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Abstract—Recently, contrastive learning (CL) is a promising
way of learning discriminative representations from time series
data. In the representation hierarchy, semantic information
extracted from lower levels is the basis of that captured from
higher levels. Low-level semantic information is essential and
should be considered in the CL process. However, the existing
CL algorithms mainly focus on the similarity of high-level
semantic information. Considering the similarity of low-level
semantic information may improve the performance of CL. To
this end, we present a deep contrastive representation learning
with self-distillation (DCRLS) for the time series domain. DCRLS
gracefully combine data augmentation, deep contrastive learning,
and self distillation. Our data augmentation provides different
views from the same sample as the input of DCRLS. Unlike
most CL algorithms that concentrate on high-level semantic
information only, our deep contrastive learning also considers
the contrast similarity of low-level semantic information between
peer residual blocks. Our self distillation promotes knowledge
flow from high-level to low-level blocks to help regularize DCRLS
in the knowledge transfer process. The experimental results
demonstrate that the DCRLS-based structures achieve excellent
performance on classification and clustering on 36 UCR2018
datasets.

Index Terms—Contrastive Learning, Knowledge Distillation,
Representation Learning, Time Series Classification, Time Series
Clustering.

I. INTRODUCTION

T IME series data is of significant importance to various
areas in the real world, such as electroencephalogram

(EEG) analysis [1], cardiotocography (CTG) interpretation
[2], symbolic sequence classification [3], automated damage
detection [4], anomaly detection [5], regime change detection
[6], valvular heart diseases detection [7], colorectal polyp
diagnosis [8] and motion detection [9]. To achieve accurate
time series classification, it is essential for an algorithm to
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effectively capture both local and global patterns of the input
time series [10].

Deep learning algorithms on time series classification have
achieved promising performance because they can discover the
intrinsic connections among representations by unfolding the
internal representation hierarchy of data. For instance, Wang
et al. [11] tested three deep learning architectures, including
fully convolutional network (FCN), residual network (ResNet),
and multilayer perceptron (MLP) for time series classification.
Fawaz et al. [12] proposed a multi-head neural network, called
InceptionTime, to extract multi-scaled features from the input.
Xiao et al. [13] presented a robust temporal feature network
integrating an LSTM-based attention network and a temporal
feature network for supervised classification and unsupervised
clustering. The algorithms above heavily rely on a massive
amount of labeled data, making it challenging to adapt them
to scenarios with limited labeled data.

Recently, there has been a surge of interest in self-
supervised learning as a means of generating effective repre-
sentations from unlabelled data for use in downstream tasks.
Among the most popular trends in this area are algorithms
that incorporate contrastive learning (CL) [14], [15], [16].
CL is a discriminative approach to similar group samples
closer. For instance, He et al. [17] proposed MoCo using a
momentum encoder to learn representations of the negative
pairs obtained from a memory bank. Chen et al. [18] devised
SimCLR to replace the momentum encoder with a large batch
of antagonistic pairs. Chen et al. [19] developed SimSiam
ignoring the negative samples for feature extraction. Jin et
al. [20] designed a multi-scale contrastive approach with self-
distillation that achieved decent performance on a number of
benchmark datasets. A self-supervised learning paradigm that
utilizes single-stage online knowledge distillation to enhance
the quality of model representations was proposed [21]. Hu et
al. [22] designed an unsupervised cross-modal hashing method
to achieve decent retrieval performance. Li et al. [23] put for-
ward an online clustering approach for instance- and cluster-
level CL. Shu et al. [24] introduced an anchor-contrastive
representation learning approach for semi-supervised skeleton-
based action recognition. Xu et al. [25] devised an X-invariant
contrastive augmentation and representation learning method
for skeleton-based action recognition. Lin et al. [26] presented
a contrastive matching method with momentum distillation to
address the bi-level noisy correspondence problem in graph
matching. Yu et al. [27] designed a contrastive instance
learning method with self-distillation for audio-visual violence
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detection. Wang et al. [28] introduced a CL-based transformer
model with label-free distillation for feature extraction in
remote sensing.

CL has been applied to the time series field. For example,
Mohsenvand et al. [29] extended the SimCLR model [18]
to capture representations from EEG data. Eldele et al. [30]
introduced an unsupervised time series representation learning
framework via temporal and contextual contrasting to learn
representations from unlabeled data. Yue et al. [31] designed
a universal framework for understanding time series represen-
tations at an arbitrary semantic level. Different from computer
vision (CV), CL in the time series domain develops slowly.
The following lists some notable limitations in this domain.

First, the time series domain lacks large-scale datasets, e.g.,
unlike ImageNet in CV, to provide models with rich semantic
features in the data [30], [31]. As a result, time series models
usually have little prior knowledge to help handle real-world
tasks, such as anomaly detection.

Second, data augmentation is crucial for CL to understand
the similarity of different views from the same sample and
the similarity with the views from different samples [14].
Unlike image data, time series data is a series of time-ordered
data points associated with single or multiple time-dependent
variables [13]. Typical augmentation methods for image data,
such as crop, are not directly applicable to time series domain.
Meanwhile, time series data augmentation has not received
enough research attention [29], [30], [31].

Third, a deep neural network aims at learning multiple
levels of feature representations with increasing abstraction.
Its performance is dependent on high- and low-level semantic
information obtained from the data [32]. As known, the
quality of the obtained high-level semantic information is
based on that of the low-level semantic information already
extracted. On the other hand, most learning models update
their parameters using the backpropagation (BP) [33] method.
High-level semantic information influences low-level semantic
information to a certain extent according to BP. Hence, low-
level semantic information is also important and should be
considered in the CL process. To the best of our knowledge,
most of the existing CL-based algorithms in the time se-
ries field, such as SimCLR on EEG [29] and temporal and
contextual contrasting [30], mainly focus on the similarity
of high-level semantic information. Ignoring the similarity
of low-level semantic information may lead to a deteriorated
CL performance. Unfortunately, this issue has not been well
studied in the literature.

To tackle the problems above, we propose a deep contrastive
representation learning with self-distillation (DCRLS). To be
specific, DCRLS gracefully integrates data augmentation, deep
contrastive learning, and self distillation to explore the rep-
resentations hidden in time series data. Data augmentation
provides different views from the same sample as the input
of DCRLS. The feature extractor for DCRLS is a residual
network (ResNet) containing three residual blocks. Deep con-
trastive learning provides the contrast similarity of high-level
semantic information and that of low-level semantic infor-
mation between peer residual blocks to mine instance-level
features between different perspectives from the same sample.

Inspired by BYOT [34], self distillation transfers knowledge
from high-level to low-level blocks for self regularization
purpose. Unlike BYOT’s KL divergence-based knowledge
distillation (KD) loss function, DCRLS uses the L2 function
to measure the difference between high-level and low-level
feature vectors. Fig. 1 illustrates the overview of DCRLS.

Our major contributions are summarized as follows:
• We present DCRLS that ensembles data augmentation,

deep contrastive learning, and self distillation techniques,
to mine the intrinsic connections between the internal
representational hierarchy of data for downstream tasks.

• Unlike other CL-based algorithms, DCRLS considers
the contrast similarity of high-level semantic information
and that of low-level semantic information between peer
residual blocks via deep contrastive learning.

• DCRLS is applied to time series classification and clus-
tering with 36 UCR2018 datasets considered. On classi-
fication, DCRLS outperforms six existing classification
algorithms on 28 datasets in terms of mean accuracy,
‘win’/‘tie’/‘lose’ measure, and AVG rank; on clustering,
DCRLS wins on 8 out of 36 datasets when compared
with 13 clustering algorithms with respect to average rand
index, ‘win’/‘tie’/‘lose’ measure, and AVG rank.

The remainder of this paper is structured as follows. In Sec-
tion II, we review related work on time series classification and
clustering. In Section III, we provide a detailed description of
the problem formulation and our proposed approach, DCRLS.
Section IV presents an analysis of our experimental results,
and finally, we draw our conclusion in Section V.

II. RELATED WORK

This section reviews time series classification and clustering
algorithms.

A. Time Series Classification

Time series classification algorithms can be roughly clas-
sified into two categories: traditional and deep-learning algo-
rithms.

1) Traditional Algorithms: Distance- and feature-based al-
gorithms are two main streams for time series classification.
Combining the nearest neighbor (NN) and dynamic time warp-
ing (DTW) is a commonly used as distance-based method.
This method focuses on calculating the similarities between
spatial features of data, e.g., DTWI , DTWA, DTWC and
DTWD [10]. Besides, researchers have devoted their effects
on ensemble approaches for time series classification. Lines
and Bagnall [35] introduced an elastic ensemble (EE) algo-
rithm hybridizing 11 1-NN-based elastic distances for various
time series classification tasks. Lines et al. [36] proposed a col-
lective of transformation-based ensemble (COTE) algorithm
that used multiple standard classifiers to achieve decent per-
formance. The hierarchical vote collective of transformation-
based ensembles (HIVE-COTE) [37], HIVE-COTE 2.0 [38],
and local cascade ensemble (LCE) [39] are also ensemble-
based.

Feature-based algorithms aims at capturing representative
features from time series data. For example, Karlsson et al.
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Fig. 1. The overview of DCRLS. The feature extractor is a residual network (ResNet) including three residual blocks, an average pooling layer, and two
dense (i.e., fully-connected) layers. Each residual block consists of a 1-dimensional convolutional neural network (Conv), a batch normalization (BatchNorm)
module, and a rectified linear unit (ReLU) function, where “Conv 8x128” stands for a 1-dimensional Conv with a kernel size of 8 and a channel number of
128.

[40] designed a generalized random shapelet forest algorithm
with shapelets and bag-of-words methods used for feature
extraction. The learned pattern similarity [41], hidden state
conditional random field [42] and interpretable representation
learning [43] are feature-based as well.

2) Deep Learning Algorithms: Deep learning algorithms
learn the underlying relationships among data representations
by constructing an internal hierarchy of data representation.
Currently, there are two branches of work in the commu-
nity: single-network-based and dual-network-based models.
A single-network-based model is based on one (usually hy-
bridized) network that concentrates on the significant connec-
tions within the hierarchy. For example, Xiao et al. [44] intro-
duced a multi-process collaborative architecture using a multi-
head capsule network to extract multi-scale features from the
input. Other examples of single-network-based models include
MLP, ResNet, FCN [11], InceptionTime [12], ResNet with
random vector functional link [45], residual channel attention
network [46], CNN-based federated distillation learning [47],
deep echo state network [48], ROCKET [49], MiniRocket
[50], and ConvTimeNet [51]. In contrast, dual-network-based
models typically consist of two parallel networks: one for
local-feature extraction and one for global-relation extraction.
The former typically uses CNNs to extract local features, while
the latter focuses on capturing the connections among the
extracted features. Examples of dual-network-based models
include RTFN [13], robust neural temporal search [52], FCN-
LSTM [53], ResNet-Transformer [54], SelfMatch [55] and
attentional prototype network [56].

B. Time Series Clustering

Time series clustering algorithms are used to group similar
data together for better analysis of its structure [57]. Two

main streams in the time series clustering community are
traditional and deep learning algorithms. Traditional clus-
tering algorithms use dissimilarity measure or time series
representation methods to distinguish the differences in data
structures. For example, Yang et al. [58] introduced a combi-
nation of discriminative analysis and l2,1-norm minimization
for unsupervised feature selection. Li et al. [59] proposed
an unsupervised feature selection algorithm for non-negative
spectral analysis. The robust unsupervised feature selection
[60], robust local learning method [61], K-spectral centroid
clustering [62], DTW-based barycenter averaging method [63],
K-shape [64], U-shape [64] and fuzzy-based clustering [65]
all belong to traditional clustering methods. On the contrary,
deep learning clustering ones provide rich representations for
standard clustering, e.g., the deep temporal clustering [66],
unsupervised deep embedding algorithm [67], improved deep
embedding algorithm [67], deep temporal clustering represen-
tation algorithm [68], and ClusterGAN [69].

III. THE PROPOSED DCRLS

First of all, the problem formulation is introduced. Then, the
three key components of DCRLS, namely data augmentation,
deep contrastive learning, and self distillation, are described.
Finally, the DCRLS-based classification and clustering struc-
tures are given.

A. Problem Formulation

Let an arbitrary time equidistant time series sequence de-
noted by xi = {{x(i)1,1, ..., x

(i)
1,d}, ..., {{x

(i)
l,1, ..., x

(i)
l,d}} ∈ X ,

where X ⊆ Rl×d is the input space, and l and d are the length
and number of covariates of xi, respectively. xi is univariate
if d = 1, and xi is multivariate, otherwise. The goal is to learn
a nonlinear embedding function fθ, which maps xi ∈ X to its



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

(c) (d)

(a) (b)

Fig. 2. Example raw data and its jitter-and-scale and Cutout-modified data on the Wafer dataset.

representation ri that interprets itself for downstream tasks,
e.g., time series classification.

B. Data Augmentation

Data augmentation is a widely-used regularization method
in deep learning that can significantly improve a model’s
robustness. DCRLS leverages two augmentation methods to
produce different views from the same sample as the input.
To be specific, the first method is based on a jitter-and-scale
strategy through adding the Gaussian function to the raw data.
The second method is a variant of Cutout [70], where a small
piece of the raw data is randomly replaced without changing its
overall trend. Fig. 2 illustrates examples of the raw data and the
resulting jitter-and-scale and Cutout-modified data generated
from the Wafer dataset.

C. Deep Contrastive Learning (DeepCL)

DeepCL aims at understanding the contrast similarity of
high-level semantic information and that of low-level semantic
information between peer residual blocks to capture the dis-
criminative representations from unlabeled data. As illustrated
in Fig. 1, there are four parts involving CL, including Residual
Block 1, Residual Block 2, Residual Block 3, and the output
of ResNet (i.e. the whole model).

CL understands the similarity of different views from the
same sample via a contrasting loss function [18]. To be
specific, it obtains two feature vectors for every sample from
the two augmented views above. Assume there are N input
samples. The DeepCL method thus obtains 2N feature vectors.
Let zit be the i-th feature vector, i ∈ {1, 2, ..., 2N}. Let zi

+

t

denote the positive sample of zit that comes from the other
augmented view of the same input. (zit, z

i+

t ) is a positive pair.
In the meanwhile, we consider (2N − 2) feature vectors from
other inputs within the same batch as the negative samples
of zit. In other words, zit has (2N − 2) negative pairs with its
negative samples. We use the contrasting loss function in [18],
[29], LCL, to maximize the similarity between the positive pair
and minimize that between negative pairs, as defined in Eq.
(1).

LCL = −
2N∑
i=1

log
exp(sim(zit, z

i+

t )/τCL)∑2N
m=1 1[m6=i]exp(sim(zit, z

m
t )/τCL)

(1)

where, sim(u, v) = uT v
||u||||v|| represents the dot product be-

tween l2 normalized u and v (i.e., cosine smilarity). 1[m 6=i] ∈
{0, 1} is an indicator function, equal to 1 iff [m 6= i] and
τCL is a temperature parameter of LCL. In this paper, we set
τCL = 1.0 (more details are found in Section IV-C).
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TABLE I
DETAILS OF THE 36 UCR2018 DATASETS SELECTED. NOTE: THE LAST COLUMN REPRESENTS THE NUMBER OF PARAMETERS OF DCRLS ON SPECIFIC

DATASETS.

No. Dataset Train Test Class SeriesLength Type Parameter
(M)

1 Arrow 36 175 3 251 Image 2.564104
2 Beef 30 30 5 470 Spectro 2.678507
3 BeetFly 20 20 2 512 Image 2.696969
4 BirdChicken 20 20 2 512 Image 2.696969
5 Car 60 60 4 577 Sensor 2.732370
6 ChlorineConcentration 467 3840 3 166 Sensor 2.520499
7 Coffee 28 28 2 286 Spectro 2.581031
8 DiatomSizeReduction 16 306 4 345 Image 2.613354
9 DistalPhalanxOutlineAgeGroup 400 139 3 80 Image 2.476381

10 DistalPhalanxOutlineCorrect 600 276 2 80 Image 2.475353
11 ECG200 100 100 2 96 ECG 2.483561
12 ECGFIveDays 23 861 2 136 ECG 2.504081
13 GunPoint 50 150 2 150 Motion 2.511263
14 Ham 109 105 2 431 Spectro 2.655416
15 Herring 64 64 2 512 Image 2.696969
16 Lighting2 60 61 2 637 Sensor 2.761094
17 Meat 60 60 3 448 Spectro 2.665165
18 MiddlePhalanxOutlineAgeGroup 400 154 3 80 Image 2.476381
19 MiddlePhalanxOutlineCorrect 600 291 2 80 Image 2.475353
20 MiddlePhalanxTW 399 154 6 80 Image 2.479465
21 MoteStrain 20 1252 2 84 Sensor 2.477405
22 OSULeaf 200 242 6 427 Image 2.657476
23 Plane 105 105 7 144 Sensor 2.513325
24 ProximalPhalanxOutlineAgeGroup 400 205 3 80 Image 2.476381
25 ProximalPhalanxTW 400 205 6 80 Image 2.479465
26 SonyAIBORobotSurface1 20 601 2 70 Sensor 2.470223
27 SonyAIBORobotSurface2 27 953 2 65 Sensor 2.467658
28 SwedishLeaf 500 625 15 128 Image 2.513341
29 Symbols 25 995 6 398 Image 2.642599
30 ToeSegmentation1 40 228 2 277 Motion 2.576414
31 ToeSegmentation2 36 130 2 343 Motion 2.610272
32 TwoPatterns 1000 4000 4 128 Simulated 2.502033
33 TwoLeadECG 23 1139 2 82 ECG 2.476379
34 Wafer 1000 6164 2 152 Sensor 2.596467
35 Wine 57 54 2 234 Spectro 2.554355
36 WordSyonyms 267 638 25 270 Image 2.596467

The loss function of DeepCL, LDCL, is defined in Eq. (2):

LDCL = LResblk1CL + LResblk2CL + LResblk3CL + LoutputCL (2)

where, LResblk1CL , LResblk2CL , LResblk3CL and LoutputCL are the
contrasting loss functions of Residual Block 1, Residual Block
2, Residual Block 3, and the output of ResNet, respectively.

D. Self Distillation

Self-distillation, a special teacher-student model, transfers
its knowledge from high-level to low-level blocks [34]. Let
V1, V2, V3 represent the output feature vectors of the first,
second and third residual block, respectively. To match each
vector with ResNet’s soft label (i.e., output feature vector), q, a
temporal classifier, ψ, is employed. This classifier comprises
an average pooling layer and a dense (i.e., fully-connected)
layer. After passing through the classifier, Vi’s output is
represented as qi, which is defined in Eq. (3).

qi = fsoftmax(ψ(Vi)/τSD) i ∈ {1, 2, 3} (3)

where, the activation function fsoftmax is used to compute the
probability distribution of a given matrix, and the temperature
parameter τSD is used for self-distillation. As the previous
work suggested [34], [71], we set τSD = 1.0.

The L2 loss function is utilized to quantify the disparity
between qi and q and is expressed as follows:

LiKD = ||qi − q||2 i ∈ {1, 2, 3} (4)

The self-distillation loss for DCRLS, LKD, is the summa-
tion of LiKD, shown in Eq. (5)

LKD =

3∑
i=1

LiKD (5)

Based on LKD and LDCL, the loss function of DCRLS, L,
is written in Eq. (6).

L = LKD + LDCL + ε||θ||2 (6)

where, θ stands for the parameters of DCRLS, and ε the
coefficient of ||θ||2 (i.e., L2 regularization). Following [12],
[13], we set ε = 0.0005.
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E. DCRLS-based Classification

To reflect the effectiveness of the instance-level features
extracted by DCRLS for classification tasks, this paper adds
a classifier behind the first dense (i.e., fully-connected) layer
in ResNet. Like most existing time series classification algo-
rithms [29], [30], [31], [72], DCRLS-based classification uses
a two-step method. Firstly, unsupervised learning is applied
to extract informative features from the data. Subsequently,
these features are supplied to the classifier for classification.
Following the previous work in [72], we embed a one-nearest-
neighbor (1-NN) classifier into the DCRLS-based classifica-
tion framework.

F. DCRLS-based Clustering

To handle clustering tasks, this paper adds a k-means
algorithm behind the first dense layer in ResNet. The
DCRLS-based clustering extracts rich representations from
data through unsupervised learning and then sends them to
the k-means algorithm for clustering. Unlike some previous
approaches that include the k-means loss in the overall loss
function [66], [68], [73], the DCRLS-based clustering method
solely relies on the loss function of DCRLS for parameter
updating.

IV. EXPERIMENTS AND ANALYSIS

This section first introduces the experimental setup and
performance metrics. Then, it focuses on the hyper-parameter
sensitivity and ablation study. Finally, the performance of
DCRLS-based classification and clustering is evaluated.

A. Experimental Setup

1) Data Description: In accordance with [66], [68], we
evaluate the efficacy of DCRLS-based classification and clus-
tering on 36 commonly used datasets from the UCR2018
archive [74]. The number of categories varies from 2 to 25,
and the length of the time series varies from 65 to 637,
encompassing various domains such as ECG and motion. For
additional information, please refer to Table I.

2) Implementation Details: To prevent overfitting during
training, we apply L2 regularization and dropout techniques.
Additionally, we set the decay value of batch normalization
to 0.9 to ensure the stability of the training process, following
the approach in [11], [13]. Meanwhile, we adopt the Adam
optimizer, where the momentum term is fixed to 0.9 and the
learning rate is initialized with 0.001 and tuned with a decay
value of 0.9. All experiments are run on a computer with
Ubuntu 18.04 OS, an Nvidia GTX 1070Ti GPU with 8GB,
an Nvidia GTX 1080Ti GPU with 11GB, and an AMD R5
1400 CPU with 16G RAM.

B. Performance Metrics

To compare the performance of various algorithms for time
series classification and clustering, we adopt a number of well-
known performance metrics.

1) Metrics for Classification: Based on the top-1 accu-
racy, three metrics, namely, ‘win’/‘tie’/‘lose’, mean accuracy
(MeanACC), and AVG rank, are used to rank different super-
vised algorithms. To be specific, for an arbitrary algorithm, it
is associated with ‘win’, ‘tie’, and ‘lose’ values, revealing on
how many datasets it is better than, equivalent to, and worse
than the other algorithms, respectively. Its ‘best’ value is the
summation of the corresponding ‘win’ and ‘tie’ values. As the
previous work [11], [12], [13], [44], [52], [53], [56], we use the
AVG rank score based on the Wilcoxon signed-rank test with
Holm’s alpha (5%) correction to ranking various classification
algorithms.

2) Metrics for Clustering: We use a commonly adopted
performance indicator, rand index (RI) [66], [68], as defined
in Eq. (7).

RI =
PTP +NTP

S(S − 1)/2
(7)

where, PTP and NTP represent the numbers of positive and
negative time series pairs in the clustering, respectively, and S
is the dataset size. Note that AVG RI is the average RI value
of a certain algorithm.

C. Hyper-parameter Sensitivity
We use the 36 UCR2018 datasets above to study the impact

of hyper-parameter settings on DCRLS.

TABLE II
MEANACC RESULTS WITH DIFFERENT PARAMETER SETTINGS ON 36

DATASETS. ABBREVIATIONS: L1–L1 LOSS, HL–HUGE LOSS, CE–CROSS
ENTROPY, KL–KULLBACK LEIBLER, L2–L2 LOSS, WITHOUT–DCRLS

WITHOUT SELF DISTILLATION.

τCL
DCRLS-based Classification

L1 L2 KL CE HL Without
0.1 0.7349 0.7392 0.7302 0.7293 0.7345 0.6903
0.2 0.7395 0.7435 0.7349 0.7259 0.7299 0.7045
0.5 0.7418 0.7468 0.7378 0.7349 0.7302 0.7064
0.75 0.7298 0.734 0.7197 0.7201 0.7209 0.6934

1 0.7507 0.7565 0.7493 0.7487 0.7435 0.7139

TABLE III
AVG RI RESULTS WITH DIFFERENT PARAMETER SETTINGS ON 36

DATASETS.

τCL
DCRLS-based Clustering

L1 L2 KL CE HL Without
0.1 0.6799 0.6794 0.6714 0.6543 0.6602 0.6426
0.2 0.6732 0.6903 0.6769 0.659 0.6698 0.6531
0.5 0.6801 0.6895 0.6769 0.6794 0.6743 0.6539
0.75 0.6689 0.6805 0.6786 0.669 0.6604 0.6492

1 0.6879 0.6947 0.6829 0.6809 0.6749 0.6695

1) Effectiveness of τCL: τCL is a threshold value for
DCRLS to distinguish the similarity of different views from
the same sample. Tables II and III show the MeanACC
results obtained by DCRLS-based classification and AVG RI
results obtained by DCRLS-based clustering with different
τCL values, respectively. When τCL = 1, the DCRLS-based
classification and clustering result in 0.7565 and 0.6947, the
highest MeanACC score and highest AVG RI value, respec-
tively. It means τCL = 1 is suitable for DCRLS to capture
representations from the input.
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TABLE IV
MEANACC AND AVG RI RESULTS OBTAINED BY VARIOUS DEEPCL-BASED VARIANTS FOR CLASSIFICATION AND CLUSTERING VARIANTS ON 36

DATASETS.

Method ContrBlock1 ContrBlock2 ContrBlock3 ContrOutput Classification
(MeanACC)

Clustering
(AVG RI)

Baseline X 0.6674 0.6327
Baseline-ContrBolck1 X X 0.6699 0.6332
Baseline-ContrBolck2 X X 0.6882 0.6401
Baseline-ContrBolck3 X X 0.6793 0.6379

Baseline-ContrBolck1-ContrBolck2 X X X 0.6902 0.6469
Baseline-ContrBolck1-ContrBolck3 X X X 0.6935 0.6501
Baseline-ContrBolck2-ContrBolck3 X X X 0.7001 0.6602

DeepCL X X X X 0.7139 0.6695

TABLE V
MEANACC AND AVG RI RESULTS OBTAINED BY DEEPCL WITH VARIOUS SELF DISTILLATION TECHNIQUES FOR CLASSIFICATION AND CLUSTERING ON

36 DATASETS.

Method BYOT SAD TSD Self Distillation
(Ours)

Classification
(MeanACC)

Clustering
(AVG RI)with KL with L2

DeepCL 0.7139 0.6695
DeepCL-BYOT X 0.7493 0.6829
DeepCL-SAD X 0.7398 0.6793

DeepCL-TSD with KL X 0.7402 0.6756
DeepCL-TSD with L2 X 0.7507 0.6889

DCRLS X 0.7565 0.6947

2) Effectiveness of KD loss: A teacher-student model needs
to choose an appropriate KD loss to measure the difference
between high- and low-level features. Tables II and III also
show the impact of KD loss on DCRLS. One can observe that
self distillation improves the performance of DCRLS mainly
because supervising low-level semantics with high-level ones
helps regularize the model itself. Besides, L2 outperforms the
other losses in both classification and clustering. Therefore, we
choose L2 to promote the knowledge flow within the model.

D. Ablation Study

We investigate the effectiveness of two important compo-
nents of DCRLS on 36 datasets.

1) Effectiveness of Deep Contrastive Learning (DeepCL):
As aforementioned, our DeepCL has four parts involving CL,
i.e. Residual Blocks 1, 2, and 3, and the output of ResNet,
i.e., the whole model, as shown in Fig. 1. Let ContrBlock1,
ContrBlock2, ContrBlock3, and ContrOutput denote the con-
trastive learning at the outputs of Residual Blocks 1, 2, 3, and
ResNet, respectively.

To evaluate the impact of low-level semantic information
on extraction of high-level semantic information, we compare
a number of DeepCL-based variants for classification and
clustering variants on 36 datasets.

• Baseline: it uses the proposed ResNet structure (i.e. the
whole model) for feature extraction and enables CL at
the outputs of ResNet.

• Baseline-ContrBlock1: Baseline with extra CL enabled at
the outputs of Residual Block 1.

• Baseline-ContrBlock2: Baseline with extra CL enabled at
the outputs of Residual Block 2.

• Baseline-ContrBlock3: Baseline with extra CL enabled at
the outputs of Residual Block 3.

• Baseline-ContrBlock1-ContrBlock2: Baseline with extra
CL enabled at the outputs of Residual Blocks 1 and 2.

• Baseline-ContrBlock1-ContrBlock3: Baseline with extra
CL enabled at the outputs of Residual Blocks 1 and 3.

• Baseline-ContrBlock2-ContrBlock3: Baseline with extra
CL enabled at the outputs of Residual Blocks 2 and 3.

• DeepCL: Baseline with extra CL enabled at the outputs
of Residual Blocks 1, 2 and 3.

As shown in Table IV, with continuous addition of CL on
low-level outputs, the accuracy values of classification and
clustering are both increasing. For example, the MeanACC
value of Baseline is 0.6674 while that of the Baseline-
ContrBolck2 is 0.6882. This, to a certain extend, reflects the
importance of low level semantic information to representation
learning. DeepCL understands the contrast similarity of high-
level semantic information and that of low-level semantic
information between peer Residual Blocks, enhancing the
ability of representation learning on DCRLS. This is why
DeepCL achieves the best performance among all compared
variants.

2) Effectiveness of Self Distillation: To evaluate the pro-
posed self distillation method, we select four advanced self-
distillation methods for performance comparison, including
BYOT, SAD, TSD with KL, and TSD with L2. These self
distillation methods are listed below.

• BYOT: the best your own teacher method with the Kull-
back Leibler (KL) function used to measure the difference
between high- and low-level feature vectors [34].

• SAD: the layer-wise attention self-distillation method
transferring knowledge from high levels to low levels
[75].

• TSD with KL: the transitive self-distillation method with
the Kullback Leibler (KL) function as its loss function
[76].
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• TSD with L2: the transitive self-distillation method with
the L2 function as its loss function [76].

• Self Distillation (Ours): using the L2 function to mea-
sure the difference between high- and low-level feature
vectors.

As shown in Fig. 1, DCRLS consists of DeepCL and the pro-
posed self distillation. To validate the impact of self distillation
on DCRLS, we compare it with a number of DeepCL variants
listed below.
• DeepCL-BYOL: DeepCL with the best your own teacher

method.
• DeepCL-SAD: DeepCL with the layer-wise attention self-

distillation method.
• DeepCL-TSD with KL: DeepCL with the transitive self-

distillation method, where the KL function is adopted.
• DeepCL-TSD with L2: DeepCL with the transitive self-

distillation method, where the L2 function is used.
• DCRLS: DeepCL with the proposed self distillation

method.
The MeanACC and AVG RI results obtained by DeepCL

with various self distillation techniques for classification and
clustering on 36 datasets are shown in V. Clearly, DeepCL
results in the worst performance on both classification and
clustering. This is because self distillation can effectively
promotes knowledge flow within the model, enhancing its
robustness. In addition, DCRLS outperforms DeepCL-BYOT,
DeepCL-SAD, DeepCL-TSD with KL, and DeepCL-TSD
with L2 with respect to MeanACC and AVG RI, which means
the proposed self distillation achieves better performance than
a number of well-known methods when working with DeepCL
on time series classification and clustering tasks.

E. Evaluation of DCRLS-based Classification

To evaluate the performance of DCRLS-based classification,
we compare it with a number of existing CL-based classi-
fication algorithms against ‘win’/‘lose’/‘tie’, MeanACC, and
AVG rank, as listed below.
• T-Loss: a method based on random sub-series technique

ResNet as its feature extractor [72].
• SimCLR: a modified version of SimCLR adapted to time

series classification with ResNet as its feature extractor
[18].

• CRL with KL: a contrastive representation leaning
method with the Kullback Leibler (KL) function as its
self-distillation loss function and ResNet as its feature
extractor [20].

• CRL with L2: a contrastive representation leaning method
with the L2 function as its self-distillation loss function
and ResNet as its feature extractor [20].

• KNCRL with KL: a KD-based contrastive leaning method
with the KL function as its KD loss function and ResNet
as its feature extractor [21].

• KNCRL with L2: a KD-based contrastive representation
leaning method with the L2 function as its KD loss
function and ResNet as its feature extractor [21].

Note that the algorithms above all take 1-NN as their classifier
for classification. The top-1 accuracy results obtained with

different algorithms on 36 selected UCR2018 datasets are
shown in Table VI. The DCRLS-based classification is the best
among all algorithms as it obtains the highest MeanACC and
‘best’ values, 28 and 0.7565, and the smallest AVG rank score,
1.7639. Rather than focusing on the contrastive similarity of
high-level semantic information only, DCRLS-based classifi-
cation considers the contrast similarity of multi-level semantic
information, especially that of low-level semantic information
between peer Residual Blocks, which is beneficial for mining
instance-level features between different perspectives from the
same sample. KNCRL with L2 takes advantage of CL and
KD to distinguish the similarity of different views from the
same sample and the similarity with the views from different
samples. That brings it second in terms of MeanACC and
AVG rank, namely 0.7009 and 3.7361. On the contrary, it
is difficult for T-Loss to generate proper random sub-series
as positive samples when mining discriminate shapelets from
the input, resulting in its performing the worst among all the
algorithms.

Fig. 3. Accuracy plot showing the performance difference between DCRLS-
based classification and 1-NN.

To further study the performance of DCRLS on classifi-
cation, we compare it with a separate 1-NN algorithm on
36 datasets. Fig. 3 depicts the accuracy plot of DCRLS-
based classification against 1-NN for each dataset. The results
indicate that DCRLS-based classification outperforms 1-NN
in 30 cases, ties in one case, and underperforms in five cases,
with a p-value less than 0.5 (about 0.0034). The performance
of DCRLS-based classification outstrips significantly that of
1-NN. That is because the instance-level features extracted
by DCRLS are more conducive for the 1-NN classifier to
distinguish the similarity between different samples.

F. Evaluation of DCRLS-based Clustering

To evaluate the performance of DCRLS-based clustering,
we compare it with a number of existing clustering algorithms
against three performance metrics: ‘win’/‘tie’/‘lose’, AVG RI,
and AVG rank. These algorithms are listed blow:
• K-means: a simple yet elegant approach that partitions a

dataset into K distinct, non-overlapping clusters [68].
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TABLE VI
THE TOP-1 ACCURACY RESULTS OF DIFFERENT CLASSIFICATION ALGORITHMS ON 36 DATASETS WHEN USING 1-NN.

Dataset T-Loss SimCLR CRL KNCRL DCRLS-based Classificationwith KL with L2 with KL with L2

Arrow 0.4457 0.5714 0.5485 0.5429 0.5142 0.5086 0.5714
Beef 0.4333 0.7 0.7333 0.7 0.7 0.7333 0.8667

BeetFly 0.8 0.8 0.85 0.85 0.9 0.9 0.9
BirdChicken 0.8 0.95 0.85 0.95 0.9 0.85 0.9

Car 0.333 0.55 0.517 0.55 0.517 0.517 0.5333
ChlorineConcentration 0.5333 0.462 0.5183 0.4589 0.451 0.4531 0.4786

Coffee 1 1 1 1 1 1 1
DiatomSizeReduction 0.3529 0.4935 0.3987 0.5817 0.585 0.6732 0.7255

DistalPhalanxOutlineAgeGroup 0.518 0.6403 0.7051 0.7338 0.6547 0.5827 0.6547
DistalPhalanxOutlineCorrect 0.6123 0.6592 0.6232 0.6703 0.6703 0.6667 0.6992

ECG200 0.81 0.86 0.89 0.88 0.86 0.89 0.9
ECGFIveDays 0.5807 0.6702 0.7405 0.7329 0.698 0.6783 0.7468

GunPoint 0.6533 0.8067 0.8133 0.8133 0.8133 0.8333 0.8667
Ham 0.6857 0.6667 0.6667 0.6667 0.6762 0.6476 0.7333

Herring 0.6875 0.7188 0.7188 0.7031 0.75 0.7188 0.75
Lighting2 0.6721 0.8197 0.7705 0.7705 0.8033 0.7869 0.7869

Meat 0.5 0.5667 0.5833 0.55 0.55 0.7 0.8667
MiddlePhalanxOutlineAgeGroup 0.5714 0.4805 0.4674 0.4416 0.4416 0.4751 0.5195

MiddlePhalanxOutlineCorrect 0.6186 0.6014 0.6186 0.6254 0.5842 0.5979 0.6186
MiddlePhalanxTW 0.2922 0.5519 0.5029 0.5714 0.5584 0.5519 0.5779

MoteStrain 0.5719 0.6414 0.6302 0.5686 0.6022 0.6246 0.7651
OSULeaf 0.2355 0.2934 0.5992 0.6033 0.5992 0.6033 0.7652

Plane 0.8952 0.9333 0.9905 0.8952 0.9619 0.9714 0.9238
ProximalPhalanxOutlineAgeGroup 0.5073 0.5659 0.5415 0.5415 0.5415 0.8341 0.8585

ProximalPhalanxTW 0.361 0.8049 0.4592 0.6245 0.7561 0.6732 0.7512
SonyAIBORobotSurface1 0.5524 0.7521 0.7121 0.7504 0.777 0.7438 0.8153
SonyAIBORobotSurface2 0.6254 0.6737 0.6726 0.7009 0.6789 0.703 0.7765

SwedishLeaf 0.5 0.6048 0.5872 0.616 0.5376 0.616 0.6512
Symbols 0.2111 0.6462 0.7598 0.6834 0.6915 0.7327 0.8271

ToeSegmentation1 0.6095 0.6053 0.6623 0.6667 0.7237 0.6053 0.8289
ToeSegmentation2 0.6562 0.6846 0.6923 0.8231 0.6538 0.8538 0.9385

TwoPatterns 0.8773 0.8215 0.82 0.82 0.83 0.85 0.8825
TwoLeadECG 0.5637 0.6137 0.7305 0.6049 0.6383 0.6883 0.6848

Wafer 0.8874 0.932 0.9199 0.9281 0.9156 0.914 0.9416
Wine 0.7037 0.7222 0.7407 0.7222 0.7407 0.7593 0.7963

WordSyonyms 0.1317 0.163 0.2147 0.1881 0.2947 0.2947 0.3328
Win 1 2 3 0 0 0 23
Tie 2 3 2 3 2 2 5

Lose 33 31 31 33 34 34 8
Best 3 5 5 3 2 2 28

MeanACC 0.5775 0.6674 0.6735 0.6814 0.6825 0.7009 0.7565
AVG rank 6.0557 4.2222 4.05556 4.1111 4.0556 3.7361 1.7639

• UDFS: a combination of discriminative analysis and l2,1-
norm minimization for unsupervised feature selection
[58].

• NDFS: an unsupervised feature selection algorithm using
non-negative spectral analysis [59].

• RUFS: a robust unsupervised feature selection algorithm
using local learning regularized robust nonnegative matrix
factorization [60].

• RSFS: a robust local learning method for graph Laplacian
and spectral regression construction [61].

• KSC: a K-spectral centroid clustering algorithm to mine
patterns of temporal variation [62].

• KBDB: a dynamic time warping-based barycenter aver-
aging method [63].

• K-shape: a domain-independent, highly accurate, and
efficient clustering approach for partitional, hierarchical,
and spectral clustering [64].

• U-shapelet: a shapelet method for time series clustering

[64].
• DTC: a deep temporal clustering algorithm that integrates

dimensionality reduction and temporal clustering into
end-to-end learning [66].

• DEC: an unsupervised deep embedding algorithm for
clustering analysis that learns feature representations and
clustering assignments using deep neural network [67].

• IDEC: an improved version of DEC [67].
• DTCR: a deep temporal clustering representation al-

gorithm integrating the temporal reconstruction and K-
means objective into the seq2seq model [68].

Table VII shows the RI results of different clustering algo-
rithms on 36 datasets. DTCR and DCRLS-based clustering
are the best and second-best among all compared algorithms.
DTCR integrates the temporal reconstruction and K-means
into the seq2seq model, jointly optimizing its parameters
for cluster structure improvement and temporal representation
mining. However, DTCR is mainly used for addressing cluster-
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TABLE VII
THE RI RESULTS OF DIFFERENT CLUSTERING ALGORITHMS ON 36 DATASETS.

Dataset K-means UDFS NDFS RUFS RSFS KSC KDBA K-shape U-shapelet DTC DEC IDEC DTCR DCRLS-based Clustering
Arrow 0.6095 0.7254 0.7381 0.7476 0.7108 0.7254 0.7222 0.7254 0.646 0.6692 0.5817 0.621 0.6868 0.6229
Beef 0.6713 0.6759 0.7034 0.7149 0.6975 0.7057 0.6713 0.5402 0.6966 0.6345 0.5954 0.6276 0.8046 0.8115

BeetFly 0.4789 0.4949 0.5579 0.6053 0.6516 0.6053 0.6052 0.6053 0.7314 0.5211 0.4947 0.6053 0.9 0.6632
BirdChicken 0.4947 0.4947 0.7361 0.5579 0.6632 0.7316 0.6053 0.6632 0.5579 0.4947 0.4737 0.4789 0.8105 0.7316

Car 0.6345 0.6757 0.626 0.6667 0.6708 0.6898 0.6254 0.7028 0.6418 0.6695 0.6859 0.687 0.7501 0.7011
ChlorineConcentration 0.5241 0.5282 0.5225 0.533 0.5316 0.5256 0.53 0.4111 0.5318 0.5353 0.5348 0.535 0.5357 0.5386

Coffee 0.746 0.8624 1 0.5467 1 1 0.4851 1 1 0.4841 0.4921 0.5767 0.9286 0.746
DiatomSizeReduction 0.9583 0.9583 0.9583 0.9333 0.9137 1 0.9583 1 0.7083 0.8792 0.9294 0.7347 0.9682 0.7042

DistalPhalanxOutlineAgeGroup 0.6171 0.6531 0.6239 0.6252 0.6539 0.6535 0.675 0.602 0.6273 0.7812 0.7785 0.7786 0.7825 0.6197
DistalPhalanxOutlineCorrect 0.5252 0.5362 0.5362 0.5252 0.5327 0.5235 0.5203 0.5252 0.5098 0.501 0.5029 0.533 0.6075 0.5694

ECG200 0.6315 0.6533 0.6315 0.7018 0.6916 0.6315 0.6018 0.7018 0.5758 0.6018 0.6422 0.6233 0.6648 0.7018
ECGFIveDays 0.4783 0.502 0.5573 0.502 0.5953 0.5257 0.5573 0.502 0.5968 0.5016 0.5103 0.5114 0.9638 0.6467

GunPoint 0.4971 0.5029 0.5102 0.6498 0.4994 0.4971 0.542 0.6278 0.6278 0.54 0.4981 0.4974 0.6398 0.6779
Ham 0.5025 0.5219 0.5362 0.5107 0.5127 0.5362 0.5141 0.5311 0.5362 0.5648 0.5963 0.4956 0.5362 0.5451

Herring 0.4965 0.5099 0.5164 0.5238 0.5151 0.494 0.5164 0.4965 0.5417 0.5045 0.5099 0.5099 0.579 0.5322
Lighting2 0.4966 0.5119 0.5373 0.5729 0.5269 0.6263 0.5119 0.6548 0.5192 0.577 0.5311 0.5519 0.5913 0.623

Meat 0.6595 0.6483 0.6635 0.6578 0.6657 0.6723 0.6816 0.6575 0.6742 0.322 0.6475 0.622 0.9763 0.7633
MiddlePhalanxOutlineAgeGroup 0.5351 0.5269 0.535 0.5315 0.5473 0.5364 0.5513 0.5105 0.5396 0.5757 0.7059 0.68 0.7982 0.5751

MiddlePhalanxOutlineCorrect 0.5 0.5431 0.5047 0.5114 0.5149 0.5014 0.5563 0.5114 0.5218 0.5272 0.5423 0.5423 0.5617 0.5248
MiddlePhalanxTW 0.0983 0.1225 0.1919 0.792 0.8062 0.8187 0.8046 0.6213 0.792 0.7115 0.859 0.8626 0.8638 0.815

MoteStrain 0.4947 0.5579 0.6053 0.5579 0.6168 0.6632 0.4789 0.6053 0.4789 0.5062 0.7435 0.7342 0.7686 0.6337
OSULeaf 0.5615 0.5372 0.5622 0.5497 0.5665 0.5714 0.5541 0.5538 0.5525 0.7329 0.7484 0.7607 0.7739 0.7652

Plane 0.9081 0.8949 0.8954 0.922 0.9314 0.9603 0.9225 0.9901 1 0.904 0.9447 0.9447 0.9549 0.9509
ProximalPhalanxOutlineAgeGroup 0.5288 0.4997 0.5463 0.578 0.5384 0.5305 0.5192 0.5617 0.5206 0.743 0.4263 0.8091 0.8091 0.5603

ProximalPhalanxTW 0.4789 0.4947 0.6053 0.5579 0.5211 0.6053 0.5211 0.5211 0.4789 0.838 0.8189 0.903 0.9023 0.8493
SonyAIBORobotSurface1 0.7721 0.7695 0.7721 0.7787 0.7928 0.7726 0.7988 0.8084 0.7639 0.5563 0.5732 0.69 0.8769 0.7311
SonyAIBORobotSurface2 0.8697 0.8745 0.8865 0.8756 0.8948 0.9039 0.8684 0.5617 0.877 0.7012 0.6514 0.6572 0.8354 0.683

SwedishLeaf 0.4987 0.4923 0.55 0.5192 0.5038 0.4923 0.55 0.5533 0.6154 0.8871 0.8837 0.8893 0.9223 0.9243
Symbols 0.881 0.8548 0.8562 0.8525 0.906 0.8982 0.9774 0.8373 0.9603 0.9053 0.8841 0.8857 0.9168 0.8912

ToeSegmentation1 0.4873 0.4921 0.5873 0.5429 0.4968 0.5 0.6143 0.6143 0.5873 0.5077 0.4984 0.5017 0.5659 0.6926
ToeSegmentation2 0.5257 0.5257 0.5968 0.5968 0.5826 0.5257 0.5573 0.5257 0.502 0.5348 0.4991 0.4991 0.8286 0.8569

TwoPatterns 0.8529 0.8259 0.853 0.8385 0.8588 0.8585 0.8446 0.8046 0.7757 0.6251 0.6293 0.6338 0.6984 0.693
TwoLeadECG 0.5476 0.5495 0.6328 0.8246 0.5635 0.5464 0.5476 0.8246 0.5404 0.5116 0.5007 0.5016 0.7114 0.5279

Wafer 0.4925 0.4925 0.5263 0.5263 0.4925 0.4925 0.4925 0.4925 0.4925 0.5324 0.5679 0.5597 0.7338 0.8076
Wine 0.4984 0.4987 0.5123 0.5021 0.5033 0.5006 0.5064 0.5001 0.5033 0.4906 0.4913 0.5157 0.6271 0.5353

WordSyonyms 0.8775 0.8697 0.876 0.8861 0.8817 0.8727 0.8159 0.7844 0.823 0.8855 0.8893 0.8947 0.8984 0.8902
Win 0 0 0 1 1 1 1 1 0 0 1 1 16 7
Lose 0 0 1 1 1 2 0 3 2 0 0 1 1 1
Tie 36 36 35 34 34 33 35 32 34 36 35 34 19 28
Best 0 0 1 2 2 3 1 4 2 0 1 2 17 8

AVG RI 0.5957 0.6077 0.6403 0.6477 0.6542 0.6582 0.6335 0.6419 0.6402 0.6238 0.6351 0.6515 0.7714 0.6974
AVG rank 10.7361 9.5556 7.1667 7.3333 6.8056 7 7.8889 7.9444 8.0278 8.7083 8.7083 7.5694 2.75 4.806

specific problems and it has complicated model structure. On
the other hand, DCRLS-based clustering updates the model’s
parameters via self-supervised learning and it adopts a K-
means algorithm for feature classification. Despite its simple
structure, DCRLS-based clustering achieves decent perfor-
mance on the 36 datasets, thanks to the DCRLS’s strong ability
for feature extraction.

To further study the effectiveness of DCRLS in time se-
ries clustering, we compare DCRLS-based clustering with a
separate K-means algorithm on 36 datasets. Fig. 4 depicts
the RI plot of DCRLS-based clustering against K-means for
each dataset. The results show that DCRLS-based clustering
achieves ‘win’/‘tie’/ ‘loss’ in 30/1/5 cases, respectively, with
a p-value less than 0.5 (about 0.0048). The performance of
DCRLS-based clustering is significantly better than that of
K-means. That is because the DCRLS-based clustering is pro-
vided with sufficient features captured by DCRLS, especially
those hiding deeply in the input data.

V. CONCLUSION

In the proposed DCRLS, deep contrastive learning pays
attention to the contrast similarity of multi-level semantic

Fig. 4. RI plot showing the performance difference between DCRLS-based
clustering and K-means.

information to mine instance-level features between different
perspectives from the same sample, while self distillation
transfers knowledge from high-level to low-level blocks to
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regularize DCRLS during knowledge transfer. Experimental
results demonstrate that DCRLS obtains promising results in
both classification and clustering tasks. Specifically, DCRLS-
based classification wins on 28 datasets in terms of mean
accuracy, ‘win’/‘tie’/‘lose’ measure, and AVG rank, compared
with six classification algorithms. DCRLS-based clustering
wins on 8 datasets and takes the second best position among
14 clustering algorithms regarding AVG RI, ‘win’/‘tie’/‘lose’
measure, and AVG rank. on With 36 UCR2018 datasets
considered, DCRLS-based classification and clustering result
in significant performance improvement when compared with
separate 1-NN and K-mean algorithms, respectively. Mean-
while, DCRLS is generic and has potential to be applied to
other domains.

Due to the limited GPU resources for training, this work
considered 36 out of 128 UCR2018 datasets for model evalu-
ation and comparison. In the future, we will validate DCRLS
on all UCR2018 datasets in the time series domain and on
larger datasets in other domains, such as ImageNet.
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