
5

Layout and Constraints
In chapter 4 we discussed how user interfaces can be assembled from previously
built widgets. One of the issues that we deferred was the placement of those
widgets on the screen. When a user drags or resizes windows and other objects,
many other things must be kept consistent. Widgets must be repositioned,
connecting lines between objects must stay connected, alignments must be
preserved, etc. Keeping objects geometrically consistent is a fundamental
problem. When the objects are widgets it is called the layout problem. When the
objects are other things it is called constraints.

Figure 5.1 – Widgets move when windows are resized

 5-1

Consider the widgets in figure 5-1. When the window changes size, there are
a variety of things that happen. The scroll bars and color palette remain a
constant distance from the right and bottom edges. When there is not enough
room for the menu bar it changes itself to two lines. When the menu bar occupies

5-2 Principles of Interactive Systems

two lines, it causes the painting and the tool palette to move down to make room
for the second menu line. When there is not enough room for the line width
selector, it gets clipped off of the bottom. When the window gets narrower, the
paint region in the middle changes size. When the paint window changes size, the
scroll-bars change the size of their sliders. All of these work together so that the
user interface retains visual consistency. This chapter addresses these kinds of
issues. We will first discuss widget layout. Secondly we will look at constraints,
which are a more general model for maintaining visual and interactive
consistency.

Layout
Figure 5.1 demonstrates most of the problems that must be addressed by a

layout system. When we use windowed applications, we assume all widgets
move appropriately. However, this movement must be programmed to behave
correctly. The layout problem is complicated by the fact that we really want to
design layouts by drawing them. Since Bill Buxton’s MenuLay1 system was
published in 1983 it has been clear that drawing widgets and their layout is
preferable to programming the layout in many cases. Our layout models therefore
are constrained by whether we want to program them or draw them. If we want to
draw layouts, we must consider the user interface for doing so. The three most
popular layout algorithms are fixed position, edge-anchored and variable intrinsic
size.

For each style of layout we must deal with three issues: 1) what information
must be stored with the widgets from which the layout can be computed, 2) what
is the algorithm for computing the layout, and 3) how will the interface designer
specify the layout either interactively or programmatically.

Fixed position layout

The simplest layout mechanism is to assign every widget a fixed rectangle
whose coordinates are relative to the rectangle of its parent widget. Figure 5.2
shows a dialog box that uses a fixed layout. All of the widgets are of fixed size
and there are a fixed number of them. There is no reason to resize this dialog and
therefore a fixed layout is entirely appropriate.

Layout and Constraints 5-3

Figure 5.2 – Fixed size dialog

The data required is simply a rectangle for each widget and the layout
algorithm is very straightforward. Since each child has its desired bounds
determined relative to its container widget, the container widget simply sets the
child’s bounds location (left,top) to be its own location plus the desired child’s
location. The child’s size is unchanged from its desires. This allows a container
widget to be moved around and all of its children will stay in position relative to
the container. The recursive nature of the algorithm repositions children’s
children. The algorithm is shown in figure 5.3.

public class Widget
{
 other fields and methods
 public Rectangle desiredBounds;
 public void doLayout(Rectangle newBounds)
 { setBounds(newBounds);
 foreach child widget C
 { Rectangle newChildBounds=
 new Rectangle(newBounds.left+C.desiredBounds.left,
 newBounds.Top+C.desiredBounds.top,
 C.desiredBounds.width, C.desiredBounds.height);
 C.doLayout(newChildBounds);
 }
 }
}

Figure 5.3 – Fixed layout algorithm.

The advantages of fixed layout are a simple algorithm, minimal data and a
very simple model to specify. When designing programmatically we just need to
construct a rectangle with the desired location and size, set desiredBounds and then
add the widget to its container. Figure 5.4 shows an interface design being drawn

5-4 Principles of Interactive Systems

interactively. The designer positions and resizes each widget to create a complete
design. Designing an interface with fixed layout is as simple as drawing in a
variety of other applications. A final advantage is that the model is trivial to
understand and all widgets stay exactly where the designer has placed them. This
model was used in Apple’s HyperCard2 and early versions of Visual Basic. The
primary disadvantage is that it does not handle resizable windows. If the window
gets smaller, widgets are simply clipped or not displayed. If the window gets
bigger all of the widgets stay in the upper left-hand corner of the container and
waste the additional space. In cases like figure 5.2, this is fine but for the paint
program in figure 5.1, fixed layout would be unacceptable. In a toolkit that uses
fixed layout, the problems of figure 5.1 would need to be handled by special code
in response to window resize events. The edge-anchored and variable intrinsic
size layout algorithms attempt to eliminate the programmer’s need to write such
code.

Figure 5.4 – Drawing widget layouts

Edge-anchored layout

We can expand the fixed layout algorithm to accommodate most of the
common resizing needs. Note that in figure 5.1 most of the layout issues involve
keeping widgets collected around the edge of the pane with the central space
occupied by the primary paint area. We can accommodate this behavior by
modifying our widgets so that their edges can be anchored to the edges of their
container’s rectangle. This form of layout was first introduced by Cardelli3. One
of its more popular current uses is in Visual C# and Visual Basic.

Layout and Constraints 5-5

Using the C# form of edge-anchored layout, each widget has coordinates for
left, right, top and bottom. The interpretation of these depends upon the boolean
values anchorLeft, anchorRight, anchorTop, anchorBottom. In addition the widget has a
desiredWidth and desiredHeight. The algorithms for the X and Y axes are independent
and identical so we will only describe how the layout in X works.

The core idea is that an edge is either anchored or not. If an edge is anchored,
then it is a fixed distance away from the corresponding container edge. If only
one edge is anchored, then the desired width is used to determine the location of
the other edge. If neither edge is anchored, then the left value is used to compute
a proportional distance between the container edges and the desired width is used
for the other edge. If both edges are anchored, they follow their respective edges.
The algorithm is shown in figure 5.5.

Public class Widget
{
 other fields and methods . . .
 public Rectangle bounds;
 public int left, right, top, bottom;
 public boolean anchorLeft, anchorRight, anchorTop, anchorBottom;
 public int width, height;
 public const int MAXSIZE=4096;
 public void doLayout(Rectangle newBounds)
 {
 bounds=newBounds;
 foreach child widget C
 { Rectangle childBounds=new Rectangle();
 if (C.anchorLeft)
 { childBounds.left=newBounds.left+C.left;
 if (C.anchorRight)
 { childBounds.right=newBounds.right-C.right; }
 else
 { childBounds.right=childBounds.left+C.width; }
 }
 else if (C.anchorRight) // right is anchored left is not
 { childBounds.right=newBounds.right-C.right;
 childBounds.left=childBounds.right-C.width;
 }
 else // neither edge is anchored
 { childBounds.left = newBounds.width*C.left/MAXSIZE;
 childBounds.right=childBounds.left+C.width;
 }
 perform similar computation for Y
 C.doLayout(childBounds);
 }
 }
}

 Figure 5.5 – Edge-anchored layout algorithm

5-6 Principles of Interactive Systems

There are a few key ideas to this algorithm. The first is that a widget never
does it own layout, nor does it use the anchor or location information. The
widget’s container does all of that. When a widget receives a doLayout() call it
simply accepts the bounds information and then performs layout on its children if
it has any. Normally left and right are the number of pixels from their respective
edges. If one edge is unanchored then the width/height is used to compute its
position from the other anchored edge. If both edges are unanchored then we use
left to store a fractional value. Since left is an integer we use left/MAXSIZE as the
fractional value. For example if left==MAXSIZE/2 then width*left/MAXSIZE would be
width*(MAXSIZE/2)/MAXSIZE or width/2. This would horizontally center the widget.
Most layout problems can be handled with this mechanism. Setting left to 0
would place the widget at the far left.

To lay out a widget, a programmer sets the various member fields and adds
the widget to its container. The container then will make certain that the widget’s
bounds are placed in the correct position. Interactively, we need a user interface
to specify the values. For the most part the user interface is the same as that
shown in figure 5.4. The user draws out the bounding rectangle for the widget
and then moves it around to the correct place on the form. Visual Studio provides
a special editor for the anchors. Two examples of this are shown in figure 5.6.
The anchor editor on the left is the default and shows the widget anchored to the
top and left. This is exactly the same behavior as the fixed layout algorithm. The
editor on the right is only anchored to the left edge with the vertical position of
the widget to be proportional between the top and bottom.

Figure 5.6 – Anchor editors

Figure 5.7 shows an interface design with the form at two different sizes. The
button is using the anchors shown on the left in figure 5.6 and the text box is
using the anchors shown on the right.

Layout and Constraints 5-7

Figure 5.7 – Resizing with anchors

Revisiting our paint application in figure 5.1, we would lay out the pane with
the paint area and its scrollbars using anchors to all edges. This would allow
room for the menu bar above and the palettes below and to the left. The paint
area essentially grows with the window itself. The vertical scroll bar would be
anchored top, bottom and right to the paint area pane. Its left edge would be
determined by the width of the scroll bar.

Variable intrinsic size layout
The fixed layout and edge-anchored layout presume that the designer wants

to manually position the widgets. Many times this is not the case. There are many
situations where one wants to create a list or other group of widgets and have
them position themselves in an appropriate way. A good example is a menu. We
add items to the list and the items all position themselves in the list and the width
of the menu is automatically determined. We are not required to manually design
the menu, it just works. Another example is when changing an interface from
English to German or English to Kanji (Japanese ideographic writing). German
words are in general longer than English words. This means that many labels will
need to get larger, which will force changes in the layout. Using the two previous
mechanisms, the layout will need to be redrawn by the designer. Ideographic
languages cause similar layout distortions. Inserting or removing items from a list
will also cause the interface layout to be redesigned. In these cases we may prefer
a layout model that handles these automatically.

The variable intrinsic size layout is designed to automatically adapt the
layout to changes in interface content. The idea is that each widget knows how
much screen space it can reasonably use (intrinsic size) and each container has a
plan for how to allocate screen space based on the needs of its children. By
recursively arranging containers with various layout plans we can produce a wide
variety of designs that automatically adjust to their content.

5-8 Principles of Interactive Systems

This layout model was first developed Donald Knuth in his TEX4 system for
laying out mathematical formulae. This layout strategy was adapted to user
interfaces by Linton, Vlissides and Calder in their InterViews5 system. Its most
popular current use is in the Java user interface architecture. A restricted form of
this algorithm is used in HTML <table> tags.

Basic Layout Algorithm
The variable intrinsic size layout algorithm is based on two recursive passes.

The first pass requests each widget to report its desired size. The second pass sets
the widget bounds. The general algorithm is shown in figure 5.8.

public void doLayout(Rectangle newBounds)
{
 foreach child widget C
 { ask for desired size of C }
 based on desired sizes and newBounds, decide where each child should go
 foreach child widget C
 { C.doLayout(new bounds for C); }
}

Figure 5.8 – Generic layout algorithm

Most modern intrinsic size layouts ask a widget for its minimum size (the
smallest dimensions that it can effectively use), its desired size (the dimensions
that would work best for this widget) and its maximum size (the largest
dimensions that it can effectively use). These size values are determined by the
nature of each widget and, if it is a container, by the sizes of its children. This is
done by adding the methods in figure 5.9 to the Widget class. Each class of
widget must implement these three methods in its own way.

public class Dimension
{ public int width;
 public int height;
}

public class Widget
{
 . . . other methods and fields . . .
 public Dimension getMinSize() { . . . }
 public Dimension getDesiredSize() { . . . }
 public Dimension getMaxSize() { . . . }
}

Figure 5.9 – Abstract methods to report desired sizes

Layout and Constraints 5-9

Sizes of simple widgets
Figure 5.11 shows a button widget with various properties of the widget

identified. The marginWidth and bevelWidth are usually properties set by the designer.
The label width depends upon the actual text of the label and its font. There is
usually a margin height property that is not shown. The label height is also
computed from the label’s font. Based on these values we can implement the size
methods for a button as in figure 5.10.

public class Button
{ . . . other methods and fields . . .
 public Dimension getMinSize()
 { int minWidth = bevelWidth*2+font.getLength(labelText);
 int minHeight = bevelWidth*2+font.getHeight();
 return new Dimension(minWidth,minHeight);
 }
 public Dimension getDesiredSize()
 { int desWidth = bevelWidth*2+marginWidth*2+font.getLength(labelText);

 int minHeight=bevelWidth*2+marginHeight*2+font.getHeight();
 return new Dimension(desWidth,desHeight)
 }
 public Dimension getMaxSize()
 { return getDesiredSize(); }
}

Figure 5.10 – Desired size methods for an example button

Figure 5.11 – Button size parameters

For the minimum size we dispense with the margins around the text so that
the button can be as small as possible. We need the bevel space to show whether
the button has been pressed or not. Of course we must have the button label or
the user will not know the button’s purpose. The desired size adds in the margins

5-10 Principles of Interactive Systems

so the button will look better. Note that the maximum size is the same as the
desired size. There is no need to give the button more screen space.

Figure 5.12 shows a horizontal scroll bar. The scroll bar has different size
needs from the button. Its height is fixed so its min, desired and max height will
all be the same constant. Its minimum width would be arrowWidth*2+sliderWidth*2.
This would be just enough to show all of the controls with a little room to move
the slider. Its desired width might be arrowWidth*2+sliderWidth*5, which would
provide more room to scroll. Its maximum width would be some constant
MAXSIZE because the scroll bar wants as much horizontal space as it can get.

Figure 5.12 – Scroll bar

The paint region in figure 5.1 might specify a modest 20x20 as its minimum
to give just enough space to paint a small icon. For its desired size it might report
the size of a modest screen at 400x400. For its maximum size it wants as much
screen space as it can get so it would report MAXSIZE x MAXSIZE. This would allow
the paint region to grow and shrink as the window was resized.

Just because a widget has expressed a minimum or maximum size does not mean
that its container will not violate those requests. A widget must be prepared to deal with
whatever bounds it is given. For example if a button is too small it may truncate its text
or use a smaller font. If the button bounds are larger than the button’s maximum size it
might draw its bevel around the entire bounds and center its text.

Simple container layouts

So far we have discussed the size requirements of widgets that have no
children. We actually build designs by collecting widgets together in containers.
The simplest containers are the vertical and horizontal stack. In InterViews and
Java these are referred to as Box widgets. The menu in figure 5.13 is an example
of a vertical stack and the toolbar in figure 5.14 is an example of a horizontal
stack. Figure 5.15 shows a schematic of a horizontal stack. We can use this to
illustrate the layout of a stack.

Layout and Constraints 5-11

Figure 5.13 – Menu layout

Figure 5.14 – Toolbar layout

A B C D

Figure 5.15 – Horizontal stack

The size methods for this stack can be implemented as follows. The width is
the sum of the children’s widths and the height is the maximum of their heights.

5-12 Principles of Interactive Systems

By exchanging width and height we can implement a vertical stack. The
algorithms for the intrinsic sizes of a horizontal stack are in figure 5.16.

public class HorizontalStack
{
 public Dimension getMinSize()
 { int minWidth=0;
 int minHeight=0;
 foreach child widget C
 { Dimension childSize = C.getMinSize();
 minWidth += childSize.width;
 if (minHeight<childSize.height)
 { minHeight=childSize.height; }
 }
 return new Dimension(minWidth,minHeight);
 }
 public Dimension getDesiredSize()
 { similar to getMinSize using C.getDesiredSize() }
 public Dimension getMaxSize()
 { similar to getMinSize using C.getMaxSize() }
}

Figure 5.16 – Size reporting for a horizontal stack

The doLayout() method for a horizontal stack has a number of cases depending
upon the bounds the stack receives. It is common when a new window is opened
to request the desired size of the root widget and allocate that as the window size.
However, there may not be enough screen space for a window that big. The way
in which space is allocated among the children depends upon whether the width
is less than min, greater than min but less than desired, greater than desired but
less than max, or greater than max. The idea of the algorithm is to give each child
as much as possible and then divide up the remainder proportionally among the
children according to their requests. The layout algorithm for a horizontal stack is
shown in figure 5.17.

Layout and Constraints 5-13

public class HorizontalStack
{
 . . . the other methods and fields . . .
 public void doLayout(Rectangle newBounds)
 { Dimension min = getMinSize();
 Dimension desired = getDesiredSize();
 Dimension max = getMaxSize();

 If (min.width>=newBounds.width)
 { // give all children their minimum and let them be clipped
 int childLeft=newBounds.left;
 foreach child widget C
 { Rectangle childBounds = new Rectangle();
 childBounds.top=newBounds.top;
 childBounds.height=newBounds.height;
 childBounds.left=childLeft;
 childBounds.width= C.getMinSize().width;
 childLeft+=childBounds.width;
 C.doLayout(childBounds);
 }
 }
 else if (desired.width>=newBounds.width)
 { // give min to all and proportional on what is available for desired
 int desiredMargin = desired.width-min.width;
 float fraction= (float)(newBounds.width-min.width)/desiredMargin;
 int childLeft=newBounds.left;
 foreach child widget C
 { Rectangle childBounds=new Rectangle();
 childBounds.top=newBounds.top;
 childBounds.height=newBounds.height;
 childBounds.left=childLeft;
 int minWidth=C.getMinSize().width;
 int desWidth=C.getDesiredSize().width;
 childBounds.width=minWidth+(desWidth-minWidth)*fraction;
 childLeft+=childBounds.width;
 C.doLayout(childBounds);
 }
 }
 else
 { // allocate what remains based on maximum widths
 int maxMargin = max.width-desired.width;
 float fraction= (float)(newBounds.width-desired.width)/maxMargin;
 int childLeft=newBounds.left;
 foreach child widget C
 { . . . Similar code to previous case . . .
 }
 }
 }
}

Figure 5.17 – Layout algorithm for horizontal stack

5-14 Principles of Interactive Systems

Using combinations of vertical and horizontal stacks we can produce a
variety of layouts. For example figure 5.18 is composed of a horizontal stack that
contains a vertical stack of the Palette and Options containers and the vertical
stack of OK, Cancel and Preview widgets. The Options container is a vertical
stack. The Dither is actually a horizontal stack of the label “Dither” and a combo-
box that selects the dither mode.

Figure 5.18 – Layout composed of stacks of stacks

One of the problems that we have glossed over in our layout algorithm is the
efficiency of computing the desired sizes. The problem is in the recursive use of
the algorithm. In figure 5.18 the window will call the root widget to ask for its
desired size. The root widget will recursively call all of its children to compute
that size. When the root widget starts to do its layout it will call the Palette
group’s desired sizes again. When the Palette group starts its own layout it will
call the Colors group’s desired sizes yet again and finally when the Colors group
does its layout it will call desired sizes on the text box. If one counts carefully,
the desired size methods on the Colors text box was called at least 4 times. This
is true of almost every widget in figure 5.18. With a more complex structure as in
figure 5.1 the widgets will be called many more times. A second problem is that
the size of a window may be changed many times but the desires sizes of the
various widgets do not change often. To resolve this, most widget systems will
cache their desired sizes rather than recompute them. The problem then arises
when a widget really does change size. For most such toolkits an invalidate()
method is provided that informs the parent widget that the desired sizes are no
longer correct. To accommodate this, our horizontal stack widget’s code would
change as in figure 5.19. Note that the invalidate() method not only sets its own
sizes to be invalid, but also sends the invalidate() message to its container. The size

Layout and Constraints 5-15

change may propagate all the way up. Java/Swing, however, does not
automatically propagate invalidate() up the tree, which causes interfaces not to
change when they might be expected to. This can be remedied by overriding
invalidate() in a subclass and calling invalidate() on both the super class and the parent
container.

public class HorizontalStack
{
 private Dimension minSize;
 private Dimension desiredSize;
 private Dimension maxSize;
 private boolean sizesAreValid;
 public Dimension getMinSize()
 { if (sizesAreValid)
 return minSize;
 int minWidth=0;
 int minHeight=0;
 foreach child widget C
 { Dimension childSize = C.getMinSize();
 minWidth += childSize.width;
 if (minHeight<childSize.height)
 { minHeight=childSize.height; }
 }
 sizesAreValid=true;
 return new Dimension(minWidth,minHeight);
 }
 public Dimension getDesiredSize()
 { similar to getMinSize using C.getDesiredSize() }
 public Dimension getMaxSize()
 { similar to getMinSize using C.getMaxSize() }
 public void invalidate()
 { sizesAreValid=false;
 if (myContainer!=null)
 myContainer.invalidate();
 }
}

Figure 5.19 – Desired size code with caching

Spatial arrangement with intrinsic size layouts
Simple stacks are not generally enough to handle all of our layout issues.

Sometimes we want items centered. Sometimes we want items grouped at the
bottom or top of a list or possibly both. Sometimes we want to add extra space as
between the Cancel and Preview widgets in figure 5.18. We can do this with
“spreaders” and “spacers”. In InterViews they were called “glue” and in Java
they are the Box.Filler class. These are special widgets that do no drawing at all.
They are invisible. However, they do have min, desired, and max sizes. For

5-16 Principles of Interactive Systems

example, suppose we wanted 5 pixels of space between two widgets in a list. We
could create a spacer of 5 pixels, which is a widget whose min, desired, and max
sizes are all 5. We could add this to the list between the two widgets we want to
separate. It looks to the layout algorithm like it is a widget and gets allocated the
5 pixels, thus creating the space, but otherwise it does nothing.

If we want to push all widgets to the top of a list as on the right side of figure
5.18, we can end the list with a spreader widget that reports a very small min and
desired size but reports a very large maximum height. All of the other widgets
would get their desired sizes, but the spreader, because of its large maximum
height, would take everything else and thus push the other widgets up to the top.
Putting the spreader first in the list would push everything to the bottom. We can
center a widget horizontally by putting spreaders with large but equal maximum
widths on both sides of the widget to be centered. They would compete equally
for space and thus move the widget to the center. Changing the relative
magnitudes of their maximum widths could adjust the widget off of center if
desired. The use of spreaders and spacers is effective but not very intuitive for
new designers.

Layout Managers

In the original InterViews system, container widgets carried their own layout
algorithms. Thus one used a HorizontalStack or VerticalStack widget as a container to
perform the desired layout. The problem with this is that container widgets are
frequently the place where the view/controller code is placed. It is inconvenient
to change the class of the container whenever it is desired to change the layout.
Java handled this by creating the concept of layout managers. Layout managers
are separate objects that handle a particular style of layout. The desired layout for
a container now becomes a property that can be set rather than a change to the
class hierarchy. All container widgets inherit the same standard layout code. The
approach is shown in figure 5.20.

Layout and Constraints 5-17

public interface LayoutManager
{
 public Dimension getMinSize(Widget containerWidget);
 public Dimension getDesiredSize(Widget containerWidget);
 public Dimension getMaxSize(Widget containerWidget);
 public void doLayout(Rectangle newBounds, Widget containerWidget);
}
public class Widget
{
 . . . other methods and fields . . .

 private Dimension minSize;
 private Dimension desiredSize;
 private Dimension maxSize;
 private boolean sizesAreValid;

 private LayoutManager myLayout;
 public LayoutManager getLayoutManager() { return myLayout; }
 public void setLayoutManager(LayoutManager newLayout)
 { myLayout=newLayout;
 invalidate();
 }

 public Dimension getMinSize()
 { if (sizesAreValid)
 return minSize;
 minSize=myLayout.getMinSize(this);
 sizesAreValid=true;
 }
 public Dimension getDesiredSize() { . . . similar to getMinSize() . . . }
 public Dimension getMaxSize() { . . . similar to getMinSize() . . . }
 public void doLayout(Rectangle newBounds)
 { myLayout.doLayout(newBounds,this); }
}

Figure 5.20 – Layout algorithm with a LayoutManager

Note that setting the layout manager also calls invalidate() so that all of the
sizes will be recalculated and all of the containers of this widget will know that
their sizes are also invalid and need recomputation. LayoutManager is implemented
as an interface so that a variety of objects can serve as layout managers. Note that
all of the LayoutManager methods have an additional parameter for the container
being laid out. This is so that the layout manager will have access to the children
of the container to actually do the layout.

The code for laying out vertical and horizontal stacks can now go in special
layout manager classes rather than in containers. In addition there are other
layouts that can be created. The FlowLayout will arrange as many widgets as

5-18 Principles of Interactive Systems

possible in a horizontal row and then start a new row as with the left hand menu
in figure 5.1. Some layout managers require an additional location property on the
child widgets. The location property is a string or other object that gives
information about where the child should be placed in its container’s layout. One
example is the BorderLayout found in Java/Swing. This layout, shown in figure
5.21, captures the most popular window organization with palettes and buttons
around the outside and a large work area in the center. For this layout to work,
each child must have a location property of “north”, “south”, “east”, “west” or
“center”.

North

South

West EastCenter

Figure 5.21 – Border layout

Layout Summary
The fixed and edge-anchored layouts place widgets by defining a rectangle

location for each widget and then possibly tying that rectangle to the edges of its
container. These are good for interactive drawing of widget layouts. The variable
intrinsic size approach is more dynamic. We define a structure in which the
widgets are placed and then let that structure make the choices. This mechanism
allows for more extensive changes to be made to the interface content while
retaining a reasonable layout for all of the components. However, variable
intrinsic size can be frustrating to designers because widgets do not stay in place.
They move depending on the needs of other widgets.

Constraints

The most common geometric problems in user interfaces are widget layouts.
However, there are other kinds of geometry and we need mechanisms that

Layout and Constraints 5-19

support a consistent model of the geometric relationships between various parts
of the model and the view. One such representation system is constraints.

A constraint system is a set of equations that relate important variables from
the model, view and controller. A constraint is a single equation that relates some
of the variables. It is sometimes helpful to separate the static constraints, those
that must hold all of the time, and the situation constraints, those that only hold
for the particular problem we are trying to solve. For example with the scroll-bar
in figure 5.12 there are static constraints that define how min, current, and max
values relate to the position of the slider. These constraints must always hold.
However, when the user is dragging the slider there are situation constraints on
the position of the slider, the min and the max values. There is no constraint on
the current value because we want to solve for that value. A different situation
would be when the max value is changed. We would place situation constraints
on the min, max and current values because we know them. We would not have a
constraint on the position of the slider because we would not want that to move.
We would also not have a constraint on the mouse position because the mouse is
not involved when the max property is set. We will look at static and situation
constraints in more detail in our examples.

A system of constraints can be under constrained. This is when there are
fewer constraints than there are variables. We generally handle these situations
by solving the constraints that we know and then letting the other variables retain
the values they had before. A system can be over constrained when there more
equations than variables. It is common to handle this situation by defining
constraint priorities. That is we solve the highest priority constraints first and
then ignore any constraints left unresolved.

Example constraint systems
Constraints are best understood in the context of some examples. We will

first look at constraints for performing widget layout. We will then look at a
scroll-bar and a meter dial as representatives of more complicated constraints.

Layout constraints
The layout constraint problem is usually modeled as a system of constraints

with only one situation. That is the bounds of the layout have been set and we
need to compute the placement of the children. Figure 5.22 shows a container
widget with three child widgets. Various values have been labeled that will be
important to modeling their layout using constraints. The containing rectangle we
will call P for parent.

5-20 Principles of Interactive Systems

A B

C
leftM

topM

botM

yGap

xGap rightM

longLeft

longTop

Figure 5.22 – Layout by constraints

The simple fixed layout system defines the position of A, B and C relative to
the top left corner of P. The system constraints for fixed layout are shown in
figure 5.23.

leftM=10 longLeft=120
topM=7 longTop=40

A.width=100 A.height=150
B.width=60 B.height=25
C.width=60 C.height=120

A.left=P.left+leftM A.right=A.left+A.width
A.top=P.top+topM A.bot=A.top+A.height

B.left=P.left+longLeft B.right=B.left+B.width
B.top=P.top+topM B.bot=B.top+B.height

C.left=P.left+longLeft C.right=C.left+C.width
C.top=P.top+longTop C.bot=C.top+C.height

Figure 5.23 – System constraints for fixed layout

The first two sets of constraints are design constraints. These are the values
set when the user draws the layout of these three widgets. The situation
constraints for this system are constant values for P.left and P.right. Solving this
system of constraints is trivial. We simply set the location of P and then evaluate
each constraint in the order shown in figure 5.23. Because there is only one
situation, this evaluation order always works. Note that this system of constraints
does not use botM, rightM, xGap or yGap. P.right and P.bot are also ignored. Using fixed
layout, there is no way to take any of these into consideration.

Layout and Constraints 5-21

We can modify this system of constraints to use all of the edges of the
bounds. The constraints in figure 5.24 are edge-anchored constraints.

leftM=10 longLeft=120
topM=7 longTop=40
rightM=12 botM=7

A.width=100 A.height=150
B.width=60 B.height=25
C.width=60 C.height=120

A.left=P.left+leftM A.right=A.left+A.width
A.top=P.top+topM A.bot=P.bot-botM

B.left=P.left+longLeft B.right=P.right-rightM
B.top=P.top+topM B.bot=B.top+B.height

C.left=P.left+longLeft C.right=P.right-rightM
C.top=P.top+longTop C.bot=P.bot-botM

Figure 5.24 – System constraints for edge-anchored layout

This system of constraints is solved in the same fashion as edge anchored.
We set the value P.left, P.right, P.top, P.bot and then evaluate in top to bottom order.
When P changes size, A.bot and C.bot will stay a constant distance from the bottom
of the parent. In addition, B.right and C.right will move as P.right moves.

This is a better layout, because it makes use of the size of P, but it is still not
what we want because A is rigid in its width and B is rigid in its height. We also
do not have the kind of control that we would like. What we really want is for B
and C to stay a fixed distance from A no matter what the size of A may be. We
also want C to be a fixed distance below B no matter what the size of B. In
addition to all of this we would like the gaps to move proportionally relative to
the size of the parent giving each widget its share of the space. One way to do
this is with variable intrinsic size layouts. We could put B and C into a vertical
stack with a spacer for yGap, then put that stack into a horizontal stack with A and
another spacer for xGap. This whole package can be placed in other stacks with
other spacers for leftM, topM, rightM and botM.

This combination of stacks and spacers will work, but it seems counter-
intuitive. Figure 5.25 shows a system of constraints that will accomplish the same
thing. The widths and heights of A, B and C are now used to compute two new
variables xProp and yProp which are the fractional distance of A.right between the
horizontal edges and the fractional distance of B.bot between the vertical edges.
These in conjunction with xGap and yGap define our layout. As P gets wider A.right
will move proportionally to the right and widgets B and C will stay a constant

5-22 Principles of Interactive Systems

distance away. The design is manipulated by changing the constants for the
various gaps and margins.

leftM=10 xGap=10
topM=7 yGap=5
rightM=12 botM=7

A.width=100 A.height=150
B.width=60 B.height=25
C.width=60 C.height=125

xProp=(leftM+A.width)/(leftM+A.width+xGap+B.width+rightM)
yProp=(topM+B.height)/(topM+B.height+yGap+C.height+botM)

A.left=P.left+leftM A.right=xProp*P.width
A.top=P.top+topM A.bot=P.bot-botM

B.left=A.right+xGap B.right=P.right-rightM
B.top=P.top+topM B.bot=yProp*P.height

C.left=A.right+xGap C.right=P.right-rightM
C.top=B.bot+yGap C.bot=P.bot-botM

Figure 5.25 – Extended layout constraints

Constraints such as these are very powerful in providing explicit control over
layout positions. However, they are problematic as a design tool. The difficulty
lies in presenting an interactive layout tool that provides clear control over the
constraints. Luca Cardelli proposed a mechanism for drawing layout constraints
similar to those in figure 5.25. In his system each widget was drawn into position
inside of a parent widget. Each edge of a widget had a constraint handle,
represented as a small circle. If the user left the constraint handle undefined, then
that edge was placed proportionally between the corresponding edges of the
parent. The proportion was determined by where the edge had been drawn in the
design. The constraint handle could also be connected to any edge of any other
widget. This would create a constant distance constraint between those edges.
Figure 5.26 shows a Cardelli-style design that is consistent with the constraints in
figure 5.25. Since the Cardelli work there have been systems such as Apogee6
that allow designers to define invisible guidelines similar to what draftsmen do to
create alignments. Apogee also introduced maximum constraints that use the
maximum values of other constraints. This allows consistent alignments relative
to widgets of varying sizes. Other systems introduced squiggly lines to represent
spring or spreader style constraints that expand to fill whatever space is available.
All of these systems resolve to a set of constraint equations like those we have
been discussing.

Layout and Constraints 5-23

A B

C

Figure 5.26 – Layout design with Cardelli constraints

Interactive constraints
In layout constraint systems the size and location of the parent rectangle are

specified as the only situation constraints and all other positions are directly or
indirectly derived from those values using other constraints. There are, however,
interactive constraints that connect the geometry of a widget’s view and
controller to the values in the widget’s model. Changing parts of the model or
dragging parts of the geometry all cause updates to occur. The system constraints
preserve the consistency and the situation constraints define what is known for a
particular interactive task.

leftBnd sliderPos rightBnd

L S R

Figure 5.27 – Scroll-bar geometry

As our first example, consider the scroll-bar shown in figure 5.27. There is
an enclosing rectangle for the scroll-bar called P and three rectangular regions
within the scroll-bar called L, S and R. In addition, we have defined three
variables leftBnd, sliderPos and rightBnd. In our constraints we will define other
variables to simplify their creation. The goal of a scroll-bar is to present and
manipulate a model. The model for our scroll-bar is shown in figure 5.28. This
particular scroll-bar is intended to scroll a window across a larger region. We

5-24 Principles of Interactive Systems

want the width of the slider to reflect the width of the window. Therefore we
have added the windowWidth value to our model to represent how much of the area
between min and max is actually being displayed.

Scroll-bar model
 int min;
 int windowLeft;
 int max;
 int windowWidth;

Figure 5.28 – Scroll-bar model

Our system constraints for the scroll-bar are shown in figure 5.29. A most
common situation for this set of constraints is when the model is known and P is
known. From this information we need to compute the geometry of the view.
This would occur whenever there is a model change or whenever essential
geometry is required. Formally we would represent this situation by providing
constant constraints for all of the known values. In figure 5.29 we have simply
placed known constant variables in bold face. In any constraint where the value
of a variable was computed by a previous constraint, we underline that variable.

L.left=P.left
L.top=P.top
L.right=P.left+P.height // makes L square
L.bot=P.bot

R.right=P.right
R.top=P.top
R.left=P.right-P.height // makes R square
R.bot=P.bot

windowLeftRange=max-min-windowWidth // window moves between min and max but
 // the left does not move all the way to max
leftBnd=L.right+1
rightBnd=R.left-1

S.width = (windowWidth*(rightBnd-leftBnd)/(max-min))
 // compute slider width proportional to window width
S.top=P.top
S.bot=P.bot
sliderLeftRange=rightBnd-leftBnd-S.width
(S.left-leftBnd)/(rightBnd-leftBnd-S.width) = (windowLeft-min)/(max-min-windowWidth)

Figure 5.29 – System constraints for scroll-bar

Looking carefully at figure 5.29 we see that by evaluating these constraints
from top to bottom, each constraint has only one unknown variable, given the
constant constraints of the situation and previously compute variables. We thus
have a simple constraint solution process. There is a challenge on the last

Layout and Constraints 5-25

constraint. This is not a simple assignment. This constraint specifies the
relationship between the slider position and the windowLeft position. In the constant
model situation, we would solve for S.left because all other variables will be
known when we reach this constraint.

When the user drags the slider using the mouse, the final constraint is in a
different situation. The S.left is known because of the mouse position. The
windowLeft is not known because we need to compute that value from the mouse
position. In the slider dragging situation, we solve for windowLeft rather than S.left.
The system constraints are the same and retain the relationships across all
situations. The difference is in the situation constraints that provide our initial
constants.

A geometrically more complicated widget is shown in figure 5.30. Here we
have a meter whose needle shows a cur value between min and max, with min being
displayed to the left and max to the right. Our other variables are the points C,
where the center is, N where the needle meets the edge of the meter, M where the
mouse is dragging the meter needle, R where the max point of the meter arc
should be and L, which is a construction point we will need.

C
R

N

M

L

min
cur
max

Figure 5.30 – Meter widget geometry

In this widget many of the variables are points and in some cases the
constraints are defined as equations on points. Note that a point is really two
variables and an equation involving points is actually two equations, one for X
and one for Y. Figure 5.31 shows a possible set of system constraints for the
meter widget. The constraints in figure 5.31 are designed to mathematically
capture the relationships among all of the points and the model. They were not
necessarily designed to evaluate the constraints for any particular situation. These
constraints are also not all linear.

5-26 Principles of Interactive Systems

1. radius = sqrt((R.x-C.x)2+(R.y-C.y)2) // establish L, N and R at same distance from C
2. radius = sqrt((L.x-C.x)2+(L.y-C.y)2)
3. radius = sqrt((N.x-C.x)2+(N.y-C.y)2)
4. L.y = R.y

5. (M.x-C.x)/(N.x-C.x) = (M.y-C.y)/(N.y-C.y) // establish colinarity of C, M and N

6. cos(angleR)=(R.x-C.x)/radius
7. cos(angleL)=(L.x-C.x)/radius
8. cos(angleN)=(N.x-C.x)/radius

9. (cur-min)/(max-min) = (angleN-angleL)/(angleR-angleL) // relate model to geometry

Figure 5.31 – System constraints for meter widget

Our first situation is where the model, C and R are known. What we need is
the necessary information to draw the meter. To do this we will need to compute
point N to draw the needle as well as radius, angleR and angleL to draw the meter
arc. We start with the situation constraints that give constant values to min, cur,
max, C.x, C.y, R.x, and R.y.

• Constraint 1 give us radius from C and R.
• Constraint 4 can give us the value of L.y.
• Solve constraint 2 for L.x.
• Solve constraint 6 for angleR.
• Solve constraint 7 for angleL.
• Solve constraint 9 for angleN.
• Solve constraint 8 for N.x.
• Solve constraint 3 for N.y.

For this situation we used an algorithm known as the propagation of known
states7. This algorithm will provide an ordering to the constraints that the variable
that must be solved for each constraint. Given the situation constraints there are
several variables that are automatically known. We search our list for a constraint
that has exactly one unknown variable. We solve the constraint for that variable
and then add the solved constraint to our list of solutions. We mark the solved
variable as known and continue.

This algorithm stops when there are no remaining constraints with exactly
one unknown. If there are still unknown variables then either the system is
underconstrained or simultaneous solutions are required. In this particular system
we avoided solving for the intersection of the needle line equation and the arc,
which would have involved simultaneous equation solutions. The constraint

Layout and Constraints 5-27

system in figure 5.31 is underconstrained because we cannot solve for M.
However, we do not need M in this situation and therefore we do not care.

A second situation for our meter widget is when min, max, C, R and M are
known. This occurs when we use the mouse to set the needle position and thus
change the value of cur.

• Solve constraint 1 for radius.
• Solve constraint 4 for L.y.
• Solve constraint 2 for L.x.
• Solve constraint 7 for angleL.
• Solve constraint 6 for angleR.
• Simultaneously solve constraints 3 and 5 for point N.
• Solve constraint 8 for angleN.
• Solve constraint 9 for cur.

This situation demonstrates the need to solve simultaneous equations and
some of the challenges of working with constraints. We could have escaped the
simultaneous equation problem by adding constraints that tied M to the model
rather than to N. The mouse input situation could then have been solved by
simple propagation of known states.

We have also ignored the situation where there are multiple solutions to a
constraint. Constraints 1-3 are quadratic and may have zero, one or two solutions.
A simple technique in the case of multiple solutions is to choose the solution
closest to the previous value of the variable. This works in many cases because
interaction is generally incremental, but not in all cases. Another alternative is to
add inequality constraints that restrict possible solutions.

Constraint solution techniques
In the preceding section we have seen how constraints can be used to model

the relationships between widgets and portions of a view. A set of constraints is
not the same as executable code that we can put into widgets. At one level we
can use the constraints as a design tool and then write code from the constraints.
This is a useful exercise where there is a tight relationship between geometry and
the model because it is very easy to get these issues wrong and produce a hideous
tangle of code. Some researchers have pursued the creation of constraint systems
with automatic techniques for solving them.

5-28 Principles of Interactive Systems

There are three major techniques for solving systems of constraints. There
are the iterative techniques derived from numerical analysis and optimization
theory. These techniques are sometimes used for graph layout problems but are
generally too slow for use as an integral part of most user interfaces. However,
increasing processor speed may remove that barrier. There are the symbolic
equation solvers using techniques from programs like MatLab8, Maple9 and
Mathematica10. These applications are designed as automatic aids for
mathematicians, but most have the nice property of generating C or Java code
from their resulting solutions. They can be useful in developing a solution by
hand for a particular widget design problems.

In user interface work the goal is usually to convert the constraints of a
particular situation into a sequence of program statements that will compute the
solution. There are two parts to this problem. The first is to solve a particular
constraint for a particular variable. The second is to plan or order the constraints
so that all variables except the one being solved for are known before a constraint
is evaluated.

One-way constraints

A popular set of constraints are the one-way constraints. In such systems
every constraint has the form y=f(x1,x2,. . .). Such a constraint maps directly to an
assignment statement. Figure 5.25 is an example of a one-way constraint system.
With such a system of constraints we only need to order them so that for each
constraint all of the arguments (x1,x2,. . .) have been computed before the
constraint is evaluated. Because one-way constraints are already in the form of an
assignment statement there is no automatic algebra to be performed. One-way
constraints are the basis for spreadsheets. The early spreadsheet systems used the
fixed point algorithm to iterate over all constraints until there is no change. This
is simple to implement but not very efficient. The propagation of known states
algorithm described earlier will produce an efficient solution to a set of one-way
constraints.

One-way constraints are also found in attribute grammars11 from compiler
theory. Attribute grammars are designed to propagate semantic information
through the parse tree of a program fragment. This concept of propagation
through a tree also applies to hierarchic visual models such as widget trees and
other models that we will see.

Layout and Constraints 5-29

Incremental one-way constraints

There is also an efficient algorithm for incremental evaluation of one-way
constraints. In interactive settings generally one or two variables are changed.
What we want is an efficient algorithm for evaluating only those constraints that
must be evaluated to be consistent with the change. In the simple constraint
systems that we have looked at, this is not an issue, but in more complex systems
involving hundreds to thousands of objects with many interconnecting
constraints this can be a serious issue.

A simple incremental algorithm is recursive evaluation of all affected
constraints. Figure 5.32 shows an algorithm to update all necessary constraints
when some variable C is changed. When a variable is changed, all constraints that
use that variable are changed and they must be updated also. This updating
propagates recursively until all changes have been recomputed.

{ . . .
 updateVariable(C);
}
public void updateVariable(Variable V)
{
 For each constraint C where V appears as an argument
 {
 C.evaluate();
 updateVariable(C.result);
 }
}

Figure 5.32 – Simple incremental constraint evaluation

This recursive incremental evaluation has serious problems. If some variable
is used in multiple constraints and those results are then used in multiple
constraints, a given constraint may be evaluated many times based on all of the
ways in which values could have changed. There may also be partial evaluations
because some of the argument changes will propagate later through different
paths. In the extreme this algorithm will evaluate a constraint an exponential
number of times.

A more efficient algorithm is based on an incremental attribute flow
algorithm12. In this algorithm, shown in figure 5.33, every variable has a value
and in addition a boolean “known” flag to identify that this variable has a known
value. Using this flag, a more efficient two pass algorithm can be designed that
computes only the necessary constraints and only computes them once. Figure
5.33 shows a revised algorithm for updating variable C. This algorithm first
propagates the “unknown” state through the constraint system to mark all

5-30 Principles of Interactive Systems

variables to be changed as unknown. The pass that updates the variables will only
update a variable if all arguments are known. Thus the actual evaluation of a
constraint is put off until it has all changes, not just the first one.

{ . . .
 markUnknown(C);
 assign new value to C
 updateVariable(C);
}
public void markUnknown(Variable V)
{
 if (!V.known) return
 V.known=false;
 For each constraint C where V appears as an argument
 { markUnknown(C.result); }
}
public void updateVariable(Variable V)
{
 V.known=true;
 For each constraint C where V appears as an argument
 { if (for all arguments A of C, A.known is true and C.known is false)
 {
 C.evaluate();
 updateVariable(C.result);
 }
 }
}

Figure 5.33 – Efficient incremental constraint evaluation

Hudson13 observed that in user interfaces, the existence of scrolling, zooming
and other techniques means that only a fraction of the geometry of many widgets
is on display at any one time. Rather than recompute all constraints affected by a
change we should only recompute those that are actually visible. This created a
“push-pull” algorithm where the model would “push” changes through the
system as in figure 5.33 while the view would “pull” visible values. This
algorithm is shown in figure 5.34.

Layout and Constraints 5-31

{ . . .
 markUnknown(C);
 assign new value to C
 For each visible variable V
 { computeValue(V); }
}
public void markUnKnown(Variable V)
{ . . . as in figure 5.33 . . }
public void computeValue(Variable V)
{
 if (V.known) return;
 C=the constraint that will compute V;
 For each argument A of C
 { computeValue(A); }
 C.evaluate();
 V.known=true;
}

Figure 5.34 – “Push-pull” incremental constraint evaluation

The “push” part of the algorithm in markUnknown() will mark all changes as
unknown. However, the “pull” part in computeValue() will only recompute values as
they are actually needed. Values that are not needed are not computed and remain
marked as unknown. The “push” will not reenter those constraints because they
are already unknown and they will never be visited again until there is some
need. When scrolling or some other change of the view causes new values to be
exposed, the view should call computeValue() on them. If they have been changed,
the new values will be computed. If they have not, then nothing is done. This is a
very efficient model for managing update of change.

Multi-way constraints

The biggest disadvantage of one-way constraints is that they are one way
while interaction is inherently two-way. Sometimes the model changes and the
view must update and sometimes the controller changes the geometry of the view
and the model must update. One-way constraints do not capture these
multidirectional changes.

In figure 5.35 we show a constraint taken from figure 5.31 that describes the
relationship between the angle of the meter needle and the model variables.
Algebraically we could solve for any of the variables in this constraint. However,
we do not want to code up an algebra solver and we really only need two
solutions. We need to solve for angleN when the model has changed and we need
to move the needle, and for cur when the needle has moved and we want to
update the model. In figure 5.35 we augment the general constraint with two one-

5-32 Principles of Interactive Systems

way constraints. Each of these is identical to the original constraint. In different
situations different variables will be known and either of these two variants can
be computed. What we have done is use a human algebra solver to give us
something that our propagation of known states algorithm can readily use.

(cur-min)/(max-min) = (angleN-angleL)/(angleR-angleL)

 cur=min+(max-min)*(angleN-angleL)/(angler-angleL)
 angleN=angleL+(angleR-angleL)*(cur-min)/(max-min)

Figure 5.35 – Using multiple one-way constraints

Simultaneous constraints

Most of the work involving simultaneous constraints uses iterative solutions.
Borning14 reports a very efficient algorithm using linear programming to solve a
variety of interactive problems. Juno15 constructed many geometric relationships
using the standard constraints from compass/straightedge geometry. This work
showed a variety of relationships with iterative numerical solving. Olsen and
Allan16 observed that most simultaneous equations involved the intersection of
pairs of geometric equations. In figure 5.30 the simultaneous constraints solve for
point N, given the line of the needle and the circle of the meter boundary. All
possible intersections of lines and circles were solved by hand and encoded. The
propagation of known states algorithm was extended so that when no constraints
were available with a single unknown variable, a pair of constraints with a shared
point was found and the simultaneous solution was selected from the set of pre-
solved solutions. This created a tool for designing a variety of geometric widgets
by drawing their view and their constraints.

Constraint Summary

Constraints are equations that define the relationship between geometric
entities in a view, mouse inputs in the controller and model information. They
provide a mathematical basis for many layout mechanisms as well as a
representation of a variety of view/model problems. Solving a system of
constraints involves finding a set of variable values for which all of the constraint
equations are true. There are very general numeric solutions, but they are
generally too slow for interactive use. The propagation of known states algorithm
works from known values looking for constraints that have exactly one unknown
variable, solving for that variable and adding the solution to the list of solutions.
This produces a pre-solved set of assignment statements that are readily
translated into code.

Layout and Constraints 5-33

The simplest constraint systems use functional or one-way constraints. Here
the constraint equations are already solved, however, for only one variable.
Solving the constraint system involves ordering the constraint evaluation so that
all arguments are known before they are required. The one-way constraints also
have an incremental solution that minimizes the number of constraints that must
be evaluated in response to a small change in variable values. By specifying more
than one solution for a constraint, the propagation of known states algorithm can
be extended to the multi-way constraints required for interaction.

1 Buxton, W., Lamb, M.R., Sherman, D., and Smith, K. C., “Towards a
Comprehensive User Interface Management System”, Computer Graphics 17(3),
1983.

2 Goodman, D. The Complete HyperCard Handbook, New York: Bantam
Books, 1987.

3 Cardelli, L. “Building User Interfaces by Direct Manipulation,” ACM
SIGGRAPH Symposium on User Interface Software, October 1988, p 152-166.

4 Knuth, D. The TeXbook, Addison-Wesley, Reading Mass., 1984.
5 Linton, M.A., Vlissides, J.M., and Calder, P.R., “Composing User

Interfaces with InterViews”, IEEE Computer, 22(2), Feb 1989, pp 8-22.
6 Hudson, S. E. “Graphical Specification of Flexible User Interface

Displays,” User interface Software and Technology (UIST 89) ACM Press, New
York, NY, (1989) 105-114.

7 Borning, A. and Duisberg, R. “Constraint-based Tools for Building User
Interfaces.” ACM Trans. Graph. 5, 4 (Oct. 1986), 345-374.

8 Palm, W. and Palm, W. J., Introduction to MATLAB 7 for Engineers,
McGraw-Hill, (2003).

9 Heck, A. Introduction to Maple, Springer (2003).
10 Wolfram, S. The Mathematica Book, Wolfram Media (2003).
11 Aho, A. V., Sethi, R., and Ullman, J. D., Compilers: Principles,

Techniques, and Tools, Addison-Wesley, (1986).
12 Reps, T., Teitelbaum, T., and Demers, A. “Incremental Context-Dependent

Analysis for Language-Based Editors.” ACM Trans. Program. Lang. Syst. 5, 3
(Jul. 1983), 449-477.

5-34 Principles of Interactive Systems

13 Hudson, S. E. “Incremental Attribute Evaluation: A Flexible Algorithm for

Lazy Update. ACM Trans. Program. Lang. Syst. 13, 3 (Jul. 1991), 315-341.
14 Badros, G. J., Borning, A., and Stuckey, P. J. “The Cassowary Linear

Arithmetic Constraint Solving Algorithm.” ACM Trans. Comput.-Hum. Interact.
8, 4 (Dec. 2001), 267-306.

15 Nelson, G. “Juno, A Constraint-based Graphics System.” Computer
Graphics and Interactive Techniques (SIGGRAPH ’85),

16 Olsen, D. R. and Allan, K. “Creating Interactive Techniques by
Symbolically Solving Geometric Constraints,” User Interface Software and
Technology (UIST ’90) ACM Press, New York, NY, (1990) 102-107.

	Layout and Constraints
	Layout
	Fixed position layout
	Edge-anchored layout
	Variable intrinsic size layout
	Basic Layout Algorithm
	Sizes of simple widgets
	Simple container layouts
	Spatial arrangement with intrinsic size layouts
	Layout Managers

	Layout Summary

	Constraints
	Example constraint systems
	Layout constraints
	Interactive constraints
	Constraint solution techniques
	One-way constraints
	Incremental one-way constraints
	Multi-way constraints
	Simultaneous constraints

	Constraint Summary

