Recent Developments on Combinatorial Optimisation Problems

Dr Rong Qu
Automated Scheduling, Optimisation and Planning (ASAP) Group
The University of Nottingham
rxq@cs.nott.ac.uk, http://www.cs.nott.ac.uk/~rxq

Collaborators
Dr Ruibin Bai, University of Nottingham Ningbo Campus, UK
Professor Edmund Burke, Queen Mary University of London, UK
Dr Tim Curtois, University of Nottingham, UK
Dr Fang He, West Minister University, UK
Dr Jingpeng Li, Dr Gabriela Ocha, Stirling University, UK
Dr Khin Lwin, Teesside University, UK
Dr Gehard Post, University of Twente, The Netherlands
Dr Ying Xu, Hunan University, China
Recent Algorithms on Combinatorial Optimisation Problems

Campuses, The University of Nottingham
Recent Algorithms on Combinatorial Optimisation Problems

ASAP Group, The University of Nottingham
Main Algorithms & Applications

• Methodologies
 – Meta-heuristics
 • Evolutionary algorithms, Local search
 • Hyper-heuristics
 • Hybrids
 – Exact approaches
 • Constraint programming
 • Integer / linear programming
 – Hybridisations
Main Algorithms & Applications

• Applications
 – Personnel/workforce scheduling
 – Portfolio optimisation
 – Telecommunication network routing
 – Vehicle routing in logistics
 – Timetabling
 – ...

Recent Algorithms on Combinatorial Optimisation Problems
Recent Algorithms on Combinatorial Optimisation Problems

HYPER-HEURISTICS
Recent Algorithms on Combinatorial Optimisation Problems

Background

- **Search space**
 - All possible solutions

- **Design of algorithms**
 - Problem specific information hard coded
 - Parameters fine tuned for different problems (or instances)

Meta-heuristics

Operates upon

Potential solutions
Recent Algorithms on Combinatorial Optimisation Problems

Background

meta-heuristics

operates upon

potential solutions

hyper-heuristic

operates upon

heuristics

operates upon

potential solutions
All the term *hyper-heuristic* says is: “*Operate on a search space of heuristics*” or “*Heuristics that choose heuristics*”

- Most meta-heuristics operate directly on problems
- Hyper-heuristics operate on heuristics, which are then applied on the actual problems
 — *automatically* work well on *different* problems
Recent Algorithms on Combinatorial Optimisation Problems

Background

• Research challenges
 – Automate heuristic design
 • Now made by human experts
 • Not cheap!
 – How general we could make hyper-heuristics
 • No free lunch theorem\cite{WOL97}

\textbf{Background}

Recent Algorithms on Combinatorial Optimisation Problems

Applications

December

<table>
<thead>
<tr>
<th>Date</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td>D</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>05</td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td>E</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>06</td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td>E</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>07</td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td>D</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>08</td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td>D</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>09</td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td>N</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td>N</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td>L</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td>L</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td>L</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td>E</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td>E</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td>E</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td>D</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td>D</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td>L</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td>L</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td>L</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td>E</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td>E</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td>E</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td>E</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td>E</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td>E</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td>E</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td>E</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td>E</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td>E</td>
<td></td>
<td>S</td>
</tr>
</tbody>
</table>

Total Penalty: 176
Unassigned Shifts: 0

Optimal Solution:

```
M3
M2
M1
```

```
3,1
2,1
1,1
1,2
3,2
2,3
1,3
3,3
```

Optimal solution:
Algorithms

• Low level heuristics
 – Constructive: Construct solutions step by step
 • Graph colouring heuristics, etc.
 – Improvement: Initial solutions improved iteratively
 • Different improvement strategies

• High level heuristics
 – Genetic Algorithms, Tabu Search, Simulated Annealing, Genetic Programming, etc.
 – Case Based Reasoning, Multi-objective techniques, Fuzzy Techniques, choice function, etc.
Recent Algorithms on Combinatorial Optimisation Problems

HYPER-HEURISTICS
- A GRAPH BASED HYPER-HEURISTIC
Recent Algorithms on Combinatorial Optimisation Problems

Background

• Constructive heuristics in scheduling
 – Job shop scheduling: dispatching rules
 – Timetabling: graph heuristics
 – Bin packing: 2D/3D packing heuristics
 – Simple and fast

In complex scheduling problems, using only the basic constructive heuristics often produce unacceptable solutions

• Automated hybridisation / combination of simple heuristics
Recent Algorithms on Combinatorial Optimisation Problems

An example – Timetabling Problems

• Important activities in all universities
• A general timetabling problem
 – A set of events
 – A set of timeslots
 – A set of rooms
 – Schedule the events to timeslots
 • No events for students at the same time
 • Spread students’ events
 • ...

...
An example – Timetabling Problems

• Timetabling problems
 – Assign a set of events into a number of time slots, minimising violations of soft constraints

• Hard constraints
 – Conflicted events in different time slots
 – Room capacity to hold the events, etc.

• Soft constraints
 – Spread out events over time slots / at least n events or no event on a day
 – No event scheduled on specific time slots, etc.
Recent Algorithms on Combinatorial Optimisation Problems

An example – Timetabling Problems

• Timetabling problems
 –Exact methods
 • IP/MILP
 –Constructive heuristics
 • Graph heuristics
 • Constraint satisfaction, etc
 –Meta-heuristics
 • Local search based algorithms
 • Population based algorithms
 • Hybridisations, etc
Recent Algorithms on Combinatorial Optimisation Problems

Framework

• The high level framework
 – Any meta-heuristics or learning/search methodology
• The low level graph heuristics: order events by how difficult to schedule them
 – Saturation Degree: least available slots
 – Colour Degree: most conflicted with those scheduled
 – Largest Degree: most conflicted with the others
 – Largest Weighted Degree: LD + students involved
 – Largest Enrolment: students enrolled
• Hyper-heuristics: Heuristics to choose heuristics
Recent Algorithms on Combinatorial Optimisation Problems

Framework

events

heuristic list

order of events

slots

Framework

The University of Nottingham

ASAP research group
Recent Algorithms on Combinatorial Optimisation Problems

Framework

events	e2	e4	e5	e6	e7	e8	e10	e11	e12	...

Heuristic list	SD	SD	LD	CD	LE	SD	SD	LW	SD	LD	CD	RO	...

order of events	e6	e17	e28	e19	e10	e31	e12	e5	e22	e32	e27	e19	...

<table>
<thead>
<tr>
<th>slots</th>
<th>e1</th>
<th>e3</th>
<th>e6</th>
<th>e19</th>
<th>e26</th>
<th>e25</th>
<th>e28</th>
<th>e17</th>
<th>e10</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
Recent Algorithms on Combinatorial Optimisation Problems

Framework

High level search

Events

| e2 | e4 | e5 | e7 | e8 | ... |

Heuristic list

| SD | SD | LD | CD | LE | SD | SD | LW | SD | LD | CD | RO | ...

Order of events

| e5 | e32 | e19 | e22 | e13 | e31 | e12 | e7 | e2 | e15 | e27 | e12 | ...

Slots

| e1 | e3 | e6 | e19 | e26 | e25 | e28 | e17 | e10 | e5 | e13 | e32 | e19 | e13 |
Research issues

• Which high/low level search heuristics?

• Search in two search spaces

• Heuristic hybridisations

• Landscape analysis on heuristic spaces

• Extensions on the framework and other problems
Research issues

• High level search methods
 – Iterated Local Search
 – Tabu Search
 – Steepest Descent
 – Variable Neighbourhood Search

 – Objective function
 • heuristic lists \rightarrow penalties (costs of timetables constructed)
 – “Walks” are allowed
Recent Algorithms on Combinatorial Optimisation Problems

Research issues

- High level search methods
 - Similar performance within the same framework (same total no. of evaluations, same initials, etc)
 - ILS and VNS are slightly better
 - Results are comparable to best approaches on both course and exam benchmark problems

<table>
<thead>
<tr>
<th></th>
<th>car91</th>
<th>car92</th>
<th>ear83</th>
<th>hec92</th>
<th>kfu93</th>
<th>lse91</th>
<th>sta83</th>
<th>tre92</th>
<th>ute92</th>
<th>uta92</th>
<th>yor83</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDM avg</td>
<td>6.18</td>
<td>5.3</td>
<td>36.8</td>
<td>12.74</td>
<td>15.63</td>
<td>13.51</td>
<td>163.7</td>
<td>9.37</td>
<td>32.6</td>
<td>4.5</td>
<td>43.6</td>
</tr>
<tr>
<td>ILS avg</td>
<td>6.01</td>
<td>5.18</td>
<td>39.58</td>
<td>13.01</td>
<td>15.35</td>
<td>13.1</td>
<td>161.6</td>
<td>8.92</td>
<td>31.3</td>
<td>4.01</td>
<td>43.15</td>
</tr>
<tr>
<td>TS avg</td>
<td>6.3</td>
<td>5.34</td>
<td>45.56</td>
<td>14.6</td>
<td>19.55</td>
<td>14.29</td>
<td>169.1</td>
<td>9.67</td>
<td>37.02</td>
<td>4.38</td>
<td>47.97</td>
</tr>
<tr>
<td>VNS avg</td>
<td>6.1</td>
<td>5.1</td>
<td>38.63</td>
<td>12.72</td>
<td>15.24</td>
<td>13.06</td>
<td>163.3</td>
<td>8.88</td>
<td>31.7</td>
<td>4.05</td>
<td>43.93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>s1</th>
<th>s2</th>
<th>s3</th>
<th>s4</th>
<th>s5</th>
<th>m1</th>
<th>M2</th>
<th>m3</th>
<th>m4</th>
<th>m5</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDM avg</td>
<td>10.8</td>
<td>15.6</td>
<td>5</td>
<td>11.8</td>
<td>12.2</td>
<td>382.5</td>
<td>100%</td>
<td>383</td>
<td>374.5</td>
<td>194.5</td>
<td>100%</td>
</tr>
<tr>
<td>ILS avg</td>
<td>8.8</td>
<td>13.2</td>
<td>5.4</td>
<td>7.6</td>
<td>12</td>
<td>375</td>
<td>480.5</td>
<td>377.5</td>
<td>380.5</td>
<td>179.7</td>
<td>1144 60%</td>
</tr>
<tr>
<td>TS avg</td>
<td>12.2</td>
<td>16.4</td>
<td>9.2</td>
<td>12.2</td>
<td>18.2</td>
<td>511.5</td>
<td>533</td>
<td>80%</td>
<td>468</td>
<td>539</td>
<td>236</td>
</tr>
<tr>
<td>VNS avg</td>
<td>10</td>
<td>14.8</td>
<td>5.2</td>
<td>8</td>
<td>10.6</td>
<td>365</td>
<td>443 40%</td>
<td>369.5</td>
<td>377.5</td>
<td>165.5</td>
<td>1148</td>
</tr>
</tbody>
</table>
Recent Algorithms on Combinatorial Optimisation Problems

Research issues

• Low level heuristics
 – Different subsets of graph heuristics (SD+LD, SD+LWD, SD+LE, SD+LWD+CD, etc)
 – With a limited computational time
 • SD + LWD performed the best
 – With more graph heuristics
 • Longer time given, the better the results
 • \(h/l \) \((l: \text{length of the sequence}, \ h: \text{number of graph heuristics})\)
 – Random ordering also contributes the performance
Research issues

Recent Algorithms on Combinatorial Optimisation Problems

GHH: search is upon heuristics, not solutions – not all the solutions in solution space are reachable?
Research issues

<table>
<thead>
<tr>
<th>Representation</th>
<th>Heuristic space</th>
<th>Solution space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (Upper Bound)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neighborhood Operator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective Function</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Research issues

• Hybridisation in the framework with simple greedy search
 – High level search in heuristic space: a, b, c, ...
 – Greedy search in solution space: b -> d, ...

• Coverage of the solution space
Recent Algorithms on Combinatorial Optimisation Problems

Research issues

• Hybridisation in the framework with simple greedy search
 – Results greatly improved!

<table>
<thead>
<tr>
<th></th>
<th>car91</th>
<th>car92</th>
<th>ear83</th>
<th>hec92</th>
<th>kfu93</th>
<th>lse91</th>
<th>sta83</th>
<th>tre92</th>
<th>ute92</th>
<th>uta92</th>
<th>yor83</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHH2 best</td>
<td>5.16</td>
<td>4.16</td>
<td>35.86</td>
<td>11.94</td>
<td>14.79</td>
<td>11.15</td>
<td>159</td>
<td>8.6</td>
<td>28.3</td>
<td>3.59</td>
<td>41.81</td>
</tr>
<tr>
<td>GHH2 avg</td>
<td>5.21</td>
<td>4.20</td>
<td>36.2</td>
<td>12.1</td>
<td>15.01</td>
<td>11.24</td>
<td>160.81</td>
<td>8.65</td>
<td>28.64</td>
<td>3.62</td>
<td>41.96</td>
</tr>
<tr>
<td>GHH2 time</td>
<td>26001</td>
<td>11666</td>
<td>740</td>
<td>105</td>
<td>3417</td>
<td>2015</td>
<td>128</td>
<td>2293</td>
<td>131</td>
<td>10045</td>
<td>641</td>
</tr>
<tr>
<td>GHH1 best</td>
<td>5.3</td>
<td>4.77</td>
<td>38.39</td>
<td>12.01</td>
<td>15.09</td>
<td>12.72</td>
<td>159.2</td>
<td>8.74</td>
<td>30.32</td>
<td>3.42</td>
<td>40.24</td>
</tr>
<tr>
<td>GHH1 avg</td>
<td>6.01</td>
<td>5.18</td>
<td>39.58</td>
<td>12.33</td>
<td>15.35</td>
<td>13.1</td>
<td>161.6</td>
<td>9.0</td>
<td>31.3</td>
<td>4.01</td>
<td>43.15</td>
</tr>
<tr>
<td>GHH1 time</td>
<td>13684</td>
<td>6553</td>
<td>462</td>
<td>70</td>
<td>1887</td>
<td>1125</td>
<td>72</td>
<td>1433</td>
<td>101</td>
<td>5429</td>
<td>340</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>s1</th>
<th>s2</th>
<th>s3</th>
<th>s4</th>
<th>s5</th>
<th>m1</th>
<th>m2</th>
<th>m3</th>
<th>m4</th>
<th>m5</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHH2 best</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>257</td>
<td>259</td>
<td>192</td>
<td>235</td>
<td>112</td>
<td>0.8/1132</td>
</tr>
<tr>
<td>GHH2 avg</td>
<td>0.2</td>
<td>0.6</td>
<td>0.4</td>
<td>0.1</td>
<td>261</td>
<td>273</td>
<td>214.5</td>
<td>242</td>
<td>116</td>
<td>1135</td>
<td></td>
</tr>
<tr>
<td>GHH2 time</td>
<td>50</td>
<td>54</td>
<td>48</td>
<td>45</td>
<td>65</td>
<td>19411</td>
<td>15750</td>
<td>18512</td>
<td>18782</td>
<td>9725</td>
<td>20328</td>
</tr>
<tr>
<td>GHH1 best</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>310</td>
<td>419</td>
<td>332</td>
<td>324</td>
<td>162</td>
<td>0.8/1162</td>
</tr>
<tr>
<td>GHH1 avg</td>
<td>2.6</td>
<td>2.8</td>
<td>1</td>
<td>3</td>
<td>2.6</td>
<td>323</td>
<td>428</td>
<td>345</td>
<td>335</td>
<td>182</td>
<td>1162</td>
</tr>
<tr>
<td>GHH1 time</td>
<td>155</td>
<td>218</td>
<td>240</td>
<td>171</td>
<td>260</td>
<td>62115</td>
<td>50403</td>
<td>57387</td>
<td>65821</td>
<td>36955</td>
<td>81148</td>
</tr>
</tbody>
</table>
Recent Algorithms on Combinatorial Optimisation Problems

Research issues

• Hybridisation in the framework with simple greedy search
 – Hybrid GHH vs. Memetic Algorithms
• Diversification vs. intensification

![Diagram](image-url)
Recent Algorithms on Combinatorial Optimisation Problems

Research issues

• Search in two search spaces
 – Diversification of the high level search in the framework in the heuristic space
 – Intensification by the local search in the solution space

• Role of high level search methods
 To explore diversified solutions in the solution space by searching in the high level heuristic space
Recent Algorithms on Combinatorial Optimisation Problems

Hybridisations

• How to (adaptively) hybridise heuristics?
 Knowledge / lesson learnt from the offline heuristic hybridisations?
I – Random (SD+LWD, SD+LE, SD+LD)
 A large collection of different heuristic sequences
 Systematically produce heuristic sequences
 Full coverage of different amount of hybridisations
II – Analyze the best/worst 5% heuristic sequences
 Rates of hybridisation at different positions of heuristic sequences
 Trends of hybridizations in the best sequences

<table>
<thead>
<tr>
<th>ute92 I</th>
<th>ear83 I</th>
<th>hec92 I</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>0.34</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>0.38</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>0.42</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>0.46</td>
<td>0.80</td>
<td>0.80</td>
</tr>
</tbody>
</table>

1 2 3 4 5 6 7 8 11 12 14 16 18 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83
Recent Algorithms on Combinatorial Optimisation Problems

Hybridisations

• Results of analysis
 – Hybridising SD with LWD obtained better results compared with LE or LD
 – In the best 5% sequences
 • Higher percentage at early stage
Recent Algorithms on Combinatorial Optimisation Problems

Hybridisations

- Adaptive online heuristic hybridization
 - Focus on early stage of heuristic hybridization
 - Rate of LWD hybridisation adaptively adjusted
Landscape analysis

• Understanding the structure of heuristic search spaces, i.e. heuristic sequences vs. solutions
• Fitness landscape analysis on constructive hyper-heuristics
 – Fitness distance correlation (fdc) of local optima to the global optimum
 – One-flip of global optimum
 – Correlation length
• Although rugged, the encouraging feature of a globally big valley structure
• A high level of neutrality and positional bias
Recent Algorithms on Combinatorial Optimisation Problems

Landscape analysis

[Graph showing cost versus Hamming distance with points indicating local optima for sta83 I and hec82 I]
Recent Algorithms on Combinatorial Optimisation Problems

Landscape analysis

The University of Nottingham
OTHER RESEARCH TOPICS
Nurse Rostering Problems

Nurse Rostering web site at
http://www.asap.cs.nott.ac.uk/projects/nmhpr/data

<table>
<thead>
<tr>
<th>Minimum Cover</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Too few resting time (10)

- Circled cells indicate issues.
- Unassigned Shifts: 0
- Total Penalty: 176

Too few consecutive night shifts (5)

- Circled cells indicate issues.
- Unassigned Shifts: 0
- Total Penalty: 176

Too few consecutive late shifts (5)

- Circled cells indicate issues.
- Unassigned Shifts: 0
- Total Penalty: 176
Recent Algorithms on Combinatorial Optimisation Problems

Nurse Rostering Problems

- Hybrid variable neighbourhood search
 - HARMONY™, ORTEC, The Netherlands
- Constraint programming
- Sequence based adaptive approach
Portfolio Optimisation

- Allocation of capital of budget to selected assets, aiming to minimise risk and maximise return
- Markowitz’s modern portfolio theory
 - Mean-Variance model
 - Efficient frontier
 - Risk vs. return

Matlab™
Recent Algorithms on Combinatorial Optimisation Problems

Freight Transport Routing

- Design of routing plan, starting from a depot, to serve all customers within a network
- **Constraints**
 - Capacity
 - Time window
 - Pick-up vs. drop
- **Objectives**
 - Cost
 - Empty load
 - ...
Recent Algorithms on Combinatorial Optimisation Problems

Multicast Routing

• Finding the multicast tree serving all terminals with the minimal cost while satisfying delay bound
• Multiple objectives
 – Maximal end-to-end delay
 – Maximal link utilisation
 – Average delay
Questions?

Thank you!

– More details at: http://www.cs.nott.ac.uk/~rxq/publications.htm
Recent Algorithms on Combinatorial Optimisation Problems

Selected References

• More references at http://www.asap.cs.nott.ac.uk/?q=bibliography