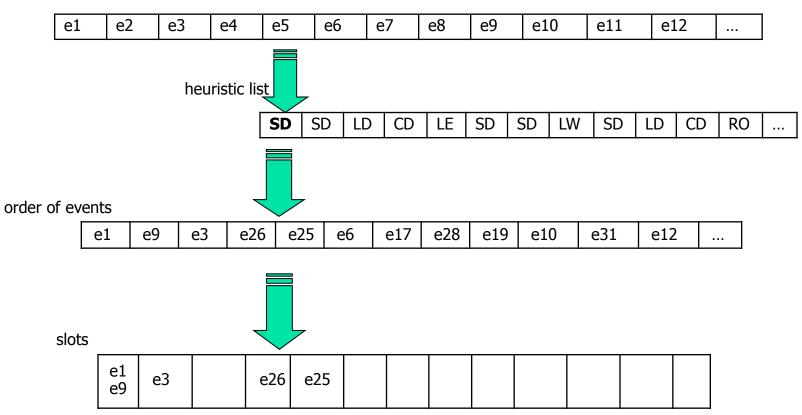
A Graph Based Hyper-heuristic Framework

- research issues and extensions

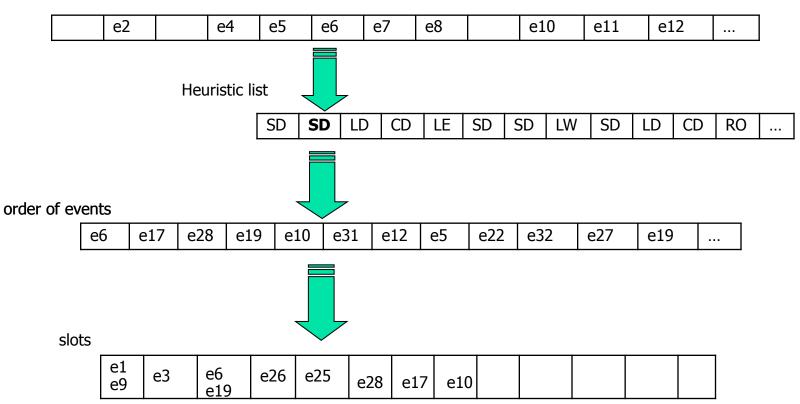
Rong Qu

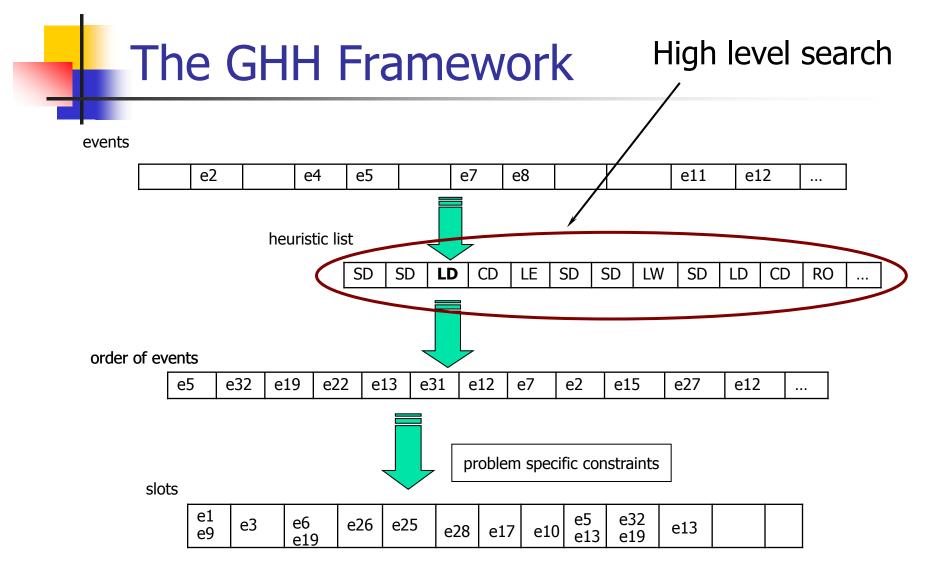
Automated Scheduling, Optimisation and Planning Group School of Computer Science University of Nottingham


The GHH Framework

- High level search
 - Any meta-heuristics
- Low level heuristics*: order events by how *difficult* to schedule them
 - Saturation Degree: least available slots
 - Colour Degree: most conflicted with those scheduled
 - Largest Degree: most conflicted with the others
 - Largest Weighted Degree: LD + students involved
 - Largest Enrolment: students enrolled

* Educational timetabling is used in this research as problem domain




events

events

Educational Timetabling Problems

- Carter, Laporte & Lee (1996): 11 real world exam timetabling problems
 - Hard constraint: conflicts between exams
 - Objective function: *min* time slots (graph colouring)
 - Soft constraints: spread out exams over time slots
 - Objective function: $C(t) = (\sum_{i=1}^{4} W_s \times N_s) / S$
- Meta-heuristic Network: 11 derived course timetabling problems
 - Hard constraints: conflicts between exams, room feature, room capacity
 - Soft constraints: minimise only one class a day, class in the last slot of a day, more than two classes in a row
 - Objective function: *min* sum of the costs for soft constraints

	-										
	car91	car92	ear83	hec92	kfu93	lse91	sta83	tre92	ute92	uta93	york83
GHH	5.36	4.53	37.92	12.25	15.2	11.33	158.19	8.92	28.01	3.88	41.37
Abdullah et al	5.21	4.36	34.87	10.28	13.46	10.24	159.28	8.13	24.21	3.63	36.11
Asmuni et al	5.20	4.52	37.02	11.78	15.81	12.09	160.42	8.67	27.78	3.57	40.66
Burke & Newall	4.6	4.0	37.05	11.54	13.9	10.82	168.73	8.35	25.83	3.2	36.8
Burke, Bykov et al	4.2	4.8	35.4	10.8	13.7	10.4	159.1	8.3	25.7	3.4	36.7
Caramia et al	6.6	6.0	29.3	9.2	13.8	9.6	158.2	9.4	24.4	3.5	36.2
Carter et al	7.1	6.2	36.4	10.8	14.0	10.5	161.5	9.6	25.8	3.5	41.7
Di Gapero & Schaerf	6.2	5.2	45.7	12.4	18.0	15.5	160.8	10.0	29.0	4.2	41.0
Merlot et al	5.1	4.3	35.1	10.6	13.5	10.5	157.3	8.4	25.1	3.5	37.4

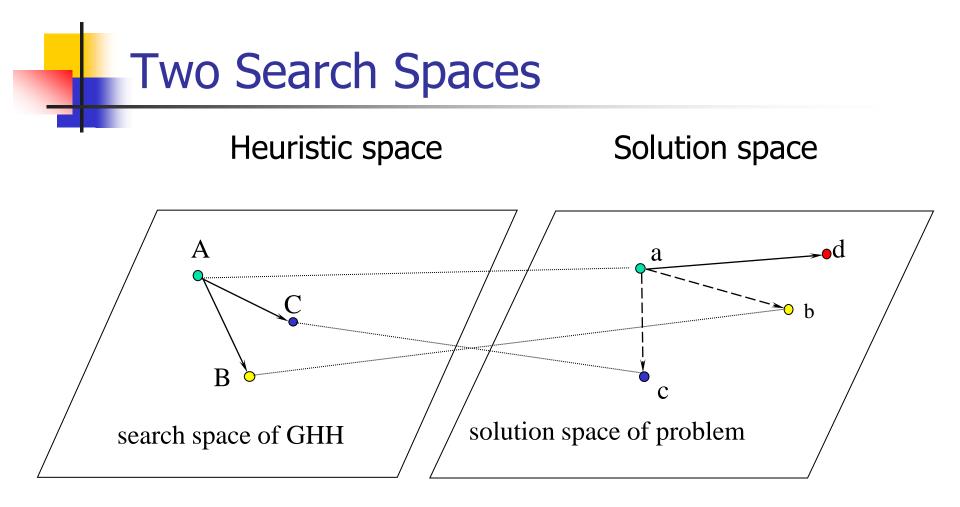
GHH	Burke et al 2003	Socha et al. 2002	Socha et al 2002
6	1	8	1
7	2	11	3
3	0	8	1
3	1	7	1
4	0	5	0
372	146	199	195
419	173	202.5	184
359	267	77.5% Inf	248
348	169	177.5	164.5
171	303	100% Inf	219.5
1068	80% Inf 1166	100% Inf	851.5
	6 7 3 4 372 419 359 348 171	6 1 7 2 3 0 3 1 4 0 372 146 419 173 359 267 348 169 171 303	6187211308317405372146199419173202.535926777.5% Inf348169177.5171303100% Inf

Research Questions/Issues

- Which high/low level search heuristics?
- Two search spaces
- Search in two spaces
- Other extensions

Which high level search method?

- High level search methods
 - Iterated Local Search
 - Tabu Search
 - Steepest Descent
 - Variable Neighbourhood Search
 - Objective function
 - heuristic lists → penalties (costs of timetables constructed)
 - "Walks" are allowed


Which high level search method?

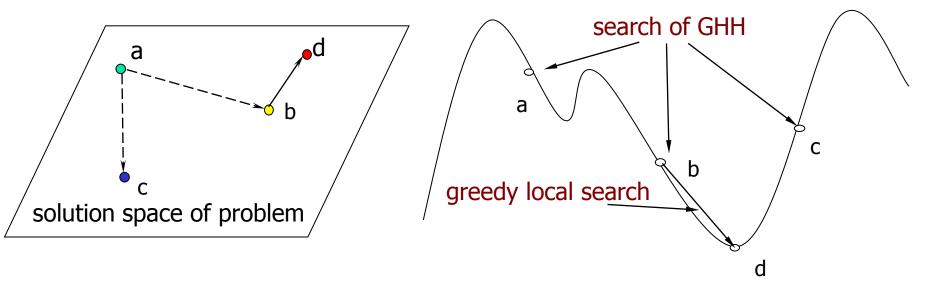
- High level search methods
 - Similar performance within the same GHH framework (same total number of evaluations, same initials, etc)
 - ILS and VNS are slightly better
 - Results are comparable to state-of-the-art approaches on both course and exam benchmark problems

Which low level heuristics?

Within GHH

- Different subsets of graph heuristics (SD+LD, SD+LWD, SD+LE, SD+LWD+CD, etc)
- With a limited computational time
 - SD + LWD performed the best
- With more graph heuristics
 - Longer time given, the better the results
 - *h* (*I*: length of the sequence, *h*: number of graph heuristics
- Random ordering also contributes the performance

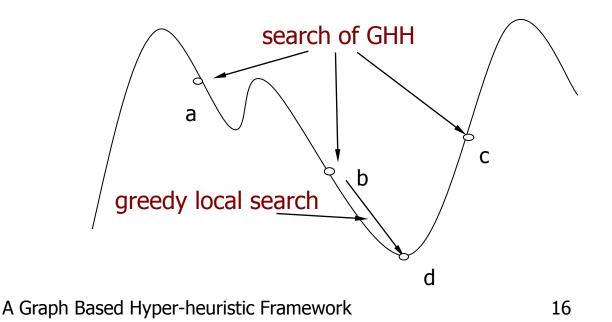
GHH: search is upon heuristics, not solutions – not all the solutions in solution space are reachable?


Two	Search Spaces	
	Heuristic space	Solution space
Representation		
Size (Upper Bound)		
Neighborhood Operator		
Objective Function		
Function		

Search in Two Spaces

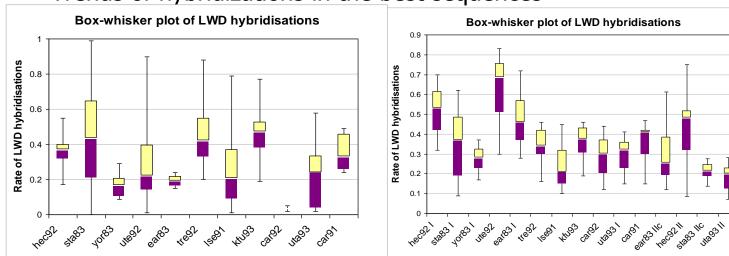
Hybridisation of GHH with greedy search

- High level search in heuristic space: a, b, c, ...
- Greedy search in solution space: b -> d, ...


Coverage of the solution space

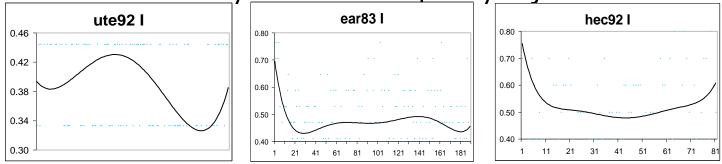
A Graph Based Hyper-heuristic Framework

Search in Two Spaces


- Hybridisation of GHH with greedy search
 - Results greatly improved!
 - Hybrid GHH vs. Memetic Algorithms
 - Diversification vs. intensification

Extensions

- Heuristic hybridisations in GHH Question: best solutions → better/best ways of heuristic hybridisations?
 - I Random GHH (SD+LWD, SD+LE, SD+LD) A large collection of different heuristic sequences
 - II Analyze the best 5% heuristic sequences Rates of hybridisation at different positions of heuristic sequences


Trends of hybridizations in the best sequences

Extensions

Heuristic hybridisations in GHH

- Hybridising SD with LWD obtained better results compared with LE or LD
- In the best 5% sequences
 - Higher percentage at early stage
 - High level of vibrancy at early stage
- Adaptive heuristic hybridization approach
 - GHH search focus on early stage of sequences
 - Rate of LWD hybridisation adaptively adjusted

Future Work

- Landscape of high level heuristic space
 More likely to have plateau (neutral)
- Synchronise the search in two search spaces
 Difficulty of landscape analysis in solution space
- Other recent extensions in the literature
 - Hierarchical hybridisation of graph heuristics
 - Tie breaking and timeslots ordering within GHH
 - Hybridising improvement based low level heuristics within GHH

Summary

Search in two search spaces

- Diversification by GHH in the heuristic space
- Intensification by local search in the solution space
- Role of high level search methods
 To explore diversified solutions in the solution space
 by searching in the high level heuristic space

Some References

- E. Burke, A. Meisels, S. Petrovic and R. Qu A Graph-based Hyper-Heuristic for Exam Timetabling Problems. <u>EJOR</u> 176: 177-192, 2007. Top 1% cited in CS by ISI Essential Science Indicators
- R. Qu and E. K. Burke. Hybridisations within a Graph Based Hyper-heuristic Framework for University Timetabling Problems. <u>JORS</u>, 2008.
- N.R. Sabar, M. Ayob, G. Kendall, R. Qu, "A Graph Coloring Constructive Hyper-Heuristic for Examination Timetabling Problems" <u>Applied Intelligence</u>, 2011.
- E.K. Burke, N. Pham, R. Qu, J. Yellen. "Linear Combinations of Heuristics for Examination Timetabling". accepted by <u>Annals of OR</u>
- R. Qu, E. Burke and B. McCollum. Adaptive Automated Construction of Hybrid Heuristics for Exam Timetabling and Graph Colouring Problems. <u>EJOR</u>, 198(2): 392-404, 2009. Top 10% cited in CS by ISI Essential Science Indicators
- E. Burke, S. Petrovic, R. Qu, Case Based Heuristic Selection for Timetabling Problems. accepted by <u>Journal of Scheduling</u>, 9: 115-132, 2006. Top 1% cited in CS by ISI Essential Science Indicators
- http://www.cs.nott.ac.uk/~rxq/publications.htm
- http://www.cs.nott.ac.uk/~gxo/hhbibliography.html