problem, quay crane scheduling, yard allocations, yard crane scheduling and finally the truck dispatching. Any single
operation can affect others and yet the joint optimization of all sub-problems is more challenging (Kizilay et al., 2020).
Additionally, there are various uncertainties factors in most of these sub-problems. For example, port equipment-related
parameters such as service time are not constant and random situation such as general disruptions may occur (Rodrigues
and Agra, 2022). These factors may place a burden on obtaining high-quality solutions for RL-based approaches.

Zeng et al. (2011) made early efforts to use Q-learning to solve the integrated YC and yard trailers scheduling
problem. However, such a conventional RL method cannot produce competitive results due to its over-simplified neural
network structure. Recently, Zhang et al. (2021) proposed a DRL-based hyper-heuristic framework for the container
terminal truck dispatching problem. The competitiveness performance of their framework was experimentally demon-
strated in the real-world port environment with uncertainties. This approach is used as another benchmark of our work.
However, the performance of the hyper-heuristic framework may heavily rely on the quality of low-level heuristic
design. In addition, the reduced action space using low-level heuristics may further limit its performance.

Numerous container ports starts to deploy automatic guided vehicles (AGV) as the main carriers since they are
driverless and suitable for highly automatic and intelligent port management (Sun et al., 2022). The Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) was used in Hu et al. (2023) to solve the AGV path planning problem
with the aim of avoiding the conflict in an automated container terminal. Zheng et al. (2022) adopted deep-Q-network
(DQN) method to address the multi-AGV dynamic scheduling problem. In these applications, truck dispatching also
happens at cases of inter-terminal container transportation where trucks need to transfer containers among several
port terminals. Such problems have been also investigated with RL (Adi et al., 2020). In addition, RL could also help
to leverage the truck dispatching optimization in other industrial field such as surface mining (Afrapoli et al., 2019;
de Carvalho and Dimitrakopoulos, 2021).

3. Problem Description and Formulation
There are several main components in a container terminal, namely, berth, quay crane (QC), trucks, storage yard,

and yard crane (YC), as shown in Fig 1. Berth and QC are at the seaside. The storage yard and YC locate at the landside.
The berth is the area for vessels to load and unload containers. A QC is used to carry the containers between ships and
trucks. Each QC can only finish one unit task so queues are common. Yards are used to store the containers temporarily.
They are divided into yard blocks and each yard block is further divided into multiple bays of identical length. Yard
cranes(YCs) are used to transfer the containers between trucks and yards. Like QCs, YCs handle a unit task each
time. Normally each yard block is equipped with a YC. Finally trucks are used to transport containers between vessels
and yard blocks and must strictly follow the traffic directions and other safety related rules. A cut-out example of the
container terminal layout is illustrated in Fig. 1.

Truck dispatching happens upon a vessel’s arrival. A truck fleet of unit capacity takes charge of loading and
unloading containers between QCs and YCs. All the loading and unloading tasks of unit size (i.e. one 40-inch container
or two 20-inch containers) are arranged and allocated to different QCs in advance by a separate procedure. Each QC
has a list of tasks that need to be executed (i.e., a task is assigned to a specific truck) in a pre-defined order. The
allocated tasks for the trucks are represented as a task instruction as shown in Table 1. It contains an unique task id, the
source location, the destination location, the task type, the source bay and the destination bay. The source or destination
location is either QC or YC. Task type, which are represented by LOAD and DISCHARGE, indicates loading to the
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Figure 1: A cut-out example of the container terminal layout. The red arrows represent the truck moving directions allowed
at di�erent areas. In this case, each vessel are equipped 2 load QCs and 2 unload QCs.

Table 1

An example of task instructions. For task 1, the source container at bay 15 that is dedicated to QC6 are about to transfer
to the yard 32 at bay 12.

Id Source Destination Type Source Bay Destination Bay

1 QC6 32 DISCHARGE 15 12

2 5 QC2 LOAD 20 23

ship or unloading from the ship, respectively. There are two types of QC, namely loading and unloading QC, where
loading QCs only execute LOAD task and unloading QCs only execute DISCHARGE task. The source and destination
bay are the stopping positions for the truck at yard or vessel. A task instruction refers to moving a container from one
location to another location. Generally speaking, the procedure of executing a task assigned to a truck can be described
as below:

1. Move to the source bay of the source location.
2. Pick up the target container after waiting for the queuing and the crane service time.
3. Move to the destination bay of the destination location.
4. Unload the target container after waiting for the queuing and the crane service time.
5. Request a new task upon the completion of the current task.
A truck could only execute one task at one time. When a task of a specific QC is dispatched, this task needs to be

removed from the QC’s task list. When a truck finishes the task, the scheduler needs to dynamically select a new task
for it based on the states of all active QCs, YCs and trucks. The decision must be made within a relative short period
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Table 2

Notations used in the problem formulation.

Notation Description

Sets

𝑉 The set of dispatchable trucks. Each truck is retrieved by 𝑣 ∈ 𝑉 .

𝑌 The total set of yard blocks, each of which is deployed with a yard crane.

𝑄 The set of quay cranes, each of which is retrieved via 𝑞 ∈ 𝑄.
𝐿𝑞 The list of tasks attached to quay crane 𝑞 ∈ 𝑄. Tasks must be completed in the given order.

𝑊 The set of all tasks attached with all the quay cranes 𝑄, hence 𝑊 = ∪𝑞∈𝑄𝐿𝑞.

𝐵𝑦 The set of all tasks using a same yard crane 𝑦 ∈ 𝑌 .
Indices

𝑖, 𝑗 Indices used for sequential access to task lists and the objective vector.

𝑡 Index used for time steps.

Parameters

𝑤𝑞
𝑖 The 𝑖-th task in task list 𝐿𝑞, 𝑞 ∈ 𝑄.

𝛼(𝑞) A binary variable to indicate the type of QC 𝑞.
𝑂𝑞

𝑖 Time duration for quay crane 𝑞 to operate task 𝑤𝑞
𝑖 .

𝑇𝑖𝑛𝑖𝑡 Initial time of the simulation.

Decision and Auxiliary Variables

𝑥(𝑤𝑞
𝑖 , 𝑣) A binary variable to indicate whether task 𝑤𝑞

𝑖 is assigned to truck 𝑣 or not.

𝑇 𝑞
𝑖 The starting time of quay crane 𝑞 to operate its task 𝑤𝑞

𝑖 .

𝑧(𝑘, 𝑙) A binary variable to indicate whether task 𝑙 is serviced immediately after task 𝑘 by any truck.
A truck travels from/to the depot is marked as a dummy task 0.

𝑆𝑘
𝑣 The time when truck 𝑣 commits its service to task 𝑘.

𝐸𝑘
𝑣 The time when truck 𝑣 �nishes task 𝑘 at its destination node.

𝐷(𝑘, 𝑣) The time duration for truck 𝑣 moving to the target QC of the task 𝑘.
𝐻(𝑘, 𝑣) The time duration for truck 𝑣 waiting at the queue of the target QC of the task 𝑣.
𝑇 𝑘,𝑦
𝑎𝑟𝑟 The arrival time of task 𝑘 at its yard 𝑦.

𝑇 𝑘,𝑦
𝑐𝑜𝑚𝑝 The operation completion time of task 𝑘 at its yard 𝑦.

of time (usually a few seconds). Normally, only the first task in each QC’s task list can be selected. For example, if
there are 𝑚 QCs with the non-empty task list, this means the scheduler has 𝑚 choices for the current truck dispatching
decision. Moreover, the QC service constraint requires QC serving the trucks in their task dispatching order, which
means sometimes trucks with latter dispatched tasks need to wait in the QC queue if trucks with earlier dispatched tasks
are not arrived at this QC. We define the amount of time the QC takes to finish all assigned tasks as QC makespan.

In our application, the objective is to minimize the the summation of all QC’s idle time in its QC makespan. This
objective can help improve the QC utilization ratio and affect the entire port throughput as a vessel would have less
duration time at the berth if all QCs are kept busy. Consequently, the objective of examined problem is formulated from
the perspective of QC operation flow (as depicted in Fig. 2). Assume that each QC has two states, namely, operating and
idle. The QC operation flow indicates the repeated process that a QC switching between its two states. The objective
function, constraints and the uncertainty factors are formulated based on such a perspective.

Below is the mathematical formulation of the objective function and relative constraints. The involved notations
can be found in Table 2 which also includes several variables used in section 4.2.1. Denote 𝑄 and 𝑌 be the set of all
QCs and YCs nodes, respectively. Let 𝑉 be the set of unit-sized homogeneous port inner trucks. The problem can be
formulated on a directed graph 𝐺(𝑁,𝐴) where 𝑁 is the union of depot node 0, and the set of points of work (PoW),
consisting of all quay cranes 𝑄 and all yard cranes 𝑌 , i.e. 𝑁 = {0}∪𝑄∪𝑌 . 𝐴 represents the capacitated road network
of the container terminal connecting different nodes. Therefore, the truck travel speed shall depend on the volume of
the traffic at different segments in 𝐴. In addition, truck movement over 𝐺 follows the shortest path rule and the routing
process is automatically conducted within the simulator. Upon the arrival of a vessel, a number of quay cranes 𝑄 are
assigned to this vessel and each quay 𝑞 is given a task list 𝐿𝑞 to complete in the given sequence. A task is one of two
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possible types: either loading (i.e. yard to ship) and unloading (ship to yard). Trucks are dispatched to complete each of
these transportation tasks, along with load/unloading operations by cranes at both their source and destination nodes.

The dispatch is triggered by an idle truck. Starting from the depot node, each truck needs to complete a series of
transportation tasks and returns to the depot if there is no new task assigned to it. Let 𝑊 =

⋃

𝑞∈𝑄 𝐿𝑞 be the set of all
tasks. Our problem is to assign each of these tasks to a dispatchable truck so that the objectives are optimized. Two set
of variables are used to encode the solution to our problem. The first set of variable is the assignment variable 𝑥(𝑤𝑞

𝑖 , 𝑣)which takes value 1 if task 𝑤𝑞
𝑖 is assigned to truck 𝑣 and 0 otherwise. The auxiliary variable 𝑇 𝑞

𝑖 is used to denote the
time that the 𝑖-th task of quay crane 𝑞 is served by quay crane 𝑞. Let 𝑂𝑞

𝑖 be the corresponding operating time duration,
𝑂𝑞
𝑖 > 0. The second set of variables 𝑧(𝑘, 𝑙) defines the sequence in which a pair of tasks are serviced by a particular

truck.
It can be seen from Fig. 2 that idle waiting at quay cranes can happen when the operation of a truck may be

interrupted because of insufficient feeder trucks which should be minimized through intelligent truck dispatching.
This leads to the following objective function Eq.(1) that also takes into account idle time at the start of the operations.
Specifically, the objective function considers truck’s traveling time, truck’s queuing time, and the service time of
cranes (QC and YC). The variable 𝑇 𝑞

𝑖 in the objective function can be further expanded by Eq.(2), where 𝐷(𝑤𝑞
𝑖 , 𝑣) is

the time duration (excluding the time that is spent at the yard) that the truck 𝑣 takes to reach the target QC for task 𝑤𝑞
𝑖 ,

𝐷(𝑤𝑞
𝑖 , 𝑣) > 0. 𝛼 is an indicator of QC type (𝛼(𝑞) = 1 indicating 𝑞 is for loading task and 𝛼(𝑞) = 0 indicating 𝑞 is for

unloading task). 𝑇𝑤𝑞
𝑖 ,𝑦

𝑐𝑜𝑚𝑝 and 𝑇
𝑤𝑞
𝑖 ,𝑦

𝑎𝑟𝑟 are completion and arrival time at the target yard 𝑦 for task 𝑤𝑞
𝑖 and 𝐻(𝑤𝑞

𝑖 , 𝑣) is the
corresponding queuing time at the QC, 𝐻(𝑤𝑞

𝑖 , 𝑣) ≥ 0.

min
∑

𝑞∈𝑄

|𝐿𝑞
|

∑

𝑖=2
(𝑇 𝑞

𝑖 − 𝑇 𝑞
𝑖−1 − 𝑂𝑞

𝑖−1) +
∑

𝑞∈𝑄
(𝑇 𝑞

1 − 𝑇𝑖𝑛𝑖𝑡) (1)

𝑇 𝑞
𝑖 =

∑

𝑣∈𝑉
𝑥(𝑤𝑞

𝑖 , 𝑣)[𝑆
𝑤𝑞
𝑖

𝑣 +𝐷(𝑤𝑞
𝑖 , 𝑣) + 𝛼(𝑞)(𝑇

𝑤𝑞
𝑖 ,𝑦

𝑐𝑜𝑚𝑝 − 𝑇
𝑤𝑞
𝑖 ,𝑦

𝑎𝑟𝑟 ) +𝐻(𝑤𝑞
𝑖 , 𝑣)] (2)

𝑂1
𝑞

𝑂4
𝑞

idle idle idle

𝑻𝒊𝒏𝒊𝒕

Time

Quay 
Crane q :

𝑻𝟐
𝒒

Operation Period Idle Period 

𝑂3
𝑞𝑂2

𝑞

𝑻𝟏
𝒒

𝑻𝟑
𝒒

𝑻𝟒
𝒒

Figure 2: An example of QC operation �ow. 𝑇 𝑞
1 , 𝑇

𝑞
2 , 𝑇

𝑞
3 , 𝑇

𝑞
4 are the starting times that quay crane 𝑞 starts to operate the

containers of di�erent tasks. 𝑂𝑞
1, 𝑂

𝑞
2, 𝑂

𝑞
3, 𝑂

𝑞
4 are their corresponding operating duration which are indicated by the grey cells.

A number of constraints must be satisfied. The first set of constraints is to ensure the full completion of all tasks
(constraint (4) and (5)) and each task is transported by exactly one truck (constraint (3)). Additionally, any task
assignments that violates the order of tasks in each queue 𝐿𝑞 is prohibited (constraint (6)).

∑

𝑣∈𝑉
𝑥(𝑤𝑞

𝑖 , 𝑣) = 1 ∀𝑤𝑞
𝑖 ∈ 𝑊 (3)

∑

𝑘∈𝑊 ∪{0}
𝑧(𝑘, 𝑙) = 1 ∀𝑙 ∈ 𝑊 (4)

∑

𝑙∈𝑊 ∪{0}
𝑧(𝑘, 𝑙) = 1 ∀𝑘 ∈ 𝑊 (5)
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∑

𝑖∈𝐿𝑞&𝑖>𝑗

∑

𝑗∈𝐿𝑞
𝑧(𝑤𝑞

𝑖 , 𝑤
𝑞
𝑗 ) = 0 ∀𝑞 ∈ 𝑄 (6)

The second set of constraints is related to the operation time at quay cranes and non-stop requirements for any
continuous tasks by a truck. Constraint (7) ensures that the tasks need to be operated (load or unload) by QC in order.
Denote 𝑆𝑘

𝑣 and 𝐸𝑘
𝑣 as the time steps that a truck 𝑣 commits to receive and finishes the task 𝑘 respectively. Thus, the

time duration for truck 𝑣 to execute task 𝑘 is 𝐸𝑘
𝑣 − 𝑆𝑘

𝑣 , while the movement time of truck 𝑣, queuing, loading and
unloading time of related cranes are considered. Constraint (8) guarantees truck executes the tasks continuously.

𝑇 𝑞
𝑖 ≥ 𝑇 𝑞

𝑖−1 + 𝑂𝑞
𝑖−1 ∀𝑞 ∈ 𝑄, 𝑖 ∈ [2, |𝐿𝑞

|] (7)
𝑆𝑙
𝑣𝑥(𝑙, 𝑣) = 𝐸𝑘

𝑣𝑧(𝑘, 𝑙) ∀𝑣 ∈ 𝑉 , 𝑘 ∈ 𝑊 , 𝑙 ∈ 𝑊 (8)
Finally, denote 𝐵𝑦 be the set of all tasks using a same yard crane 𝑦 ∈ 𝑌 . Then, the operation completion time of

each task 𝑘 ∈ 𝐵𝑦 at yard crane 𝑦, denoted as 𝑇 𝑘,𝑦
𝑐𝑜𝑚𝑝, should respect company’s first-come-first-service (FCFS) rule. This

constraint is expressed by Eq. (9) where 𝑇 𝑘,𝑦
𝑎𝑟𝑟 and 𝑇 𝑙,𝑦

𝑎𝑟𝑟 indicate the arrival time of task 𝑘 and 𝑙 at their corresponding yard
𝑦. Such a FCFS constraint highlights the complexity of the examined problem due to its nonlinearity and indeterminacy
nature which relies on the implementation of simulation.

𝑇 𝑘,𝑦
𝑐𝑜𝑚𝑝 = 𝐹𝐶𝐹𝑆(𝑇 𝑘,𝑦

𝑎𝑟𝑟 , 𝑇
𝑙,𝑦
𝑎𝑟𝑟) ∀𝑦 ∈ 𝑌 ,∀𝑘 ∈ 𝐵𝑦,∀𝑙 ≠ 𝑘 ∈ 𝐵𝑦 (9)

Note that the auxiliary variables listed in Table 2 serve two main purposes: first, they are used to help model
nonlinearities and uncertainties in the objective function and related constraints. Second, these auxiliary variables can
help describe the important state variables that are closely monitored intermediate data in real-life decision making
(e.g., 𝑇 𝑘,𝑦

𝑎𝑟𝑟 and 𝑇 𝑘,𝑦
𝑐𝑜𝑚𝑝). In our examined problem, they are fully observable from the simulator. Additionally, they can

represent the information of real-world container terminal that cannot be explicitly computed (e.g., 𝑇 𝑞
𝑖 , 𝑆𝑘

𝑣 , and 𝐸𝑘
𝑣 ).

The events related to the examined problem (e.g., 𝑧(𝑘, 𝑙)) are proceeded based on these variables inside the simulation.

4. The Proposed DRL Approach
4.1. Reinforcement Learning

Reinforcement Learning (RL) is one of machine learning branches that aim to train agents (decision markers) from
interactions with the environment (problem) in a trial-and-error manner. In general, the agent repeatedly takes the
actions suggested by a set of policies and then update the policies based on the numerical rewards from the environment.
Through this iterative process, the agent can gradually improve its policies to obtain performance across different
realizations of random variables.

RL solves the sequential decision-making problems that can be formalized as the Markov Decision Process (MDP)
(Sutton and Barto, 1998). Generally speaking, a MDP can be represented by a tuple 𝑀 = ( ,, 𝑅𝑎, 𝑃𝑎, 𝛾), where 
is the set of state representations.  is the set of actions that can be selected by the agent. 𝑅𝑎 is the immediate reward
obtained after transferring the current state to the next state due to action 𝑎. 𝑃𝑎 is the state transition probability, which
can be represented as 𝑃𝑎(𝑠′, 𝑠) = 𝑃𝑟(𝑠𝑡+1 = 𝑠′, |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎), indicating the probability of action 𝑎 in state 𝑠 at
time step 𝑡 leading to state 𝑠′ at time step 𝑡 + 1. 𝛾 ∈ [0, 1] is the decay factor that can be fine-tuned during algorithm
development.

The goal of the agent acting in MDP is to find a policy 𝜋𝜃 that can map states into actions. Solving MDP means
finding an optimal policy that maximize the discounted accumulated rewards.
4.2. Truck Dispatching Optimization as an MDP

A finite MDP with discrete time step is applied to formulate the truck dispatching optimization problem. The time
interval between two adjacent steps is dynamic and is dependent on the time that a certain truck just finishes its current
task (i.e. becomes dispatchable). The objective of the truck dispatching optimization is to minimize the total idle time
that defined in Section 3 by dispatching candidate tasks to trucks at each time step. The details of our formulation are
as follows:
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4.2.1. Environment
A Real2Sim transferring simulation based on AnyLogic software is developed to model the environment of the

container terminal. Usually, it is infeasible and unsafe to train a dispatching policy in the real-world environment
directly. With the help of simulation, events in reality can be accelerated. Based on the plentiful built-in tools of
Anylogic, abundant aspects of real-world container terminal management such as physical component, business logic
and uncertainties can be considered to mimic the real operational complexities and dynamics (see Fig. 3). To this
end, a high-fidelity and effective simulation environment that relates to the examined truck dispatching optimization
problem is created. Also, according to the historical experiences in the real container terminal, some representative
scenarios are summarized and used to design the problem instances and configure the simulation in training process.
Some sophisticated dispatching heuristics are also considered as the forms of expert knowledge and used to initialize
(part of) the neural network, which is further described in Sec 4.3. By such means, the well-trained agent through
our proposed Real2Sim approach has the potential to be deployed in real-world container terminal with a little tuning
effort.

The parameter settings follow the advice from our collaborators in Ningo-Zhoushan port in order to make the
simulation as realistic as possible. The environment simulates the entire truck dispatching process and the uncertain
factors are also taken into account. In the real-world situation, the truck speed cannot be constant even if it travels
on the empty road. The truck’s travelling speed is changing all the time as it is affected by turning, passing by other
vehicles, and the load weight. In our simulation environment, the truck’s travelling speed at the road (except the yard
road) is defined by a speed range which follows a given distribution. Given the fact that in many container terminals,
the container loading and unloading operations are manually executed and the proficiency may vary from person to
person, crane bridge moving distance may also vary considerably in each service, the service time of each container
loading and unloading operation is non-deterministic. Therefore, in our simulation environment, the service time of
each operation is also formulated as a given distribution. The degree of yard congestion is another factor that can cause
the uncertainty. Normally, in the container yard, a three-lane road is shared by two neighbor yards. The middle lane
is used for truck passing through, the other two lanes are used for container loading and unloading operations. Under
certain circumstances, this three-lane road can be quite congested because there are too many collision avoidance
related truck manoeuvres. Therefore in our simulation environment, we set truck’s speed inversely proportional to the
total number of trucks on this road at the same time when trucks enter or leave the yard roads. The specific simulation
parameters can be found in Table 3 and Fig. 4 presents an environment inner screenshot.

Some uncertain factors are modeled based on the real-world container terminal operations. These factors are
embedded in the simulation environment and are briefly introduced here. Denote 𝐶𝑣

𝑡 as the traveling speed of the
truck 𝑣 at time step 𝑡. Denote 𝑔𝑦,𝑦

′

𝑡 as the number of trucks queuing at the adjacent yards 𝑦 and 𝑦′ that share a same
yard road segment at time step 𝑡. Eqs. (10) and (11) are trucks state variables at time step 𝑡 that affect truck speed.

𝛽(𝑣, 𝑡) =

{

1, 𝑣 is on-load state at time step 𝑡
0, 𝑣 is empty-load state at time step 𝑡

(10)

𝜙(𝑣, 𝑡) =

⎧

⎪

⎨

⎪

⎩

1, 𝑣 is on its target yard road of the
current task at time step 𝑡

0, otherwise
(11)

Eq. (12) represents the truck speed in different areas in container terminal, in kilometer per hour.

𝐶𝑣
𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑐1 ∼ 𝑓1, 𝛽(𝑣, 𝑡) = 1, 𝜙(𝑣, 𝑡) = 0
𝑐2 ∼ 𝑓2, 𝛽(𝑣, 𝑡) = 0, 𝜙(𝑣, 𝑡) = 0
10, 𝑔𝑦,𝑦

′

𝑡 > 10, 𝜙(𝑣, 𝑡) = 1
30 − 2𝑔𝑦,𝑦

′

𝑡 , 1 ≤ 𝑔𝑦,𝑦
′

𝑡 ≤ 10, 𝜙(𝑣, 𝑡) = 1

(12)
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Table 3

Simulation Parameters.

Parameters Name Value Range (unit)

Loaded Truck Speed at Road [30, 40] (km/h)
Empty Truck Speed at Road [40, 50] (km/h)

Truck Speed at Yard [10, 30] (km/h)
Crane Bridge Speed [0.5, 1.5] (m/s)
Crane Trolley Speed [1.0, 2.0] (m/s)
Crane Hoist Speed [2.0, 3.0] (m/s)

where 𝑐1 and 𝑐2 are sampled from the probability density functions for truck speed with empty and on load state, 𝑓1and 𝑓2, respectively. 𝑓1 and 𝑓2 are modeled from real-world container terminal operation environment.
The uncertainties of truck traveling time at different areas make 𝑆𝑘

𝑣 and 𝐸𝑘
𝑣 (defined in section 3) non-deterministic

in truck operation flow. Furthermore, 𝑂𝑞
𝑖 is not a constant as it can be affected by the movement of QC bridge, trolley,

and hook as well as the operator’s proficiency. These uncertain factors are also modeled as distributions estimated from
the real-world port operation scenario.

Real Container 
Terminal 

Simulation 
Environment

Agent

Road Network

Depict

Physical Component 

Parameterize

Yard (Berth) Area Size

Equipment Number

Business Logic

Yard Crane Scheduling

Container Location 
Allocation

Constraints

Uncertainties

Crane Service Time

Traffic Congestion

Truck Speed

Summarized from historical experience Heuristics
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Initialize 
(part of) 
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network

<𝑠1, 𝑎1
𝑒𝑥𝑝𝑒𝑟𝑡

>

<𝑠2, 𝑎2
𝑒𝑥𝑝𝑒𝑟𝑡

>
…

<𝑠𝑛, 𝑎𝑛
𝑒𝑥𝑝𝑒𝑟𝑡

>

Expert Knowledge

Verify, test and deploy

Scenarios
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Training

𝑎𝑡

𝑠𝑡+1 𝑟𝑡+1

𝑠𝑡

𝑟𝑡

Figure 3: The Real2Sim framework of the proposed reinforcement learning environment.

4.2.2. State
Once a given truck finishes its current task, a request is raised and the centre dispatcher (RL agent) assigns a new

task to the truck (dispatch). The observation at that time is based on the information of the target truck and the state of
each QC. The following information is considered as the state observations of the agent at time step 𝑡 for the truck 𝑣
that makes the request. The observations are designed by thoroughly investigating the examined problem through the
implemented Real2Sim based simulator. The detailed feature analysis can be found in section 5.3.2.

• The amount of the remaining tasks of each QC: RE𝑡 = [𝑅𝐸1
𝑡 , 𝑅𝐸

2
𝑡 ,… , 𝑅𝐸|𝑄′

𝑡|

𝑡 ]⊺.

• The travelling distances for truck 𝑣 to arrive at each candidate QC: DQ𝑡 = [𝐷𝑄1
𝑡 , 𝐷𝑄2

𝑡 ,… , 𝐷𝑄|𝑄′
𝑡|

𝑡 ]⊺.
• The travel distance between truck 𝑣 and the first operation location of the first task of each candidate QC:

DF𝑡 = [𝐷𝐹 1
𝑡 , 𝐷𝐹 2

𝑡 ,… , 𝐷𝐹 |𝑄′
𝑡|

𝑡 ]⊺. For import container tasks, the first operation location is a QC. For export
container tasks, the first location is a YC at yard blocks.

Jiahuan Jin et al.: Preprint submitted to Elsevier Page 10 of 24



Container Port Truck Dispatching Optimization using Real2Sim based Deep Reinforcement Learning

Figure 4: A screenshot of the container terminal simulation environment.

• The transport distance of the second task of the candidate QCs: DS𝑡 = [𝐷𝑆1
𝑡 , 𝐷𝑆2

𝑡 ,… , 𝐷𝑆|𝑄′
𝑡|

𝑡 ]⊺.

• The total number of trucks currently working for each QC: TW𝑡 = [𝑇𝑊 1
𝑡 ,𝑇𝑊

2
𝑡 ,… ,𝑇𝑊 |𝑄′

𝑡|

𝑡 ]⊺.

• The total number of trucks heading to each QC: TH𝑡 = [𝑇𝐻1
𝑡 , 𝑇𝐻

2
𝑡 ,… , 𝑇𝐻 |𝑄′

𝑡|

𝑡 ]⊺.

• The queue length of each QC: QL𝑡 = [𝑄𝐿1
𝑡 , 𝑄𝐿2

𝑡 ,… , 𝑄𝐿|𝑄′
𝑡|

𝑡 ]⊺.

• The queue length of each QC’s first task in the corresponding yard block: QY𝑡 = [𝑄𝑌 1
𝑡 , 𝑄𝑌 2

𝑡 ,… , 𝑄𝑌 |𝑄′
𝑡|

𝑡 ]⊺.
• The type of each QC: TY = [𝑇𝑌 1, 𝑇 𝑌 2,… , 𝑇 𝑌 |𝑄′

𝑡|]⊺, 𝑇𝑌 𝑞 = [1, 0] if the type is load, 𝑇𝑌 𝑞 = [0, 1] if the type
is discharge, 𝑞 ∈ [1, |𝑄′

𝑡|].
𝑄′

𝑡 refers to the set of non-empty QCs at the time step 𝑡, which is dynamic in an episode. The shape of TY is |𝑄′
𝑡|×2since TY is encoded as a two-digit one-hot vector indicating whether a QC is loading or unloading. The shapes of other

8 features are all |𝑄′
𝑡|×1. Thus, the state vector 𝑠𝑡 at time step 𝑡 for dispatching truck 𝑣 is encoded as a |𝑄′

𝑡|×10 matrix
where each row of the matrix is denoted as [𝑅𝐸𝑞

𝑡 , 𝐷𝑄𝑞
𝑡 , 𝐷𝐹 𝑞

𝑡 , 𝐷𝑆𝑞
𝑡 , 𝑇𝑊

𝑞
𝑡 , 𝑇𝐻

𝑞
𝑡 ,𝑄𝐿𝑞

𝑡 , 𝑄𝑌 𝑞
𝑡 , 𝑇 𝑌

𝑞], 𝑞 ∈ [1, |𝑄′
𝑡|].

4.2.3. Actions
Given the state 𝑠𝑡, the action space at time step 𝑡 for dispatching truck 𝑣 is 𝒂𝒕 = {𝑞 ∣ 𝑅𝐸𝑞

𝑡 > 0 , 𝑞 ∈ 𝑄′
𝑡}, where 𝑞

indicates the selected non-empty QC. Once 𝑞 is selected, its first remaining task is assigned to truck 𝑣. Note that the
number of actions at each dispatching time step is not always the same because tasks from some QCs may have been
completed by then.
4.2.4. Reward

In this work, the reward design follows the same principle of the work in Zhang et al. (2021) which is primarily
concerned with the QC idle time to each task. The reward for assigning a specific working instruction (task) 𝑤𝑞

𝑖 to the
target truck is defined as the idle time that the corresponding QC needs to wait before it starts to execute 𝑤𝑞

𝑖 . If we
denote the reward of dispatching𝑤𝑞

𝑖 at time step 𝑡 as 𝑟𝑡, then 𝑟𝑡 = −(𝑇 𝑞
𝑖 −𝑇

𝑞
𝑖−1−𝑂

𝑞
𝑖−1), 𝑖 ≥ 2 and 𝑟𝑡 = −(𝑇 𝑞

1 −𝑇𝑖𝑛𝑖𝑡), 𝑖 = 1,
which is the negative of the objective function defined in Eq.(1). Note that the reward 𝑟𝑡 cannot be obtained immediately
because the time step 𝑡 for dispatching 𝑤𝑞

𝑖 is earlier than the time that the corresponding QC starts to operate on it, (i.e.
𝑡 < 𝑇 𝑞

𝑖 ), as a result, each 𝑟𝑡 is computed episodically. That is, at each episode, when all the tasks in a given problem
instance are dispatched and finished (i.e. an episode is finished), the rewards are calculated retrospectively.
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4.2.5. State Transition
The state transition from 𝑠𝑡 to 𝑠𝑡+1 is governed by the function: 𝑠𝑡+1 = 𝐹 (𝑠𝑡, 𝑎𝑡, 𝑢𝑡). The transition may not only

depend on the action 𝑎𝑡 but also can be affected by the uncertainties 𝑢𝑡 existed in the environment. In this work, the
transitions for DQ𝑡,DF𝑡,DS𝑡,TW𝑡,TH𝑡,QL𝑡,QY𝑡 are subject to 𝑢𝑡, which is caused by the uncertainties introduced
in section 4.2.1. Specifically, the operation time of each YC and QC may vary, and the speed for each truck is not
constant, these will cause the non-deterministic probability transitions for the aforementioned states. The distributions
of each component of 𝑢𝑡 are learnt from the real-world operation data provided by our port collaborators and embedded
in the simulation environment. On the other hand, the transitions for RE𝑡 are directly affected by agent’s actions. In
this work, the state transition is automatically executed by the simulation environment.
4.3. Network Topology

The policy network used in this work is depicted in Fig. 5. Given the state vector described in section 4.2.2, the
policy network takes the feature vectors of each QC as the inputs and outputs a list of action probabilities that represents
the selection probability of each input QC.

Generally, the proposed network structure consists of an expert network and a cross-scenario network. The expert
net is used for providing additional prior knowledge by extracting feature vector for each QC and the cross-scenario net
is used as the actor for RL agent so that the probability distribution of actions are computed. For the expert network,
the feature vectors of each QC are firstly fed into a three-layer long-short term memory (LSTM). Next, the hidden
states of each LSTM step are fed into an feed forward layer to generate a 512-dimensional feature vector for each QC,
namely 𝐻𝐸𝑥𝑝𝑒𝑟𝑡. Here 𝐻𝐸𝑥𝑝𝑒𝑟𝑡 represents the knowledge of an expert dispatching policy and it will be further fed
into the cross-scenario network. The gate in the cross-scenario network is a two-layer fully connected block which
takes the same input states and outputs a tensor with a same shape as 𝐻𝐸𝑥𝑝𝑒𝑟𝑡. The other parts of the cross-scenario
network adopt the same structure as the expert network before the concatenation layer. After the concatenation is done,
a new feature vector consists of the information for both 𝐻𝐸𝑥𝑝𝑒𝑟𝑡 and 𝐻𝑇 𝑎𝑟𝑔𝑒𝑡 are generated. Then, an attention layer
which has the similar structure with the self-attention block in (Vaswani et al., 2017) is adopted and it maps the feature
vector of each QC to a scalar. Finally, a softmax layer is used to generate the action probability distribution. Only the
parameters of cross-scenarios network are updated in training process and the expert network is fixed.

Unlike the conventional LSTM which takes the sequential structure data as input, our network treats the state vector
of each QC as a dynamic set with spatially connected elements (target truck, QCs, tasks, etc). The spatial information
of both truck and QCs is embedded in the state design (see section 4.2.2). The input data follows the fixed order based
on QC’s position in terminal (same direction as the roads besides QCs). The use of LSTM is to make network model
capable of handling dynamic size of the candidate QC. Once a QC finishes all of its tasks, it will be eliminated from the
QC set. The bidirectional structure of LSTM ensures the information of entire QC sequence are fully propagated at each
step and thus capable of capturing some hidden features such as one-way road at sea-side. The gate component controls
the information flow of the expert knowledge based on the raw observation. With the help of the attention layer, each
extracted QC feature vector is aware of the entire sequence information and the multi-head attention mechanism allows
the agent selectively focus on different parts of 𝐻𝐶𝑜𝑛𝑐𝑎𝑡. Thus, the agent can decide "how much" it may refer to the
expert knowledge. Moreover, the capability of handling different length of input makes our model more competitive in
general scenarios compared with the traditional structure like the fully connected network since it would be impractical
to train all possible problem instances with different input sizes separately. In addition, our proposed neural network
structure could easily deal with invalid agent action (once a QC has dispatched all its tasks and became empty) by
removing that QC from the input list.
4.4. Imitation Learning

In the case of approximating decisions, Imitation Learning (IL) is often used to learn a policy from demonstrations
of expert behaviors (Bengio et al., 2021). In IL, the agent is not trained to maximize the reward, but to blindly mimic the
expert through learning a mapping between observations and actions. Recently, researchers try to combine IL with DRL
to order to reduce exploration costs of the agents (Silver et al., 2016). In this work, we also adopt IL in our framework
in order to speed up the convergence of RL agent and obtain some basic prior knowledge of the examined problem.
The parameters of expert network are learned through a simple on-policy iterative supervised learning algorithm (as
shown in Algorithm 1) where the expert policy is provided by a heuristic dispatching rule (Chen et al., 2016). Such a
heuristic dispatching policy is scenario-independent and insensitive to the environment uncertainties and thus should
be suitable as prior knowledge for RL agent. The loss is defined by difference between expert network output and
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Figure 5: The expert network and cross-scenario network structure.

the label (decision of the manual heuristic). For example, for a given state observation at some time step 𝑡, manual
heuristic would provide an unique answer for which task to be selected for this state (input) and the expert network
using one fully-connected layer with softmax would output a probability distribution of the actions. Then the cross
entropy between the network output (probability distribution) and label (one-hot vector form) can be computed. The
loss can be used to update the expert network parameters by back-propagation accordingly. The imitation mechanism
could make the agent converge to the heuristic level in a relatively short time period and consequently make RL training
process more stable. The detailed experimental results are presented in section 5.3.3.

Algorithm 1: Imitation learning for truck dispatching optimization
Input: number of iterations 𝐼 , steps per episode 𝑇
Initialize: a differentiable truck dispatch policy with random parameterization 𝜋(𝑎|𝑠, 𝜃);
for i=1 : I do

Randomly select a problem instance 𝐵𝑖;Collect an episode 𝑠0, 𝑝0, 𝑠1, 𝑝1,… , 𝑠𝑇 , 𝑝𝑇 from 𝐵𝑖, where 𝑝𝑡 is probability distribution of the network
output and 𝑠𝑡 is the state representation, at time step 𝑡, following 𝜋(⋅|⋅, 𝜃);

Collect the actions 𝑎0, 𝑎1,… , 𝑎𝑇 of each state 𝑠0, 𝑠1,… , 𝑠𝑇 accordingly based on heuristic dispatching
rule using one-hot representation;

Calculate the loss as:  =
∑𝑇

𝑡=0 𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑎𝑡, 𝑝𝑡);Update expert network parameters as: 𝜃 = 𝐴𝑑𝑎𝑚(∇, 𝜃);
end
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4.5. Policy Based RL
Model-free RL aims to obtain an effective behavior policy through the trial and error interactions with the

environment (Nachum et al., 2017). Generally speaking, model-free RL can be divided into two categories: value-based
methods and policy-based methods. Compared with value-based methods, policy-based methods directly optimize the
policy function that explicitly maps states to actions while remaining stable in the training process. For complex tasks,
policy-based methods tend to perform better as they can handle the exploration/exploitation trade off by learning
a stochastic policy. In this work, we adopt the standard policy-based method, Proximal Policy Optimization (PPO)
(Schulman et al., 2017) (see Algorithm 2), to tackle the examined problem.

A widely used variation of policy based methods is to subtract a baseline value from the return to reduce the
variance of gradient estimation while keeping the bias unchanged. A good baseline estimation can help stabilise the
training process and accelerate the convergence. In this work, we adopt the shared baseline which is calculated as
𝑏 = �̄�

𝑁 where 𝑁 is the number of episodes and �̄� is the total return. As mentioned in section 4.2.4, the immediate
reward 𝑟𝑡 cannot be obtained instantly at its time step 𝑡. Rather, it needs to be computed at the end of the episode. Recall
the reward definition, 𝑟𝑡 = −(𝑇 𝑞

𝑖 − 𝑇 𝑞
𝑖−1 −𝑂𝑞

𝑖−1), dispatching a truck to an idle QC would result in a small 𝑇 𝑞
𝑖−1, which

may depreciate 𝑟𝑡. Consequently, the agent may tend to choose the QC with long queue length rather than the QC is
about to be idle, misleading the optimization direction and causing RL algorithms convergence failures. To resolve this
issue, all state-actions pairs in one single episode are assigned with a same advantage function, 𝑅𝑛 − 𝑏, where the 𝑅𝑛

is the total reward of an episode. As a result, the advantage function can clearly reflect the difference between average
episode reward and total episode reward and the gradient updating direction is the same as the optimization objective
of the examined problem.

Algorithm 2: PPO for truck dispatching optimization
Input: number of iterations 𝐼 , steps per episode 𝑇 , collect 𝑁 episodes per iteration, update 𝑀 times per

iteration, clipping rate 𝜖
Initialize: a differentiable truck dispatch policy parameterization 𝜋(𝑎|𝑠, 𝜃𝑜𝑙𝑑);
𝜃 = 𝜃𝑜𝑙𝑑 ;
for i=1 : I do

�̄� = 0;
Randomly select a problem instance 𝐵𝑖;
for n=1 : N do

Collect an episode 𝑠0, 𝑎0, 𝑟1, ..., 𝑠𝑇−1, 𝑎𝑇−1, 𝑟𝑇 from 𝐵𝑖, following 𝜋(⋅|⋅, 𝜃);
Assign each 𝑟𝑡(𝑎𝑡−1, 𝑠𝑡−1) based on the reward design, ∀𝑡 ∈ [1, 𝑇 ];
𝑅𝑛 =

∑𝑇
𝑗=1 𝑟𝑗 ;

�̄� = �̄� + 𝑅𝑛 ;
end
𝑏 = �̄�

𝑁 ;
Compute advantage function 𝜃(𝑠𝑛𝑡 , 𝑎

𝑛
𝑡 ) = 𝑅𝑛 − 𝑏,∀𝑡 ∈ [1, 𝑇 ],∀𝑛 ∈ [1, 𝑁];

for m=1 : M do
Compute probability ratios 𝑃𝑅𝑛

𝑡 (𝜃) =
𝜋(𝑎𝑛𝑡 |𝑠

𝑛
𝑡 ,𝜃)

𝜋(𝑎𝑛𝑡 |𝑠
𝑛
𝑡 ,𝜃𝑜𝑙𝑑 )

,∀𝑡 ∈ [1, 𝑇 ],∀𝑛 ∈ [1, 𝑁];
𝜃(𝑠𝑛𝑡 , 𝑎

𝑛
𝑡 ) = 𝑚𝑖𝑛[𝑃𝑅𝑛

𝑡 (𝜃)
𝜃(𝑠𝑛𝑡 , 𝑎

𝑛
𝑡 ), 𝑐𝑙𝑖𝑝(𝑃𝑅

𝑛
𝑡 (𝜃), 1 − 𝜖, 1 + 𝜖)𝜃(𝑠𝑛𝑡 , 𝑎

𝑛
𝑡 )];

∇ = 1
𝑁𝑇

∑𝑁
𝑛=1

∑𝑇
𝑡=1

𝜃(𝑠𝑛𝑡 , 𝑎
𝑛
𝑡 )∇ log𝑃𝜃(𝑎𝑛𝑡 |𝑠

𝑛
𝑡 );

𝜃 = 𝐴𝑑𝑎𝑚(∇, 𝜃);
end
𝜃𝑜𝑙𝑑 = 𝜃

end
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Table 4

Training Instance Con�gurations.

Name
Con�guration Items

Number of Tasks # of Trucks # of QCs Stack Mode Yard Distribution

Con�g 1 400 70 16 Mixed Centralized

Con�g 2 400 60 16 Mixed Distributed

Con�g 3 800 80 16 Mixed Centralized

Con�g 4 800 80 20 Separated Distributed

Con�g 5 400 70 20 Separated Centralized

Con�g 6 400 60 20 Separated Distributed

Table 5

Benchmark Algorithms for Comparison.

Name Description

Random Dispatch Dispatch the task randomly.

Dedicated Dispatch Each QC is only served by �xed group of trucks.

Shortest Queue Length Dispatch the task with the shortest QC queue length.

Most Task Remain Dispatch the task with the most QC task remaining.

Shortest Distance Dispatch the task with the shortest traveling distance.

Most Urgent Dispatch the task with minimum current QC supply.

Genetic Programming Dispatching rules generated by data-driven genetic programming approach.

Manual Heuristic A sophisticated heuristic used in real port.

DRL-HH Policies trained by DRL-based hyper-heuristic approach.

5. Experiment Design and Result Analysis
5.1. Problem Instances

A set of problems with different instance configurations are generated for RL training. The configurations are
designed according to different case scenarios in the real-world port operation environment. Each case scenario is
based on various truck fleet sizes, number of tasks, number of QCs, container storage mode and yard distribution.
In the simulation environment, each ship is equipped with two loading QCs and two unloading QCs. We choose 60,
80 and 100 as the number of trucks in our problem settings since too many or too little trucks may lead to obvious
optimal dispatch policies and hence leaves no room for optimization. There are two stacking modes: mixed stacking
indicates the loading/unloading containers can share the same yard while separated stacking indicates the yards for
the loading/unloading containers are different. There are two types of yard distribution as well: centralized indicates
the loading/unloading container are stored in one or two yards while distributed indicates the loading/unloading
container are stored in more than two yards. The configurations of the training instances can be found in Table 4.
Note that one configuration represents a set of (infinite) instances with similar initialization conditions because of the
uncertainties in the environment. A static problem instance is created by fixing the configuration and random seed.
5.2. Benchmark

A manually designed dispatching heuristic (Chen et al., 2016) is deployed and used as the benchmark for the
examined problem. Dispatching rule that generated by genetic programming (Chen et al., 2020) is also considered as
a benchmark since it is a common approach for online decision-making optimization. We also compare the proposed
method with our recent work, deep reinforcement learning-based hyper-heuristic (DRL-HH) (Zhang et al., 2021)
since it can properly handle online decision-making problems. Moreover, it also uses expert knowledge (via low-level
heuristics) to stabilize the training process of RL. For the sake of fairness, both genetic programming based approach
and DRL-HH are trained in the same simulation environment with the same problem instances. Apart from these three
methods, some heuristic dispatching rules (Chen et al., 2022; Nguyen and Kim, 2012; Tao and Qiu, 2015) based on
the priority factors used in real port operations are also included for the comparison. The details can be found in Table
5.
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Table 6

The performance of proposed method in comparison with di�erent benchmark algorithms.

Method Con�g 1 Con�g 2 Con�g 3 Con�g 4 Con�g 5 Con�g 6 Average

Random Dispatch 37477 26432 50474 57708 32493 37356 40323

Dedicated Dispatch 38289 29306 49036 54367 34795 40236 41005

Shortest Queue Length 38148 30291 58062 62312 36391 40244 44241

Most Task Remain 45207 30847 58486 68198 36477 44630 47308

Shortest Distance 46039 39589 119403 101193 50964 50074 67877

Most Urgent 29963 25336 40226 50397 27512 30982 34069

Manual Heuristic 29470 24586 38915 48199 26693 31051 33152

Genetic Programming 28862 24086 39016 46812 25512 29122 32235

DRL-HH 28438 22840 37903 45210 25732 28784 31484

Ours 26854 20856 35374 42299 24314 26142 29306

5.3. Experiment Results
5.3.1. Results of the Proposed DRL Approach

During the training process, a set of instances from the 6 different configurations listed in Table 4 are generated.
The metrics used for evaluation is the total idle time periods (in seconds) of all QCs. For the test experiments, same
configurations are adopted. For each test configuration, the algorithms were run 100 times with different random seeds.
The comparison results can be found in Table 6.

It can be seen that the proposed DRL method outperforms all other 9 algorithms for all configurations. The simple
heuristic dispatching rules (top 6 in Table 6) fail to achieve competitive performance since most of them only greedily
consider one prioritized factor such as truck number or traveling distance. Manual heuristic performs better than those
simple dispatching rules because it considers supply-demand information on both spatial and temporal perspectives.
Genetic programming based approach could further improve the result due to its ability to repeatedly refine the
policy through an evolutionary process and construct dispatching policy based on all possible real-time observations
accordingly. DRL-HH is marginally better than the genetic programming based approach and obtain the second best
results on average for all configurations. Although DRL-HH can balance the long-term and short-term rewards, its
performance may still heavily rely on the low-level heuristic design. Sometimes, the actions for the low-level heuristic
are too restrictive, and this may cause DRL-HH fail to explore some promising regions. In contrast, our proposed
method is more effective since it can directly search for specific actions. On average, our proposed method obtains a
significant improvement (6.9%) compared with the DRL-HH method. For the subsequent experiments, 3 representative
benchmark algorithms, manual heuristic (Chen et al., 2016), genetic programming (GP) based approach (Chen et al.,
2020) and DRL-HH (Zhang et al., 2021) are selected for further analysis.
5.3.2. Generalization

To evaluate the generalization performance of the proposed algorithm, a set of customized problem instances with
different configurations is generated for testing. The testing instances are therefore more abundant and many of them
are unseen by the agent in the training process. The testing instance design follows the principle of control variables.
That is to say, when changing one of the variables (number of trucks, tasks, QCs, stacking mode and yard distribution),
other variables are kept the same. All variables are the same as the base configuration (Config 2: 60 trucks, 400 tasks,
16 QCs, mixed storage, and distributed yard) except the changing one. The results are reported in Table 7.

Again, the proposed DRL method outperforms benchmark manually heuristic, GP and DRL-HH method in all
testing instances. The results demonstrate the generalization ability of the proposed method to handle various of real-
world scenarios.

Some observations through the experiments are deserved to be discussed. Generally, the performance of the
dispatching algorithms heavily rely on the truck-QC ratio. High truck-QC ratio can make the QC operation smoother,
and consequently reduce the QC idle time. This can be confirmed by the positive correlation between number of QCs
and the objective, and the negative correlation between number of trucks and the objective, respectively. Apart from the
objective value, the improvements over the benchmark for GP, DRL-HH and our method are also negatively correlated
to truck amount. As we mentioned earlier, the optimization space of the examined problem is sensitive to the truck
amount, high truck-QC ratio may make less space for algorithm’s improvement.
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Table 7

The performance of proposed method in comparison with manual heuristic and a DRL-HH method under di�erent instance
con�gurations.

Con�guration
Heuristic Method
(Benchmark)

Obj value / Imp (%) against benchmark
GP DRL-HH Ours

60 Trucks 24390 23269 4.6% 22641 7.2% 21153 13.3%
80 Trucks 16716 15980 4.4% 15946 4.6% 14958 10.5%
100 Trucks 13658 13423 1.7% 13246 3.0% 12730 6.8%

400 Tasks 24390 23269 4.6% 22641 7.2% 21153 13.3%
800 Tasks 46628 44583 4.4% 43425 6.9% 40598 12.9%
1200 Tasks 67735 65201 3.7% 64280 5.1% 64212 5.2%

8 QCs 7786 7541 3.1% 7412 4.8% 7188 7.7%
12 QCs 13972 13523 3.2% 13012 6.9% 12528 10.3%
16 QCs 24390 23269 4.6% 22641 7.2% 21153 13.3%
20 QCs 30850 28912 6.3% 28592 7.3% 25984 15.8%
24 QCs 40145 38123 5.0% 37816 5.8% 35154 12.4%
28 QCs 49700 48325 2.8% 47431 4.6% 44133 11.2%

Mixed Storage 24390 23269 4.6% 22641 7.2% 21153 13.3%
Separate Storage 22597 21332 5.6% 21376 5.4% 19704 12.8%

Centralized Yard 26920 26230 2.6% 25816 4.1% 25062 6.9%
Distributed Yard 24390 23269 4.6% 22641 7.2% 21153 13.3%

The improvement of the proposed method over benchmark drops noticeably from the instance of 800 tasks to
instance of 1200 tasks. This can be explained in terms of QC operation logic. The objective value could only be
reduced by keeping all QCs as busy as possible without idle waiting. However, long QC task list makes it vulnerable
to relatively poor dispatching policy and long interruption of QC operation may happen in such situation. This is also
the experiment that performance of DRL-HH is closest to the proposed DRL method and DRL-HH shows its relative
robustness towards the task size.

The improvements of the proposed DRL method over benchmark in mixed and separated storage mode are basically
the same. The objective value in mixed storage mode is higher than the separated storage mode. This can be caused
by the relative high yard congestion level and more container relocation operations in the mixed storage mode. The
performance of the proposed method in experiment of distributed yard is better than the centralized yard in terms of
both improvement ratio and objective value. This is caused by higher congestion level in the centralized yard compared
with the distributed yard.

To further demonstrate the generalization performance of the proposed method, we trained the dispatching policy
on the base configuration (Config 2: 60 trucks, 400 tasks, 16 QCs, mixed storage, and distributed yard) only and test
it with a set of unseen configurations. The experiment results show that the policy trained on one single configuration
could also be generalized to solve the unseen problem configurations. We exclude DRL-HH for this experiment since
its input is fixed so that the single model cannot handle instances with different QC numbers.

Table 8 presents the generalization performance of our proposed method and GP in comparison with benchmark.
Generally, the policy that is trained on base configuration by our method could outperform both GP and the benchmark
method in all unseen test cases. It can be also observed that our proposed method has a slighter over-fitting effect
compared with GP. This is benefited from the novel state design which could make RL agent effectively observe
the environment changing in the unseen instances and is also benefit from the proposed network structure which
incorporates the scenario-independent expert knowledge that could deal with different input QC sizes. The state feature
design reveals several key factors for truck dispatching policy. Features like the total amount of trucks working for each
QC, the total amount of trucks heading to each QC and the queue length of each QC may reflect the situation of future
truck supply. The travelling distance of the truck can be used to estimate the travelling time for the truck to arrive at
the target QC. QC type is considered as prior knowledge for the agent since the supply-demand patterns for different
types of QC may vary a lot. Target yard queue length could provide the information of yard congestion level some
time in the future. The QC-yard distance of the second task can expose the information of QC’s future tasks since
the information (distance to the target yard) of QC’s future task list could greatly affect the probability of current QC
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Table 8

The generalization performance of proposed method in comparison with manual heuristic.

Con�guration
Heuristic Method
(Benchmark)

Obj value / Imp (%) against benchmark
GP Ours

8 QCs 7786 7568 2.8% 7483 3.9%
12 QCs 13972 13228 5.3% 12039 13.8%

16 QCs (base) 24390 21032 13.8% 20256 16.9%
20 QCs 30850 28903 6.3% 27660 10.3%
24 QCs 40145 38625 3.8% 37152 7.5%

60 trucks (base) 24390 21032 13.8% 20256 16.9%
70 trucks 20762 19035 8.3% 18597 10.4%
80 trucks 16716 16035 4.1% 15258 8.7%
90 trucks 14632 14345 2.0% 13352 8.7%
100 trucks 13658 13758 -0.7% 13130 3.9%

Table 9

The performance of proposed method in comparison with manual heuristic and a DRL-HH method under unknown
uncertainties.

Con�guration
Heuristic Method
(Benchmark)

Obj value / Imp (%) against benchmark
GP DRL-HH Ours

Con�g 1 30469 30135 1.1% 30286 0.6% 29372 3.6%
Con�g 2 25869 24698 4.5% 25222 2.5% 23670 8.5%
Con�g 3 40268 39587 1.7% 41114 -2.1% 39140 2.8%
Con�g 4 50121 48352 3.5% 49169 1.9% 46261 7.7%
Con�g 5 28169 27332 3.0% 28338 -0.6% 26817 4.8%
Con�g 6 32118 31585 1.7 % 31411 2.2% 30769 4.2%

selection. The network structure for handling different input lengths could also help RL agent get rid of the influence
of QC with empty task list.

Apart from the unseen problem instances, the proposed DRL method also shows robustness to unknown
uncertainties. As introduced earlier, the truck speed at different areas and crane operation time are the uncertain factors
for the examined problem. In the training environment, crane operation time are non-deterministic which follows the
same setting of Zhang et al. (2021) while the truck speed is assumed to be constant. In the testing environment, the truck
speed is treated as unknown uncertainty for the RL agent. The trained models for DRL-HH, GP and our method are
evaluated in the testing environment with the unknown uncertainty. The comparison results against manual heuristic
can be found can be found in Table 9.

It can be seen that DRL-HH are not competitive and fails to outperform heuristic solutions in some cases. It is
not surprising as the unseen truck speed uncertainty at yard side may further aggravate yard congestion effect and the
low-level heuristics used for DRL-HH may limit its exploration ability. This is because unseen state generated in new
environment and the truck speed uncertainty at yard side further aggravate yard congestion effect. Nonetheless, the
proposed DRL method still shows its great robustness to unknown uncertainties and outperforms the other methods
in all testing instances. Since uncertainties cannot be enumerated and included in the training environment, the
experimental results demonstrate our proposed method has the potential to be deployed in the real-world port operation
environment.
5.3.3. Comparative Results of the Proposed DRL Approach with and without Imitation Learning

An ablation study is conducted to demonstrate the effectiveness of our proposed network structure in terms of
both performance and convergence speed. Table 10 shows the performance of our method with and without the expert
network. For agent without expert network, a single cross-scenario network without gate component is adopted (See
Fig. 5 for details). As we can see, compared with the single cross-scenario network, the agent with expert network has
the better performance in most cases except Config 4. Using a single network to obtain an uniform policy for different
scenarios (parameterized environments) can be problematic. A certain policy that work well for some particular
scenarios may perform badly in others (e.g. Config 3) due to possible overfitting. Our approach alleviates such defect
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Table 10

The performance of proposed method in comparison with or without expert net.

Con�guration
Heuristic Method
(Benchmark)

Obj value / Imp (%) against benchmark
Without With

Con�g 1 29470 27714 6.0% 26854 8.9 %
Con�g 2 24586 21140 14.0% 20856 15.2 %
Con�g 3 38915 36930 5.1% 35374 9.1 %
Con�g 4 48199 42125 12.6 % 42299 12.2%
Con�g 5 26693 24940 6.6% 24314 8.9 %
Con�g 6 31051 26428 14.9% 26142 15.8 %

by incorporating the prior knowledge into RL agent. The results are more balanced among different environment
configurations since the expert network is trained by scenario-insensitive data through imitation learning.

Fig. 6 shows the convergent performance of agent without the expert network. Each step point represents the average
score of all configurations (10 testing episodes for each). At the initial stages, the dispatching policy is even worse
than the random dispatching policy. After around 500 iterations, the DRL policy starts to outperform the benchmark
heuristic method and achieves the better score steadily. In contrast, as can be found in Fig. 7, the agent with the expert
network converge rapidly at early stages and achieve heuristic level after only 100 iterations. Benefit from the prior
knowledge incorporated into the network, the agent uses only 650 iterations to obtain better score than that of the agent
without expert network.
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Figure 6: The convergence performance of proposed method in comparison with manual heuristic.

5.3.4. Comparative Results of the Proposed DRL Approach with Offline Solution
To further examine the limits of the solutions obtained by the proposed method, some selected instances are solved

in offline manner. Each instance consists of one specific problem configuration and one fixed random seed, which
therefore guarantees the unique results for a fixed sequence of actions. Consequently, each configuration can be viewed
as a static problem instance. For different time steps, a multi-start local search-based heuristic is deployed to modify
the dispatching sequence and iteratively refine the results. The total time limit given for instance is set to 72 hours. The
final result obtained by the local-search could be considered as the offline solution for the specific testing instance. The
results can be found in Table 11.

Generally, the average gap between the solutions obtained by our algorithm and the offline solutions is around 6%.
The experimental results further demonstrate the effectiveness of the proposed approach.
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Figure 7: The convergence performance of proposed method in comparison with manual heuristic using Imitation Learning.

Table 11

Comparative results of the proposed method with estimated upper bound.

Estimated Upper Bound Our Method Gap(%)

Instance 1 25832 27350 5.88%
Instance 2 19932 21042 5.57%
Instance 3 34241 35640 4.09%
Instance 4 39895 42385 6.24%
Instance 5 22839 24612 7.76%
Instance 6 24221 26610 9.86%

5.4. Managerial Insights
Apart from the great adaptability and generalization performance of the proposed RL method in multi-scenario

cases, these experiments also provide some useful insights for the container terminal management. It is not difficult
to see that truck-QC ratio is a crucial factor because it not only has an impact on QC utilization but also can limit
the optimization space for RL algorithm. In our experiments, for a given number of QCs, less trucks could make
high improvement for RL dispatching policy against the benchmark, but the objective value may also increase as
an side effect. Ideally, the port managers should set an acceptable objective level and also leave some space for RL
dispatching policy to play a role in it. The optimal truck-QC ratio should be dynamic and there is a mapping between
it and different scenarios. For example, in this work, we empirically find this ratio within range [4.5, 5.2] can achieve
relative fair objective value and RL improvement in the base configuration setting. Furthermore, the performance of
dispatching policy is also sensitive to container spacial-related factors. In our experimental settings, stack mode makes
little effect on the algorithm performance since there is no outer-truck interference. Distributed yard can offer bigger
space for RL performance improvement compared to centralized yard. Apart from the aforementioned stack mode and
yard distribution mechanism, the relative locations of involved yards and task sharing schemes among neighboring
QCs are also important. Some of such factors are related to container storage space allocation which is another popular
COP in container terminal. In this work, some of these factors are embedded into the configurations for RL dispatching
policy evaluation but a sophisticated configuration design along with the proposed RL dispatching policy should further
facilitate the container terminal operation efficiency.

Figs. 8 and 9 present the generalization performance of our proposed method in comparison with benchmark based
on two metrics, namely total idle time (left Y-axis) which is the objective value of the examined problem and average
makespan per QC (right Y-axis). In experiments with various QC amount (Fig. 8), it is obvious that less QCs could make
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Figure 8: The performance of proposed method trained on single con�guration in comparison with benchmark under
di�erent QC amount.
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Figure 9: The performance of proposed method trained on single con�guration in comparison with benchmark under
di�erent truck amount.

objective value (idle time) decreased on both methods, which is caused by high truck-QC ratio. However, the average
QC makespan is increased because of less tasks per QC. Therefore, deploying QC is faced with the trade-off between
QC idle time and QC makespan. In experiments with different truck amount (Fig. 9), both metrics are decreased at the
expense of operational cost (truck deployment, labour cost, etc.).

The experiment further reveals trade-offs among different equipment deployments. It is always strategic to balance
cost and efficiency in practical container terminal. Our proposed method, together with the simulation system, is
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capable of exploring optimal equipment deployment strategy under different scenarios. It can provide a reliable
reference for terminal operators to schedule internal resources to increase the overall operation efficiency.

6. Conclusion and Future Work
In this work, we propose a deep reinforcement learning based approach to solve a real-life truck dispatching

optimization problem in the maritime container terminal. The examined problem is formalized as a MDP which
takes into account different optimization scenarios and uncertainties stemming from the real-world port operations.
The proposed Real2Sim DRL approach is data-driven, which barely rely on any exogenous forecasts. The proposed
approach respects the nature of the examined problem by posing it multi-dimensional states derived from Real2Sim
based simulator and it can devise more effective policies by exploiting the entire action domain. Quantitative results
have highlighted several advantages from the proposed method. Firstly, thanks to our Real2Sim environment settings
and novel dual-network structure, it has the ability to handle more complex and non-deterministic factors and can
achieve the state-of-the-art results compared with existing methods. Secondly, thanks to the LSTMs and the multi-
head attention, it has good generalization ability in both unseen instances and unknown uncertainties. Furthermore,
our method together with Real2Sim based simulation can provide a reliable reference for terminal managers to better
schedule internal resources under different operation scenarios.

The proposed DRL-based method could be further improved in several ways. For example, the proposed state
design does not explicitly consider the constraints of the problem. In this work, QCs are constrained to execute tasks
in order, which sometimes can cause QC’s waiting even if there are already trucks in the queue. According to our
investigation, such a constraint can cause considerable amount of QC idle time even with a well-trained dispatching
policy. Few studies focus on enhancing RL agent’s constraint awareness/handling abilities for COPs in the literature
and it would be a promising future direction. We could also further improve our network structure by using more than
one expert net so that RL agent can consider different types of expert knowledge by leveraging attention mechanism.
Additionally, it would be interesting to investigate more sophisticated policies for yard crane scheduling in place of
the current “first-come first-served” policy to further improve the productivity. Finally, the examined problem can be
extended to a multi-objective optimization problem that takes the truck travelling distances and equipment movement
distances into considerations.
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