Abstract

RNA polymers are an important class of molecules: not only they are involved in a variety of biological functions, from coding to decoding, from regulation to expression of genes, but crucially, they are nowadays easily synthesizable, opening interesting application scenarios in biotechnological and biomedical domains. Here we propose a constructive machine learning framework to aid in the rational design of such polymers. Using a graph kernel approach in a supervised setting we define an importance notion over molecular parts. We then convert the set of most important parts into specific sequence and structure constraints. Finally an inverse folding algorithm uses these constraints to compute the desired RNA sequence.

1. Introduction

RNA macro molecules undergo cis-interactions and fold into stable structures. It is the chemo-physical properties of the unbound portion of the RNA polymer together with their 3D configuration that determines the function of the molecule, i.e. the type of interactions that are feasible with other biological entities. Different types of functions are currently classified in ~2400 different groups or families (Burge et al., 2013). Crucially, different sequences can fold into identical structures, a fact that makes the prediction of the function of a given RNA sequence a hard task. Within biotechnological and biomedical application development, e.g. RNA aptamers (Delebecque et al., 2011; 2012), RNA nanoparticles (Guo, 2010), or CRISPR/cas9 systems (Terns & Terns, 2014), the design of RNA sequences with a desired structure, and by proxy, with a desired function, is becoming of great interest. Consider the case of the hammerhead ribozyme (Figure 1). This is a RNA molecule with therapeutic applications that catalyzes reversible cleavage and joining reactions at a specific site within an RNA molecule.

The structural-sequence alignment of the ribozyme sequences identifies a conserved motif in an unpaired region that is enclosed by three stems (paired regions) with a variable nucleotide composition. The development of a computational method capable to reliably construct a large number of sequences sharing the same function of the hammerhead ribozyme can be a key step towards engineering artificial molecules with regulatory capabilities.

2. Constraint learning framework

In the proposed framework we will assume that a set of RNA sequences sharing the same function is made available, without assuming any other a priori knowledge. The task is then to jointly identify the necessary constraints that define the class membership and finally produce novel sequences belonging to the desired class. To this end we use a graph kernel approach in a supervised setting to define an importance notion over parts of the structures. We then convert the set of most important parts into specific label and structure constraints. Finally the constraints can be given in input to antaRNA (Kleinkauf et al., 2015), a recent inverse folding algorithm, to finally output the desired constructs.

Proceedings of the Constructive Machine Learning workshop @ ICML 2015. Copyright 2015 by the author(s).
2.1. Graph kernel

An essential component of the proposed framework is a linear discriminant estimator: this allows to explicitly access the discriminative importance of each feature which will be later used to define the notion of part importance. In order to work with graphs in input we make use of the graph kernel developed in (Costa & De Grave, 2010), called Neighborhood Subgraph Pairwise Distance Kernel (NSPDK). NSPDK is an instance of a decomposition kernel (Haussler, 1999), where the “parts” in which the graph is decomposed are pairs of small near neighborhood subgraphs of increasing radii \(r < r_{max} \). All pairs of such subgraphs whose roots are at a distance not greater than \(d < d_{max} \) are considered as individual features. The similarity notion is finally given as the fraction of features in common between two graphs. Formally the relation is defined in terms of neighborhood subgraphs (i.e. subgraphs induced by the nodes at bounded distance from a root vertex) as:

\[
R_{r,d} = \{(N_u^r(G), N_u^r(G)) : d(u,v) = d\}
\]

that is, a relation \(R_{r,d} \) that identifies pairs of neighborhoods \(N \) of radius \(r \) whose roots at \(d \) are exactly at distance \(d \).

\[
\kappa_{r,d}(G, G') = \sum_{A, B \in R_{r,d}(G)} \mathbf{1}_{A \cong A'} \cdot \mathbf{1}_{B \cong B'}
\]

where \(R_{r,d}^{-1}(G) \) indicates the multi-set of all pairs of neighborhoods of radius \(r \) with roots at distance \(d \) that exist in \(G \), and where \(\mathbf{1} \) denotes the indicator function and \(\cong \) the isomorphism between graphs. The final kernel is then the sum of \(\kappa_{r,d} \) kernels. The optimal bounds for the values of \(r \) and \(d \) are typically obtained via cross validation.

2.2. Importance notion

Kernels are generally used in their implicit form, i.e. to compute the dot product between two instances in the corresponding reproducing Hilbert kernel space. Since graph kernels yield in general descriptions with an exponential amount of features this is the preferred practice. For NSPDK instead we use the hashing technique introduced in (Frasconi et al., 2014) to obtain the explicit feature encoding of the graphs as sparse vectors in a very high dimensional space: \(\Phi(G) \in \mathbb{R}^m \). This is possible since we can efficiently enumerate all features of the NSPDK representation in quasi linear time. In this way learning can happen in the primal form and we can employ a stochastic gradient descent (SGD) algorithm (Bottou, 2010) to efficiently induce a linear estimator over binary classification problems.

We define the importance score \(S \) of a node \(u \in G \) as the distance of the explicit NSPDK representation of the neighborhood graph rooted in \(u \) with radius \(R = r_{max} + d_{max} \), \(\Phi(N_R^u(G)) \) from a given hyperplane \(h \) with norm \(w \) and bias \(b \):

\[
S_{R}^{u,b}(u, G) = \Phi(N_R^u(G)) \cdot w + b.
\]

The hyperplane \(h \) is derived from the SVM solution to the binary classification problem between folding structures of the sequences of interest vs. sequences with randomly permuted elements. Given the norm \(w' \) and bias \(b' \) of the solution hyperplane \(h' \), we let \(w = w' \) and \(b = \frac{b'}{|V(G)|} \).

Intuitively, the neighborhood graph of radius \(R \) of a vertex \(u \) comprises all nodes that can form NSPDK features with \(u \) and hence \(\Phi(N_R^u(G)) \) forms a partition over the features \(\Phi(G) \). In this way the margin associated to a graph can be decomposed as the sum of importance scores:

\[
\Phi(G) \cdot w' + b' = \sum_{u \in V(G)} S_{R}^{u,b}(u, G).
\]

Figure 2 shows a graphical representation of a folding structure for a hammerhead ribozyme where the nodes are colored according to the importance score \(S \). Note that the estimated importance is consistent with the alignment information in Figure 1, and correctly identifies the two motifs in the unpaired region, together with the isolated Uracil nucleotide, as being maximally informative.

Finally the importance score of any subgraph \(H \subset G \) is defined as the sum of importance scores for each node:

\[
S_{R}^{w,b}(H, G) = \sum_{u \in V(H)} S_{R}^{w,b}(u, G), \quad \text{where } V_{(G)} \text{ denotes the vertex set of a graph } G.
\]

Figure 2. Color coded (red is more important) discriminative importance mapped to each vertex in the minimum free energy folding structure of a hammerhead ribonuclease sequence.
3. Inverse folding

Ant Colony Optimization (ACO) (Dorigo & Stützle, 2004; Dorigo et al., 2006) is an optimization algorithm for problems that can be reduced to finding good paths through graphs. The algorithm is inspired by the principle of ant foraging: ants explore a terrain and evaluate foraging paths according to their length, the presence of obstacles and the amount and quality of food sources at the path’s end (Pasteels et al., 1987). The terrain is marked with a signal (pheromone) that tracks paths. As time passes, more ants perceive and get influenced by the local pheromone information (Goss et al., 1989). This information is then modified by the notion of evaporation whereby low quality paths are forgotten while high quality ones are progressively reinforced (Deneubourg et al., 1990).

AntaRNA (Kleinkauf et al., 2015) uses ACO in order to produce RNA sequences that satisfy user specified constraints and fold in the desired structure. The virtual ants modify the sequence construction graph (the graph representing the superposition of all possible sequences of 4 nucleotides) according to the sequence quality (i.e. number and degree of violation of the constraints). antaRNA supports several types of constraints, among which: partial secondary structure specification, partial sequence specification and Guanine-Cytosine (GC) ratio specification. Secondary structure constraints are specified in dot-bracket notation (i.e. with the explicit identification of pairing bases). Sequence constraints are specified as position specific nucleotide types. Finally the GC ratio is the proportion of G and C nucleotides present in a given sequence, a constraint which allows to tailor the satisfying sequences to specific organisms.

3.1. Constraints learning

We derive structural and sequence constraints from important subgraphs identified in each sequence. We start by computing the optimal MFE structure of each sequence. We then score each node with the importance notion detailed in Section 2.2 and remove nodes that have an importance score below a user defined threshold. Thresholding allows us to identify the corresponding connected components. Since AntaRNA accepts only discrete constraints we define the sequence constraints as being the nucleotides in an unpaired region that belong to components with a size larger than a second user specified threshold. Analogously for structural constraints we extract all base pairs between important nodes in components of user defined minimal size. In the two cases the user can specify different thresholds. As for the desired GC ratio, this can be computed directly from the input sequence. As an example of the generated constraints consider Figure 3.

4. Experimental results and conclusions

In order to perform an in-silico evaluation of the quality of the constructed sequences we perform a learning curve analysis: we compare the predictive performance of a classifier trained over the original sequences against a classifier trained over a dataset that additionally includes the sequences constructed by the proposed approach; if the constructs are informative we expect a higher predictive performance for the latter case over a held out set.

We retrieve 42 seed sequences for family RF02276 (hammerhead ribozyme) from the RFam database (Burge et al., 2013) and use a SGD SVM classifier over the MFE graphs computed using the RNAfold program (Lorenz et al., 2011). Negative sequences are obtained by di-nucleotide random shuffling of the seed sequences. The code is available at https://github.com/fabriziocosta/RNAsynth and the experimental setup is available as an IPython notebook at: http://goo.gl/2NtKvt.

![Figure 4. Area under the ROC curve predictive performance of a SGD SVM as a function of the fraction of ribozyme sequences.](http://example.com/figure4.png)
RNAsynth

References

