JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

Deep Reinforcement Learning Assisted Genetic
Programming Ensemble Hyper-Heuristics for
Dynamic Scheduling of Container Port Trucks

Xinan Chen"™ , Student Member, IEEE, Ruibin Bai

IEEE, Jing Dong

Abstract—Efficient truck dispatching is crucial for optimizing
container terminal operations within dynamic and complex
scenarios. Despite good progress being made recently with more
advanced uncertainty-handling techniques, existing approaches
still have generalization issues and require considerable expertise
and manual interventions in algorithm design. In this work, we
present deep reinforcement learning-assisted genetic program-
ming hyper-heuristics (DRL-GPHH) and their ensemble vari-
ant (DRL-GPEHH). These frameworks utilize a reinforcement
learning agent to orchestrate a set of auto-generated genetic
programming (GP) low-level heuristics, leveraging the collective
intelligence, ensuring advanced robustness and an increased level
of automation of the algorithm development. DRL-GPEHH, no-
tably, excels through its concurrent integration of a GP heuristic
ensemble, achieving enhanced adaptability and performance in
complex, dynamic optimization tasks. This method effectively
navigates traditional convergence issues of deep reinforcement
learning (DRL) in sparse reward and vast action spaces, while
avoiding the reliance on expert-designed heuristics. It also ad-
dresses the inadequate performance of the single GP individual
in varying and complex environments and preserves the inherent
interpretability of the GP approach. Evaluations across various
real port operational instances highlight the adaptability and
efficacy of our frameworks. Essentially, innovations in DRL-
GPHH and DRL-GPEHH reveal the synergistic potential of
reinforcement learning and GP in dynamic truck dispatching,
yielding transformative impacts on algorithm design and signif-
icantly advancing solutions to complex real-world optimization
problems.

Index Terms—automatic truck dispatching, dynamic task
scheduling, genetic programming, reinforcement learning

I. INTRODUCTION

ARITIME container shipping constitutes a cornerstone
of global trade, handling over 90% of international
commerce. The rapid escalation of containerized trade—from

This work is supported by the National Natural Science Foundation of
China (Grant No.72071116) and Ningbo Municipal Bureau of Science and
Technology (Grant No. 2023Z237). (Corresponding author: Ruibin Bai.)

Xinan Chen is with the International Business School Suzhou,
Xi’an Jiaotong-Liverpool University, Suzhou, 215123, China (email: xi-
nanchen.pt@xjtlu.edu.cn).

Ruibin Bai is with the Digital Port Technologies Lab, School of Computer
Science, University of Nottingham Ningbo China, Ningbo 315100, China
(email: ruibin.bai@nottingham.edu.cn).

Rong Qu is with the School of Computer Science, University of Notting-
ham, Nottingham NG72RD, UK (email: rong.qu@nottingham.ac.uk).

Jing Dong is with the Department of Engineering, University of Cambridge,
Cambridge CB21TN, UK (email: jd704 @cam.ac.uk).

Yaochu Jin is with the School of Engineering, Westlake University,
Hangzhou 310030, China (email: jinyaochu@westlake.edu.cn).

, and Yaochu Jin

, Senior Member, IEEE, Rong Qu'¥' , Senior Member,

, Fellow, IEEE

102 million metric tons in 1980 to approximately 1.83 billion
metric tons in 2017—has compelled stakeholders to adopt
new strategies for efficiency [1]. One prevalent strategy has
been to augment the capacity of container ships, resulting
in a deadweight tonnage increase from 11 million metric
tons in 1980 to 275 million metric tons by 2020 [2]. While
such ships have bolstered container throughput, they have
also prolonged vessel turnaround times, thereby attenuating
port efficiency. Though ports can theoretically mitigate this
impact by expanding their infrastructure, deep-water berths
suitable for larger vessels remain scarce and highly strategic
resources [3]. Consequently, optimizing berth loading and
unloading processes has become a priority for maintaining port
efficiency.

Therefore, the Ningbo-Zhoushan Port company has par-
tially implemented and deployed a dynamic container truck
dispatching algorithm based on a manually devised heuristic
[4] to improve operational efficiency over the past few years.
Unfortunately, this traditional expert heuristic consumes a
significant amount of time and labor to build and adjust and
can still not cope with diverse scenarios. Thus, auto-generated
heuristics based on real-life data were proposed to adapt
to complex scenarios in real-world operating environments.
Genetic programming (GP) and reinforcement learning (RL)
are considered capable of automatically learning parameter
settings and dispatching methods for different scenarios based
on historical data, thus achieving better scenario adaptability.
However, it is disappointing to observe the poor performance
of these two algorithms when directly applied to the dynamic
container port truck dispatching problem [5].

Consequently, we pivoted to a hyper-heuristics framework,
distinguished by its enhanced robustness and generalization
capabilities [6]. Based on the proven efficacy of deep re-
inforcement learning-based hyper-heuristics (DRL-HH) [7]
and genetic programming hyper-heuristics (GPHH) [8] in
simplistic training environments, we aim to extrapolate this
effectiveness to unseen, more complex real-world testing en-
vironments. Considering the port’s need for interpretability
of dispatch methods, we introduced a framework that em-
ploys high-level heuristics to select explainable low-level GP
heuristics training in different environments. This approach
aggregates the intelligence of multiple GP heuristics, thereby
dramatically improving the performance of DRL-HH and
GPHH in complex real-world environments while eliminating

https://orcid.org/0000-0001-9620-3264
https://orcid.org/0000-0003-1722-568X
https://orcid.org/0000-0001-8318-7509
https://orcid.org/0000-0001-9184-2622
https://orcid.org/0000-0003-1100-0631

JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

the dependence on expert-designed heuristics.

In the realm of high-level heuristics in this framework,
both GP and RL emerge as strong contenders due to their
adaptability and data-driven capabilities. However, Chen et
al.’s experiments demonstrated that using GP as a high-level
heuristic to select low-level GP heuristics [9] yielded promis-
ing results in small, generated datasets but faltered with more
extensive, real-world datasets. To overcome this limitation,
we propose a reinforcement learning-assisted genetic pro-
gramming hyper-heuristic (DRL-GPHH). This new approach
incorporates a set of GP-generated low-level heuristics and
employs a reinforcement learning agent to act as the selector
among these heuristics for various scenarios. Comparative
evaluations indicate that DRL-GPHH outperforms its coun-
terparts in simulated real-world conditions.

Nonetheless, it is noteworthy that the performance enhance-
ment observed in DRL-GPHH was not remarkably superior to
the results achieved by the best GP individual. This is because
in DRL-GPHH, multiple GP evolved heuristics participate in
the process, but during each decision point, only one GP indi-
vidual is chosen to calculate the dispatching preference. Such
an approach wastes the knowledge embedded in other unse-
lected GP individuals, weakening the algorithm’s performance
and generalization capabilities. With this hypothesis, we pro-
pose a reinforcement learning-assisted genetic programming
ensemble hyper-heuristics (DRL-GPEHH) method, which uses
a reinforcement learning agent to assign different weights to
different GP individuals during each dispatch and subsequently
combines the results of all GP heuristics according to their
weights to produce the final dispatching solution.

DRL-GPEHH, with its innovative integration of auto-
evolved GP heuristics, demonstrates excellent proficiency in
complex dynamic optimization tasks, as evidenced in container
port truck dispatching. Its robust performance during both
training and testing underscores its versatility for diverse real-
world dynamic optimization scenarios. This method, distinct
from traditional DRL, DRL-HH, or GPHH, represents a sig-
nificant advancement in generative, automated optimization
techniques, offering promising solutions for various dynamic
scheduling challenges beyond container ports. The primary
contributions of this paper are as follows:

o We propose DRL-GPHH, an approach that employs DRL
to select GP-generated low-level heuristics. This approach
effectively increases the adaptability of the algorithm,
eliminating the dependence on expertly designed low-
level heuristics inherent in DRL-HH, resulting in a much
higher level of automation in algorithm design.

o We further propose a novel GP ensemble hyper-heuristics
framework DRL-GPEHH, which leverages the knowledge
of multiple auto-evolved GP heuristics simultaneously
during scheduling, leading to significantly improved per-
formance and robustness compared to DRL-HH and
DRL-GPHH.

o We design a multi-action proximal policy optimization
(PPO) agent with a novel reward to effectively adjust the
weights of several lower-level heuristics within an action,
promoting collaboration and performance improvement.

e We conduct comprehensive experiments and ablation
studies on benchmark instances, covering diverse scenar-
ios and terminal configurations, to fully test the perfor-
mance of DRL-GPEHH in comparison with its main vari-
ants, DRL-HH, DRL-GPHH, and a deep reinforcement
learning-assisted ensemble hyper-heuristics (DRL-EHH).
The results demonstrate the superiority of DRL-GPEHH
in the dynamic truck dispatching problem.

« We analyze the differences between manual heuristic and
GP-generated heuristic ensemble methods and explain
why a continuous weight adjustment is necessary for GP
ensembles to achieve higher performance, further high-
lighting the compatibility of DRL-GPEHH with GPHH
integration and establishing a novel approach for RL and
GP cooperation.

The rest of this paper is organized as follows. Section II
reviews related work and provides background information on
the maritime container terminal truck dispatching problem.
Section III introduces and formulates this dynamic truck
dispatching problem. The proposed DRL-GPHH and DRL-
GPEHH methods are delineated in Section IV. Section V
delineates the experimental outcomes and provides ablation
& sensitivity analysis of DRL-GPEHH. Finally, conclusions
are drawn in Section VL.

II. BACKGROUND

A. Dynamic truck dispatching in maritime container terminals

Fig. 1 illustrates a typical maritime container terminal with
four major parts: the ship berths, quay cranes (QCs), yard
blocks, and yard cranes (YCs). These components collabora-
tively transfer containers between the yard and the container
ships via trucks. The QCs and YCs, positioned at the ship berth
and the yard blocks, respectively, are primarily responsible
for container operations. Both QCs and YCs can move left
and right, enabling them to cover a wide range of operations,
while they cannot cross each other. Moreover, each QC and
YC can only operate containers on one truck at a time,
inevitably leading to potential queuing and waiting at the
operation nodes. The efficiency of the entire port operation is
consequently influenced by the careful orchestration of these
three key elements: the QCs, the YCs, and the trucks.

Research on YCs and QCs has demonstrated that optimizing
their workflow can improve port efficiency to a certain extent
[10]. However, numerous previous studies have overlooked
the impact of truck availability on the scheduling of QCs and
YCs. Inadequate truck support compromises the efficiency of
these cranes [11]. Consequently, optimizing container truck
dispatching has gained increasing attention as a critical issue
for enhancing port efficiency.

Various techniques have been explored to address the chal-
lenge of container truck dispatching, such as mixed integer
programming [12], min-max nonlinear integer programming
[13], greedy algorithms [14], and genetic algorithms [15].
Many of these studies have reported favorable outcomes re-
garding reduced ship dock time, decreased empty-truck travel
distance, or overall improvement in truck travel distance.

JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

=5 eo o | Ship
@5&1 Berth @] 1st Berth Berth
QC13 QC12 Q11 QC1 \\’
oo o ™ Quay
) Crane
(I &]
[o]
Yard
| [st | [| T o~ | |
| 52 | a2_] | B g L Crane
| 5] | [| T]
I — |] o o o 2 T
| 55] | [| T2]
— |1 %] | % T] Yard
[o]
: — - T | e ——T Block

Fig. 1. Sample Map of Maritime Container Terminal at Ningbo Meishan Port

These findings indicate that optimizing container truck dis-
patching not only enhances local equipment efficiency in the
berth or yard area but also benefits the overall efficiency of
the port.

In actual container port operations, the cranes’ operat-
ing time and container trucks’ transit time are subject to
uncertainty. This variability renders optimization solutions
generated by offline algorithms, such as matheuristics, meta-
heuristics, and integer programming, often infeasible in real-
world scenarios. Consequently, heuristic-based dynamic real-
time dispatching methods are commonly employed in actual
port operations [4]. Although heuristics do not guarantee
optimal solutions [16], they can rapidly generate high-quality
solutions. In dynamic dispatching systems, operators can also
participate in the dispatching solution adjusting based on their
experience. Due to their robustness, comprehensibility, and
rapid response, heuristic-based dynamic dispatching methods
are currently the preferred choice for real-life ports [17].

B. Hyper-heuristic

Hyper-heuristics are an innovative and burgeoning research
paradigm in the field of metaheuristic optimization, which
aims to advance the development of automated problem-
solving methodologies. This paradigm encompasses high-level
methodologies that intelligently select, combine, generate, or
adapt low-level heuristics to solve a diverse array of complex
combinatorial optimization problems [18]. By transcending
the reliance on problem-specific knowledge and fine-tuning,
hyper-heuristics boast enhanced generality and adaptability,
thereby fostering a more robust optimization process to cope
with larger scale optimization problems like job-shop schedul-
ing [19], educational timetabling [20], packing[21], combina-
torial optimization [22], among others.

The underlying assumption of hyper-heuristics is that the
heuristic space is less problem-dependent than the solution
space is. Thus, a more general search method can be developed
by searching the solution space indirectly through the heuristic

space. As depicted in Fig. 2, hyper-heuristics employs a two-
tiered architecture, encompassing a high-level heuristic and
an array of low-level heuristics that manipulate solutions. The
high-level heuristic abstains from direct problem interaction;
rather, it either adaptively selects from a predetermined reper-
toire of heuristics to address the given problem or learns to
generate novel heuristics tailored to the problem at hand. The
high-level heuristic typically harnesses domain knowledge and
problem features amassed throughout the problem-solving pro-
cess (either online, offline, or both) to facilitate the selection
or generation of pertinent low-level heuristics.

In this study, we employed two types of hyper-heuristics.
More specifically, GP serves as a hyper-heuristic that generates
low-level heuristics, while reinforcement learning functions as
a hyper-heuristic for selecting and combining GP individu-
als (i.e. low-level heuristics). Contrary to a standard hyper-
heuristics approach, in which a high-level heuristic typically
aims to identify a single low-level heuristic that aligns with
the prominent features of the problem, we propose a heuristic
ensemble framework that employs reinforcement learning to
utilize multiple low-level heuristics that collaboratively ad-

Hyper-heuristic

High Level Heuristic

Domain Knowledge
Heuristics to Select

Heuristics

I
* Select

Heuristics to Generate
Heuristics

Problem Features

T
+ Generate

Low Level Heuristic

Heuristic 1 Heuristic 2 Heuristic3 | e @ o | 1 3 Solutions

Fig. 2. Hyper-heuristic Framework

JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

dress problems, representing a key advancement over the
previous single heuristic methods. This approach enables us
to tackle complex multi-scenario challenges characterized by
abundant interferences, slow learning, difficult generalization,
and suboptimal performance. The principles underlying this
approach will be discussed in greater detail in the subsequent
sections.

C. Genetic Programming

GP is an evolutionary computation technique that evolves a
population of programs, often represented as GP trees, through
selection, crossover, mutation, and replacement [23]. Over the
years, GP has been successfully applied to various engineering
and optimization problems, demonstrating its versatility and
robustness in diverse contexts [24], [25].

Compared to other methods, such as decision trees, logistic
regression, support vector machines, and artificial neural net-
works, GP offers three key advantages for solving optimization
problems. First, GP, in essence, is a generative method. It
allows for flexible representations, enabling the encoding of
complex problem structures [26]. Second, its powerful search
mechanisms facilitate the exploration of large and intricate
solution spaces [27]. Finally, the heuristics generated by GP
are partially interpretable and highly efficient in execution,
thereby enhancing their practical value [28].

b*c

ELSE

c
Input/Output
Inna=1,b=2,¢c=3

Out: 2
Fig. 3. Example Genetic Programming Tree Structure

Expression
IF(a>5)

Inna=6,b=2,¢c=3
Out: 6

In this study, we chose the widely adopted tree-based GP
structure (example in Fig. 3) for several key reasons. The tree-
based structure offers visualization and interpretability and
can be easily expressed through mathematical expressions.
It is also flexible, adaptable, and scalable, allowing it to
accommodate a range of heuristics tailored to the problem at
hand and handle problems of varying sizes and complexities.
Furthermore, it is compatible with genetic operators like
crossover and mutation, essential for the evolutionary process.
With these advantages, tree-based GP is an ideal choice for
generating low-level heuristics in our DRL-GPHH and DRL-
GPEHH frameworks.

When employing tree-based GP to solve problems, as the
example depicted in Fig. 3, GP generates a parameterized
tree-structured expression. Depending on the input parameters
across various environments, it outputs different solutions.
In contrast to traditional evolutionary algorithms like genetic
algorithms, which search directly within the solution space [6],
tree-based GP operates at a higher dimension, seeking heuris-
tics that produce solutions and can thus be categorized as Ge-

netic Programming hyper-heuristics (GPHH). In comparison
to manually designed heuristics requiring substantial expert
inputs, GPHH provides a more flexible and adaptable approach
to tackling complex tasks and can generate distinct heuristics
for a wide range of problems without extensive domain-
specific knowledge [29]. Due to its favorable adaptability and
performance, the proposed DRL-GPEHH algorithm in this
study is not solely confined to addressing port dispatching
issues; it also possesses the potential to tackle numerous other
complex optimization problems in real-world scenarios.

D. Ensemble Methods

Ensemble methods, also known as multi-expert models,
have attracted significant attention in recent years due to
their ability to address complex problems by combining the
strengths of several individual models or heuristics. These
models are based on the premise that integrating the outputs
of multiple experts can result in a more robust and accurate
decision-making process, as opposed to relying on a single
expert or model.

Ensemble methods have been widely employed in machine
learning and pattern recognition tasks, where several base
classifiers are combined to improve classification accuracy
[30]. These techniques aim to create diverse and complemen-
tary classifiers by manipulating the training data or learning
algorithms. Research has shown that ensembles can signifi-
cantly improve algorithm performance, particularly when each
algorithm exhibits different strengths and weaknesses [31].

In optimization, ensemble methods have been employed to
solve complex problems more effectively. For instance, the
cooperative co-evolutionary algorithm [32] divides a problem
into smaller subproblems, which individual experts solve.
The solutions are then combined to form a global solution.
Similarly, the evolutionary forest [33] and particle swarm opti-
mization [34] apply multiple search strategies simultaneously,
allowing the exploration of the solution space more effectively.

Heuristic Ensemble

f Heuristic 1

L Heuristic 2

Input: x Heuristic 3
[J
L4 9 9 93
® Gate Network k
k Heuristics (RL Agent) Z; 9a; =1
)

Fig. 4. Learning-Assisted Heuristic Ensemble Framework

Leveraging the benefits of both ensemble methods
and hyper-heuristics models, ensemble-based hyper-heuristics
demonstrate enhanced performance [35], [36]. Inspired by

JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

their capabilities, this paper introduces a novel, learning-
assisted heuristic ensemble model. This model proposes us-
ing reinforcement learning as a gate network for select-
ing/combining multiple low-level heuristics to address intri-
cate multi-scenario problems. The learning-assisted ensemble
structure in this paper is depicted in Fig. 4. The heuristics
compete to generate output, while the gating network or-
chestrates this contest. For each input z, the gating network
acquires information about the performance of all heuristics
Y1, 9Y2,Ys, ...) involved in addressing the task, and the output
of each heuristic is compared with the target output y. The
gating weights of heuristics (g1, g2, g3, ...) are adjusted based
on the relative performance of that heuristic, compared to
the other heuristics, for the specific input pattern. Within this
framework, each heuristic is required to solve the problem
solely within its designated area of focus, thus mitigating the
model’s complexity and training costs while enhancing the
robustness of the generated solutions.

We posit that the learning-assisted ensemble hyper-
heuristics model can deliver enhanced performance character-
ized by rapid convergence and superior generalization capa-
bilities. Employing a weighted sum in this model facilitates
the effective integration of individual heuristics’ strengths,
culminating in a more robust and powerful decision-making
process. Moreover, the tree-based GP and manual heuristics
low-level heuristics in this model offer traceable decisions
despite reduced comprehensibility from ensemble and weight
adaptations. This transparency is a huge advantage over the
opaque nature of deep learning methods. This model is ex-
amined and analyzed on a complex multi-scene port truck
dispatching problem, which involves uncertainty, in Section
V.

E. Reinforcement Learning

Reinforcement Learning is a concept initially introduced
by Minsky in 1954 [37], characterized by the fundamental
notion of learning through the administration of rewards and
punishments. Following a hiatus, DeepMind introduced the
concept of deep Q-learning (DQN) in 2013 [38], ushering
in a new epoch for reinforcement learning. Since then, deep
reinforcement learning has been employed in an extensive
array of other domains, including operation research [39],
resource management [40], and self-driving [41], among many
others.

However, the innovations in port operations using the lat-
est artificial intelligence (AI) technologies have been largely
constrained to computer vision and its applications. The
application of deep learning in dynamic port dispatching
problems remains relatively rare. The primary reasons can
be categorized as follows: 1) the infeasibility of training,
as reinforcement learning algorithms are challenging to train
in real-life port environments; 2) convergence difficulties, as
utilizing simulators and historical data for training may prove
arduous due to the abundance of states and actions, potentially
impeding convergence; 3) sparse rewards, since the dynamic
dispatching problem constitutes a sparse reward problem,
it is difficult to compute the reward without completing a

certain number of tasks, and traditional methods struggle to
receive timely feedback after each action; 4) delays, as the
real-time requirement for port dispatching is stringent, and
large reinforcement learning models face difficulty in making
decisions within a limited time frame [42].

Consequently, a deep reinforcement learning-based hyper-
heuristics (DRL-HH) [7], which integrates reinforcement
learning and heuristic algorithms, is proposed to tackle the
challenges associated with reinforcement learning for the
dynamic truck dispatching problem, yielding some success.
However, employing parameter-derived variants of a single
expert-designed heuristic for truck assignment exhibits in-
adequate generalization and restricted performance. DRL-
GPHH and DRL-GPEHH, in conjunction with multiple GP-
generated heuristics proposed in this study, more effectively
address these concerns and further enhance the performance
of reinforcement learning approaches in the dynamic truck
dispatching problem in container terminals.

III. PROBLEM DESCRIPTION AND FORMULATION

This study aims to optimize the efficiency of port operations
by developing an internal container truck dispatch algorithm
that addresses the multi-constrained vehicle routing problem
specific to port logistics. By ensuring an adequate supply
of trucks for QCs and Yard Cranes (YCs), the algorithm
aims to minimize idle and waiting times, thereby expediting
the container handling process crucial to ship turnaround
efficiency. Containers, arriving primarily in two standard sizes
measured in twenty-foot equivalent units (TEUs), give rise to
three types of dispatch tasks: a single large container, two
bound small containers, and single small containers requiring
dynamic pairing. While QCs can handle two small or one
large container, YCs are limited to one container per operation.
Load balancing requirements and stacking location constraints
dictate a predetermined container handling order, with conges-
tion typically arising from crane occupancy or delayed truck
arrivals. The dispatch problem is thus modeled as a complex,
multi-constrained vehicle routing problem involving queuing
and waiting on a directed graph.

The problem can be formally delineated as follows. An
abstract container terminal is depicted as a directed graph,
denoted by G = (A,C), where C = Q UY constitutes the
nodes representing the work operation points for all tasks.
The sets (and Y encompass all QCs and YCs, respectively.
The set A consists of direct driving connections between
distinct nodes. The truck depot, represented by d, is the
point from which all trucks depart at the commencement
of the operation and return upon completion of all tasks.
The set V = vy,vq,vs,...,v,, signifies the collection of m
available trucks for allocation. A function 7(x,y) maps two
disparate operation points, * € C and y € C, to the time
required to traverse from one point to the other, reflecting
the actual terminal road network. The work instruction list
encompasses all n transport tasks in T' = ¢y, t2,t3,...,t,. The
container size for each task ¢; is denoted by z;. The source
and destination nodes for a given ¢; are represented by a; and
b;, respectively, with a;,b; € C. Based on the diverse types of

JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

source and destination nodes, y; is defined as the type of task
1. y; = 1 signifies an unloading task, while y; = 0 corresponds
to a loading task.

Within our problem framework, tasks are confined to trans-
portation journeys exclusively between QCs and YCs. Con-
sequently, a; and b; pertain to distinct crane-type node sets,
either QCs or YCs. The maximum difference in task serial
numbers, denoted as g, indicates the acceptable swapping order
of unloading tasks (in this paper, ¢ = 3, considering the prac-
ticalities). The start time of service for ¢; at its source node is
represented by s;, while its completion time at the destination
node is symbolized by e;, where s; € S = {51, 82,83,...,8n}
and e; € E = {ey,eq,€3,...,ey,}. Since a crane is required to
either load or unload the container at the beginning and end of
a task, the parameters d; and h; depict the operating time of
t; at the source and destination nodes, respectively, and their
sum is 7;. The operation times at QCs and YCs are assumed
to be stochastic and extracted from historical data.

To model the problem formally, the assignments of tasks to
trucks are defined by the following binary variable in (1):

1
Ozij = 0

The following auxiliary variable indicates whether #j is
serviced immediately after task ¢; by truck v;.

t; is assigned to v;
otherwise

(D

)1 ty is served right after t; by v;
Bijk = { 0 otherwise 2)
The order of tasks belonging to a crane ¢; € C' is described
by (3).
o J1 i, is followed by ¢; in ¢;
Tijk = { 0 otherwise. 3)

The primary objective in truck dispatching problems for
container terminals involves enhancing the port company’s
profitability by increasing turnover and minimizing the waiting
time of ships. To evaluate the extent to which this objective
is accomplished, various metrics can be employed. In this
study, we adopt the objective of TEU per hour (TEU/h), which
computes the number of TEUs processed per hour by all QCs
under consideration. Port companies commonly use this metric
as the principal indicator for comparing operational efficiency
against competitors. It is noteworthy that the TEU/h metric is
analogous to the makespan employed in numerous scheduling
problems when the task set remains constant. Consequently,
our truck dispatching problem can be modeled as follows:

Z?:l Zi

max(max(E) — min(S)) @
Y aij=1VteT (5)
i=1

Z Zﬁzgk <1Vt eT (6)

i=1 k=1

Z Yijk S q-Yi; le [1,’/’1,] (7)
=l k=1
DO Brji- (7(bj,a0) + ¢5)
s =max{ * "7 S (®)
T(dyas) - (1= Brji)
j=1k=1

-ej) +1(ai, b;) +r;

e; = max v)

The objective delineated in (4) represents the average pro-
duction rate per unit of time (hour), where max(FE) and
min(S) correspond to the completion time of the final task
and the start time of the first task, respectively. The constraint
articulated in (5) guarantees that each task is assigned exclu-
sively to one truck, while the constraint in (6) ascertains that
each task is succeeded by a maximum of one other task or none
if it represents the truck’s final task. For each crane, constraint
(7), following container terminal transportation rules, ensure
that tasks involving the same crane cannot commence until the
preceding task is concluded, except for the unloading tasks
in QCs where the operational sequence can be interchanged
between ¢ = 3 neighboring tasks. Constraints (8) and (9)
calculate the start and end times of tasks, verifying that tasks
initiate crane operation only after completing preceding task
operations.

The truck dispatching challenge in maritime container ter-
minals is deemed NP-hard, as it can be reduced to the vehicle
routing problem [43]. This classification means finding the
optimal solution becomes computationally intensive as the
problem increases. While past studies utilized metaheuris-
tics assuming crane operation times r; for tasks in 7" were
predictably constant, these times are notably uncertain in
practice, making full predictions impractical. Additionally, our
efforts to address this using mixed-integer programming (MIP)
solver based on the formulations faced difficulties due to the
problem’s NP-hard complexity and parameters’ uncertainty,
hindering the identification of feasible solutions.

As a result, we have characterized this issue as an online op-
timization problem, which we address utilizing a GP ensemble
method. Details will expounded in the next section.

IV. METHODOLOGIES

This section delineates the dynamic dispatch system at
container ports and outlines the process for training and testing
the dynamic dispatch algorithm using historical data and
simulators. Moreover, we will expound upon the five heuristics
utilized in the experiments. Specifically, the manual heuristics,
DRL-HH, DRL-GPHH, DRL-EHH, and DRL-GPEHH, are
introduced in this paper.

JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

To adapt to the evolving external environment and to
generate a dispatch solution in sub-real time, the majority of
container ports currently employ a dynamic truck dispatching
system to assign tasks. The dynamic dispatching system gath-
ers real-time environmental parameters, vehicular congestion
and sequence, QC working and waiting conditions, current
task queues, and other data from the terminal operation sys-
tem (TOS). Utilizing this information, a dynamic dispatching
algorithm can allocate idle trucks to the most suitable tasks.
The dynamic dispatching algorithm plays a pivotal role in this
process, and the algorithm’s logic for truck dispatching can
significantly influence the efficiency of port operations.

So far, most ports still rely on expert heuristics as dynamic
dispatching algorithms for truck dispatching. Building on ex-
pert heuristics, a recent study proposed a DRL-HH method [7]
that employs RL to select different expert heuristics, achieving
superior performance over individual manual heuristics and
GP-generated heuristics. This paper further proposes the DRL-
GPHH method, which combines the strengths of RL and GP
in different search spaces by using RL to select different
GP-generated low-level heuristics, enhancing the algorithm’s
versatility and performance. The DRL-GPHH algorithm does
not require the design of various manual expert heuristics
but generates heuristics through GP training, making it easily
transferable to other complex real-world optimization prob-
lems beyond port dispatching.

We observed that both DRL-GPHH and DRL-HH underuti-
lize the diverse knowledge encapsulated in unselected heuris-
tics, thereby compromising their generalization capabilities
and performance. In light of these insights, we introduced
DRL-GPEHH, which leverages an RL agent to dynamically
fine-tune the weights of GP-generated heuristics in response
to varying environmental states. This innovation enhances the
algorithm’s stability, generalization, and performance while
also facilitating greater automation in algorithmic design. To
further delineate the contrasts between GP and manual heuris-
tic ensembles, we also introduced DRL-EHH as a control,
employing RL to dynamically modulate the weights of manual
heuristics.

A. Dynamic Truck Dispatching and Port Simulator

In traditional ports, loading and unloading tasks are assigned
to individual QCs, while container trucks are designated to
specific QC task pools. A designated truck carries out tasks
within its assigned pool, waiting for new tasks if none are
available. Port operators continually adjust the number of
trucks in each pool based on remaining tasks, QC availability,
operational speed, vessel berthing, personal experience, and
other parameters to minimize waiting time for both QCs and
container trucks. Although this scheduling method has shown
positive results, it relies heavily on the dispatcher’s experience,
and their workload can be substantial. Inefficient assignment
of idle trucks can negatively impact overall port operations
efficiency.

Given the challenges in port operations, dynamic truck
dispatch algorithms have been introduced to dispatch all trucks
dynamically, allowing for the decoupling of trucks from spe-

Go to ¢

Start Crane

Load

Quay Crane 1

Task Pool
Quay Crane 2
Task Pool

Task Pools

Generate Trucks

Yes / Start
A 4

Quay Crane 3

on Depot & Task Pool
Assign Tasks to Load Container
Quay Cranes °
[Go to Yes / Go
¢ [to Next
X
Loop All Trucks Select Tasks End Crane
1
Dynamic NO / Wait
Dispatching s Previous
Algorithm ask Finis

L Get Simulated

Set Truck Idle Environment States

Unload Container

A

End

Fig. 5. Event-based Port Simulator Flow Chart

cific QCs. This approach enhances port efficiency by enabling
trucks to undertake tasks from all QCs.

To facilitate the testing and training of dynamic truck
dispatch algorithms, we developed an event-driven simulator,
as illustrated in Fig. 5, using historical port data to emulate
the port operation process. Upon container truck availability,
the system assigns either one 2TEU task or two 1TEU tasks.
The truck proceeds to the crane, and loading begins once the
prerequisite task is completed, with loading time influenced
by random factors. Afterward, the truck moves for unloading,
and upon completion, either returns for remaining containers
or awaits new assignments. This process highlights the com-
plexity of truck dispatching in maritime container terminals
and motivates the proposal of dynamic heuristic scheduling
algorithms.

B. Manual Heuristic

The manually designed heuristic, developed by experts and
currently serving as the prevalent method employed in ports
[4], serves as the baseline for comparison in this study. This
algorithm devises a series of environment parameters, such as
the optimal number of trucks for a given QC, the maximum
number of trucks allowed for a QC, and the priority assigned
to the QC based on the operator’s experience. The algorithm
automatically scores each task, considering the parameters, the
busyness of the QC to which the task is assigned, and the
time required for the truck to reach the task’s starting location.
Ultimately, the task with the best score is selected as the output
task and dispatched to the idle truck.

This manual heuristic algorithm has been successfully im-
plemented for years at Ningbo port. With the support of this

JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

manual heuristic dynamic dispatching algorithm, port opera-
tors no longer need to dispatch trucks continually; instead, they
only need to adjust the vehicle dispatching plan as necessary,
yielding improved results compared to previous methods.
Although the manual heuristic exhibits limited performance,
it offers several advantages, including no need for training,
strong generalization, and consistent performance across dif-
ferent data sets. Consequently, it serves as the baseline in this

paper.

C. DRL-GPHH & DRL-HH

Reinforcement learning methods have demonstrated consid-
erable advantages in addressing complex optimization prob-
lems. However, in applications applied to real-life scenarios, it
is possible to make unpredictable decisions when encountering
unknown scenarios due to its black-box characteristics. Such
a situation is usually unacceptable in a real-life operation
scenario. To ensure the safety and order of the operation, all
decisions must be traceable, adaptable, and understandable.

Therefore, a DRL-GPHH approach is proposed, wherein a
reinforcement learning network selects various GP-generated
heuristics for truck dispatching. Owing to the white-box na-
ture of the heuristics, even when a heuristic is chosen by
reinforcement learning, the final decision is derived through
the selected heuristic, making it relatively interpretable. This
method effectively amalgamates the distinct advantages of RL
and GP heuristics and is readily applicable in real-world port
operation environments.

Deep RL Agent > Action
Virtual
Action (a,) ¢
Heuristics
g State Heuristic 1
Reward T Heuristic 2
Observe
St?te parameter f Heuristic 3
1
) °
L— Environment €——RealAction (a) °
°
k Heursitics

DRL-GPHH/DRL-HH

k
A, =) a, = hl(s) Ay = G Ay = Zglhl(s)
i=1

DRL-GPEHH/DRL-EHH

Fig. 6. DRL-HH/DRL-GPHH & DRL-GPEHH/DRL-EHH Framework

As illustrated in Fig. 6, in the context of reinforcement
learning genetic programming hyper-heuristics, given the
state of an environment, the algorithm selects an appropriate
virtual action according to a specific policy. This
action subsequently picks a heuristic. Upon execution of the
heuristic, the actual action alters the environment, leading
to a transition to a new state, denoted as S’. With each

action execution, the algorithm receives a reward value and
the estimated quality of the new state. The algorithm then
adjusts its policy based on the magnitude of the reward value,
ultimately maximizing the sum of rewards obtained when all
steps are completed and the state reaches the terminal state.

In contrast to DRL-HH, which relies heavily on experts’
domain knowledge for task scheduling and compromises its
performance and generalization, DRL-GPHH replaces expert
manual heuristics with GP-generated heuristics. In experi-
ments, DRL-GPHH outperformed DRL-HH, highlighting the
potential for collaborative problem-solving between RL and
GP. Furthermore, given that GP-generated heuristics do not
require the input of experts with extensive knowledge of the
problem, they present a scalable solution for a range of similar
complex optimization problems.

Specifically, DRL-GPHH and DRL-HH in this paper follow
all the DRL settings in previous work [7], which adopts the
double deep Q-learning (DDQN) algorithm [44] as a high-level
heuristic and uses a four-layer DRL network. The number of
neurons in each layer is set as follows: 80, 100, 180, and 10,
respectively. Rectified linear unit (ReLU) functions serve as
the activation functions for each hidden layer, and the learning
rate is set at 0.001.

The details of DRL-GPHH and DRL-HH are as follows:

1) Environment: The above-mentioned event-based port
simulator serves as the training environment for DRL-GPHH
and DRL-HH. This simulator uses the map and historical data
of the Ningbo Meishan port that we cooperate with to simulate
the real-world port. The simulator inputs the current state (.S)
into DRL-HH, and after the action (assignment of the truck)
made by DRL-HH, it will deduce according to the rules and
historical data to obtain the subsequent state (S’). While the
simulator is running, various metrics are calculated, which are
used as rewards to assist the training of DRL-HH.

2) State: The state, a set of matrices, represents the current
operating environment in which the DRL-GPHH and DRL-HH
will learn to select distinct actions depending on the state. In
this study, the state is generated based on the trucks requiring
task assignment, the current tasks and queuing statuses of
QC) and YCs, the QC type and working status, the remaining
number of tasks, and the average operating time of the cranes.
The state matrix is of dimensions ¢ * j, where ¢ denotes the
number of parameters incorporated within the state to describe
a QC status, and the number of QC is represented by j. The
specific parameters include:

e The QC remaining task number.

e The QC available task number.

o The QC bounded trucks number.

e The QC working status: 0 for unload and 1 for load.

e The QC type: O for standard and 1 for remote control.

e The minimum truck move time to a task start crane.

o The minimum waiting truck number of beginning cranes.

e The minimum waiting truck number of ending cranes.

o The average loading time of the beginning cranes.

o The average unloading time of the ending cranes.

It is important to note that since this truck dispatching prob-
lem in the container port is an optimization problem involving
uncertainty, the state transition in this problem does not follow

JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

the conventional s = FE(s,a) form. Instead, an uncertain
parameter v is introduced, resulting in s’ = F(s,a,w). In this
case, a represents the action chosen by the low-level heuristic
selected by DRL-HH, while w is obtained during the simulator
run.

3) Actions: DRL-GPHH and DRL-HH agents produce a
virtual action to select a low-level heuristic, generating a real
action for interacting with the environment.

DRL-GPHH uses the GP-generated low-level heuristics.
Genetic programming was employed to learn and generate
10 distinct heuristics on training datasets across different
scenarios. Each heuristic can manage the scenarios it has been
trained on.

DRL-HH uses the manually designed low-level heuristics.
These manual heuristics consider the distance from the task’s
starting point to the crane, the uniformity of the workload
distribution among QC job lists, and the task’s urgency. For
each indicator, three thresholds are designed, resulting in nine
manual heuristics. In conjunction with the aforementioned
expert-designed manual heuristic IV-B, there are 10 heuristics
available for selection.

4) Reward: Concerning rewards, the design for the DRL-
GPHH and DRL-HH rewards adheres to the approach em-
ployed in the previous study [7], using the idle time of QCs
as the primary reward component. For each assigned task i,
its reward r; is computed as r; = e;—1 — s;. The objective
is to enhance port operational efficiency and reduce QC idle
time; thus, the reward is a negative number, indicating that the
smaller the QC idle time, the greater the reward. Moreover,
since the QC idle time cannot be calculated when the action is
executed, it must be updated after completion, requiring inter-
mittent reward calculations. This process involves episodically
computing the rewards for previous actions upon completing
each task.

D. DRL-GPEHH & DRL-EHH

Although DRL-GPHH has demonstrated promising perfor-
mance, it exhibits poor generalization when dealing with real
historical data. Specifically, its performance deteriorates when
encountering previously unseen data during training. This
occurs because each scheduling operation in DRL-GPHH uti-
lizes only one GP heuristic, with each heuristic incorporating
information from the trained scenarios. Optimal performance
is achieved only when the current scenario closely resembles
one of the trained scenarios. However, the unselected heuristics
in DRL-GPHH also encompass valuable information. By judi-
ciously combining this information, the algorithm can adapt to
a broader array of unseen scenarios and enhance performance.

As illustrated in Fig. 7, single-choice hyper-heuristics ap-
proaches (e.g., DRL-HH, DRL-GPHH) enable the high-level
heuristic to select only one low-level heuristic for a given
situation. For instance, if the high-level heuristic prioritizes
task urgency, other factors, such as task proximity and node
busyness, are consequently disregarded.

In contrast, ensemble hyper-heuristic frameworks are ca-
pable of selecting multiple heuristics, effectively countering
the limitation of depending on a single heuristic. Both DRL-
EHH and DRL-GPEHH methods dynamically allocate varying

weights to different low-level heuristics, adapting effectively
to various situations. This allows for a more nuanced consid-
eration of multiple factors based on their assigned weights,
including task proximity, node busyness, and task urgency.
As a result, these ensemble frameworks make more accurate
judgments and better handle multi-scenario, complex, real-
world optimization problems, as evidenced by our experimen-
tal results.

Low-level Heuristics

Single-choice High-level
9 R g L. Nearest |Busiest |Urgent|
Hyper-heuristics Heuristic
DRL-HH / DRL-GPHH S memmmmemmmmmmmmo-
LGP/ CD-GPHH 0% ' 0% ! 100% ! 0%
Select AT N [.
Low-level Heuristics
Ensemble High-level
Hyper-heuristics Heuristic

DRL-GPEHH / DRL-EHH

[Nearest| Busiest| Urgent| ’

Generate Weight”

Fig. 7. Single-choice Hyper-heuristics vs. Ensemble Hyper-heuristic

Our experiments tested various methods for integrating
multiple GP heuristics, as presented in Section V. We found
that the best-performing approach was to use DRL to adjust
the weights of each GP heuristic continuously. As illustrated
in Fig. 6, DRL-GPEHH employs a reinforcement learning
agent as a gating mechanism to assign weights to multiple
heuristic experts, subsequently combining the results of these
heuristics to produce the final assignment. The DRL-GPEHH
offers several advantages over DRL-GPHH primarily due to
the integration of multiple expert heuristics, which leads to
improved decision-making and adaptability. The key benefits
include:

e Diversity and adaptability: DRL-GPEHH incorporates
various GP heuristics, each with strengths and weak-
nesses. This diversity allows the algorithm to adapt to
different situations and select the most suitable heuristic
for a given scenario, leading to better overall performance
and leveraging the strengths of other heuristics to com-
pensate for their limitations.

o Learning efficiency: By utilizing the knowledge and expe-
rience embedded in multiple heuristics, DRL-GPEHH can
potentially accelerate the learning process. As a result, the
algorithm can converge to a near-optimal solution more
quickly than a normal DRL-HH, which relies solely on
its learning and exploration.

o Knowledge transfer: DRL-GPEHH can benefit from
knowledge transfer between the heuristics, allowing the
algorithm to capitalize on their combined knowledge.
This leads to more effective exploration and exploitation
strategies, ultimately improving the solutions’ quality.

o Scalability: The ensemble approach enables DRL-HH
to handle a broader range of problems and larger-scale
instances. By combining the expertise of multiple heuris-
tics, the algorithm can scale better to tackle complex tasks
and adapt to new, unseen scenarios.

o Algorithm automation: The utilization of GP-generated

JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

heuristics obviates the need for expert inputs, thereby
significantly enhancing the automaticity of algorithm
generation. This culminates in an efficient and self-reliant
design process. This heightened level of automation sim-
plifies the task of addressing complex real-world prob-
lems, thereby extending the versatility and applicability
of the method.

In summary, DRL-GPEHH outperforms DRL-GPHH by
leveraging multiple GP heuristics’ strengths, resulting in im-
proved adaptability, robustness, learning efficiency, knowledge
transfer, and scalability. These advantages make it more suit-
able for solving complex and dynamic problems like container
terminal truck dispatching in various domains.

Furthermore, to facilitate a more precise comparison of the
performance of DRL-HH, DRL-GPHH, and DRL-GPEHH,
DRL-EHH is proposed to act as a control. DRL-EHH employs
the same manual heuristics as those in DRL-HH, replacing the
GP-generated low-level heuristics in DRL-GPEHH. Except for
the low-level heuristics, all settings of DRL-EHH are identical
to those of DRL-GPEHH. Consequently, we only describe the
structure of DRL-GPEHH.

To handle multi-dimensional actions and output continuous
weights for multiple heuristics simultaneously, DRL-GPEHH
employs a multi-action proximal policy optimization (PPO) as
a gate agent instead of the double deep Q-Network (DDQN)
used in DRL-GPHH.

PPO is an advanced policy optimization algorithm intro-
duced in 2017 [45] designed to overcome the challenges faced
by other algorithms, such as trust region policy optimization
(TRPO) and asynchronous advantage actor-critic (A3C). It
enhances sample efficiency and stability by utilizing a trust
region approach and employing a clipped objective function
shown in (10). Here, r,(0) is the probability ratio between the

current policy and the old policy, represented as %
old ot

The variable A, denotes the estimated advantage function at
time step ¢, and € is a hyperparameter controlling the degree
of trust region in the policy update.

LELIP () = By [min(r(6) Ay, clip(r(6), 1 — e, 1+) Ay)|
(10)
Combined with the formula, the training process of the
multi-action PPO is described in Algorithm 1.

| Feature Matrix of QCs
Y

| v

Deep Neural Network

L7
| Softmax Activation Function '—) Weights of Heuristic Ensemble

Fig. 8. Neural Network Output of DRL-GPEHH and DRL-EHH

To maintain fair competition, DRL-GPEHH retains the deep
neural network (DNN) settings of DRL-GPHH. However, it
doubles the networks to serve as a policy network and a value

Algorithm 1 Proximal Policy Optimization (PPO) Training
1: Initialize policy parameters 6 and value function parame-

ters ¢

2: for each iteration do

3: Collect a set of trajectories 7 using the current policy
o

4: Compute rewards-to-go R; for each time step in
trajectories

5: Compute advantage estimates A; using value function
Ve

6: for each optimization epoch do

7 for each time step t in trajectories do

8: Compute probability ratio p;(0) = %

9: Compute surrogate objective Ly (9) =
min(p:(0) Ay, clip(pe(0),1 — €, 1+ €)Ay)

10: Perform gradient ascent on # to maximize
E/[L.(0)]

11: Update value function parameters ¢ by mini-
mizing the value loss

12: end for

13: end for

14: Update policy 7y, + 7o

15: end for

network, respectively. Furthermore, a softmax activation func-
tion is incorporated following the DNN output. As illustrated
in Fig. 8, DRL-GPEHH produces a continuous weight vector
for each heuristic. Based on these weights and the outputs of
the heuristics, DRL-GPEHH synthesizes the final real action
for dispatching the truck.

The environment and status settings of DRL-GPEHH are
consistent with DRL-HH, but some modifications have been
made in the following parts:

1) Actions: Similar to DRL-GPHH, DRL-GPEHH does
not directly interact with the environment through actions as
depicted in Fig. 6. Instead, it employs the same GP-generated
heuristics used in DRL-GPHH as low-level heuristics. The
distinction between the two lies in their utilization of low-level
heuristics: in DRL-GPEHH, instead of directly selecting the
most appropriate task for output as in DRL-GPHH, the low-
level heuristics generate a task ranking based on their internal
rules.

Algorithm 2 Weighted Ensemble Scheduling
Require: tasks, heuristics, weights
Ensure: best_task

1: scores < {ta: 0| ta € tasks}

2: for h,w in zip(heuristics, weights) do
3 ranked_tasks < h.rank(tasks)
4 for 7, in enumerate(ranked_tasks) do
5: scorest] « scores[t] + (i + 1) * w
6
7
8

end for
: end for
. best_task < argmin, ¢, ., Scores[t] return best_task

Based on the rankings of available tasks generated by
heuristics, DRL-GPEHH employs the weighted ensemble

JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

ranking method, as illustrated in Algorithm 2, to combine the
ranks and determine the best task. This algorithm takes a set
of tasks, an array of heuristics, and their respective weights as
input, with the objective of identifying the optimal task from
the available options.

2) Reward: Given that the action space of DRL-GPEHH
is much larger than that of DRL-GPHH, and considering
the challenges introduced by delayed rewards in terms of
temporal credit assignment, exploration, and convergence, the
rewards employed in DRL-GPHH become less suitable for
DRL-GPEHH. Specifically, the temporal credit assignment
problem arises due to the difficulty associating the correct
action with an observed reward when rewards are delayed.
This can slow the learning process or cause the agent to learn
suboptimal policies. Additionally, delayed rewards can impact
the exploration-exploitation trade-off, as the agent may need
to explore the environment extensively before discovering the
long-term consequences of its actions, potentially delaying
convergence to an optimal policy.

240

—— DRL-GPEHH-New Reward (10)

120
—— DRL-GPEHH-OId Reward (10)
100
0 100 200 300 400 500
Episode

Fig. 9. Performance of DRL-GPEHH with Varying Reward Structures

To address these challenges, we introduced a new reward
function that combines reward shaping and imitation learning
to enhance the learning process in the presence of delayed
rewards by improving credit assignment, encouraging efficient
exploration, and stabilizing convergence. The new rewards are
designed as reward = e;_1 — s; — dcov(O,., Oy,), where §
is the weight, cov is the covariance calculation function, O,
is the task ranking given by DRL-GPEHH, and O,, is the
ranking given by manual heuristics described in Section I'V-B.

The reward for rankings similar to the manual heuristic can
be adjusted by setting different weight values, denoted by §. In
this paper, 0 is set to k/en, where « is a scaling factor that can
be adjusted according to the size of the previous reward term,
which is set to 10 in this study, and en represents the number
of training episodes. The weight of this reward gradually
decreases as the number of training generations increases,
encouraging the algorithm to learn from the manual expert

heuristic initially and reducing the influence of convergence
to the manual heuristic on the algorithm’s ability to reach a
superior solution during later stages of learning.

Although the reward component of e;_; — s; in DRL-
GPEHH is the same as that in DRL-HH, it must be calculated
after the task completion, while the —dcov(O,, O,,) compo-
nent can be obtained immediately, addressing the reward delay
issue. In our newly designed reward structure, we guide the
DRL-GPEHH to learn like the manual heuristic by encourag-
ing reward allocations that resemble task rankings generated
by the manual heuristic. According to the experimental results
in the training datasets detailed in Section V with 10 random
seeds shown in Fig. 9, the newly designed rewards indeed
achieve better performance, speed up convergence, and resolve
the problem of delayed rewards in container terminal truck
dispatching problem.

V. EXPERIMENTS AND DISCUSSION

In the ensuing section, we undertake a comprehensive
evaluation of DRL-GPHH and DRL-GPEHH, focusing on a
multifaceted container port dispatching problem marked by
uncertain parameters. This analysis is positioned against DRL-
HH and DRL-EHH to elucidate the advantages of integrating
GP with RL. Given the proven robustness and reliability of
the manually delineated heuristic outlined in Section IV-B,
which has demonstrated considerable efficacy in practical port
applications, we employ it as a benchmark baseline. Thus, all
ensuing comparative analyses are premised on enhancements
made relative to this manual heuristic (Imp.). Additionally, this
section incorporates ablation studies and sensitivity analysis,
furnishing insights into the conducive elements underpinning
the exceptional performance of DRL-GPEHH.

A. Experiment Design

As this work aims to develop an algorithm that can be
deployed in a real-world port to enhance its operational
efficiency, all data used in the experiments are derived from
actual historical operating data of Ningbo Meishan Port, with
which we collaborate. We sampled 20 days of operation data to
generate 10 training sets and 10 test sets, each containing 4,000
tasks. All experiments are conducted using the event-driven
simulator we developed, with simulator parameters adjusted
based on historical operating data. There are two ship berths
10 operating QCs, and the number of container trucks varies
between 50 and 80. Moreover, as mentioned in Section IV-A,
the operating times for QC and YC are derived from real-
world historical data, while the truck travel times are drawn
from the historical time distribution.

We trained 10 GPs for 300 generations with 100 different
random seeds on the same set of 10 training datasets and
selected one best-performing individual from each dataset to
form 10 GP-generated low-level heuristics. The GP algorithm
and parameters are consistent with the GP algorithm with
logic operators (LGP) described in our previous paper [9],
featuring a population size of 1024 and crossover, mutation,
and reproduction rates of 60%, 30%, and 10%, respectively.
All algorithms were executed 100 times with different random

JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

seeds, and the training phase consisted of 1000 episodes.
Subsequently, we assessed the performance of DRL-HH [7],
DRL-GPHH, DRL-EHH, and DRL-GPEHH on the test sets.
The average results from 100 runs for training and testing are
presented in Tables I and II.

B. Experiment Results

The experimental results demonstrate that, regardless of
whether using DRL to select single heuristics or a set of heuris-
tics, GP-generated heuristics outperform manually-designed
heuristics. Replacing human-designed low-level heuristics in
DRL-HH with GP-generated heuristics provides a performance
boost of 1.42%, while DRL-GPEHH achieves a 9.88% im-
provement over DRL-EHH when multiple GP heuristics are
jointly involved in decision making as an ensemble at each
step. It is worth noting that due to the theoretical optimization
upper bound in the port truck dispatch problem, the closer the
TEU/h is to the upper limit, the more difficult it becomes
to further improve performance. The 17.77% performance
improvement of DRL-GPEHH over manual heuristics demon-
strates its effective combination of knowledge from multiple
GP-generated heuristics. Unlike DRL-GPHH, although both
use the same 10 heuristics, the ensemble-based approach lever-
ages the knowledge from multiple GP-generated heuristics to
achieve better performance.

TABLE I
DRL-HH, DRL-GPHH, DRL-EHH AND DRL-GPEHH TRAINING
REsuLTS (TEU/H)

No. Manual DRE DRL DRL DRL
HH GPHH! EHH GPEHH!
I 20236 22291 22550 218.18 240.75
2 188.54 20556 20456 20146 225.10
3 18231 199.26 20173 198.14 212.46
4 19133 205.66 207.86 204.54 219.60
5 186.26 19652 20475 202.54 221.28
6 190.69 20451 211.14 205.85 220.87
7 19333 202.14 204.17 208.60 234.28
8 191.59 20324 19827 203.33 224.02
9 186.14 198.19 20497 203.05 216.79
10 190.98 20497 20691 208.05 226.54
Avg. 19035 20430 20698 20537 22417
Imp. N.A. 732% 874% 1.89% 17.77%

! DRL-GPHH and DRL-GPEHH significantly differ from other
algorithms, p < 0.05.

In contrast to the excellent performance of the GP-generated
heuristic ensemble, the application of a manual heuristic
ensemble in DRL-EHH results in only a 0.57% performance
improvement compared to DRL-HH. This can be attributed to
the simplicity and high similarity across the adopted man-
ual heuristics, which, while capable of producing satisfac-
tory results for straightforward and popular scenarios, makes
it challenging to improve performance further. Conversely,
the GP-generated heuristic ensemble, owing to its complex
internal structure and knowledge that encompasses various
scenarios, has the potential to achieve superior performance.
However, continuous weight adjustments are required in dif-
ferent environments to maximize the utilization of knowledge
from multiple GP heuristics. The experiments supporting this

statement and the reasons for the excellent performance of
DRL-GPEHH will be presented in the subsequent subsection.

Next, we put the trained DRL-HH, DRL-GPHH, DRL-
EHH, and DRL-GPEHH into a test environment completely
different from the training environment with a broadly similar
baseline.

As delineated in Table II, the algorithms DRL-GPHH and
DRL-GPEHH, which employ GP-generated low-level heuris-
tics, outperform their manually designed heuristic counter-
parts, DRL-HH and DRL-EHH, by margins of 0.43% and
8.14%, respectively. This substantiates the notion that integrat-
ing DRL with GP-generated heuristic ensembles can yield sub-
stantial performance improvements, even in unfamiliar testing
conditions. Moreover, DRL-EHH and DRL-GPEHH exhibit
enhanced consistency in the test set by leveraging an ensemble
of GP heuristics at each decision point. The performance
decrement observed for these ensemble-based models on the
test set is approximately 1% less than that for the non-
ensemble alternatives. This finding not only reinforces the
effectiveness of ensemble approaches in navigating unknown
scenarios but also highlights the robustness and practical
applicability of our proposed techniques, which demonstrate
minimal performance attrition in dynamically changing real-
world contexts.

TABLE II
DRL-HH, DRL-GPHH, DRL-EHH AND DRL-GPEHH TEST RESULTS
(TEU/H)

No. Manual PRL DRL DRL DRL

HH GPHH' EHH GPEHH!
I 19048 199.74 20341 21588 227.40
2 203.54 209.55 21020 203.01 231.24
3 189.82 19591 205.08 203.83 217.97
4 187.04 19826 19573 20224 213.35
5 19143 20251 20296 199.57 21645
6 182.90 193.37 19297 203.92 207.67
7 193.62 204.61 201.89 202.78 221.44
8 185.86 194.05 19395 201.60 212.82
9 19129 20059 20329 198.85 217.13
10 188.87 19522 19255 199.95 221.30
Avg. 19048 19938 20020 203.16 218.68
Imp. N.A. 4.67% 510% 6.66% 14.80%
Dec. N.A. 2.65% -3.64% -124% -2.96%

! DRL-GPHH and DRL-GPEHH significantly differ from other
algorithms, p < 0.05.

Across both training and test sets, DRL-GPEHH out-
performs all other algorithms, substantiating the synergistic
potential between DRL and GP ensembles in augmenting
algorithmic performance. This ensemble approach not only
enhances generalization and robustness but also resolves the
limitations of DRL-HH, which is overly reliant on the quality
and diversity of pre-defined heuristics. Incorporating GPHH
adds a new dimension of diversity, adaptability, and efficiency.
Furthermore, by automating the generation of low-level heuris-
tics through GP, both DRL-GPHH, and DRL-GPEHH elimi-
nate the need for manual expert design, thereby considerably
increasing the level of automation in algorithm design for
complex problems like marine port truck dispatching. This
automated approach proves advantageous in adapting to var-
ious complex, real-world optimization challenges, offering a

JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

TABLE III
PERFORMANCE OF OTHER ALGORITHMS (TEU/H)
Perf. Manual Random DDQN PPO LGP CD-GPHH VMHE RMHE WRMHE BGPE VGPE RGPE WRGPE
Train Avg. 19035 160.84 168.51 172.24 198.43 208.49 169.23 177.03 201.65 202.72 203.02 208.25 204.39
Imp. N.A. -1550% -1147% -9.51% 4.24% 9.53% -11.09% -7.00% 5.94% 6.50% 6.66% 9.40% 7.37%
Test Avg. 19048 161.28 161.35 167.84 194.26 198.21 169.64 176.71 196.66 197.13 198.92 204.25 203.54
Imp. N.A. -1533% -15.29% -11.89% 1.98% 4.06 % -1094% -7.23% 3.24% 349% 4.43% 7.22% 6.86%

scalable, flexible, and robust solution across diverse problems.

Finally, it has been substantiated that DRL-GPEHH can
yield superior results compared to DRL-HH, DRL-GPHH,
DRL-EHH, and manual heuristics in container port truck
dispatching. Although DRL-GPEHH has not yet been im-
plemented in real-life port settings, our manually crafted
heuristic algorithm, used as a baseline in this study, has
been successfully utilized at Ningbo Port for several years.
Statistical analysis conducted by the port reveals that work
efficiency has increased by 8.1%, while ship docking time
has decreased by 2.2%. This high-performing algorithm has
resulted in time savings, facilitated the handling of more ships,
and consequently, significantly enhanced the profitability of
the port company. As a future endeavor, we plan to collaborate
with relevant stakeholders to comprehensively evaluate and
deploy the proposed DRL-GPEHH algorithm in real-world
scenarios.

C. Ablation and Sensitivity Analysis

Subsequently, we extend our experimental investigation to
corroborate the superior performance of the DRL-GPEHH.
We formulate three hypotheses to guide this analysis: first,
that standard RL algorithms struggle to converge in complex
dynamic environments with extensive action spaces, thereby
necessitating a hyper-heuristics framework; second, that basic
GP hyper-heuristics are limited in their generalizability and
capacity to handle intricate scenarios, thus impeding over-
all algorithmic performance on test sets; third, The optimal
performance of the GP ensemble methodology is realized by
dynamically assigning weights to GP individuals.

To empirically evaluate the performance of standard RL
algorithms in complex test environments, we trained DDQN
and PPO algorithms using training sets. The configurations for
DDQN and PPO were strictly in line with established settings
in the literature [44], [45], and each was subjected to 1,000
training episodes. For a more comprehensive assessment, we
also incorporated a random dispatching algorithm into our
evaluation framework. As the test results presented in Table
III, it is unequivocally evident that DDQN failed to ac-
quire any meaningful information during training, performing
on par with randomized strategies. Similarly, PPO exhib-
ited only marginal improvements over random dispatching
and did not approach the effectiveness of heuristic methods.
These experimental outcomes compellingly substantiate our
first hypothesis: conventional RL algorithms face significant
challenges in converging within complex and dynamic en-
vironments characterized by sparse rewards and expansive
action spaces. This underscores the necessity for adopting a
hyper-heuristics framework, where low-level heuristics replace

traditional actions to stabilize the learning environment. Such
an arrangement permits RL algorithms to assimilate valuable
information and exhibit improved performance, as the DRL-
HH model exemplifies.

Based on the second hypothesis, we trained two distinct
populations using LGP and Cooperative Double-Layer Ge-
netic Programming hyper-heuristics (CD-GPHH) [9]. Both
approaches employ a hyper-heuristics framework that lever-
ages GP as a high-level selector for low-level GP heuristics.
The configurations for LGP and CD-GPHH were consistent
with those outlined in our prior work [9]. During training,
each population was exposed to a sequence of 1000 gen-
erations across multiple training sets, each initialized with
100 different random seeds. The best-performing individuals
were then selected for further analysis. Evaluation of the
training set yielded average performance improvements over
the manual heuristic of 4.24% and 9.53% for LGP and CD-
GPHH, respectively. However, the corresponding gains on
the test set were comparatively modest: 1.98% and 4.06%,
as shown in Figure III. Although CD-GPHH outperformed
LGP due to its double-layer architecture, it fell short of
the 15% improvement observed in smaller test datasets from
our previous study [9]. The diminished performance on the
test set underscores the limitations of relying solely on GP
hyper-heuristics for complex optimization tasks in large-scale,
multi-scenario environments. This substantiates our decision to
integrate RL with heuristic ensembles for tackling real-world,
large-scale challenges.

To further validate our second hypothesis, we imple-
mented three distinct ensemble methods—voting, ranking, and
weighted ranking—to amalgamate manual and GP heuristics.
The effectiveness of these methods was then assessed using
the test set delineated in Section V. Each heuristic selects
an optimal task in the voting mechanism, with the majority
vote determining the final output. Ranking involves each
heuristic assigning a rank to all tasks, culminating in the task
with the highest aggregated rank chosen as the output. The
weighted ranking method extends this by applying weights to
the summed ranks according to Algorithm 2. For comparative
analysis, we also introduced the Best GP Ensemble (BGPE)
method, which involves assessing 10 unique GP low-level
heuristics on each dataset and subsequently choosing the most
productive one.

Then, to get the weight value used in the weighted ranking
method, we calculated the probabilities of DRL-HH and DRL-
GPHH, selecting each heuristic, as depicted in Figure 10.
For manual heuristics, DRL methods preferred one or two
specific actions, such as Actl and Act2, while less frequently
opting for actions like Act8, Act9, and Actl0. In contrast, the

JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

TABLE IV
STANDARD DEVIATION OF ACTION SELECT RATIO IN DRL-EHH AND DRL-GPEHH
Actl Act2 Act3 Act4 Act5 Act6 Act7 Act8 Act9 Act 10 Avg.
DRL-EHH 503% 5.10% 0.62% 3.13% 0.23% 099% 343% 0.03% 0.00% 0.22% 1.88%
DRL-GPEHH 381% 6.84% 6.75% 740% 7.64% 690% 625% 422% 592% 8.94% 6.47 %

selection probabilities for GP heuristics were more evenly dis-
tributed, with no single heuristic predominating. This suggests
that while DRL methods gravitate towards better-performing
manual heuristics, the uniform performance exhibited by GP
heuristics makes it challenging for DRL-GPHH to identify a
singular, superior heuristic. Such findings imply that the GP
ensemble harbors a wealth of knowledge, making optimally
assigning fixed weights nontrivial.

Act 1
30% pa
Act10 25% | TS Act2
20%
15%
Act 9 10%, Act 3
5%
0%_ D
4 B
4 4 -
Act 8 / Act 4
Act 7 Act 5
Act 6
eme DR L-HH DRL-GPHH

Fig. 10. DRL-HH/DRL-GPHH Action Selection Ratio

The inferior performance of the vote manual heuristic en-
semble (VMHE) and rank manual heuristic ensemble (RMHE)
in Table III, compared to the expert manual heuristic, indicates
that when multiple manual heuristics make decisions, the
subpar performance of certain heuristics adversely affects
the overall decision-making performance. This leads to a
final performance that is 10.94% and 7.23% worse than the
individual expert manual heuristics in the manual heuristic
ensemble, respectively. Moreover, when utilizing the statistical
DRL probabilities to select each action shown in Fig. 10
as weights for the weighted rank manual heuristic ensemble
(WRMHE) method, it achieves performance comparable to
DRL-GPHH. This further underscores the significance of
adjusting the weights of heuristic ensembles.

However, as demonstrated in Table III, we find that the
vote GP ensemble (VGPE) and rank GP ensemble (RGPE)
methods, which use the GP heuristic ensemble, perform signif-
icantly better than the best GP ensemble (BGPE) method that
relies on a single heuristic. Nevertheless, the weighted rank GP
ensemble (WRGPE) method, which utilizes the proportions of
different actions selected by DRL-GPHH as weights, does not
improve performance compared to RGPE. The performance
of WRGEPE is worse than that of the unweighted RGPE. This
observation supports the argument that applying fixed weights
to the GP heuristic ensemble does not enhance performance
and may prove detrimental.

Furthermore, we calculated the standard deviations of the
weights assigned to different actions by DRL-EHH and DRL-
GPEHH. As shown in Table IV, the standard deviation of
DRL-EHH is 1.38%, indicating that for manual heuristics,
DRL-EHH tends to assign relatively consistent weights to
each action. In contrast, the standard deviation of DRL-
GPEHH is 6.47%, illustrating that the weights of each action
in DRL-GPEHH vary during each scheduling, contributing to
its superior performance.

These supplementary experiments substantiate our initial
hypotheses: Conventional RL methods struggle with large-
scale real-world problems and thus necessitate integrating a
hyper-heuristics framework. Likewise, simplistic GP hyper-
heuristics approaches fail to formulate a universally applicable
model capable of managing large-scale, real-world scenarios.
However, DRL-GPEHH by continually fine-tuning the weights
of diverse low-level GP heuristics during the decision-making
process—effectively capitalizes on the rich knowledge reser-
voir inherent in the GP heuristic ensemble. This leads to
marked enhancements in performance, stability, and general-
ization capabilities.

VI. CONCLUSION

This paper presents DRL-GPHH and DRL-GPEHH, two
advanced learning-assisted genetic programming methodolo-
gies tailored explicitly for dynamic truck dispatching in con-
tainer terminals. Notably, the DRL-GPEHH approach rectifies
limitations inherent in both DRL-HH and DRL-GPHH by
ingeniously integrating an ensemble of GP heuristics. These
heuristics, generated autonomously without the need for in-
tricate expert input, empower more effective decision-making,
furnish superior adaptability to diverse operational contexts,
and significantly enhance the automation of algorithmic de-
velopment.

In a comprehensive experimental study, DRL-GPEHH con-
sistently outperforms competing algorithms across multiple
metrics—namely, dispatching efficiency, generalization capa-
bilities, and adaptability to fluctuating port operational sce-
narios. By pioneering a deep reinforcement learning agent as
a gating mechanism, DRL-GPEHH astutely assigns weights
to individual GP heuristics, thereby amalgamating their out-
puts to optimize task assignments. This elegant cooperation
between DRL and the GP ensemble further strengthened
by an inventive action and reward design—accelerates the
convergence rate, thereby boosting both algorithmic stability
and generalization capabilities.

The successful implementation of learning-assisted GP in
dynamic truck dispatching highlights the considerable promise
of GP and its ensemble variants within the broader frame-
work of reinforcement learning hyper-heuristics, especially for

JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

tackling intricate real-world optimization challenges. Future
research could delve into co-training strategies that integrate
GP with DRL, examining the impact of the number of low-
level GP heuristics and determining optimal quantities. Ad-
ditionally, there is potential to expand the application of this
method to a broader range of dynamic scheduling problems.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

REFERENCES

E. Ahmed, M. S. El-Abbasy, T. Zayed, G. Alfalah, S. Alkass, Syn-
chronized scheduling model for container terminals using simulated
double-cycling strategy, Computers & Industrial Engineering 154 (2021)
107118.

S. Nguyen, P. S.-L. Chen, Y. Du, Container shipping operational risks:
an overview of assessment and analysis, Maritime Policy & Management
49 (2) (2022) 279-299.

J. R. Gordon, P-M. Lee, H. C. Lucas Jr, A resource-based view of
competitive advantage at the port of singapore, The Journal of Strategic
Information Systems 14 (1) (2005) 69-86.

J. Chen, R. Bai, H. Dong, R. Qu, G. Kendall, A dynamic truck dispatch-
ing problem in marine container terminal, in: 2016 IEEE Symposium
Series on Computational Intelligence (SSCI), IEEE, 2016, pp. 1-8.

X. Chen, B. Feiyang, R. Qu, D. Jing, R. Bai, Neural network assisted
genetic programming in dynamic container port truck dispatching,
in: 2023 IEEE International Conference on Intelligent Transportation
Systems (ITSC), IEEE, 2023, pp. 1-6.

E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan,
R. Qu, Hyper-heuristics: A survey of the state of the art, Journal of the
Operational Research Society 64 (2013) 1695-1724.

Y. Zhang, R. Bai, R. Qu, C. Tu, J. Jin, A deep reinforcement learning
based hyper-heuristic for combinatorial optimisation with uncertainties,
European Journal of Operational Research 300 (2) (2022) 418-427.

X. Chen, R. Bai, R. Qu, H. Dong, J. Chen, A data-driven genetic
programming heuristic for real-world dynamic seaport container terminal
truck dispatching, in: 2020 IEEE Congress on Evolutionary Computation
(CEC), IEEE, 2020, pp. 1-8.

X. Chen, R. Bai, R. Qu, H. Dong, Cooperative double-layer genetic
programming hyper-heuristic for online container terminal truck dis-
patching, IEEE Transactions on Evolutionary Computation.

D. Kizilay, D. T. Eliiyi, A comprehensive review of quay crane schedul-
ing, yard operations and integrations thereof in container terminals,
Flexible Services and Manufacturing Journal 33 (1) (2021) 1-42.

A. Ramirez-Nafarrate, R. G. Gonzalez-Ramirez, N. R. Smith, R. Guerra-
Olivares, S. VoB, Impact on yard efficiency of a truck appointment
system for a port terminal, Annals of Operations Research 258 (2017)
195-216.

V. D. Nguyen, K. H. Kim, A dispatching method for automated lifting
vehicles in automated port container terminals, Computers & Industrial
Engineering 56 (3) (2009) 1002-1020.

H.-A. Lu, J.-Y. Jeng, Modeling and solution for yard truck dispatch
planning at container terminal, in: Operations Research Proceedings
2005, Springer, 2006, pp. 117-122.

Y.-L. Cheng, H.-C. Sen, K. Natarajan, C.-P. Teo, K.-C. Tan, Dispatching
automated guided vehicles in a container terminal, in: Supply chain
optimization, Springer, 2005, pp. 355-389.

H. R. Choi, B. K. Park, J. Lee, C. Park, Dispatching of container
trucks using genetic algorithm, in: The 4th International Conference
on Interaction Sciences, IEEE, 2011, pp. 146-151.

S. Desale, A. Rasool, S. Andhale, P. Rane, Heuristic and meta-heuristic
algorithms and their relevance to the real world: a survey, Int. J. Comput.
Eng. Res. Trends 351 (5) (2015) 2349-7084.

J. Mohan, K. Lanka, A. N. Rao, A review of dynamic job shop
scheduling techniques, Procedia Manufacturing 30 (2019) 34-39.

M. Sanchez, J. M. Cruz-Duarte, J. carlos Ortiz-Bayliss, H. Ceballos,
H. Terashima-Marin, I. Amaya, A systematic review of hyper-heuristics
on combinatorial optimization problems, IEEE Access 8 (2020) 128068—
128095.

F. Garza-Santisteban, R. Sdnchez-Pdmanes, L. A. Puente-Rodriguez,
I. Amaya, J. C. Ortiz-Bayliss, S. Conant-Pablos, H. Terashima-Marin, A
simulated annealing hyper-heuristic for job shop scheduling problems,
in: 2019 IEEE congress on evolutionary computation (CEC), IEEE,
2019, pp. 57-64.

L. N. Ahmed, E. Ozcan, A. Kheiri, Solving high school timetabling
problems worldwide using selection hyper-heuristics, Expert Systems
with Applications 42 (13) (2015) 5463-5471.

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

R. Bai, J. Blazewicz, E. K. Burke, G. Kendall, B. McCollum, A
simulated annealing hyper-heuristic methodology for flexible decision
support, 40OR 10 (2012) 43-66.

N. R. Sabar, M. Ayob, G. Kendall, R. Qu, Grammatical evolution hyper-
heuristic for combinatorial optimization problems, IEEE Transactions on
Evolutionary Computation 17 (6) (2013) 840-861.

J. R. Koza, Genetic programming as a means for programming comput-
ers by natural selection, Statistics and computing 4 (1994) 87-112.

F. Zhang, Y. Mei, S. Nguyen, K. C. Tan, M. Zhang, Instance rotation
based surrogate in genetic programming with brood recombination
for dynamic job shop scheduling, IEEE Transactions on Evolutionary
Computation.

Y. Jin, J. Branke, Evolutionary optimization in uncertain environments-
a survey, IEEE Transactions on evolutionary computation 9 (3) (2005)
303-317.

Z. Fan, Z. Wang, W. Li, X. Zhu, B. Hu, A.-M. Zou, W. Bao, M. Gu,
Z. Hao, Y. Jin, Automated pattern generation for swarm robots using
constrained multi-objective genetic programming, Swarm and Evolution-
ary Computation (2023) 101337.

Y. Mei, Q. Chen, A. Lensen, B. Xue, M. Zhang, Explainable artificial
intelligence by genetic programming: A survey, IEEE Transactions on
Evolutionary Computation.

S. Nguyen, Y. Mei, M. Zhang, Genetic programming for production
scheduling: a survey with a unified framework, Complex & Intelligent
Systems 3 (1) (2017) 41-66.

M. T. Ahvanooey, Q. Li, M. Wu, S. Wang, A survey of genetic
programming and its applications, KSII Transactions on Internet and
Information Systems (TIIS) 13 (4) (2019) 1765-1794.

L. I. Kuncheva, Combining pattern classifiers: methods and algorithms,
John Wiley & Sons, 2014.

R. Polikar, Ensemble based systems in decision making, IEEE Circuits
and systems magazine 6 (3) (2006) 21-45.

K. Theodorakos, O. M. Agudelo, J. Schreurs, J. A. Suykens, B. De Moor,
Island transpeciation: A co-evolutionary neural architecture search,
applied to country-scale air-quality forecasting, IEEE Transactions on
Evolutionary Computation.

H. Zhang, A. Zhou, H. Zhang, An evolutionary forest for regression,
IEEE Transactions on Evolutionary Computation 26 (4) (2021) 735-
749.

F. Ecer, S. Ardabili, S. S. Band, A. Mosavi, Training multilayer
perceptron with genetic algorithms and particle swarm optimization for
modeling stock price index prediction, Entropy 22 (11) (2020) 1239.
W. G. Jackson, E. Ozcan, J. H. Drake, Late acceptance-based selection
hyper-heuristics for cross-domain heuristic search, in: 2013 13th UK
‘Workshop on Computational Intelligence (UKCI), IEEE, 2013, pp. 228—
235.

W. B. Yates, E. C. Keedwell, Offline learning for selection hyper-
heuristics with elman networks, in: Artificial Evolution: 13th Inter-
national Conference, Evolution Artificielle, EA 2017, Paris, France,
October 25-27, 2017, Revised Selected Papers 13, Springer, 2018, pp.
217-230.

M. L. Minsky, Theory of neural-analog reinforcement systems and its
application to the brain-model problem, Princeton University, 1954.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, M. Riedmiller, Playing atari with deep reinforcement learning,
arXiv preprint arXiv:1312.5602.

C. D. Hubbs, H. D. Perez, O. Sarwar, N. V. Sahinidis, I. E. Grossmann,
J. M. Wassick, Or-gym: A reinforcement learning library for operations
research problems, arXiv preprint arXiv:2008.06319.

D. Zeng, L. Gu, S. Pan, J. Cai, S. Guo, Resource management at the
network edge: A deep reinforcement learning approach, IEEE Network
33 (3) (2019) 26-33.

R. Emuna, A. Borowsky, A. Biess, Deep reinforcement learning for
human-like driving policies in collision avoidance tasks of self-driving
cars, arXiv preprint arXiv:2006.04218.

H. Khorasgani, H. Wang, C. Gupta, Challenges of applying
deep reinforcement learning in dynamic dispatching, arXiv preprint
arXiv:2011.05570.

J. C. Chu, S. Yan, K.-L. Chen, Optimization of earth recycling and dump
truck dispatching, Computers & Industrial Engineering 62 (1) (2012)
108-118.

H. Van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with
double g-learning, in: Proceedings of the AAAI conference on artificial
intelligence, Vol. 30, 2016.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal
policy optimization algorithms, arXiv preprint arXiv:1707.06347.

	Introduction
	Background
	Dynamic truck dispatching in maritime container terminals
	Hyper-heuristic
	Genetic Programming
	Ensemble Methods
	Reinforcement Learning

	Problem description and formulation
	Methodologies
	Dynamic Truck Dispatching and Port Simulator
	Manual Heuristic
	DRL-GPHH & DRL-HH
	Environment
	State
	Actions
	Reward

	DRL-GPEHH & DRL-EHH
	Actions
	Reward

	Experiments and Discussion
	Experiment Design
	Experiment Results
	Ablation and Sensitivity Analysis

	Conclusion
	References

