G51CSA – Computer Systems Architecture

Operating Systems (Linux)

Red Hat

Jon Masters <jcm@redhat.com>
About the speaker

- Jon Masters is a Senior Software Engineer at Red Hat
- History in embedded devices with Real Time requirements
- Professional author, including titles “Professional Linux Programming” and “Building Embedded Linux Systems”
- jcm@redhat.com
Agenda

- A little background about the presenter
- Computer Systems Architecture(s)
- What is an Operating System?
- A brief introduction to Linux
- Where is Linux headed?
- Questions?
My experiences with Linux

- Started with a single-floppy disk “distribution” (~13 years ago)
- Downloaded Slackware onto 200 floppy disks
- Slackware, Red Hat, SuSE, Debian, Ubuntu, Fedora/RHEL
- Linux User Groups, Conferences, Community
- Ported Linux to scientific instrumentation
- Worked with MontaVista
- Wrote a book on Linux
- Joined Red Hat
- Maintainer
- Another book
- Real Time Linux, Device Drivers
Computer Systems Architecture

- A modern computer system is built from many parts:
 - CPU – 32/64-bit, big/little endian, RISC/CISC, Harvard, Von Neumann., etc.
 - Buses – HyperTransport, PCIe, PCI-X, etc.
 - Memory – Caches (I/II/III), RAM, VRAM (GART), etc.
 - Peripherals – Hard disks (SATA, SCSI, SSD), DVD, Graphics, Sound, WiFi, etc.
 - IO – External buses (USB), Firewire, “legacy buses” (serial), etc.
 - Flash memory – firmware, microcode, BIOS, etc.

- Can you name more examples?
Computer Systems Architecture

- Time for some handy definitions:

- Architecture (arch) – a family of microprocessors that can be used to build complete and compatible(!) computer systems.
 - Intel IA32/IA64,
 - ARM,
 - Xscale,
 - MIPS.
 - Think of some examples? What was the first compatible architecture?

- Platform – a system built upon a particular configuration of microprocessor and certain other components
 - “PC”
 - Macintosh
 - iPod, iPhone...
Computer Systems Architecture

- Platforms – a standard base upon which to build Operating Systems
- Most modern platforms are heavily standardized
 - PowerMac vs. Intel Macintosh
 - iPod vs. iPhone
 - Sun OpenBoot and OpenFirmware
- “PC” is a poor example of a standard platform
 - Original IBM PC was very non-standard in many ways
 - Used non-configurable, inflexible bus technology (ISA)
 - Lack of information provided to Operating System
 - Later added EISA, PCI (PCI-X, PCIe), ACPI
- ACPI, OpenFirmware, Device Trees
- Development Boards
Computer Systems Architecture

CPU

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R24 R25 R26 R27 R28 R29 R30 R31

SPR0 SPRn

Cache L1/L2/L3 MMU

IRQS

NMIs
char *foo = “my pet dog”;
Computer Systems Architecture

CPU0

IO-APIC

PCle

USB

WiFi

CPU1

RAM

(e)SATA
What is an Operating System?

- Just a bunch of privileged library functions with supporting code
 - Bringup
 - Housekeeping
 - Applications

- A resource broker that manages access to underlying hardware
 - Finite resources
 - Virtualized/abstraction
 - Standardized interfaces

- Built for a set of platforms based on a particular architecture(s)
 - Microsoft Windows vs. Windows CE/Mobile – IA32/X86_64, PowerPC.
 - Linux – IA32/IA64, PowerPC, ARM, Xscale, S390, MIPS, etc.
 - Need for standardized platform(s)
What is an Operating System?

- Reliant upon certain architectural/platform features:
 - Memory Map
 - Virtual Memory
 - Platform descriptor(s)
 - Hardware

- Must perform/provide the following:
 - System initialization
 - Device Drivers
 - Libraries
 - Graphical Desktop
What is an Operating System?

- Two kinds of Operating System:

 - Core Kernel/Modules
 - Applications
 - Linux, UNIX
 - Microkernel
 - Applications
 - VM
 - Drivers
 - Hardware
 - Windows, Mac OS X

 - Hardware
What is an Operating System?

- System boot process goes roughly:
 - Firmware ("BIOS") handles POST
 - Bootloader loads Operating System
 - Firmware/Bootloader supply info to Operating System
 - Operating System manages resources
 - Operating System loads applications

- Core of the Operating System is called a “kernel”
 - Provides privileged functions – timers, system calls, etc.
 - Manages hardware devices
 - Schedules user applications
 - Highly event driven
What is an Operating System?

- Monolithic vs. Microkernel
 - “Slow” vs. “Fast”?
 - “Stable” vs. “Unstable”?
 - Classical examples?

- Reality!
 - Neither exist
 - Performance?
 - Maintainability
 - Linux vs. Windows vs. OS X
A brief introduction to Linux

- Getting ahold of Linux – who here today uses Linux?
 - What does “Linux” mean to you anyway?
 - Fedora, OpenSuSE, Ubuntu?

- Recommendations for all experience levels
 - Distributions
 - Communities

- More than Linux
 - FreeDesktop
 - Firefox
 - Thunderbird, Evolution, etc.
 - Examples?
A brief introduction to Linux

- Traditional style UNIX-like kernel used to build a complete system
- Project started in summer of 1991 by some Finnish guy :)
- Linux vs. Minix vs. flamewars!
- Originally supported only the (shiny!) Intel 80386
- Today many millions of lines of code – co-ordination?
- Big Corporations
- Research
A brief introduction to Linux

- Playing with the Linux kernel
 - Visit kernel.org and download the source code
 - Buy a book and sign up at LWN.net
 - Sign up to mailing lists
 - Kernelnewbies

- Kernel development
 - How does it work?
 - Complexity
A brief introduction to Linux

- The Linux kernel source
 - Documentation
 - Include
 - Kernel
 - Arch
 - Drivers
 - Filesystems
 - ?

- Building the kernel
 - Create a config
 - Build a kernel
 - Install
A brief introduction to Linux

Did you know...

- That many Linux developers have real lives?
- That Linux is growing in popularity – why?
- That you can contribute and learn?
- That Linus Torvalds is a manager?
- Magic numbers used in the kernel
Where is Linux headed?

- **Enterprise Server Systems**
 - Scalability
 - Performance
 - Reliability

- **Embedded Devices**
 - TiVo, Routers, Mobile Phones, TVs...
 - Real Time Systems

- **End Users?**
 - Lots of distributions
 - Improved hardware support
 - Faster boot times
 - Feature complete
Questions?

- `#include <std_disclaimer.h>`
- All views and opinions expressed are those of the author and do not necessarily represent those of Red Hat, Inc.