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Layout and Constraints 
In chapter 4 we discussed how user interfaces can be assembled from previously 
built widgets. One of the issues that we deferred was the placement of those 
widgets on the screen. When a user drags or resizes windows and other objects, 
many other things must be kept consistent. Widgets must be repositioned, 
connecting lines between objects must stay connected, alignments must be 
preserved, etc. Keeping objects geometrically consistent is a fundamental 
problem. When the objects are widgets it is called the layout problem. When the 
objects are other things it is called constraints. 

 
Figure 5.1 – Widgets move when windows are resized 
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Consider the widgets in figure 5-1. When the window changes size, there are 
a variety of things that happen. The scroll bars and color palette remain a 
constant distance from the right and bottom edges. When there is not enough 
room for the menu bar it changes itself to two lines. When the menu bar occupies 
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two lines, it causes the painting and the tool palette to move down to make room 
for the second menu line. When there is not enough room for the line width 
selector, it gets clipped off of the bottom. When the window gets narrower, the 
paint region in the middle changes size. When the paint window changes size, the 
scroll-bars change the size of their sliders. All of these work together so that the 
user interface retains visual consistency. This chapter addresses these kinds of 
issues. We will first discuss widget layout. Secondly we will look at constraints, 
which are a more general model for maintaining visual and interactive 
consistency. 

Layout 
Figure 5.1 demonstrates most of the problems that must be addressed by a 

layout system. When we use windowed applications, we assume all widgets 
move appropriately. However, this movement must be programmed to behave 
correctly. The layout problem is complicated by the fact that we really want to 
design layouts by drawing them. Since Bill Buxton’s MenuLay1 system was 
published in 1983 it has been clear that drawing widgets and their layout is 
preferable to programming the layout in many cases. Our layout models therefore 
are constrained by whether we want to program them or draw them. If we want to 
draw layouts, we must consider the user interface for doing so. The three most 
popular layout algorithms are fixed position, edge-anchored and variable intrinsic 
size. 

For each style of layout we must deal with three issues: 1) what information 
must be stored with the widgets from which the layout can be computed, 2) what 
is the algorithm for computing the layout, and 3) how will the interface designer 
specify the layout either interactively or programmatically. 

Fixed position layout 

   

 

The simplest layout mechanism is to assign every widget a fixed rectangle 
whose coordinates are relative to the rectangle of its parent widget. Figure 5.2 
shows a dialog box that uses a fixed layout. All of the widgets are of fixed size 
and there are a fixed number of them. There is no reason to resize this dialog and 
therefore a fixed layout is entirely appropriate. 
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Figure 5.2 – Fixed size dialog 

The data required is simply a rectangle for each widget and the layout 
algorithm is very straightforward. Since each child has its desired bounds 
determined relative to its container widget, the container widget simply sets the 
child’s bounds location (left,top) to be its own location plus the desired child’s 
location. The child’s size is unchanged from its desires. This allows a container 
widget to be moved around and all of its children will stay in position relative to 
the container. The recursive nature of the algorithm repositions children’s 
children. The algorithm is shown in figure 5.3. 

public class Widget 
{ 
  other fields and methods 
 public Rectangle desiredBounds; 
 public void doLayout(Rectangle newBounds) 
 { setBounds(newBounds); 
  foreach child widget C 
  { Rectangle newChildBounds= 
    new Rectangle(newBounds.left+C.desiredBounds.left, 
     newBounds.Top+C.desiredBounds.top, 
     C.desiredBounds.width, C.desiredBounds.height); 
   C.doLayout(newChildBounds); 
  } 
 } 
} 

Figure 5.3 – Fixed layout algorithm. 

The advantages of fixed layout are a simple algorithm, minimal data and a 
very simple model to specify. When designing programmatically we just need to 
construct a rectangle with the desired location and size, set desiredBounds and then 
add the widget to its container. Figure 5.4 shows an interface design being drawn 
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interactively. The designer positions and resizes each widget to create a complete 
design. Designing an interface with fixed layout is as simple as drawing in a 
variety of other applications. A final advantage is that the model is trivial to 
understand and all widgets stay exactly where the designer has placed them. This 
model was used in Apple’s HyperCard2 and early versions of Visual Basic. The 
primary disadvantage is that it does not handle resizable windows. If the window 
gets smaller, widgets are simply clipped or not displayed. If the window gets 
bigger all of the widgets stay in the upper left-hand corner of the container and 
waste the additional space. In cases like figure 5.2, this is fine but for the paint 
program in figure 5.1, fixed layout would be unacceptable. In a toolkit that uses 
fixed layout, the problems of figure 5.1 would need to be handled by special code 
in response to window resize events. The edge-anchored and variable intrinsic 
size layout algorithms attempt to eliminate the programmer’s need to write such 
code. 

 
Figure 5.4 – Drawing widget layouts 

Edge-anchored layout 

   

 

We can expand the fixed layout algorithm to accommodate most of the 
common resizing needs. Note that in figure 5.1 most of the layout issues involve 
keeping widgets collected around the edge of the pane with the central space 
occupied by the primary paint area. We can accommodate this behavior by 
modifying our widgets so that their edges can be anchored to the edges of their 
container’s rectangle. This form of layout was first introduced by Cardelli3. One 
of its more popular current uses is in Visual C# and Visual Basic.  
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Using the C# form of edge-anchored layout, each widget has coordinates for 
left, right, top and bottom. The interpretation of these depends upon the boolean 
values anchorLeft, anchorRight, anchorTop, anchorBottom. In addition the widget has a 
desiredWidth and desiredHeight. The algorithms for the X and Y axes are independent 
and identical so we will only describe how the layout in X works. 

The core idea is that an edge is either anchored or not. If an edge is anchored, 
then it is a fixed distance away from the corresponding container edge. If only 
one edge is anchored, then the desired width is used to determine the location of 
the other edge. If neither edge is anchored, then the left value is used to compute 
a proportional distance between the container edges and the desired width is used 
for the other edge. If both edges are anchored, they follow their respective edges. 
The algorithm is shown in figure 5.5.  

Public class Widget 
{ 
 . . . .  other fields and methods . . . 
 public Rectangle bounds; 
 public int left, right, top, bottom; 
 public boolean anchorLeft, anchorRight, anchorTop, anchorBottom; 
 public int width, height; 
 public const int MAXSIZE=4096; 
 public void doLayout( Rectangle newBounds) 
 { 
  bounds=newBounds; 
  foreach child widget C 
  { Rectangle childBounds=new Rectangle(); 
   if (C.anchorLeft) 
   { childBounds.left=newBounds.left+C.left; 
    if (C.anchorRight) 
    { childBounds.right=newBounds.right-C.right; } 
    else 
    { childBounds.right=childBounds.left+C.width; } 
   } 
   else if (C.anchorRight) // right is anchored left is not 
   { childBounds.right=newBounds.right-C.right;  
    childBounds.left=childBounds.right-C.width; 
   } 
   else // neither edge is anchored 
   { childBounds.left = newBounds.width*C.left/MAXSIZE; 
    childBounds.right=childBounds.left+C.width; 
   } 
   . . . . perform similar computation for Y . . . . 
   C.doLayout(childBounds); 
  } 
 } 
} 

 Figure 5.5 – Edge-anchored layout algorithm 
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There are a few key ideas to this algorithm. The first is that a widget never 
does it own layout, nor does it use the anchor or location information. The 
widget’s container does all of that. When a widget receives a doLayout() call it 
simply accepts the bounds information and then performs layout on its children if 
it has any. Normally left and right are the number of pixels from their respective 
edges. If one edge is unanchored then the width/height is used to compute its 
position from the other anchored edge. If both edges are unanchored then we use 
left to store a fractional value. Since left is an integer we use left/MAXSIZE as the 
fractional value. For example if left==MAXSIZE/2 then width*left/MAXSIZE would be 
width*(MAXSIZE/2)/MAXSIZE or width/2. This would horizontally center the widget. 
Most layout problems can be handled with this mechanism. Setting left to 0 
would place the widget at the far left.  

To lay out a widget, a programmer sets the various member fields and adds 
the widget to its container. The container then will make certain that the widget’s 
bounds are placed in the correct position. Interactively, we need a user interface 
to specify the values. For the most part the user interface is the same as that 
shown in figure 5.4. The user draws out the bounding rectangle for the widget 
and then moves it around to the correct place on the form. Visual Studio provides 
a special editor for the anchors. Two examples of this are shown in figure 5.6. 
The anchor editor on the left is the default and shows the widget anchored to the 
top and left. This is exactly the same behavior as the fixed layout algorithm. The 
editor on the right is only anchored to the left edge with the vertical position of 
the widget to be proportional between the top and bottom.  

 
Figure 5.6 – Anchor editors  

   

 

Figure 5.7 shows an interface design with the form at two different sizes. The 
button is using the anchors shown on the left in figure 5.6 and the text box is 
using the anchors shown on the right. 
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Figure 5.7 – Resizing with anchors 

Revisiting our paint application in figure 5.1, we would lay out the pane with 
the paint area and its scrollbars using anchors to all edges. This would allow 
room for the menu bar above and the palettes below and to the left. The paint 
area essentially grows with the window itself. The vertical scroll bar would be 
anchored top, bottom and right to the paint area pane. Its left edge would be 
determined by the width of the scroll bar.  

Variable intrinsic size layout 
The fixed layout and edge-anchored layout presume that the designer wants 

to manually position the widgets. Many times this is not the case. There are many 
situations where one wants to create a list or other group of widgets and have 
them position themselves in an appropriate way. A good example is a menu. We 
add items to the list and the items all position themselves in the list and the width 
of the menu is automatically determined. We are not required to manually design 
the menu, it just works. Another example is when changing an interface from 
English to German or English to Kanji (Japanese ideographic writing). German 
words are in general longer than English words. This means that many labels will 
need to get larger, which will force changes in the layout. Using the two previous 
mechanisms, the layout will need to be redrawn by the designer. Ideographic 
languages cause similar layout distortions. Inserting or removing items from a list 
will also cause the interface layout to be redesigned. In these cases we may prefer 
a layout model that handles these automatically.  

The variable intrinsic size layout is designed to automatically adapt the 
layout to changes in interface content. The idea is that each widget knows how 
much screen space it can reasonably use (intrinsic size) and each container has a 
plan for how to allocate screen space based on the needs of its children. By 
recursively arranging containers with various layout plans we can produce a wide 
variety of designs that automatically adjust to their content. 
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This layout model was first developed Donald Knuth in his TEX4 system for 
laying out mathematical formulae. This layout strategy was adapted to user 
interfaces by Linton, Vlissides and Calder in their InterViews5 system. Its most 
popular current use is in the Java user interface architecture. A restricted form of 
this algorithm is used in HTML <table> tags. 

Basic Layout Algorithm 
The variable intrinsic size layout algorithm is based on two recursive passes. 

The first pass requests each widget to report its desired size. The second pass sets 
the widget bounds. The general algorithm is shown in figure 5.8. 

public void doLayout(Rectangle newBounds) 
{ 
 foreach child widget C 
 { ask for desired size of C } 
 based on desired sizes and newBounds, decide where each child should go 
 foreach child widget C 
 { C.doLayout( new bounds for C); } 
} 
 

Figure 5.8 – Generic layout algorithm 

Most modern intrinsic size layouts ask a widget for its minimum size (the 
smallest dimensions that it can effectively use), its desired size (the dimensions 
that would work best for this widget) and its maximum size (the largest 
dimensions that it can effectively use). These size values are determined by the 
nature of each widget and, if it is a container, by the sizes of its children. This is 
done by adding the methods in figure 5.9 to the Widget class. Each class of 
widget must implement these three methods in its own way. 

public class Dimension 
{ public int width; 
 public int height; 
} 
 
public class Widget 
{ 
 . . . other methods and fields . . . 
 public Dimension getMinSize() { . . . } 
 public Dimension getDesiredSize() { . . . } 
 public Dimension getMaxSize() { . . . } 
} 

Figure 5.9 – Abstract methods to report desired sizes 
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Sizes of simple widgets 
Figure 5.11 shows a button widget with various properties of the widget 

identified. The marginWidth and bevelWidth are usually properties set by the designer. 
The label width depends upon the actual text of the label and its font. There is 
usually a margin height property that is not shown. The label height is also 
computed from the label’s font. Based on these values we can implement the size 
methods for a button as in figure 5.10. 

public class Button 
{ . . . other methods and fields . . . 
 public Dimension getMinSize() 
 { int minWidth = bevelWidth*2+font.getLength(labelText); 
  int minHeight = bevelWidth*2+font.getHeight(); 
  return new Dimension(minWidth,minHeight); 
 } 
 public Dimension getDesiredSize() 
 { int desWidth = bevelWidth*2+marginWidth*2+font.getLength(labelText); 

  int minHeight=bevelWidth*2+marginHeight*2+font.getHeight(); 
  return new Dimension(desWidth,desHeight) 
 } 
 public Dimension getMaxSize() 
 { return getDesiredSize(); } 
} 

Figure 5.10 – Desired size methods for an example button 

 
Figure 5.11 – Button size parameters 

For the minimum size we dispense with the margins around the text so that 
the button can be as small as possible. We need the bevel space to show whether 
the button has been pressed or not. Of course we must have the button label or 
the user will not know the button’s purpose. The desired size adds in the margins 
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so the button will look better. Note that the maximum size is the same as the 
desired size. There is no need to give the button more screen space. 

Figure 5.12 shows a horizontal scroll bar. The scroll bar has different size 
needs from the button. Its height is fixed so its min, desired and max height will 
all be the same constant. Its minimum width would be arrowWidth*2+sliderWidth*2. 
This would be just enough to show all of the controls with a little room to move 
the slider. Its desired width might be arrowWidth*2+sliderWidth*5, which would 
provide more room to scroll. Its maximum width would be some constant 
MAXSIZE because the scroll bar wants as much horizontal space as it can get. 

 
Figure 5.12 – Scroll bar 

The paint region in figure 5.1 might specify a modest 20x20 as its minimum 
to give just enough space to paint a small icon. For its desired size it might report 
the size of a modest screen at 400x400. For its maximum size it wants as much 
screen space as it can get so it would report MAXSIZE x MAXSIZE. This would allow 
the paint region to grow and shrink as the window was resized.  

Just because a widget has expressed a minimum or maximum size does not mean 
that its container will not violate those requests. A widget must be prepared to deal with 
whatever bounds it is given. For example if a button is too small it may truncate its text 
or use a smaller font. If the button bounds are larger than the button’s maximum size it 
might draw its bevel around the entire bounds and center its text. 

Simple container layouts 

   

 

So far we have discussed the size requirements of widgets that have no 
children. We actually build designs by collecting widgets together in containers. 
The simplest containers are the vertical and horizontal stack. In InterViews and 
Java these are referred to as Box widgets. The menu in figure 5.13 is an example 
of a vertical stack and the toolbar in figure 5.14 is an example of a horizontal 
stack. Figure 5.15 shows a schematic of a horizontal stack. We can use this to 
illustrate the layout of a stack. 



Layout and Constraints 5-11 
 

 

 
Figure 5.13 – Menu layout 

 
Figure 5.14 – Toolbar layout 

 

 
A B C D

 
Figure 5.15 – Horizontal stack 

The size methods for this stack can be implemented as follows. The width is 
the sum of the children’s widths and the height is the maximum of their heights. 
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By exchanging width and height we can implement a vertical stack. The 
algorithms for the intrinsic sizes of a horizontal stack are in figure 5.16. 

public class HorizontalStack 
{ 
 public Dimension getMinSize() 
 { int minWidth=0; 
  int minHeight=0; 
  foreach child widget C 
  { Dimension childSize = C.getMinSize(); 
   minWidth += childSize.width; 
   if (minHeight<childSize.height) 
   { minHeight=childSize.height; } 
  } 
  return new Dimension(minWidth,minHeight); 
 } 
 public Dimension getDesiredSize() 
 { similar to getMinSize using C.getDesiredSize() } 
 public Dimension getMaxSize() 
 { similar to getMinSize using C.getMaxSize() } 
} 
 

Figure 5.16 – Size reporting for a horizontal stack 

   

 

The doLayout() method for a horizontal stack has a number of cases depending 
upon the bounds the stack receives. It is common when a new window is opened 
to request the desired size of the root widget and allocate that as the window size. 
However, there may not be enough screen space for a window that big. The way 
in which space is allocated among the children depends upon whether the width 
is less than min, greater than min but less than desired, greater than desired but 
less than max, or greater than max. The idea of the algorithm is to give each child 
as much as possible and then divide up the remainder proportionally among the 
children according to their requests. The layout algorithm for a horizontal stack is 
shown in figure 5.17. 
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public class HorizontalStack 
{ 
 . . . the other methods and fields . . . 
 public void doLayout(Rectangle newBounds) 
 { Dimension min = getMinSize(); 
  Dimension desired = getDesiredSize(); 
  Dimension max = getMaxSize(); 
   
  If (min.width>=newBounds.width) 
  { // give all children their minimum and let them be clipped 
   int childLeft=newBounds.left; 
   foreach child widget C 
   { Rectangle childBounds = new Rectangle(); 
    childBounds.top=newBounds.top; 
    childBounds.height=newBounds.height; 
    childBounds.left=childLeft; 
    childBounds.width= C.getMinSize().width; 
    childLeft+=childBounds.width; 
    C.doLayout(childBounds); 
   } 
  } 
  else if (desired.width>=newBounds.width) 
  { // give min to all and proportional on what is available for desired 
   int desiredMargin = desired.width-min.width; 
   float fraction= (float)(newBounds.width-min.width)/desiredMargin; 
   int childLeft=newBounds.left; 
   foreach child widget C 
   { Rectangle childBounds=new Rectangle(); 
    childBounds.top=newBounds.top; 
    childBounds.height=newBounds.height; 
    childBounds.left=childLeft; 
    int minWidth=C.getMinSize().width; 
    int desWidth=C.getDesiredSize().width; 
    childBounds.width=minWidth+(desWidth-minWidth)*fraction; 
    childLeft+=childBounds.width; 
    C.doLayout(childBounds); 
   } 
  } 
  else  
  { // allocate what remains based on maximum widths 
   int maxMargin = max.width-desired.width; 
   float fraction= (float)(newBounds.width-desired.width)/maxMargin; 
   int childLeft=newBounds.left; 
   foreach child widget C 
   { . . . Similar code to previous case . . . 
   } 
  }  
 } 
}  
 

Figure 5.17 – Layout algorithm for horizontal stack 
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Using combinations of vertical and horizontal stacks we can produce a 
variety of layouts. For example figure 5.18 is composed of a horizontal stack that 
contains a vertical stack of the Palette and Options containers and the vertical 
stack of OK, Cancel and Preview widgets. The Options container is a vertical 
stack. The Dither is actually a horizontal stack of the label “Dither” and a combo-
box that selects the dither mode. 

 
Figure 5.18 – Layout composed of stacks of stacks 

   

 

One of the problems that we have glossed over in our layout algorithm is the 
efficiency of computing the desired sizes. The problem is in the recursive use of 
the algorithm. In figure 5.18 the window will call the root widget to ask for its 
desired size. The root widget will recursively call all of its children to compute 
that size. When the root widget starts to do its layout it will call the Palette 
group’s desired sizes again. When the Palette group starts its own layout it will 
call the Colors group’s desired sizes yet again and finally when the Colors group 
does its layout it will call desired sizes on the text box. If one counts carefully, 
the desired size methods on the Colors text box was called at least 4 times. This 
is true of almost every widget in figure 5.18. With a more complex structure as in 
figure 5.1 the widgets will be called many more times. A second problem is that 
the size of a window may be changed many times but the desires sizes of the 
various widgets do not change often. To resolve this, most widget systems will 
cache their desired sizes rather than recompute them. The problem then arises 
when a widget really does change size. For most such toolkits an invalidate() 
method is provided that informs the parent widget that the desired sizes are no 
longer correct. To accommodate this, our horizontal stack widget’s code would 
change as in figure 5.19. Note that the invalidate() method not only sets its own 
sizes to be invalid, but also sends the invalidate() message to its container. The size 
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change may propagate all the way up. Java/Swing, however, does not 
automatically propagate invalidate() up the tree, which causes interfaces not to 
change when they might be expected to. This can be remedied by overriding 
invalidate() in a subclass and calling invalidate() on both the super class and the parent 
container. 

 
public class HorizontalStack 
{ 
 private Dimension minSize; 
 private Dimension desiredSize; 
 private Dimension maxSize; 
 private boolean sizesAreValid; 
 public Dimension getMinSize() 
 { if (sizesAreValid) 
   return minSize; 
  int minWidth=0; 
  int minHeight=0; 
  foreach child widget C 
  { Dimension childSize = C.getMinSize(); 
   minWidth += childSize.width; 
   if (minHeight<childSize.height) 
   { minHeight=childSize.height; } 
  } 
  sizesAreValid=true; 
  return new Dimension(minWidth,minHeight); 
 } 
 public Dimension getDesiredSize() 
 { similar to getMinSize using C.getDesiredSize() } 
 public Dimension getMaxSize() 
 { similar to getMinSize using C.getMaxSize() } 
 public void invalidate() 
 { sizesAreValid=false; 
  if (myContainer!=null) 
   myContainer.invalidate(); 
 } 
} 

Figure 5.19 – Desired size code with caching 

Spatial arrangement with intrinsic size layouts 
Simple stacks are not generally enough to handle all of our layout issues. 

Sometimes we want items centered. Sometimes we want items grouped at the 
bottom or top of a list or possibly both. Sometimes we want to add extra space as 
between the Cancel and Preview widgets in figure 5.18. We can do this with 
“spreaders” and “spacers”. In InterViews they were called “glue” and in Java 
they are the Box.Filler class. These are special widgets that do no drawing at all. 
They are invisible. However, they do have min, desired, and max sizes. For 
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example, suppose we wanted 5 pixels of space between two widgets in a list. We 
could create a spacer of 5 pixels, which is a widget whose min, desired, and max 
sizes are all 5. We could add this to the list between the two widgets we want to 
separate. It looks to the layout algorithm like it is a widget and gets allocated the 
5 pixels, thus creating the space, but otherwise it does nothing.  

If we want to push all widgets to the top of a list as on the right side of figure 
5.18, we can end the list with a spreader widget that reports a very small min and 
desired size but reports a very large maximum height. All of the other widgets 
would get their desired sizes, but the spreader, because of its large maximum 
height, would take everything else and thus push the other widgets up to the top. 
Putting the spreader first in the list would push everything to the bottom. We can 
center a widget horizontally by putting spreaders with large but equal maximum 
widths on both sides of the widget to be centered. They would compete equally 
for space and thus move the widget to the center. Changing the relative 
magnitudes of their maximum widths could adjust the widget off of center if 
desired. The use of spreaders and spacers is effective but not very intuitive for 
new designers. 

Layout Managers 

   

 

In the original InterViews system, container widgets carried their own layout 
algorithms. Thus one used a HorizontalStack or VerticalStack widget as a container to 
perform the desired layout. The problem with this is that container widgets are 
frequently the place where the view/controller code is placed. It is inconvenient 
to change the class of the container whenever it is desired to change the layout. 
Java handled this by creating the concept of layout managers. Layout managers 
are separate objects that handle a particular style of layout. The desired layout for 
a container now becomes a property that can be set rather than a change to the 
class hierarchy. All container widgets inherit the same standard layout code. The 
approach is shown in figure 5.20. 
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public interface LayoutManager 
{ 
 public Dimension getMinSize(Widget containerWidget); 
 public Dimension getDesiredSize(Widget containerWidget); 
 public Dimension getMaxSize(Widget containerWidget); 
 public void doLayout(Rectangle newBounds, Widget containerWidget); 
} 
public class Widget 
{ 
 . . . other methods and fields . . . 
 
 private Dimension minSize; 
 private Dimension desiredSize; 
 private Dimension maxSize; 
 private boolean sizesAreValid; 
 
 private LayoutManager myLayout; 
 public LayoutManager getLayoutManager() { return myLayout; } 
 public void setLayoutManager(LayoutManager newLayout ) 
 { myLayout=newLayout; 
  invalidate(); 
 } 
 
 public Dimension getMinSize() 
 { if (sizesAreValid) 
   return minSize; 
  minSize=myLayout.getMinSize(this); 
  sizesAreValid=true; 
 } 
 public Dimension getDesiredSize() { . . . similar to getMinSize() . . . } 
 public Dimension getMaxSize() { . . . similar to getMinSize() . . . } 
 public void doLayout(Rectangle newBounds) 
 { myLayout.doLayout(newBounds,this); } 
} 

Figure 5.20 – Layout algorithm with a LayoutManager 

Note that setting the layout manager also calls invalidate() so that all of the 
sizes will be recalculated and all of the containers of this widget will know that 
their sizes are also invalid and need recomputation. LayoutManager is implemented 
as an interface so that a variety of objects can serve as layout managers. Note that 
all of the LayoutManager methods have an additional parameter for the container 
being laid out. This is so that the layout manager will have access to the children 
of the container to actually do the layout. 

The code for laying out vertical and horizontal stacks can now go in special 
layout manager classes rather than in containers. In addition there are other 
layouts that can be created. The FlowLayout will arrange as many widgets as 
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possible in a horizontal row and then start a new row as with the left hand menu 
in figure 5.1. Some layout managers require an additional location property on the 
child widgets. The location property is a string or other object that gives 
information about where the child should be placed in its container’s layout. One 
example is the BorderLayout found in Java/Swing. This layout, shown in figure 
5.21, captures the most popular window organization with palettes and buttons 
around the outside and a large work area in the center. For this layout to work, 
each child must have a location property of “north”, “south”, “east”, “west” or 
“center”.  

 
North 

South

West EastCenter 

 
Figure 5.21 – Border layout 

Layout Summary 
The fixed and edge-anchored layouts place widgets by defining a rectangle 

location for each widget and then possibly tying that rectangle to the edges of its 
container. These are good for interactive drawing of widget layouts. The variable 
intrinsic size approach is more dynamic. We define a structure in which the 
widgets are placed and then let that structure make the choices. This mechanism 
allows for more extensive changes to be made to the interface content while 
retaining a reasonable layout for all of the components. However, variable 
intrinsic size can be frustrating to designers because widgets do not stay in place. 
They move depending on the needs of other widgets. 

Constraints 

   

 

The most common geometric problems in user interfaces are widget layouts. 
However, there are other kinds of geometry and we need mechanisms that 
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support a consistent model of the geometric relationships between various parts 
of the model and the view. One such representation system is constraints.  

A constraint system is a set of equations that relate important variables from 
the model, view and controller. A constraint is a single equation that relates some 
of the variables. It is sometimes helpful to separate the static constraints, those 
that must hold all of the time, and the situation constraints, those that only hold 
for the particular problem we are trying to solve. For example with the scroll-bar 
in figure 5.12 there are static constraints that define how min, current, and max 
values relate to the position of the slider. These constraints must always hold. 
However, when the user is dragging the slider there are situation constraints on 
the position of the slider, the min and the max values. There is no constraint on 
the current value because we want to solve for that value. A different situation 
would be when the max value is changed. We would place situation constraints 
on the min, max and current values because we know them. We would not have a 
constraint on the position of the slider because we would not want that to move. 
We would also not have a constraint on the mouse position because the mouse is 
not involved when the max property is set. We will look at static and situation 
constraints in more detail in our examples. 

A system of constraints can be under constrained. This is when there are 
fewer constraints than there are variables. We generally handle these situations 
by solving the constraints that we know and then letting the other variables retain 
the values they had before. A system can be over constrained when there more 
equations than variables. It is common to handle this situation by defining 
constraint priorities. That is we solve the highest priority constraints first and 
then ignore any constraints left unresolved. 

Example constraint systems 
Constraints are best understood in the context of some examples. We will 

first look at constraints for performing widget layout. We will then look at a 
scroll-bar and a meter dial as representatives of more complicated constraints. 

Layout constraints 
The layout constraint problem is usually modeled as a system of constraints 

with only one situation. That is the bounds of the layout have been set and we 
need to compute the placement of the children. Figure 5.22 shows a container 
widget with three child widgets. Various values have been labeled that will be 
important to modeling their layout using constraints. The containing rectangle we 
will call P for parent. 
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Figure 5.22 – Layout by constraints 

The simple fixed layout system defines the position of A, B and C relative to 
the top left corner of P. The system constraints for fixed layout are shown in 
figure 5.23. 

leftM=10    longLeft=120 
topM=7    longTop=40 
 
A.width=100   A.height=150 
B.width=60   B.height=25 
C.width=60   C.height=120 
 
A.left=P.left+leftM  A.right=A.left+A.width 
A.top=P.top+topM  A.bot=A.top+A.height 
 
B.left=P.left+longLeft B.right=B.left+B.width 
B.top=P.top+topM  B.bot=B.top+B.height 
 
C.left=P.left+longLeft C.right=C.left+C.width 
C.top=P.top+longTop C.bot=C.top+C.height 

Figure 5.23 – System constraints for fixed layout 

   

 

The first two sets of constraints are design constraints. These are the values 
set when the user draws the layout of these three widgets. The situation 
constraints for this system are constant values for P.left and P.right. Solving this 
system of constraints is trivial. We simply set the location of P and then evaluate 
each constraint in the order shown in figure 5.23. Because there is only one 
situation, this evaluation order always works. Note that this system of constraints 
does not use botM, rightM, xGap or yGap. P.right and P.bot are also ignored. Using fixed 
layout, there is no way to take any of these into consideration.  
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We can modify this system of constraints to use all of the edges of the 
bounds. The constraints in figure 5.24 are edge-anchored constraints. 

leftM=10    longLeft=120 
topM=7    longTop=40 
rightM=12   botM=7 
 
A.width=100   A.height=150 
B.width=60   B.height=25 
C.width=60   C.height=120 
 
A.left=P.left+leftM  A.right=A.left+A.width 
A.top=P.top+topM  A.bot=P.bot-botM 
 
B.left=P.left+longLeft B.right=P.right-rightM 
B.top=P.top+topM  B.bot=B.top+B.height 
 
C.left=P.left+longLeft C.right=P.right-rightM 
C.top=P.top+longTop C.bot=P.bot-botM 

Figure 5.24 – System constraints for edge-anchored layout 

This system of constraints is solved in the same fashion as edge anchored. 
We set the value P.left, P.right, P.top, P.bot and then evaluate in top to bottom order. 
When P changes size, A.bot and C.bot will stay a constant distance from the bottom 
of the parent. In addition, B.right and C.right will move as P.right moves.  

This is a better layout, because it makes use of the size of P, but it is still not 
what we want because A is rigid in its width and B is rigid in its height. We also 
do not have the kind of control that we would like. What we really want is for B 
and C to stay a fixed distance from A no matter what the size of A may be. We 
also want C to be a fixed distance below B no matter what the size of B. In 
addition to all of this we would like the gaps to move proportionally relative to 
the size of the parent giving each widget its share of the space. One way to do 
this is with variable intrinsic size layouts. We could put B and C into a vertical 
stack with a spacer for yGap, then put that stack into a horizontal stack with A and 
another  spacer for xGap. This whole package can be placed in other stacks with 
other spacers for leftM, topM, rightM and botM.  

This combination of stacks and spacers will work, but it seems counter-
intuitive. Figure 5.25 shows a system of constraints that will accomplish the same 
thing. The widths and heights of A, B and C are now used to compute two new 
variables xProp and yProp which are the fractional distance of A.right between the 
horizontal edges and the fractional distance of B.bot between the vertical edges. 
These in conjunction with xGap and yGap define our layout. As P gets wider A.right 
will move proportionally to the right and widgets B and C will stay a constant 
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distance away. The design is manipulated by changing the constants for the 
various gaps and margins.  

leftM=10    xGap=10 
topM=7    yGap=5 
rightM=12    botM=7 
 
A.width=100   A.height=150 
B.width=60   B.height=25 
C.width=60   C.height=125 
 
xProp=(leftM+A.width)/(leftM+A.width+xGap+B.width+rightM) 
yProp=(topM+B.height)/(topM+B.height+yGap+C.height+botM) 
 
A.left=P.left+leftM  A.right=xProp*P.width 
A.top=P.top+topM  A.bot=P.bot-botM 
 
B.left=A.right+xGap B.right=P.right-rightM 
B.top=P.top+topM  B.bot=yProp*P.height 
 
C.left=A.right+xGap C.right=P.right-rightM 
C.top=B.bot+yGap  C.bot=P.bot-botM 

Figure 5.25 – Extended layout constraints 

   

 

Constraints such as these are very powerful in providing explicit control over 
layout positions. However, they are problematic as a design tool. The difficulty 
lies in presenting an interactive layout tool that provides clear control over the 
constraints. Luca Cardelli proposed a mechanism for drawing layout constraints 
similar to those in figure 5.25. In his system each widget was drawn into position 
inside of a parent widget. Each edge of a widget had a constraint handle, 
represented as a small circle. If the user left the constraint handle undefined, then 
that edge was placed proportionally between the corresponding edges of the 
parent. The proportion was determined by where the edge had been drawn in the 
design. The constraint handle could also be connected to any edge of any other 
widget. This would create a constant distance constraint between those edges. 
Figure 5.26 shows a Cardelli-style design that is consistent with the constraints in 
figure 5.25. Since the Cardelli work there have been systems such as Apogee6 
that allow designers to define invisible guidelines similar to what draftsmen do to 
create alignments. Apogee also introduced maximum constraints that use the 
maximum values of other constraints. This allows consistent alignments relative 
to widgets of varying sizes. Other systems introduced squiggly lines to represent 
spring or spreader style constraints that expand to fill whatever space is available. 
All of these systems resolve to a set of constraint equations like those we have 
been discussing. 
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Figure 5.26 – Layout design with Cardelli constraints 

Interactive constraints 
In layout constraint systems the size and location of the parent rectangle are 

specified as the only situation constraints and all other positions are directly or 
indirectly derived from those values using other constraints. There are, however, 
interactive constraints that connect the geometry of a widget’s view and 
controller to the values in the widget’s model. Changing parts of the model or 
dragging parts of the geometry all cause updates to occur. The system constraints 
preserve the consistency and the situation constraints define what is known for a 
particular interactive task.  

leftBnd sliderPos rightBnd 

L S R 

 
Figure 5.27 – Scroll-bar geometry 

As our first example, consider the scroll-bar shown in figure 5.27. There is 
an enclosing rectangle for the scroll-bar called P and three rectangular regions 
within the scroll-bar called L, S and R. In addition, we have defined three 
variables leftBnd, sliderPos and rightBnd. In our constraints we will define other 
variables to simplify their creation. The goal of a scroll-bar is to present and 
manipulate a model. The model for our scroll-bar is shown in figure 5.28. This 
particular scroll-bar is intended to scroll a window across a larger region. We 
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want the width of the slider to reflect the width of the window. Therefore we 
have added the windowWidth value to our model to represent how much of the area 
between min and max is actually being displayed. 

Scroll-bar model 
 int min; 
 int windowLeft; 
 int max; 
 int windowWidth; 

Figure 5.28 – Scroll-bar model 

Our system constraints for the scroll-bar are shown in figure 5.29. A most 
common situation for this set of constraints is when the model is known and P is 
known. From this information we need to compute the geometry of the view. 
This would occur whenever there is a model change or whenever essential 
geometry is required. Formally we would represent this situation by providing 
constant constraints for all of the known values. In figure 5.29 we have simply 
placed known constant variables in bold face. In any constraint where the value 
of a variable was computed by a previous constraint, we underline that variable. 

L.left=P.left       
L.top=P.top 
L.right=P.left+P.height  // makes L square 
L.bot=P.bot 
 
R.right=P.right 
R.top=P.top 
R.left=P.right-P.height  // makes R square 
R.bot=P.bot 
 
windowLeftRange=max-min-windowWidth // window moves between min and max but 
        // the left does not move all the way to max 
leftBnd=L.right+1 
rightBnd=R.left-1 
 
S.width = (windowWidth*(rightBnd-leftBnd)/(max-min)) 
      // compute slider width proportional to window width 
S.top=P.top 
S.bot=P.bot 
sliderLeftRange=rightBnd-leftBnd-S.width
(S.left-leftBnd)/(rightBnd-leftBnd-S.width) = (windowLeft-min)/(max-min-windowWidth) 

Figure 5.29 – System constraints for scroll-bar 

   

 

Looking carefully at figure 5.29 we see that by evaluating these constraints 
from top to bottom, each constraint has only one unknown variable, given the 
constant constraints of the situation and previously compute variables. We thus 
have a simple constraint solution process. There is a challenge on the last 
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constraint. This is not a simple assignment. This constraint specifies the 
relationship between the slider position and the windowLeft position. In the constant 
model situation, we would solve for S.left because all other variables will be 
known when we reach this constraint.  

When the user drags the slider using the mouse, the final constraint is in a 
different situation. The S.left is known because of the mouse position. The 
windowLeft is not known because we need to compute that value from the mouse 
position. In the slider dragging situation, we solve for windowLeft rather than S.left. 
The system constraints are the same and retain the relationships across all 
situations. The difference is in the situation constraints that provide our initial 
constants. 

A geometrically more complicated widget is shown in figure 5.30. Here we 
have a meter whose needle shows a cur value between min and max, with min being 
displayed to the left and max to the right. Our other variables are the points C, 
where the center is, N where the needle meets the edge of the meter, M where the 
mouse is dragging the meter needle, R where the max point of the meter arc 
should be and L, which is a construction point we will need. 

 

C
R 

N

M

L 

min 
cur 
max 

 
Figure 5.30 – Meter widget geometry 

In this widget many of the variables are points and in some cases the 
constraints are defined as equations on points. Note that a point is really two 
variables and an equation involving points is actually two equations, one for X 
and one for Y. Figure 5.31 shows a possible set of system constraints for the 
meter widget. The constraints in figure 5.31 are designed to mathematically 
capture the relationships among all of the points and the model. They were not 
necessarily designed to evaluate the constraints for any particular situation. These 
constraints are also not all linear.  
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1. radius = sqrt((R.x-C.x)2+(R.y-C.y)2)  // establish L, N and R at same distance from C 
2. radius = sqrt((L.x-C.x)2+(L.y-C.y)2) 
3. radius = sqrt((N.x-C.x)2+(N.y-C.y)2) 
4. L.y = R.y 
 
5. (M.x-C.x)/(N.x-C.x) = (M.y-C.y)/(N.y-C.y) // establish colinarity of C, M and N 
 
6. cos(angleR)=(R.x-C.x)/radius 
7. cos(angleL)=(L.x-C.x)/radius 
8. cos(angleN)=(N.x-C.x)/radius 
 
9. (cur-min)/(max-min) = (angleN-angleL)/(angleR-angleL)   // relate model to geometry 

Figure 5.31 – System constraints for meter widget 

Our first situation is where the model, C and R are known. What we need is 
the necessary information to draw the meter. To do this we will need to compute 
point N to draw the needle as well as radius, angleR and angleL to draw the meter 
arc. We start with the situation constraints that give constant values to min, cur, 
max, C.x, C.y, R.x, and R.y.  

• Constraint 1 give us radius from C and R.  
• Constraint 4 can give us the value of L.y.  
• Solve constraint 2 for L.x.  
• Solve constraint 6 for angleR. 
• Solve constraint 7 for angleL. 
• Solve constraint 9 for angleN. 
• Solve constraint 8 for N.x. 
• Solve constraint 3 for N.y. 

 

For this situation we used an algorithm known as the propagation of known 
states7. This algorithm will provide an ordering to the constraints that the variable 
that must be solved for each constraint. Given the situation constraints there are 
several variables that are automatically known. We search our list for a constraint 
that has exactly one unknown variable. We solve the constraint for that variable 
and then add the solved constraint to our list of solutions. We mark the solved 
variable as known and continue.  

   

 

This algorithm stops when there are no remaining constraints with exactly 
one unknown. If there are still unknown variables then either the system is 
underconstrained or simultaneous solutions are required. In this particular system 
we avoided solving for the intersection of the needle line equation and the arc, 
which would have involved simultaneous equation solutions. The constraint 
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system in figure 5.31 is underconstrained because we cannot solve for M. 
However, we do not need M in this situation and therefore we do not care. 

A second situation for our meter widget is when min, max, C, R and M are 
known. This occurs when we use the mouse to set the needle position and thus 
change the value of cur.  

• Solve constraint 1 for radius. 
• Solve constraint 4 for L.y. 
• Solve constraint 2 for L.x. 
• Solve constraint 7 for angleL. 
• Solve constraint 6 for angleR. 
• Simultaneously solve constraints 3 and 5 for point N. 
• Solve constraint 8 for angleN. 
• Solve constraint 9 for cur. 

 

This situation demonstrates the need to solve simultaneous equations and 
some of the challenges of working with constraints. We could have escaped the 
simultaneous equation problem by adding constraints that tied M to the model 
rather than to N. The mouse input situation could then have been solved by 
simple propagation of known states. 

We have also ignored the situation where there are multiple solutions to a 
constraint. Constraints 1-3 are quadratic and may have zero, one or two solutions. 
A simple technique in the case of multiple solutions is to choose the solution 
closest to the previous value of the variable. This works in many cases because 
interaction is generally incremental, but not in all cases. Another alternative is to 
add inequality constraints that restrict possible solutions.  

Constraint solution techniques 
In the preceding section we have seen how constraints can be used to model 

the relationships between widgets and portions of a view. A set of constraints is 
not the same as executable code that we can put into widgets. At one level we 
can use the constraints as a design tool and then write code from the constraints. 
This is a useful exercise where there is a tight relationship between geometry and 
the model because it is very easy to get these issues wrong and produce a hideous 
tangle of code. Some researchers have pursued the creation of constraint systems 
with automatic techniques for solving them.  
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There are three major techniques for solving systems of constraints. There 
are the iterative techniques derived from numerical analysis and optimization 
theory. These techniques are sometimes used for graph layout problems but are 
generally too slow for use as an integral part of most user interfaces. However, 
increasing processor speed may remove that barrier. There are the symbolic 
equation solvers using techniques from programs like MatLab8, Maple9 and 
Mathematica10. These applications are designed as automatic aids for 
mathematicians, but most have the nice property of generating C or Java code 
from their resulting solutions. They can be useful in developing a solution by 
hand for a particular widget design problems. 

In user interface work the goal is usually to convert the constraints of a 
particular situation into a sequence of program statements that will compute the 
solution. There are two parts to this problem. The first is to solve a particular 
constraint for a particular variable. The second is to plan or order the constraints 
so that all variables except the one being solved for are known before a constraint 
is evaluated.  

One-way constraints 

A popular set of constraints are the one-way constraints. In such systems 
every constraint has the form y=f(x1,x2,. . .). Such a constraint maps directly to an 
assignment statement. Figure 5.25 is an example of a one-way constraint system. 
With such a system of constraints we only need to order them so that for each 
constraint all of the arguments (x1,x2,. . .) have been computed before the 
constraint is evaluated. Because one-way constraints are already in the form of an 
assignment statement there is no automatic algebra to be performed. One-way 
constraints are the basis for spreadsheets. The early spreadsheet systems used the 
fixed point algorithm to iterate over all constraints until there is no change. This 
is simple to implement but not very efficient. The propagation of known states 
algorithm described earlier will produce an efficient solution to a set of one-way 
constraints.  

One-way constraints are also found in attribute grammars11 from compiler 
theory. Attribute grammars are designed to propagate semantic information 
through the parse tree of a program fragment. This concept of propagation 
through a tree also applies to hierarchic visual models such as widget trees and 
other models that we will see.  
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Incremental one-way constraints 

There is also an efficient algorithm for incremental evaluation of one-way 
constraints. In interactive settings generally one or two variables are changed. 
What we want is an efficient algorithm for evaluating only those constraints that 
must be evaluated to be consistent with the change. In the simple constraint 
systems that we have looked at, this is not an issue, but in more complex systems 
involving hundreds to thousands of objects with many interconnecting 
constraints this can be a serious issue. 

A simple incremental algorithm is recursive evaluation of all affected 
constraints. Figure 5.32 shows an algorithm to update all necessary constraints 
when some variable C is changed. When a variable is changed, all constraints that 
use that variable are changed and they must be updated also. This updating 
propagates recursively until all changes have been recomputed. 

{ . . . 
 updateVariable(C); 
} 
public void updateVariable(Variable V) 
{ 
 For each constraint C where V appears as an argument 
 { 
  C.evaluate(); 
  updateVariable(C.result); 
 } 
}   

Figure 5.32 – Simple incremental constraint evaluation 

This recursive incremental evaluation has serious problems. If some variable 
is used in multiple constraints and those results are then used in multiple 
constraints, a given constraint may be evaluated many times based on all of the 
ways in which values could have changed. There may also be partial evaluations 
because some of the argument changes will propagate later through different 
paths. In the extreme this algorithm will evaluate a constraint an exponential 
number of times.  

A more efficient algorithm is based on an incremental attribute flow 
algorithm12. In this algorithm, shown in figure 5.33, every variable has a value 
and in addition a boolean “known” flag to identify that this variable has a known 
value. Using this flag, a more efficient two pass algorithm can be designed that 
computes only the necessary constraints and only computes them once. Figure 
5.33 shows a revised algorithm for updating variable C. This algorithm first 
propagates the “unknown” state through the constraint system to mark all 
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variables to be changed as unknown. The pass that updates the variables will only 
update a variable if all arguments are known. Thus the actual evaluation of a 
constraint is put off until it has all changes, not just the first one.  

{ . . . 
 markUnknown(C); 
 assign new value to C 
 updateVariable(C); 
} 
public void markUnknown(Variable V) 
{ 
 if (!V.known) return 
 V.known=false; 
 For each constraint C where V appears as an argument 
 { markUnknown(C.result); } 
} 
public void updateVariable(Variable V) 
{ 
 V.known=true; 
 For each constraint C where V appears as an argument 
 { if (for all arguments A of C, A.known is true and C.known is false) 
  {  
   C.evaluate(); 
   updateVariable(C.result); 
  } 
 } 
} 

Figure 5.33 – Efficient incremental constraint evaluation 

   

 

Hudson13 observed that in user interfaces, the existence of scrolling, zooming 
and other techniques means that only a fraction of the geometry of many widgets 
is on display at any one time. Rather than recompute all constraints affected by a 
change we should only recompute those that are actually visible. This created a 
“push-pull” algorithm where the model would “push” changes through the 
system as in figure 5.33 while the view would “pull” visible values. This 
algorithm is shown in figure 5.34. 
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{  . . . 
 markUnknown(C); 
 assign new value to C 
 For each visible variable V 
 {  computeValue(V); } 
} 
public void markUnKnown( Variable V) 
{ . . . as in figure 5.33 . .  } 
public void computeValue(Variable V) 
{ 
 if (V.known) return; 
 C=the constraint that will compute V; 
 For each argument A of C 
 { computeValue(A); } 
 C.evaluate(); 
 V.known=true; 
} 

Figure 5.34 – “Push-pull” incremental constraint evaluation 

The “push” part of the algorithm in markUnknown() will mark all changes as 
unknown. However, the “pull” part in computeValue() will only recompute values as 
they are actually needed. Values that are not needed are not computed and remain 
marked as unknown. The “push” will not reenter those constraints because they 
are already unknown and they will never be visited again until there is some 
need. When scrolling or some other change of the view causes new values to be 
exposed, the view should call computeValue() on them. If they have been changed, 
the new values will be computed. If they have not, then nothing is done. This is a 
very efficient model for managing update of change. 

Multi-way constraints 

The biggest disadvantage of one-way constraints is that they are one way 
while interaction is inherently two-way. Sometimes the model changes and the 
view must update and sometimes the controller changes the geometry of the view 
and the model must update. One-way constraints do not capture these 
multidirectional changes.  

In figure 5.35 we show a constraint taken from figure 5.31 that describes the 
relationship between the angle of the meter needle and the model variables. 
Algebraically we could solve for any of the variables in this constraint. However, 
we do not want to code up an algebra solver and we really only need two 
solutions. We need to solve for angleN when the model has changed and we need 
to move the needle, and for cur when the needle has moved and we want to 
update the model. In figure 5.35 we augment the general constraint with two one-
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way constraints. Each of these is identical to the original constraint. In different 
situations different variables will be known and either of these two variants can 
be computed. What we have done is use a human algebra solver to give us 
something that our propagation of known states algorithm can readily use. 

(cur-min)/(max-min) = (angleN-angleL)/(angleR-angleL) 
 
  cur=min+(max-min)*(angleN-angleL)/(angler-angleL) 
  angleN=angleL+(angleR-angleL)*(cur-min)/(max-min) 

Figure 5.35 – Using multiple one-way constraints 

Simultaneous constraints 

Most of the work involving simultaneous constraints uses iterative solutions. 
Borning14 reports a very efficient algorithm using linear programming to solve a 
variety of interactive problems. Juno15 constructed many geometric relationships 
using the standard constraints from compass/straightedge geometry. This work 
showed a variety of relationships with iterative numerical solving. Olsen and 
Allan16 observed that most simultaneous equations involved the intersection of 
pairs of geometric equations. In figure 5.30 the simultaneous constraints solve for 
point N, given the line of the needle and the circle of the meter boundary. All 
possible intersections of lines and circles were solved by hand and encoded. The 
propagation of known states algorithm was extended so that when no constraints 
were available with a single unknown variable, a pair of constraints with a shared 
point was found and the simultaneous solution was selected from the set of pre-
solved solutions. This created a tool for designing a variety of geometric widgets 
by drawing their view and their constraints. 

Constraint Summary 

   

 

Constraints are equations that define the relationship between geometric 
entities in a view, mouse inputs in the controller and model information. They 
provide a mathematical basis for many layout mechanisms as well as a 
representation of a variety of view/model problems. Solving a system of 
constraints involves finding a set of variable values for which all of the constraint 
equations are true. There are very general numeric solutions, but they are 
generally too slow for interactive use. The propagation of known states algorithm 
works from known values looking for constraints that have exactly one unknown 
variable, solving for that variable and adding the solution to the list of solutions. 
This produces a pre-solved set of assignment statements that are readily 
translated into code.  
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The simplest constraint systems use functional or one-way constraints. Here 
the constraint equations are already solved, however, for only one variable. 
Solving the constraint system involves ordering the constraint evaluation so that 
all arguments are known before they are required. The one-way constraints also 
have an incremental solution that minimizes the number of constraints that must 
be evaluated in response to a small change in variable values. By specifying more 
than one solution for a constraint, the propagation of known states algorithm can 
be extended to the multi-way constraints required for interaction. 
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