Meta-heuristic Algorithms

Dr Rong Qu, Associate Professor
ASAP Group, The University of Nottingham
rong.qu@nottingham.ac.uk
http://www.cs.nott.ac.uk/~pszrq

NATCOR – Heuristics and Approximate Algorithms
Nottingham, April, 2016
Optimisation Problems

- For a set of decision variables: \(X = (x_1, x_2, \ldots, x_n) \)
 - Maximises (or minimises) an objective function: \(f(X) \)
 - Subject to a set of constraints

\[
Ras(x) = 20 + x_1^2 + x_2^2 - 10(\cos 2\pi x_1 + \cos 2\pi x_2) \\
F(x) = -20\cdot \exp\left(-0.2 \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} x_i^2}\right) - \exp\left(\frac{1}{n} \cdot \sum_{i=1}^{n} \cos(2\pi x_i)\right) + 20 + e
\]

\(x_i \in [-5.12, 5.12] \)

\(x_i \in [-30, 30] \)
Combinatorial Optimisation Problems

- For most of real world optimisation problems
 - An exact model cannot be built easily
 - **Combinatorial explosion**: no. of solutions grows **exponentially** with the size of the problem

- **Search algorithms**
 - Exact methods: IP, MIP
 - Constructive heuristics
 - Meta-heuristic algorithms
Combinatorial Optimisation Problems

- **Constructive Heuristics**
 - Simple minded greedy functions: iteratively build a reasonable solution, one element at a time

- **Meta-heuristics**
 - **Single solution based (local search)**
 - Simulated Annealing, Tabu Search, Variable Neighbourhood Search, etc.
 - **Population based**
 - Genetic algorithm, Memetic algorithm, EDA, Ant Algorithms, Swarm Intelligence, etc.
Local Search

- Starts from initial (complete) solution
- Iteratively moves to a better neighborhood solution until a local optimum (no better neighborhood)
Local Search

- **Representation of the solution**
 - Solution encoding

- **Evaluation function**
 - Guide the search

- **Neighbourhood function**
 - An operator to change (move) a solution to other solutions

- **Acceptance criterion**
 - First improvement, best improvement, best of non-improving solutions
Local Search

$C(S)$

$N(S_i)$

$N(S_4)$

$N(S_9)$

S_1, S_2, S_3, S_4, S_5, S_6, S_7, S_8, S_9, S_{10}, S_{11}

Iterations
Local Search

- **Hill climbing / Steepest Descent**
 - “Run uphill / downhill and hope you find the top / bottom of the hills”

- **Simulated annealing**
 - “Shake it up a lot and then slowly let it settle”

- **Tabu search**
 - “Don’t look under the same lamp-post twice”

- **Variable Neighbourhood Search**
 - “Let’s use different transportations i.e. fly / leap / walk, to explore”

- **Etc.**

- **Population based approach**
 - Genetic algorithms: “survival of the fittest”
 - Ant algorithms: “wander around a lot and leave a trail”
 - Genetic programming: Learn to program
 - Etc.
Simulated Annealing

- Physical annealing process: Material is heated and slowly cooled into a uniform structure
- The first SA algorithm: (Metropolis, 1953)
- SA applied to optimisation problems: (Kirkpatrick, 1982)
- Better moves are always accepted
- Worse moves may be accepted, depends on a probability

At temperature \(t \), the probability of accepting a worse solution:

\[
P = \exp\left(-\frac{|c|}{t}\right) > r
\]

- \(c \): change in the evaluation function
- \(r \): a random number between 0 and 1
- \(t \): the current temperature

The probability of accepting a worse state is a function of
- the temperature \(t \) of the system
- the change \(c \) in the cost function
Simulated Annealing

- The probability of accepting a worse state is a function of:
 - the temperature t of the system
 - the change c in the cost function
- t decreases: the probability of accepting worse moves decreases
- $t = 0$: no worse moves are accepted (i.e. greedy search)

<table>
<thead>
<tr>
<th>Change</th>
<th>Temp</th>
<th>$\exp(-C/T)$</th>
<th>Change</th>
<th>Temp</th>
<th>$\exp(-C/T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.95</td>
<td>0.810</td>
<td>0.2</td>
<td>0.1</td>
<td>0.13583</td>
</tr>
<tr>
<td>0.4</td>
<td>0.95</td>
<td>0.656</td>
<td>0.4</td>
<td>0.1</td>
<td>0.018339</td>
</tr>
<tr>
<td>0.6</td>
<td>0.95</td>
<td>0.532</td>
<td>0.6</td>
<td>0.1</td>
<td>0.0024852</td>
</tr>
<tr>
<td>0.8</td>
<td>0.95</td>
<td>0.431</td>
<td>0.8</td>
<td>0.1</td>
<td>0.000335</td>
</tr>
</tbody>
</table>
Simulated Annealing

For $I = 1$ to Iter do

$t = \text{Schedule}[I]$

If $t = 0$ then return Current

Next = random neighbour of Current

c = evaluate[Next] − evaluate[Current]

if $c > 0$ then Current = Next

else Current = Next with probability $\exp(-|c|/t)$

- Implement SA: implement greedy search + modified acceptance criteria $\exp^{-|c|/t}$
- Cooling Schedule is *hidden* in this algorithm: important!
SA – Cooling Schedule

- Starting Temperature
- Final Temperature
- Temperature Decrement
- Iterations at each temperature
SA – Cooling Schedule

- **Starting Temperature**
 - *hot* enough: to allow *almost* all neighbourhood (else: greedy search)
 - *not* be so hot: random search for sometime
 - Estimate a suitable starting temperature:
 - Reduce quickly to 60% of worse moves are accepted
 - Use this as the starting temperature

- **Final Temperature**
 - Usually 0, however in practise, not necessary
 - *t* is low: accepting a worse move are almost the same as *t* = 0
 - The stopping criteria: either be a suitably low *t*, or “frozen” at the current *t* (i.e. no worse moves are being accepted)
Temperature Decrement

- Enough iterations at each t, however computationally expensive
- Compromise
 - Either: a large number of iterations at a few t’s, or
 - A small number of iterations at many t’s, or
 - A balance between the two
- Linear: $t = t - x$
- Geometric: $t = t \times a$
 - Experience: $a = (0.8 \text{ and } 0.99)$
 - The higher the value of a, the longer it will take
SA – Cooling Schedule

- Iterations at each temperature
 - A constant number of iterations at each t, or
 - One iteration at each t, but decrease t very slowly (Lundy 1986)
 - $t = t / (1 + \beta t)$
 - where β is a suitably small value
 - An alternative: dynamically change the no. of iterations
 - At higher t’s: less no. of iterations
 - At lower t’s: a large no. of iterations, local optimum fully exploited
SA – Acceptance $\exp(-|c|/t)$

$\exp(-|c|/t)$: took about one third of the computation time

- Approximates the exponential (Johnson, 1991)
 \[P(c) = 1 - |c|/t \]
- Build a look-up table: values of $|c|/t$
- Speed up the algorithm: about a third with no significant effect on solution quality
Tabu Search

“The overall approach is to avoid entrapment in cycles by forbidding or penalizing moves ... in the next iteration to points in the solution space previously visited (hence tabu).”

Proposed independently by Glover (1986) and Hansen (1986)

- Accept the best one, even it’s low quality (worse move)
- Accepts worse solutions deterministically, to escape from local optima

Tabu Search

- Uses memory (tabu list) to improve decision making
 - **Short term memory**: prevent revisiting previous solutions
 - **Tabu list**: Records a limited no. of solution attributes (moves, selections, assignments, etc.)
 - **Tabu tenure** (length of tabu list): No. of iterations a move is prevented
 - FIFO, dynamic
 - **Long term memory**: attributes of elite solutions
 - Diversification: Discouraging attributes of elite solutions, to diversify the search to other areas of solution space
 - Intensification: Give priority to attributes of a set of elite solutions

- **Aspiration criteria**: accepting an improving solution even it’s generated by a tabu move
 - Similar to SA: always accepts better solutions, but accept worse ones

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016
Tabu Search

Current = initial solution

While not terminate

Next = the best neighbour of Current

If(not MoveTabu(TL, Next) or Aspiration(Next)) then

Current = Next

Update BestSolutionSeen

TL = Recency(TL + Current)

Endif

End-While

Return BestSolutionSeen
Tabu Search – TSP Example

- **Short term memory**
 - Prevent a list of towns from being selected for a no. of iterations

- **Long term memory**
 - Maintain a list of towns in the last k best (worst) solutions
 - Encourage (or discourage) their selections in future solutions

- **Aspiration**
 - Moves in the tabu list generate better solution: accept that solution anyway
 - Put it into tabu list
Tabu Search vs. Simulated Annealing

<table>
<thead>
<tr>
<th></th>
<th>SA</th>
<th>TS</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of neighbours at each move</td>
<td>1</td>
<td>n</td>
</tr>
<tr>
<td>Accept worse moves?</td>
<td>Yes by $P = \exp\left(-\frac{c}{t}\right)$</td>
<td>Yes, the best neighbour if it is not tabu-ed</td>
</tr>
<tr>
<td>Accept better moves?</td>
<td>Always</td>
<td>Always (aspiration)</td>
</tr>
<tr>
<td>Stopping conditions</td>
<td>$t = 0$, or At a low temperature, or No improvement after some iterations</td>
<td>Certain no. of iterations, or No improvement after some iterations</td>
</tr>
</tbody>
</table>
Variable Neighbourhood Search

- In most local search: only one neighbourhood

- To escape from local optimum
 - SA: move to worse neighbourhoods based on a probability using cooling schedule
 - TS: move to not tabued worse neighbourhoods

- **VNS:** systematically changes neighbourhood during search
 - $N_k, k = 1, 2, \ldots, k_{\text{max}}$: the set of neighbourhood operators
 - $N_k(s)$: set of solutions in the k^{th} neighbourhood of solution s

Variable Neighbourhood Search

- **Fact 1.** A local minimum w.r.t. one neighbourhood is not necessary so for another
- **Fact 2.** A global minimum is a local minimum w.r.t. all possible neighbourhoods
- **Fact 3.** For many problems local minima w.r.t several neighbourhoods are relatively close to each other
Variable Neighborhood Search

Initialisation

Select the set of neighbourhood structures N_k

Find an initial solution x

Repeat until stopping condition is met

- Set $K=1$
- **Repeat** until $k=k_{\text{max}}$
 1. *Shaking*: Generate a random point X' in $N_k(x)$
 2. *Local Search*: x'' is the obtained optimum
 3. Move or not:
 - If x'' is better than x then $x=x''$ and $k=1$
 - Otherwise $k=k+1$

Variable Neighbourhood Search

- Order of neighbourhoods
 - Typically, order neighbourhoods from smallest to largest
 - **Forward VNS**: start with $k = 1$ and increase k by one if no better solution is found; otherwise set $k \leftarrow 1$
 - **Backward VNS**: start with $k = k_{\text{max}}$ and decrease k by one if no better solution is found
 - **Extended version**: parameters k_{min} and k_{step}; set $k \leftarrow k_{\text{min}}$ and increase k by k_{step} if no better solution is found
Variants of VNS

Procedure **Reduced VNS**

Select \(\{N_k\}, k = 1, \ldots, k_{\text{max}} \), initial solution \(x \), stopping condition \(k \leftarrow 1 \)

Repeat until \(k = k_{\text{max}} \)

\[x' \leftarrow \text{RandomSolution}(N_k(x)) \]

if \(f(x') < f(x) \) then

\[x \leftarrow x' \]

\[k \leftarrow 1 \]

else \(k \leftarrow k + 1 \)

End

- Same as basic VNS except: no **LocalSearch** is applied
- Only explores randomly different neighbourhoods
- Can be faster than standard local search
Design VNS

- Number and type of *neighbourhoods* to be used
- Order of their use in the search
- Strategy for changing the neighbourhoods
- Local search methods
- Stopping condition

- No need of sophisticated acceptance criteria to escape from local optima
- *Neighbourhoods*: crucial for VNS; all solutions reachable!

- Exercise: Design a VNS for TSP
Local Search: Design & Improve

- Evaluation function
 - Calculated at every iteration
 - Often the most expensive part of the algorithm
 - Need be as efficiently as possible
 - Delta / partial evaluation
 - Approximate evaluation function, potentially good solutions fully evaluated
Local Search: Design & Improve

- Evaluation function
 - If possible, should lead the search
 - Avoid where many states return the same value
 i.e. a plateau in the search space, the search has no knowledge
 where it should proceed
Local Search: Design & Improve

Evaluation function

- Cater for some illegal solutions using constraints
 - **Hard Constraints**: cannot be violated in a feasible solution
 - a large weighting: these illegal solutions have a high cost
 - **Soft Constraints**: should, ideally, not be violated but, if they are, the solution is still feasible
 - weighted depending importance
 - Can be dynamically changed as the algorithm progresses.
 - Allows hard constraints to be accepted at the start of the algorithm but rejected later
Local Search: Design & Improve

- **Initial solution**
 - A random solution: improve
 - A solution that’s been heuristically built (e.g. for the TSP problem, start with a greedy search)

- **Hybridisation**
 - Combine two search algorithms
 - The primary search: a population based search
 - A local search is applied to move each individual to a local optimum

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016
Other Local Search Metaheuristics

- Iterative Local Search
- Guided Local Search
- GRASP (Greedy Random Adaptive Search Procedure)
- And many more

Software Tool