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1 Types and sets

What is a set? Wikipedia 1 says

Informally, a set is just a collection of objects considered as a whole.

And what is a type? Wikipedia offers different definitions for different subject
areas, but if we look up datatype in Computer Science we learn:

In computer science, a datatype (often simply type) is a name or
label for a set of values and some operations which can be performed
on that set of values.

Here the meaning of type refers back to the meaning of sets, but it is hard
to see a substantial difference. We may conclude that what is called a set in
Mathematics is called a type in Computer Science.

Here, we will adopt the computer science terminology and use the term type.
But remember to translate this to set when talking to a Mathematician.

There is a good reason for this choice: I am going to use the type system of
the programming language Haskell to illustrate many important constructions
on types and to implement mathematical constructions on a computer. Please
note that this course is not an introduction to Haskell, this is done in the 2nd
semester in G51FUN. If you want to find out more about Haskell now, I refer
to Graham Hutton’s excellent, forthcoming book, whose first seven chapters are
available from his web page 2 . The book is going to be published soon and is
the course text for G51FUN. Another good source for information about Haskell
is the Haskell home page 3

While we are going to use Haskell to illustrate mathematical concepts, Haskell is
also a very useful language for lots of other things, from designing user interfaces
to controlling robots.

1.1 Examples of types

I am sure there are some types you already know since primary school. E.g. the
type Nat of natural numbers, which are the numbers we use for counting. In
Computer Science we include the 0 to allow for the case that there is nothing
to count. We can start enumerating the elements of Nat

Nat = {0, 1, 2, 3, 4, 5, . . .}
We follow the mathematical tradition to use curly brackets when enumerating
the elements of a type. Clearly, this is not a precise definition because we
have used . . . to indicate that we can go on forever. We will fix this later.
Most Mathematics books will use N for Nat but in Computer Science we prefer
using names made up from several letters (because we can type them in on
the keyboard) while the mathematicians like single letters but use different
alphabets (that’s the reason that they use so many Greek symbols).

1http://en.wikipedia.org/ is a free, online, user extensible encyclopedia.
2http://www.cs.nott.ac.uk/˜gmh/book.html
3http://www.haskell.org/
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We write 2 ∈ Nat to express that 2 is an element of Nat, we may also say
that 2 has type Nat. 4

If you have a bank account or a credit card you will also know the type of
integers, Int which extends Nat by negative numbers - in Maths one writes Z.
Using the suggestive . . . again we write

Int = {. . . ,−2,−1, 0, 1, 2, . . .}
Other types of numbers are the rational numbers Rat (Q) which is the type
of fractions (e.g. 2 / 3 ∈ Rat), the type of real numbers Real (R) (e.g.√

2 ∈ Real and π ∈ Real) and the type of complex numbers Compl (C)
(e.g.

√
−1 ∈ Compl). 5 While the latter two (Real,Compl) are a central

topic in Mathematics they are less essential in Theoretical Computer Science,
but relevant in many application areas.

We say a type is finite, if we can enumerate it without using “. . . ”. An impor-
tant finite type is the type Bool of booleans or truth values:

Bool = {True,False}

We can define new finite types by using a collection of names, different from
each other (these are called constructors). To define a type of basic colours in
Haskell 6 we would write

data Colour = Red | Green | Yellow

We can enumerate Colour

Colour = {Red,Green,Yellow}
In an an enumeration the order doesn’t matter, e.g. the following are alternative
enumerations of Colour

Colour = {Green,Yellow,Red}
Colour = {Yellow,Red,Green}

we may also repeat elements

Colour = {Red,Green,Yellow,Red}
but we usually try to avoid this. You may have already noticed that we use
capitalized words for names (of types or constructors) — this is a Haskell con-
vention. We shall use names starting with small letters for variables.

There is also the extreme case of a finite type, the empty type ∅, which has no
elements. It is easy to enumerate ∅:

∅ = { }
4In Haskell we type :: instead of ∈, I am using lhs2Tex and latex to pretty-print Haskell

programs.
5As most programming languages Haskell isn’t very good with numbers. There is no prede-

fined Nat and the type Int actually stands for 32 bit integers, however, there is a type Integer
of integers of arbitrary size (if you have got enough memory). The standard prelude doesn’t
define Rat,Real or Compl but Float and Double which are actually an approximation of
Rat. However there are standard libraries for rational numbers (introducing a type Rational)
and complex numbers (featuring the types Complex Float and Complex Double).

6Actual Haskell code is displayed in a framed box. On the course page you find a link
notes.hs, which contains all the Haskell code from these notes.
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1.2 Making new types from old

We can construct a new type by combining information, e.g. a card in a card
game may be described by combining it’s face and it’s suit. E.g. we define

data Suit = Diamonds | Hearts | Spades | Clubs
data Face = Two | Three | Four | Five | Six | Seven | Eight | Nine | Ten

| Jack | Queen | King | Ace

and now we say that a card is a pair (face, suit) (also called tuple) with face ∈
Face and suit ∈ Suit, we write

type Card = Suit× Face

We can enumerate Card:

Card = {(Diamonds, Two), (Diamonds, Three), (Diamonds, Four), (Diamonds, Five),
(Diamonds, Six), (Diamonds, Seven), (Diamonds, Eight), (Diamonds, Nine),
(Diamonds, Ten), (Diamonds, Jack), (Diamonds, Queen), (Diamonds, King),
(Diamonds, Ace), (Hearts, Two), (Hearts, Three), (Hearts, Four), (Hearts, Five),
(Hearts, Six), (Hearts, Seven), (Hearts, Eight), (Hearts, Nine), (Hearts, Ten),
(Hearts, Jack), (Hearts, Queen), (Hearts, King), (Hearts, Ace), (Spades, Two),
(Spades, Three), (Spades, Four), (Spades, Five), (Spades, Six), (Spades, Seven),
(Spades, Eight), (Spades, Nine), (Spades, Ten), (Spades, Jack), (Spades, Queen),
(Spades, King), (Spades, Ace), (Clubs, Two), (Clubs, Three), (Clubs, Four),
(Clubs, Five), (Clubs, Six), (Clubs, Seven), (Clubs, Eight), (Clubs, Nine),
(Clubs, Ten), (Clubs, Jack), (Clubs, Queen), (Clubs, King), (Clubs, Ace)}

We call Face × Suit the cartesian product of Face and Suit. Pairs are or-
dered, e.g. (Queen,Diamonds) is not the same as (Diamonds,Queen). Indeed,
they have different types (Queen,Diamonds) ∈ Face×Suit while (Diamonds,Queen) ∈
Suit×Face. But even if the types are the same as in Bool×Bool we make a
difference between (True,False) and (False,True).

Have you noticed? If a is a finite type with n elements and b is a finite type
with m elements, how many elements does (a, b) (or a × b) have? Precisely!

Is there also + for types? Yes there is, and indeed we write a +b, where a and b
stand for types, not numbers. An element of a + b is either Left x where x ∈ a
or Right y where y ∈ b. This can be defined by

data a + b = Left a | Right b

Here Left,Right are parametrized constructors, a and b are type variables. This
operation is called the disjoint union and is often written as ].

As an example for the use of ·+ ·, imagine there is shop which sells socks which
are either small, medium or large and ties which are striped or plain. We define

data Sock = Small | Medium | Large
data Tie = Striped | Plain

Then the type of articles is

type Article = Sock + Tie

4



We can enumerate Article

Article = {Left Small,Left Medium,Left Large,
Right Striped,Right Plain}

Given types a and b we write a → b for the type of functions, which assign an
element of b to every element of a. We call a the domain and b the codomain
or range of the function. A simple example of a function is isRed , which returns
True if its input is Red and False otherwise.

isRed ∈ Colour → Bool
isRed Red = True
isRed Green = False
isRed Yellow = False

To use a function we apply it to an element of the domain, e.g. we just write
isRed Green, that is we are not using extra parentheses as it is common in
Mathematics.

We may view a function as a machine, which we feed elements of the domain and
which spits out elements of the codomain. Our view of functions is extensional,
i.e. we are not allowed to look into the machine to see how it produces its
answer. While I amusing the idea of a machine, don’t forget that a function is
a methematical object, like a number it is independent of space and time, the
output of a function only depends on its input. Unlike procedures or methods
in imperative languages, like Java or Basic, functions don’t have a state.

- -isRed BoolColour

What is the type of a function with two arguments, e.g. + in arithmetic? One
possibility is to say that the domain of + are pairs of numbers, i.e. that it
has the type (+) ∈ (Nat,Nat) → Nat 7. However, an alternative, which is
adopted in Haskell, is to use the curried 8 form of the function, i.e. (+) ∈
Nat → (Nat → Nat), that is (+) applied to one argument, e.g. 5, returns a
function (+) 5 : Nat → Nat — the function which adds 5 to its argument. We
can apply this function to another number, e.g. ((+) 5) 3 which returns 8. To
save parentheses we adopt the convention that → associates to the right, that
is that Nat → Nat → Nat stands for Nat → (Nat → Nat) and that function
application associates to the left, that is that (+) 5 3 stands for ((+) 5) 3 and
finally that since + is an infix operator that 5 + 3 stands for (+) 5 3.

Here is a picture trying to illustrate this idea:

(+)n ∈ Nat

m ∈ Nat

m + n ∈ Nat(+)n

7We write (+) because + is usually used in an infix position, i.e. between its arguments.
8Curried functions are named after the logician Haskell Curry. The programming language

Haskell is also named after him.
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I have drawn the 2nd box with a dashed frame because this box is actually the
output of the first box. Once, we have understood that this is how functions
with seveal arguments are defined, we can simplify the picture by just drawing:

-

-

-
n ∈ Nat

m ∈ Nat

(+) m + n ∈ Nat

To summarize: the type of functions with two arguments one from type a and
one from type b and with results in c can be either given as (a, b) → c (uncurried
form) ar as a → b → c (curried form).

If a is a finite type with n elements and b is a finite type with m elements, how
many elements does a → b have? A good clue may come from the fact that in
Mathematics one often uses an exponential notation ba to denote funtion types.

1.3 Functions on Bool

Haskell’s prelude 9 already defines a number of useful functions on Bool such
as and:

(&&) ∈ Bool → Bool → Bool
True&&b = b
False&&b = False

How does this work? If the first argument, a, of a&&b is True, then the value
of a&&b is equal to the second argument. If the first argument is False, then
a&&b is False, no matter what b is.

A function on finite types can be characterized by its value table (also called
graph). In the case of && the value table is:

a b a&&b
False False False
False True False
True False False
True True True

Looking at the value table, we notice that && is symmetric but our definition
was asymmetric. Indeed, we could instead define &&∗:

(&&1) ∈ Bool → Bool → Bool
b&&1True = b
b&&1False = False

The value table of &&1:
9This is the standard library which is automatically preloaded. Note that some of the

definitions in this section below are not included in the appendix, because the functions are
already defined in the prelude.
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a b a&&1b
False False False
False True False
True False False
True True True

is the same as the one of &&. Since we cannot look into the definition of a
function, because this is hidden in the black box,, to us && and &&1 define the
same function.

Here is the definition of or :

(||) ∈ Bool → Bool → Bool
True ||b = True
False||b = b

and here its value table:
a b a || b

False False False
False True True
True False True
True True True

There is also an important function with one argument (unary function) not:

not ∈ Bool → Bool
not True = False
not False = True

and its value table:
a not a

False True
True False

We can combine existing functions directly to define new ones. An example is
boolean equality:

(≡) ∈ Bool → Bool → Bool
a ≡ b = a&&b | not a&&not b

Note that Haskell uses different precedences for boolean operators, not binds
more than & which binds more than ||. Hence Haskell (and we) read a &
b || not a & not b as (a & b) || ((not a) & (not b).

It is straightforward to calculate ≡’s value table:

a b a ≡ b
False False True
False True False
True False False
True True True

We have seen that ≡ is a function which can be defined by combining other
functions. Could we have done this, with some other function, e.g. || ? Yes,
consider the following definition of ||1 using && and not :
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(||1) ∈ Bool → Bool → Bool
a||1b = not ((not a)&&(not b))

Let’s draw the value table of ||1
a b a ||1 b

False False False
False True True
True False True
True True True

and indeed it is identical to the one of || and hence (||) = (||1).
Similarily we can define && using || and not :

(&&2) ∈ Bool → Bool → Bool
a&&2b = not ((not a)||(not b))

These definitions are based on the so called de Morgan laws, which say

not (a&&b) = (not a) || (not b)
not (a || b) = (not a)&&(not b)

and the equation not (not a) = a.

Frequently, we want to analyze a boolean value somewhere in the middle of
a function definition and calculate different results depending on whether the
boolean is True or False. For this purpose we can define:

ite ∈ Bool → a → a → a
ite True t e = t
ite False t e = e

ite stands for if-then-else. Note that the type of ite is polymorphic, i.e. it works
for any type replacing the type variable a.

Since ite is used so often, there is a special syntax for it:

if c then t else e = ite c t e

As an example, we could have defined & using if-then-else:

(&&3) ∈ Bool → Bool → Bool
b&&3c = if b then c else False
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2 Basic logic

When we are expressing properties of mathematical objects or programs and
reason about them we use the language of logic. We introduce here the symbols,
which can be given a precise meaning, but explain them for the moment by
their translation into English. Later in the course we will be more precise and
introduce the rules of reasoning (called natural deduction) along with a computer
program (called tutch) which can check that you have followed them.

A proposition is a precise statement which may be proven (then we believe it
to be true) or disproven (then we believe it to be false). We assume some basic
propositions as given, e.g. if a, bλin A we can say a = b, meaning that a and b
is equal. E.g. we know that 1 = 1 is true but 1 = 2 is false. Indeed, we accept
this without further proof, both judgements are abvious.

There are propositions of which we don’t know wether they are true or false,
such as the proposition that there are infinitely many twin primes, that is pairs
of prime numbers whose difference is 2 or in computer science whether the
complexity classes P and NP are different (the P = NP question).

2.1 Propositional connectives

A logical connective is a means to construct new propositions from given
ones. We start with the basic propositional connectives, given propositions P
and Q we can construct:

• P ∧Q, stands for P and Q. We accept P ∧Q to be true, if we can show
that both P and Q are true.

• P ∨Q, stands for P or Q. We accept that P ∨Q to be true, if we can show
at least one of P and Q. Note, that different to some uses of the word or
in everyday language, ∨ is non-exclusive, e.g. 0 = 0 ∨ 1 = 1 is true.

• P =⇒ Q, stands for If P then Q , which we can also write as Q , if P .
We accept P =⇒ Q if we can show that Q is true from assuming that P
is true.

We also introduce the propositional constants True, for an obviously true propo-
sition (such as 0 = 0) and False for an obviously false proposition (such as
0 = 1). True and False are not really used in normal conversations but we
may translate True by fish can swim or another blatantly obvious statement,
and False by pigs can fly or another obviously false statement.

We can define new propositional connectives from the basic ones introduced
above:

• ¬P , stands for not P . We define ¬P as P =⇒ False. Intuitively, we
could say ¬P means that if you believe P then you also believe that pigs
can fly.

• P ⇐⇒ Q, stands for P ,if and only if Q. We define P ⇐⇒ Q
as (P =⇒ Q) ∧ (Q =⇒ P ). ⇐⇒ introduces a notion of logical
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equivalence and indeed if we know P ⇐⇒ Q we can always replace P by
Q and vice versa.

To avoid having to write lots of brackets we introduce some conventions:

• ¬ binds stronger than ∧, i.e. we read ¬P ∧Q as (¬P ) ∧Q.

• ∧,∨ bind stronger than =⇒ , ⇐⇒ , i.e. we read P ∧ Q =⇒ R as
(P ∧Q) =⇒ R.

• =⇒ associates to the right, i.e. we read P =⇒ Q =⇒ R as P =⇒
(Q =⇒ R)

We could have introduced more conventions, e.g. that ∧ binds stronger than ∨,
but refrain from doing this and instead disambiguate by using brackets.

2.2 Tautologies and proof

A propositional scheme is a proposition containing propositional variables,
e.g. A =⇒ A and A =⇒ A ∧ B are propositional scheme, where A,B stand
for any proposition.

A tautology is a propositional scheme which is always provable no matter
how we replace the variables by actual propositions. E.g. A =⇒ A is a
tautology but A =⇒ A ∧ B isn’t. We can see this by proving A =⇒ A:
if we assume A then we know A hence A =⇒ A holds. We can see that
A =⇒ A ∧ B is not a tautology by replacing A with True and B with False
but True =⇒ True∧False cannot be provable, because we know True hence
we would know True ∧ False but this is only true, if False is, which it isn’t
(pigs can’t fly).

Here are some examples of propositional tautologies:

1. False =⇒ A,
this could be called the principle of naivety, if you believe that pigs can
fly you believe everything.

2. A ∧B =⇒ A,
note that the converse A =⇒ A ∧B is not a tautology.

3. A =⇒ A ∨B,
again note that the converse A ∨B =⇒ A is not a tautology.

4. (A =⇒ B) =⇒ (¬B =⇒ ¬A).
Let’s prove this tautology using the explanation of the connectives given
above:

Proof: To show (A =⇒ B) =⇒ (¬B =⇒ ¬A), let’s assume
A =⇒ B (1) to show ¬B =⇒ ¬A. To show this we assume ¬B (2)
(which just stands for B =⇒ False) to show ¬A which stands for
A =⇒ False, hence we also assume A (3) and it remains to show False
from the assumptions (1),(2) and (3). Indeed, because we know A (3) and
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A =⇒ B (1) we know B and now we use (2) B =⇒ False to show
False. �

We notice that pigs can fly given the appropriate assumptions.

Many important tautologies have the form of logical equivalences:

1. A ∧B ⇐⇒ B ∧A,
we say that ∧ is commutative. The same holds for ∨.

2. A ∧ (B ∧ C) ⇐⇒ (A ∧B) ∧ C,
we say that ∧ is associative. The same holds for ∨. Associativity allows
us to omit brackets when we nest the same operator, i.e. we can read
A ∧B ∧ C as A ∧ (B ∧ C) or (A ∧B) ∧ C — it desn’t matter.

3. (A ∨B) ∧ C ⇐⇒ (A ∧ C) ∨ (B ∧ C),
we say that ∨ distributes over ∧. We prove this tautology:

Proof: To show ⇐⇒ we have to show both directions:

(A ∨B) ∧ C =⇒ (A ∧ C) ∨ (B ∧ C) We assume (A ∨ B) ∧ C (1) and
try to show (A∧C)∨ (B ∧C). From (1) we know (A∨B) (2) and
C (3). How could we have shown A ∨B? There are two cases:

by showing A (4) From (3) and (4) we know A ∧ C and hence
(A ∧ C) ∨ (B ∧ C).

by showing B (4′) From (3’) and (4’) we know B ∧C and hence
(A ∧ C) ∨ (B ∧ C).

Since in both cases we were able to show (A ∧C) ∨ (B ∧C) we have
finished this part of the proof.

(A ∧ C) ∨ (B ∧ C) =⇒ (A ∨B) ∧ C We assume (A ∧C) ∨ (B ∧C) (1)
to show (A ∨ B) ∧ C: How could we ve shown (1)? There are two
possibilities:

by showing A ∧ C ∧ (2) Hence we know A (3) and C (34. From
(3) we can derive A ∨ B and combining this with (4) we have
(A ∨B) ∧ C.

by showing B ∧ C (2′) Hence we know B (3′) and C (4′).
From (3’) we can derive A ∨ B and combining this with (4’) we
have (A ∨B) ∧ C.

In either case we have shown (A ∨B) ∧ C.

�

2.3 Classical tautologies

Is A ∨ ¬A a tautology? Actually, it depends. Given the explanation of the
connectives given above, to prove A∨¬A we need to prove either A, or disprove
it by establishing ¬A. However, there are propositions which we can’t prove or
disprove. On the other hand we are unable to exhibit an instance of A ∨ ¬A,
which will lead to a definitively false statement. We may adopt the point of
view that even if we cannot prove a certain statement it is still either true and
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false. This point of view is accepted in classical logic, which is accepted by most
modern Mathematicians, even though its philosophical foundations are rather
problematic.

We say a tautology is a classical tautology, if it is provable from assuming
that A ∨ ¬A, the principle of the excluded middle, holds. An example is
¬¬B =⇒ B, which can be proven as follows:

Proof: To show ¬¬B =⇒ B we assume ¬¬B (1) to show B. Using the
principle of excluded middle we know B∨¬B. That is there are two possibilities:

B holds. we are done.

¬B holds. We note that (1) means ¬B =⇒ False, hence we can use it to
show False and since False implies anything, we can show B,

In either case we have shown B. �

However, at least for propositional logic there is a very mechanical way to find
out whether a propositional scheme is a classical tautology: Since every proposi-
tion is either True or False we can identify propositions with Bool and replace
the propositional connectives by the corresponding operations on Bool:

Propositions Bool
∧ &&
∨ ||
¬ not
⇐⇒ ≡
=⇒ implies

where we define implies as follows:

implies ∈ Bool → Bool → Bool
implies False x = True
implies True x = x

To find out whether a propositional scheme is a classical tautology all we have
to do is to draw the value table of its translation as a function on Bool (called
its truth table) and check that it allways evaluates to True. E.g. to check
that ¬¬A =⇒ A is a tautology, we just calculate:

A ¬A ¬¬A ¬¬A =⇒ A
False True False True
True False True True

Let’s verify that (A ∨ B) ∧ C ⇐⇒ (A ∧ C) ∨ (B ∧ C) is indeed a classical
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tautology:

A B C A ∨B ∧ C A ∧ C ∨B ∧ C A ∨B ∧ C ⇐⇒ A ∧ C ∨B ∧ C
False False False False False True
False False True False False True
False True False False False True
False True True True True True
True False False False False True
True False True True True True
True True False False False True
True True True True True True

2.4 Predicate logic

So far we cannot say express any interesting propositions, because we cannot
make use of variables. To change this we will use predicate logic. A predicate
over a type expresses property of elements of this type. An example is the
predicate Even over the natural numbers, which expresses the property of a
number being even. If n ∈ Nat then Even n is a proposition. We write
Even ∈ Nat → Prop to say that Even is a predicate over the natural numbers.
Predicates can have more than one argument, then they are also relations. An
example of a relation is 6 which is a relation over the natural numbers (actually
also for other number types): that is idf m,n ∈ Nat then m 6 n is a proposition.
We write (6) ∈ Nat → Nat → Prop. An important relation which exists for
all types is equality: if (=) ∈ a → a → Prop where a is any type.

Variables are introduced by quantifiers. Let P be a proposition which contains
a variable, lets say x and assume as given a set A. Then we can construct:

• ∀x ∈ A.P , we say for all x in A, P holds. We accept ∀x ∈ A.P if we can
show P where x is replaced by any given element of a ∈ A (we write this
as P [x = a]), e.g. we accept ∀x ∈ Bool.x = True ∨ x = False.

• ∃x ∈ A.P , we say there exists x in A, such that P . We accept ∃x ∈ A.P
if we can show P where x is replaced by a specific element of A, e.g. we
accept ∃x ∈ Bool.x = True.

The reading conventions for quantifiers are that they bind weaker than any of
the propositional connectives, e.g. we read

∀x ∈ A.P ⇐⇒ Q

as
∀x ∈ A.(P ⇐⇒ Q)

It is instructive to illustrate the use of quantifiers by showing how English
sentences can be translated into predicate logic. Let’s assume that we have
a type Party of names of people present at a party and a relation knows ∈
Party → Party → Prop where knows a b expresses that a knows b. Here are
some examples:
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• John knows Mary.
knows John Mary

• Everybody knows somebody.

∀x ∈ Party.∃y ∈ Party.knows x y

• Somebody is known by everybody.

∃y ∈ Party.∀x ∈ Party.knows x y

Note that exchanging different quatifiers changes the meaning.

• Somebody knows everybody.

∃x ∈ Party.∀y ∈ Party.knows x y

• Everybody who Mary knows, knows her.

∀x ∈ Party.knows Mary x =⇒ knows x Mary

• There are at least two different people who know John.

∃x ∈ Party.∃y ∈ Party.¬(x = y) ∧ knows x John ∧ knows y John

It is customary to combine quantifiers of the same sort and write x 6= y
for ¬(x = y), i.e. we may write:

∃x, y ∈ Party.x 6= y ∧ knows x John ∧ knows y John

• There is exactly one person who George knows.

∃x ∈ Party.knows George x ∧ ∀y ∈ Party.knows George y =⇒ x = y

We express exactly one by saying that everybody who George knows is
the same person.

As for propositional logic we have tautologies, which are propositions which are
provable for any predicate. Given a type a and predicates P ,Q ∈ a → Prop
and a proposition P here are examples for tautologies:

• (∀x ∈ a.P x ∧Q x ) ⇐⇒ (∀y ∈ a.P y) ∧ (∀z ∈ a.Q z ) Proof:

We show both direction seperately:

(∀x ∈ a.P x ∧Q x ) =⇒ (∀y ∈ a.P y) ∧ (∀z ∈ a.Q z ) We assume ∀x ∈ A.P x∧
Q x (1). To show (∀y ∈ a.P y) ∧ (∀z ∈ a.Q z ) we have to show
both ∀y ∈ a.P y (2) and ∀z ∈ a.Q y (3). To show (2) we as-
sume y ∈ a (4), we have to show P y . Using (1) and (4) we know
P y ∧Q y and hence Q y . The proof of (3) follows the same idea.

(∀y ∈ a.P y) ∧ (∀z ∈ a.Q z ) =⇒ ∀x ∈ a.P x ∧Q x We assume (∀y ∈ a.P y)∧
(∀z ∈ a.Q z ) (1) to prove ∀x ∈ a.P x ∧ Q x . Having assumed (1)
we know ∀y ∈ a.P y (2) and ∀z ∈ a.P z (3) To show this we
assume x ∈ a (4), to show P x we use (2) and (4) and to derie Q x
we use (3) and (4), hence we have shown P x ∧Q x .

14
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• (∃x ∈ a.P x ∨Q x ) ⇐⇒ (∃y ∈ a.P y) ∨ (∃z ∈ a.Q z )

• (∃x ∈ A.P =⇒ R) ⇐⇒ ∀x ∈ A.P =⇒ R

Instead only proving generic tautologies we can now prove specific statements,
e.g. that not hasn’t got a fixpoint:

∀x ∈ Bool.not x 6= x

Proof: We have to show not x 6= x for any x ∈ Bool. There are only two
possibilities:

x = True We have that not True = False by definition of not and it is obvious
that True 6= False.

x = False We have that not False = True by definition of not and it is obvious
that False 6= True.

�
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3 Bits of history

Georg Cantor, a German mathematician, was the first one to define the notion
of a set (german Menge) in 1895:

By a set we are to understand any collection into a whole of definite
and separate objects of our intuition or our thought.

Another German, Friedrich Ludwig Gottlob Frege (1848-1925) wanted to put
mathematics on a firm foundation, and for this purpose he developed predicate
logic. He published a book. called Begriffsschrift, which also used Cantor’s
naive perception of a set, in particular the principle of comprehension, i.e. every
property defines a set. If P is a property (or predicate) using a variable x, we
write {x | P} for the set of all objects with property P . The Begriffsschrift was
also read by an English logician, Bertrand Russell (1872-1970):
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Russell found a fundamental flaw in Frege’s system which made it inconsistent.
This means you could prove anything in it no matter whether it is true or false.
Naturally, this renders it useless as a foundation of mathematics. Russell wrote
a letter to Frege explaining the problem — it seems that Frege never recovered
from the blow. He certainly didn’t know a good way to fix it.

To explain Russell’s paradox, let’s have a look at a little story which involves
a barber (let’s call him Sweeny Todd) who lives in a little village. Since he is
the only barber in the village he has put a note in his window saying: I shave
everybody in the village who doesn’t shave himself

by Conor McBride

Now, the barber has got a dilemma: If he shaves himself then he shouldn’t shave
himself because he is shaving precisely those people who do not shave himself.
On the other hand if he does not shave himself then he should shave himself
according to the sign.

17



The story with the barber may not seem to be so dramatic because we are quite
used to false advertising. However, if we translate the same idea into set theory
it becomes much more serious: Let us consider the set R of all sets which do
not contain themselves, we write

R = {X | X /∈ X)}

where X /∈ X is short for ¬(X ∈ X). E.g. Nat /∈ R because the set of natural
numbers does not contain itself.

However, what about R itself? If R does contain itself then it should not. If
on the other hand R does not contain itself then by definition it should contain
itself. Hence Frege’s system was inconsistent!

However, set theory was saved by two Germans:

Ernst Friedrich Ferdinand Zermelo (1871-1853)

Adolf Abraham Halevi Fraenkel (1891-1965)

Zermelo identified the unlimited comprehension principle, i.e. that every prop-
erty gives rise to a set, as the source of the problems and introduced the restricted
comprehension principle instead. I.e. we are only allowed to construct subsets
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of already existing sets, i.e. {x ∈ A | P}, where A already exists. The set R
clearly does not fall in this category 10 and hence is outlawed. However, now
we have to provide some ways to construct basic sets, i.e. the empty set, fi-
nite sets, the set of natural numbers and the power set (the set of all subsets
of a set). Zermelo founded axiomatic set theory, in which these principles are
incorporated in some basic propositions about ∈ and = called axioms. Later
Fraenkel extended Zermelo’s system by adding an important axiom, the axiom
of replacement. The resulting system is usually called Zermelo Fraenkel set the-
ory or ZF set theory for short and is widely accepted as a foundation of modern
mathematics.

For many people (certainly for most mathematicans) the story ends here. How-
ever, ZF set theory is not very useful as a programming language (for example
it allows to define functions which cannot be run on a computer).

Per Martin-Löf, a Swedish Mathematician and Philosopher started to develop
Type Theory as a constructive foundation of Mathematics in the early 70’s.
This language is interesting for Computer Science because it is at the same
time a language to reason about mathematical objects and a programming lan-
guage. There are a number of computer programs which implement different
variations of Martin-Löf’s Type Theory: NuPRL (for Nearly Ultimate Proof
Representation Language) developed by Robert Constable and his team in the
USA; LEGO developed by Randy Pollack in Edinburgh; the Swedish systems
ALF and AGDA; the French system COQ 11 , which is now one of the most
successful computer proof systems, and very recently Conor McBride’s Epigram
system 12 on which my 2nd/3rd year module Computer Aided Formal Reasoning
(G5BCFR) is based.

10Unless we introduce a set of all sets, which would make the theory inconsistent, due to
Russell’s paradox.

11http://coq.inria.fr/
12http://www.dur.ac.uk/CARG/epigram/
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4 Natural numbers

How can we understand an infinite type like Nat?

Nat = {0, 1, 2, 3, . . .}

And how can we define operations like isEven ∈ Nat → Bool which should
return True if its input is an even number and False otherwise? We can hardly
define isEven by listing all the cases:

isEven 0 = True
isEven 1 = False
isEven 2 = True
isEven 3 = False
isEven 4 = True
isEven 5 = False
...

And how can we reason about isEven and other functions on Nat or other
infinite types?

Our understanding of the natural numbers is that they are related to counting:
0 is a natural number and if n ∈ Nat then its successor, i.e. the number n +1 is
a natuiral number, we write Succ n ∈ Nat. Now 0 and Succ are the constructors
of Nat, i.e. we define 13

data Nat = 0 | Succ Nat

now Nat looks a bit different than what we are used to

Nat = {0,Succ 0,Succ (Succ 0),Succ (Succ (Succ 0)), ...}
and conveniently we define

1 = Succ 0
2 = Succ 1
3 = Succ 2
4 = Succ 3
5 = Succ 4

However, we should be able to look beyond the superficial notation using the
decimal system. The above definition of the natural number is in some way the
simplest and mathematically most elegant. It was suggested by Italian logician
Guiseppe Peano at the beginning of the 20th century who codified the basic
rules of arithmetic by his famous axioms (called Peano’s axioms). We shall
not study his formulation of the axioms here in detail, but our presentation is
certainly inspired by them.

13This is a beautified version of the real Haskell code. Haskell wouldn’t accept using the
symbol 0 as a constructor, hence we are actually writing Zero.
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Guiseppe Peano (1858 - 1932)

We shall later say how we can express other notational systems for natural
numbers by similar type definitions, in particular we shall have a look at the
binary representation. Peano’s representation, which we could call unary is
practically useless, because the numbers grow far to long quickly. However, it is
the easiest way to understand the natural numbers and to reason about them.
Indeed, this is precisely what Peano intended. We will later introduce binary
numbers and define translations between binary numbers adn Peano’s numbers.

4.1 Primitive recursion

How can isEven be defined using Peano’s definitions of the natural numbers?
We observe that isEven 0 = True and isEven (n+1) is the opposite of isEven n,
that is isEven (n + 1) = not (isEven n). Hence we write:

isEven ∈ Nat → Bool
isEven 0 = True
isEven (Succ n) = not (isEven n)

We say that isEven is defined by primitive recursion, that is isEven (Succ n)
is defined using isEven n. This is reasonable, because if we construct the nat-
ural number Succ n we must have constructed the natural number n before.
In the same way we can calculate the answer isEven n before we calculate
isEven (Succ n) using our previously calculated answer.

Actually, this is not an accurate description of how is recursion is executed on a
computer, the computer will only calculate isEven n when it has to to calculate
isEven (Succ n). However, the explanation above justifies why this process
always terminates and why a function constructed by primitive recursion will
always produce an answer.

Hence we can calculate isEven 3 as follows:

isEven 3
= { definition of 3 }
isEven (Succ 2)
= { definition of isEven }
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not (isEven 2)
= { definition of 2 }
not (isEven (Succ 1))
= { definition of isEven }
not (not (isEven 1))
= { definition of 1 }
not (not (isEven (Succ 0)))
= { definition of isEven }
not (not (not (isEven 0)))
= { definition of isEven }
not (not (not True))
= { definition of not }
not (not False)
= { definition of not }
not True
= { definition of not }
False

When displaying an equational derivation, we always say what principles we
have applied to get from one line to the next. The derivation above is a simple
calculation, all we are doing is expanding definitions.

Primitive recursion can be contrasted with general recursion, which is permitted
in Haskell. A general recursive function is defined recursively without insisting
that the recursive call is on a previous value. General recursion may not termi-
nate and while it is easy to use for programming, the mathematical theory is
more involved. Hence we shall not consider it here, but only means of recursion
which can be justified like primitive recursion.

4.1.1 Addition

Using primitive recursion, we can now define addition:

(+) ∈ Nat → Nat → Nat
0 + n = n
(Succ m) + n = Succ (m + n)

Let us spell out what we are doing: (+) is defined by recursion over the first
argument. (+) 0 gives rise to the function which just returns its argument (the
identity function). (+) (Succ m) uses (+) m to calculate (+) m n and then
takes Succ of that calculation.

We can calculate 2 + 3:

2 + 3
= { definition of 2 }
(Succ 1) + 3
= { definition of + }
Succ (1 + 3)
= { definition of 1 }
Succ ((Succ 0) + 3)
= { definition of + }
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Succ (Succ (0 + 3))
= { definition of + }
Succ (Succ 3)
= { definition of 5 }
5

4.1.2 Multiplication

Let’s go on and define some more functions, e.g. multiplication:

(∗) ∈ Nat → Nat → Nat
0 ∗ n = 0
(Succ m) ∗ n = m + (m ∗ n)

Multiplication is defined by repeated addition in the same way as addition is
defined by repeated Succ. As an example we calculate 2 ∗ 3

2 ∗ 3
= { definition of 2 }
(Succ 1) ∗ 3
= { definition of ∗ }
3 + 1 ∗ 3
= { definition of 1 }
3 + (Succ 0) ∗ 3
= { definition of ∗ }
3 + 3 + 0 ∗ 3
= { definition of ∗ }
3 + 3
= { calculate + }
6

4.1.3 Equality and less-or-equal

We define the function (≡) ∈ Nat → Nat → Bool which decides whether two
natural numbers are equal. As in the case of (+) we exploit the curried view of
a function in the definition. Let’s analyze the first argument: (≡) 0 ∈ Nat →
Bool should return the function which recognizes 0, i.e. which returns True
precisely if its argument is 0, hence we write

0 ≡ 0 = True
0 ≡ (Succ n) = False

The other case is (≡) (Succ m) ∈ Nat → Bool, this function should return
False if presented with 0, but what to do, if it is applied to Succ m? The answer
is that we recursively call (≡) m and apply it to n, because Succ m ≡ Succ n
has the same value as m ≡ n. Hence we define

Succ m ≡ 0 = False
Succ m ≡ Succ n = m ≡ n

Putting everything together we arrive at the following definition:
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(≡) ∈ Nat → Nat → Bool
0 ≡ 0 = True
0 ≡ (Succ n) = False
(Succ m) ≡ 0 = False
(Succ m) ≡ (Succ n) = m ≡ n

By a slight modification, i.e. by returning True instead of False in the second
line we obtain 6 instead of ≡.

(6) ∈ Nat → Nat → Bool
0 6 0 = True
0 6 (Succ n) = True
(Succ m) 6 0 = False
(Succ m) 6 (Succ n) = m 6 n

4.1.4 Factorial

When we set up musical chairs, we may wonder: How many ways are there to
place 6 children on 6 chairs? The answer is: there 6 possibilities for the first
child, 5 for the second and so on, and there will be only one place left for the last
one. Hence there are 6× 5× 4× 3× 2× 1 = 720. We write fac n (mathematical
notation n!) for the number of permutations of n elements (e.g. the number of
ways to arrange n children on n chairs).

We observe that there is one way to arrange no children on no chairs (hence
fac 0 = 1), there are n + 1 ways to place the first child and fac n ways to
distribute the remaining n children, hence fac (n + 1) = (n + 1) ∗ (fac n). This
leads to the following definition of fac by primitive recursion:

fac ∈ Nat → Nat
fac 0 = 1
fac (Succ n) = (Succ n) ∗ (fac n)

4.1.5 Fibonacci

Another interesting function is the famous Fibonacci function fib :Nat → Nat,
which is usually motivated by the problem to calculate the number of rabbits
after n months, if we assume that the rabbits have a child two months after they
are born (ignoring among others the fact that we need actually two rabbits).
We start with no rabbits in month 0 and one rabbit in month 1, consequently we
have still one rabbit in month 2 and 2 rabbits in month 3, because our first rabbit
got its first child. In general we have that the rabbits in month n+2 are the sum
of the number of the rabbits in the previous months and the rabbits from the
month before, who will have children now: fib (n + 2) = (fib (n + 1)) + (fib n).
I.e. we get the sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765 . . .

We define fib:
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fib ∈ Nat → Nat
fib 0 = 0
fib (Succ 0) = 1
fib (Succ (Succ m)) = (fib m) + (fib (Succ m))

Different from the functions we have seen so far, we are not just using the value
of a function at n to calculate the value at Succ n, but here we actually use
two previous values. Using smaller values in general is called course of value
recursion and is a modest generalisation of primitive recursion. Indeed, it has
got the same justification as primitive recursion, e.g. we adopt the view that
the function values for smaller values have been calculated earlier.

4.2 Induction

How can we prove something for all natural numbers? This is a problem very
similar to the one we have discussed in the previous section and indeed the
solution is very closely related to primitive recursion. Let’s consider a very
simple example, we want to prove ∀n ∈ Nat.n+Zero = n. Recall the definition
of +

(+) ∈ Nat → Nat → Nat
0 + n = n
(Succ m) + n = Succ (m + n)

We can see by looking at the definition that ∀ n ∈ Nat.0 + n = n, but what
about the equally true ∀ n ∈ Nat.n + 0 = n. Sure, we will remember the
equality ∀ m,n ∈ Nat.m + n = n + m (called commutativity of addition) but
here we shall actually establish this law from first principles and we will see
that actually ∀ n ∈ Nat.n + 0 = n is a useful auxilliary property when showing
commutativity.

We can start showing this property for the first few natural numbers and observe
that a certain pattern emerges:

0 0 + 0 = 0 by definition of +.

1 To show (Succ 0)+0 = Succ 0 we first use the definition of + to see (Succ 0)+
0 = Succ (0 + 0) and then we can exploit the previous line to see that
Succ (0 + 0) = Succ 0

2 To show (Succ (Succ 0)) + 0 = Succ (Succ 0) we first use the definition of +
to see (Succ (Succ 0)) + 0 = Succ ((Succ 0) + 0) and then we can exploit
the previous line to see that Succ ((Succ 0) + 0) = Succ (Succ 0)

. . .

Each of the subsequent line is simply a consequence of the previous one. E.g. to
show (Succ n)+0 = Succ n we first apply the definition of + to see (Succ n)+0 =
Succ (n +0) and then we apply the previous line, i.e. the proof for n to see that
Succ (n + 0) = Succ n.
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We can see that this shows that the property holds for all natural numbers, the
idea is the same as for primitive recursion: because the number n is constructed
before Succ n, we can establish the property for n before we show it for Succ n.

The principle of induction can be summarized as follows: to prove a property
P for all natural numbers, i.e. to show ∀ n ∈ Nat.P n , we prove it for 0, i.e.
we show P 0 and assuming that it holds for n ∈ Nat, i.e. P n we can show that
it holds for P (Succ n). The assumption P n which can be used when showing
P (Succ n) we call the induction hypothesis (IH).

4.2.1 Commutativity of (+)

Let’s now prove ∀ m,n ∈ Nat.m+n = n+m by induction over m. If m = 0 this
reduces to showing 0+n = n +0, we know that 0+n = n by the definition of +
and we have just shown n = n +0 above. Let’s assume that ∀ n ∈ Nat.m +n =
n + m to prove ∀ n ∈ Nat . (Succ m) + n = n + (Succ m). Now given n ∈ Nat
we know from the definition of + that (Succ m) + n = Succ (m + n), we can
apply the induction hypthesis to deduce that Succ (m +n) = Succ (n +m). All
that is left to show is that Succ (n + m) = n + (Succ m), showing this requires
a separate proof by induction.

It is time to tidy up our argument and also follow standard mathematical prac-
tice and present proofs forward i.e. starting from the assumptions and basic
lemmas (auxilliary theorems) to the goal, the final theorem. No human being
constructs a proof like this, everybody does it the other way around! Some peo-
ple believe that this is part of a conspiracy by Mathematicians to make their
knowledge inaccessible to the rest of the world. . .

Lemma 4.1 ∀ n ∈ Nat.n + 0 = n

Proof: By induction over n ∈ Nat:

Case n = 0 We show 0 + 0 = 0:

0 + 0
= { definition of + }
0

Case n = Succ n ′ We assume n ′ + 0 = n ′ (IH ) to show (Succ n ′) + 0 =
Succ n ′:

(Succ n ′) + 0
= { definition of + }
Succ (n ′ + 0)
= { (IH) }
Succ n ′

�

Lemma 4.2 ∀ m,n ∈ Nat.m + (Succ n) = Succ (m + n)

Proof: By induction over m ∈ Nat:
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Case m = 0 We show ∀ n ∈ Nat.0 + (Succ n) = Succ (0 + n):
0 + (Succ n)
= { definition of + }
Succ n
= { definition of + }
Succ (0 + n)

Case m = Succ m ′ We assume ∀ n ∈ Nat.m+(Succ n) = Succ (m+n) (IH )
to show (Succ m) + (Succ n) = Succ (m + n)

(Succ m) + (Succ n)
= { definition of + }
Succ (m + (Succ n))
= { IH }
Succ (Succ (m + n))
= { definition of + }
Succ ((Succ m) + n)

�

Theorem 4.3 ∀ m,n ∈ Nat.m + n = n + m

Proof: By induction over m ∈ Nat.

Case m = 0 We show ∀ n ∈ Nat.0 + n = n + 0:
0 + n
= { definition of + }
n
= { lemma ?? }
n + 0

Case m = Succ m ′ We assume ∀ n ∈ Nat.m ′ + n = n + m ′ (IH ) to show
(Succ m ′) + n = n + (Succ m ′):

(Succ m ′) + n
= { definition of + }
Succ (m ′ + n)
= { IH }
Succ (n + m ′)
= { lemma ?? }
n + (Succ m ′)

�

Isn’t this a bit much effort for a theorem, whose truth can be easily seen intu-
itively? Every child knows that if you put two heaps of sweeties together that
the order in which you do this does not affect the number of sweeties you have
in the end. However, apart from the point that we used a simple example to
illustrate a method, it is sometimes worthwhile to prove the obvious. Maybe
you were only thinking that the function you defined was addition but as soon
as you are going to prove something about it you discover that there is a bug.
This is different from Mathematics: Computer Scientists are interested in prov-
ing obvious things. It is also a good idea to enlist the help of a computer to
make sure that we don’t accidently cheat. We will get back to this later.
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4.2.2 Gauss’ theorem

Let’s consider a less obvious proposition we can prove by induction. Carl
Friederich Gauss was a famous German Mathematician in the 19th century;
one of the theorems he proved is the fundamental theorem of algebra, which
says that every polynom over the complex numbers has a solution. However,
here we are just concerned with a little theorem he allegedly discovered when
he was still a school boy. Apprently he was naughty and as a punishement
teacher set him the task to add the numbers until 100. But the teacher hadn’t
accounted for young Gauss’ genius, who very quickly came up with the right
answer: 5050. Instead of doing all the stupid calculations, Gauss had realized
that there is a simple formula, namely that the sum of the numbers upto n is
given by (n ∗ (n + 1)) / 2. The following picture illustrates the basic idea in the
case n = 3:
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I.e. the sum of the 1 + 2 + 3 depicted by the area covered by the black balls is
precisely half the area of the 3 ∗ 4 rectangle.

First, for reference lets define by primitive recursion the function which cal-
culates the numbers upto n, which we are going to call sum (Mathematicans
would write Σn

i=0i):

sum ∈ Nat → Nat
sum 0 = 0
sum (Succ n) = (Succ n) ∗ (sum n)

We want to show sum n = (n ∗ (n + 1)) / 2 to avoid having to define division
and to justify that the division in this case stays always withing the natural
numbers, we show instead 2 ∗ (sum n) = n ∗ (Succ n) by induction:

Theorem 4.4 ∀ n ∈ Nat . 2 ∗ (sum n) = n ∗ (Succ n)

Proof: By induction over n ∈ Nat.

Case n = 0 We show 2 ∗ (sum 0) = 0 ∗ (Succ 0)

2 ∗ (sum 0)
= { definition of ∗, sum }
0
= { definition of ∗ }
0 ∗ (Succ 0)

Case n = Succ n ′ We assume
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2 ∗ (sum n ′) = n ′ ∗ (Succ n ′) (IH )

to show 2 ∗ (sum (Succ n ′)) = (Succ n ′) ∗ (Succ (Succ n ′))

2 ∗ (sum (Succ n ′))
= { definition of sum }
2 ∗ ((Succ n ′) + (sum n ′))
= { distributivity }
2 ∗ (Succ n ′) + 2 ∗ (sum n ′)
= { IH }
2 ∗ (Succ n ′) + n ∗ (Succ n ′)
= { distributivity }
(2 + n) ∗ (Succ n ′)
= { commutativity, definition of + }
(Succ n ′) ∗ (Succ (Succ n ′))

�

In the proof above we have used distributivity, i.e.

∀ i , j , k ∈ Nat . i ∗ (j + k) = (i ∗ j ) + (i ∗ k).

Sure, we could have proven this here (by induction) but I will leave this as an
exercise.
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5 Inductive types

The idea behind the definition of the type of natural numbers, can be applied
to many other types using the data keyword in Haskell. We are calling those
types inductive types and indeed they come with their own primitive recursion
and induction principles.

5.1 Lists

One of the most versatile types, especially but not only, in functional program-
ming is the type of lists. Indeed, the name of the first functional language, LISP,
introduced in 1958 as the 2nd high level programming language, stands for LIst
Processing.

Given a type a we write [a ] for the type of lists or sequences of elements of
a. E.g. [23,−1, 1, 1, 0] ∈ [Int ], similar as for (a, b) we use the same symbols
[. . .] for the operator on types and on elements. Actually the [a1, a2, ..., an ]
notation is just a shorthand for a1 : (a2 : . . . (an : [ ]). The basic constructors for
lists are [ ] ∈ [a ] for the empty list, and given x ∈ a and a list xs ∈ [a ] we can
construct the new list x : xs ∈ [a ] (for historic reasons : is called cons). I.e.
[23,−1, 1, 1, 0] = 23 : (−1 : (1 : (1 : (0 : [ ])))).

In Haskell lists are predefined because they use some special syntactic sugar,
but apart from this we could have just defined:

data [a ] = [ ] | a : [a ]

Strings are a special case of lists, we use the type of characters Char which is
a finite type whose elements are the characters which can be used in computing
(e.g. one of the 216 unicode characters). We write elements of Char using single
quotes, e.g. ’a’ ∈ Char. The type of strings is defined as lists of characters:

type String = [Char]

The common syntax for strings using double quotes, i.e. "Hello" is just syntac-
tiv sugar for [’H’, ’e’, ’l’, ’l’, ’o’] which in turn is just short for ’H’ : (’e’ :
(’l’ : (’l’ : (’o’ : [ ])))).

One of the basic functions on lists is append, ++, which combines two lists, i.e.
[1, 2] ++ [3, 4] = [1, 2, 3, 4]. To be able to define this function we have to extend
the principle of primitive recursion to lists. We define xs ++ ys by primitive
recursion over xs, if xs is empty, i.e. xs = [ ] then [ ] ++ ys = ys. On the other
hand if xs is a cons, i.e. xs = x ∈ xs ′ then we know that the combined list starts
with x and constinues with the result of appending xs ′ to ys. That is here we
have to use ++ recursively. The recursive use of ++ can be justified in the same
way as for Nat, the list xs ′ had to be constructed before x : xs ′, hence we can
calculate the result of xs ′ ++ ys before we have to come up with (x : xs ′) ++ ys.
In Haskell we write:

(++) ∈ [a ] → [a ] → [a ]
[ ] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

30



Note that ++ is a polymorphic function, we can replace the type variable a by
any type. E.g. we may replace a by Char arriving at the special case of strings.
Hence we can use ++ to append strings, e.g. "Hel" ++ "lo" = "Hello".

We also have an induction principle for lists. To illustrate this let’s first intro-
duce a function, which reverses a list. How to reverse a list? The reverse of the
empty list is the empty list. The reverse of a list x :xs is the reverse of xs with x
put on the end. We arrive at the following primitive recursive implementation
of reverse:

rev ∈ [a ] → [a ]
rev [ ] = [ ]
rev (x : xs) = (rev xs) ++ [x ]

E.g. rev "Hello" = "olleH". What happens if we reverse twice? Right,
we get back where we started, indeed rev "olleH" = "Hello". Let’s prove
∀ xs ∈ [a ] . rev (rev xs) = xs.

Induction over lists means that to show a property for all lists, we show the
property for the empty list [ ] and then we show that if it holds for any list xs
then it holds for x : xs. The justification is again the same as for induction for
the natural numbers.

We will show ∀ xs ∈ [a ] . rev (rev xs) = xs by induction over lists. The [ ] case is
straightforward, since rev [ ] = [ ], what about rev (rev (x :xs)) = rev ((rev xs)++
[x ])? We cannot apply the induction hypothesis directly, we first have to move
the outer rev inside ++. The key idea is to show that rev ((rev xs) ++ [x ]) =
x :(rev (rev xs)) and then we apply the induction hypothesis that rev (rev xs) =
xs. How do we show rev ((rev xs) ++ [x ]) = x : (rev (rev xs))? The point is that
this property doesn’t just hold for rev xs but for any list ys, i.e. rev ((ys++[x ]) =
x : (rev ys)), e.g. rev ("Hall"++"o") = "o" : (rev "Hal"). How to we show that
this property holds? By induction over ys!

Ok, that’s the sketch. Let’s tidy this up. First we prove the auxilliary property
as a lemma:

Lemma 5.1 ∀ x ∈ a .∀ ys ∈ [a ] . rev ((ys ++ [x ]) = x : (rev ys))

Proof: Given x ∈ a. We show ∀ ys ∈ [a ] . rev ((ys ++ [x ]) = x : (rev ys)) by
induction over ys ∈ [a ].

Case ys = [ ] We show rev ([ ] ++ [x ]) = x : (rev [ ]).

rev ([ ] ++ [x ])
= { definition of ++ }
rev [x ]
= { definition of rev }
[x ]
= { definition of rev }
x : (rev [ ])

Case ys = y : ys ′ We assume

rev ((ys ++ [x ]) = x : (rev ys)) (IH )
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to show

rev (((y : ys) ++ [x ]) = x : (rev (y : ys)))

rev (((y : ys) ++ [x ])
= { definition of ++ }
rev (y : (ys ++ [x ]))
= { definition of rev }
(rev (ys ++ [x ])) ++ [y ]
= { (IH) }
(x : (rev ys)) ++ [y ]
= { definition of ++ }
x : ((rev ys) ++ [y ])
= { definition of rev }
x : (rev (y : ys))

�

Theorem 5.2 ∀ xs ∈ [a ] . rev (rev xs) = xs

Proof: By induction over xs.

Case xs = [ ] We show rev (rev [ ]) = [ ]

rev (rev [ ])
= { definition of rev }
rev [ ]
= { definition of rev }
[ ]

Case xs = x : xs ′ We assume

rev (rev xs) = xs (IH )

to show

rev (rev (x : xs ′)) = x : xs ′

rev (rev (x : xs ′))
= { definition of rev }
rev ((rev xs ′) ++ [x ])
= { lemma for ys = rev xs ′ }
x : (rev (rev xs))
= { (IH) }
x : xs

�

5.2 Insertion sort

There are many situations, where we want to sort a list, e.g. given [56, 1, 10, 3]
we would like to produce [1, 3, 10, 56]. One of the simplest sorting algorithms is
insertion sort. The idea can be best explained by describing how to sort a deck
of card. We sort from an unsorted pile to a sorted pile by adding one card at
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a time to the sorted pile. When adding a card to a already sorted pile we go
through the sorted pile until we find a card with a higher value and then insert
the new card just before this card. This can be expressed as a function insert ,
which is defined by primitive recursion over lists:

insert ∈ Nat → [Nat ] → [Nat ]
insert a [ ] = [a ]
insert a (b : bs) = if a 6 b then a : (b : bs)

else b : (insert a bs)

The important feature of insert is that it produces a sorted list with an ex-
tra element, if its argument was sorted. We can now define insertionSort by
primitive recursion over the initially unsorted list:

insertionSort ∈ [Nat ] → [Nat ]
insertionSort [ ] = [ ]
insertionSort (a : as) = insert a (insertionSort as)

And indeed insertionSort [56, 1, 10, 3] = [1, 3, 10, 56].

The same algorithm can sort any data wrt. to a given comparison function
comp : a → a → Bool, which has the appropriate properties (we shall later
discuss in detail what properties this are).

Insertion sort shouldn’t be used to sort large sequences, because it is quite
inefficent: on average it compares every argument with half of all the others. We
say it has quadratic complexity, because on average the number of comparisons
it has to carry out is proportional to n2, where n is the length of the list.

5.3 Binary numbers

We can use lists to represent binary numbers. A binary number like 1102, which
is the binary way to write 6, is nothing but a list of Booleans, hence we define:

type Binary = [Bool ]

We use True for 1 and False for 0 and we shall read the list backwards, which
has the advantage that it is easy to access the least significant digit, e.g. 1102

is actually represented as [False,True,True]. 14

We shall define functions, which translate between Binary and Nat. We start
with bin2nat ∈ Binary → Nat: The idea is that to translate a number which
has at least one digit, we recursively translate the rest of the numebr without
the last digit, double that and add the value of the last digit to it. This is
expressed by the following function:

bin2nat ∈ Binary → Nat
bin2nat [ ] = 0
bin2nat (True : bs) = Succ (2 ∗ (bin2nat bs))
bin2nat (False : bs) = 2 ∗ (bin2nat bs)

14We could have avoided this notational inconvenience by using snoc lists, i.e. lists where
cons gets its arguments the other way around.
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To define the translation in the other direction, nat2bin ∈ Nat → Binary, we
introduce a successor function on the binary representation. The successor of
the empty list, which is interpreted as 0 is 1. Otherwise, if the last digit is 0 we
just change this to 1 and keep the rest of the number the same. If the last digit
is 1, we change this to 0 and have a carry bit, which means that we have to
recursively calculate the successor of the rest of the number. Hence we define:

bsucc ∈ Binary → Binary
bsucc [ ] = [True]
bsucc (False : bs) = True : bs
bsucc (True : bs) = False : (bsucc bs)

Now we can define nat2bin, it basically translates 0 by the empty binary and
then applies bsucc for every successor.

nat2bin ∈ Nat → Binary
nat2bin 0 = [ ]
nat2bin (Succ n) = bsucc (nat2bin n)

Once we have established the two translations, we want to show that they
are indeed inverse to each other. E.g. if we start with a natural number
n we can translate it to a binary nat2bin n, and then translate it back by
bin2nat (nat2bin n) and we should hope that we get back to the number we
started with, i.e. that

bin2nat (nat2bin n) = n.

If we start with a binary number bs ∈ Binary, the mirror property

nat2bin (bin2nat bs) = bs

doesn’t actually hold. The reason is that our encoding is redundant, lead-
ing 0s (actually trailing Falses in our notation) do not matter. For example
nat2bin (bin2nat [True,False]) = [True]. We could insist the we do not allow
leading 0s and show that for those normal numbers the property holds. Actu-
ally, following common practive we would make the exception for the case that
the number is just 0 but would at the same time outlaw the empty sequence as
a representation of a number.

Going back to proving ∀ n ∈ Nat.n = bin2nat (nat2bin n), unsurprisingly we
are going to use induction to establish this. The case for 0 is straightforward
but in the case of Succ n ′ we have that nat2bin (Succ n ′) = bsucc (nat2bin n ′)
and we would like to use that

bin2nat (bsucc (nat2bin n ′)) = Succ (bin2nat (nat2bin n ′))

to be able to apply the induction hypothesis. This leads to the following lemma:

Lemma 5.3 ∀ bs ∈ Binary.bin2nat (bsucc bs) = Succ (bin2nat bs)

Proof: We show this by induction over bs ∈ Binary.

Case bs = [ ] We have to show bin2nat (bsucc [ ]) = Succ (bin2nat [ ]):

bin2nat (bsucc [ ])
= { definition of bsucc }
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bin2nat [True]
= { calculate bin2nat }
1
= { definition of 1 }
Succ 0
= { definition of bin2nat }
Succ (bin2nat [ ])

Case bs = b : bs ′ We assume

bin2nat (bsucc bs ′) = Succ (bin2nat bs ′) (IH )

to show

bin2nat (bsucc (b : bs ′)) = Succ (bin2nat (b : bs ′))

for any b ∈ Bool. Let’s analyze b ∈ Bool:

Case b = False In this case we have to show:
bin2nat (bsucc (False : bs ′)) = Succ (bin2nat (False : bs ′)):

bin2nat (bsucc (False : bs ′))
= { definition of bsucc }
bin2nat (True : bs ′)
= { definition of bin2nat }
Succ (2 ∗ (bin2nat bs ′))
= { definition of bin2nat }
Succ (bin2nat (False : bs ′))

Case b = True In this case we have to show:
bin2nat (bsucc (True : bs ′)) = Succ (bin2nat (True : bs ′))

bin2nat (bsucc (True : bs ′))
= { definition of bsucc }
bin2nat (False : (bsucc bs ′))
= { definition of bin2nat }
2 ∗ (bin2nat (bsucc bs ′))
= { (IH) }
2 ∗ (Succ (bin2nat bs ′))
= { algebra: 2 ∗ (Succ n) = Succ (Succ (2 ∗ n)) }
Succ (Succ (2 ∗ (bin2nat bs ′))
= { definition of bin2nat }
Succ (bin2nat (True : bs ′))

�

Now we are ready to prove the main theorem:

Theorem 5.4 ∀ n ∈ Nat.bin2nat (nat2bin n) = n

Proof: We prove this by induction over n ∈ Nat:

Case n = 0 We show bin2nat (nat2bin 0) = 0:

bin2nat (nat2bin 0)
= { definition of nat2bin }
bin2nat [ ]
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= { definition of bin2nat }
0

Case n = Succ n ′ We assume

bin2nat (nat2bin n ′) = n ′ (IH )

to show

bin2nat (nat2bin (Succ n ′)) = Succ n ′

bin2nat (nat2bin (Succ n ′))
= { definition of nat2bin }
bin2nat (bsucc (nat2bin n ′))
= { lemma ?? }
Succ (bin2nat (nat2bin n ′))
= { (IH) }
Succ n ′

�

To define addition on Binary we define addition with carry, which always adds
three bits caculating the current bit and the new carry bit. As a first step we
define two operations addbit and carry which calculate the new bit and carry.

addbit ∈ Bool → Bool → Bool → Bool
addbit a b c = (a ≡ b) ≡ c

carry ∈ Bool → Bool → Bool → Bool
carry a b c = (a&&b)||(b&&c)||(a&&c)

We are now ready to define binary addition with carry:

addBinC ∈ Bool → Binary → Binary → Binary
addBinC c as [ ] = if c then bsucc as else as
addBinC c [ ] as = if c then bsucc as else as
addBinC c (a : as) (b : bs) = (addbit a b c) : (addBinC (carry a b c) as bs)

from which we can easily derive binary addition by setting the carry to False:

addBin ∈ Binary → Binary → Binary
addBin bs cs = addBinC False bs cs

Binary multiplication is the usual long multiplication we learn at school. We
multiply each digit of one of the numbers with the other numbers always mul-
tiplying the other number by 10, i.e. shifting it. In the binary case multiplying
a digit with a number is very easy, either the bit is 0 (i.e. False) then the result
is 0 or the bit is 1 then the result just is the other number.

multBin ∈ Binary → Binary → Binary
multBin [ ] bs = [ ]
multBin (a : as) bs = if a

then addBin bs (multBin as (False : bs))
else multBin as (False : bs)

The operations we have defined correspond to the more primitive operations we
have defined previously. That is we have:
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∀ m,n : Nat . addBin (bin2nat m) (bin2nat n) = bin2nat (m + n)

∀ m,n : Nat .multBin (bin2nat m) (bin2nat n) = bin2nat (m ∗ n)

These can be established using the principles we have introduced, i.e. induc-
tion. However, for reasons of space and potential boredom we shall refrain from
carrying this out here.

5.4 Trees

Unlike in ordinary live, trees in computer science have got the roots on top and
the leaves on bottom. Here is an example of a binary tree whose nodes are
labelled with natural numbers:

56

1

3

10

root

node

leaf

Trees are also a very useful datastructure, for example they can be used to
efficently store and update an ordered collection of data. In Haskell we would
define the type of binary, node-labelled trees as follows:

data Tree a = Leaf | Node (Tree a) a (Tree a)

The tree pictured in the diagram would be represented as:

mytree ∈ Tree Nat
mytree = Node (Node Leaf 1 Leaf)

3
(Node Leaf

10
(Node Leaf 56 Leaf))

You may note that the tree is ordered, i.e. all the leaves in the left subtree of
any node has labels less (or equal) than the label on the node and the nodes in
the right subtree have greater labels. Indeed, ordered trees give rise to another
sorting algorithm, which is called tree sort. First we define, by primitive recur-
sion over trees, a function which inserts a node into an ordered tree, leaving the
ordering intact.
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treeInsert ∈ Nat → (Tree Nat) → Tree Nat
treeInsert a Leaf = Node Leaf a Leaf
treeInsert a (Node l b r) = if a 6 b

then Node (treeInsert a l) b r
else Node l b (treeInsert a r)

By inserting all elements of a list into an empty tree, we obtain a function which
turns an unsorted list into an ordered tree.

list2tree ∈ [Nat ] → (Tree Nat)
list2tree [ ] = Leaf
list2tree (a : as) = treeInsert a (list2tree as)

We can also turn an ordered tree into a sorted list.

tree2list ∈ (Tree a) → [a ]
tree2list Leaf = [ ]
tree2List (Node l a r) = (tree2list l) ++ [a ] ++ (tree2list r)

Note, that the last function is polymorphic since it doesn’t need any operations
on the data stored in a tree. Now we obtain tree sort by combining the two
functions defined above:

treeSort ∈ [Nat ] → [Nat ]
treeSort as = tree2list (list2tree as)

It may appear wasteful to create a tree just to sort a list but actually tree sort is
better than insertion sort. On the average every element which is inserted into
the tree is only compared with a few others on the way down to a leaft, to be
precise log2 n, if the number of nodes is n. Since we have to insert n elements
tree sort, will need a number proportional to n log2 n comparisons to sort a list
with n elements, which is considerably better that insertion sort’s n2.

We can also prove propositions about trees by induction over trees. As an
example observe that the tree in the example has 4 nodes and 5 leaves. This is
no coincidence but a general property of binary trees. Maybe the best way to
see that this is the case is to notice that every tree can be generated starting
from a leaf by replacing an aribtrary leaf by a node with two leaves. The initial
tree has got the proberty and it is preserved by the replacement step, hence any
tree will have the property. More formally, we can show this by induction over
trees, where we have an induction hypothesis for the left and the right subtree.

To make this precise we first define functions which count the number of nodes
and leaves in a tree (ignoring any data):

countNodes ∈ (Tree a) → Nat
countNodes Leaf = 0
countNodes (Node l x r) = Succ ((countNodes l) + (countNodes r))

countLeaves ∈ (Tree a) → Nat
countLeaves Leaf = 1
countLeaves (Node l x r) = (countLeaves l) + (countLeaves r)
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We are now ready to prove our theorem:

Theorem 5.5 ∀ t : Tree a . countLeaves t = 1 + (countNodes t)

Proof: We proceed by induction over t ∈ Tree a:

Case t = Leaf We show countLeaves Leaf = 1 + (countNodes Leaf)

countLeaves Leaf
= { definition of countLeaves }
1
= { definition of countNodes }
1 + (countNodes Leaf)

Case t = Node l x r We assume

countLeaves l = 1 + (countNodes l) (IH − L)

countLeaves r = 1 + (countNodes r) (IH − R)

to show countLeaves (Node l x r) = 1 + (countNodes (Node l x r))

countLeaves (Node l x r)
= { definition of countLeaves }
(countLeaves l) + (countLeaves r)
= { (IH-L),(IH-R) }
1 + (countNodes l) + 1 + (countNodes r)
= { algebra }
1 + (1 + (countNodes l) + (countNodes r))
= { definition of countNodes }
1 + (countNodes (Node l x r))

�

Finally note that there are different types of binary trees, depending where we
put the data, i.e. there are leaf labelled trees:

data Tree a = Leaf a | Node (Tree a) (Tree a)

and trees which have labels on leaves and nodes, potentially of different types.

data Tree′ a b = Leaf ′ a | Node′ (Tree′ a b) b (Tree′ a b)
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6 Predicates and relations

A predicate over a type is a property of elements of that type. An example is
Even ∈ Nat → Prop which expresses the property of a natural number being
even. We can define Even

Even ∈ Nat → Prop
Even n = ∃ m ∈ Nat . 2 ∗m = n

That is we say that a number is even, if it is the double of another number. I
write a → Prop for the type of predicates over a. Note that unlike programs
predicates cannot be executed but we can use them for reasoning.

A relation between two types (which may be the same) relates elements of the
first type with elements of the 2nd. An example is 6 ∈ Nat → Nat → Prop
which expresses the relation of a number being smaller than another. Again we
can define 6 using +:

(6) ∈ Nat → Nat → Prop
m6n = ∃ k ∈ Nat .m + k = n

That is we say that m6n, if there is a number k that if added to m gives n.

In general we consider n-ary relations, that is R ∈ a1 → a2 → · · · → an → Prop
and predicates are just another word for 1-ary relations. 2-ary (or binary)
relations such as 6 are usually written infix.

A fundamental binary relation on any type is equality (=) ∈ a → a → Prop.
We consider equality as a primitive notion. We know that everything is equal to
itself — we say that equality is reflexive, that is ∀ x ∈ a . x = x . Two booleans
or natural number or lists are equal if they are made only from constructors
and look the same. Two functions are equal if they return the same answers for
all elements of their domain, that is for f , g ∈ a → b, we have that f = g , if
∀ x : a . f x = g x , note that this involves equality on b. This is the principle of
extensionality and it is the consequence of our view of functions as black boxes,
i.e. we cannot look inside a function, all we can do it is to apply it to arguments.

We have already introduced the functions 6∈ Nat → Nat → Bool, ≡∈
Bool → Bool → Bool and ≡∈ Nat → Nat → Bool. They are related to
6 ∈ Bool → Bool → Prop, =∈ Bool → Bool → Prop and =∈ Nat →
Nat → Prop, indeed they return True, if the relation holds and False other-
wise. That is, we can show that

∀ x , y ∈ Nat . x6y ⇐⇒ x 6 y = True
∀ x , y ∈ Bool . x = y ⇐⇒ x ≡ y = True
∀ x , y ∈ Nat . x = y ⇐⇒ x ≡ y = True

We say that a boolean function f ∈ a → b → Bool decides a relation R ∈ a →
b → Prop, if ∀ x ∈ a, y ∈ b .R x y ⇐⇒ f x y = True. A relation which can
be decided is called decidable.This concept generalizes to relations with any
arity, including predicates. I have silently assumed that by a boolean function
we mean one which can actually run on a computer, this is different in classical
Mathematics, where the notion of a function is more liberal but the definition
of a decidable function is more complicated.
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Not every relation is decidable, an example of an undecidable relation is equal-
ity on functions with an infinite domain, e.g. (=) ∈ (Nat → Bool) → (Nat →
Bool) → Prop. To decide whether two such functions are equal, that is whether
f = g we have to check whether they agree on all natural numbers. By the prin-
ciple of extensionality there is no other way we can find out anything about a
function and checking them for all natural numbers is hardly possible.

6.1 Examples of relations

In the following we will discuss some examples of relations. It is helpful to
visualize relations by drawing their graphs. We can only draw graphs for a
decidable relation R ∈ a → a → Prop on finite type a by a directed graph
whose nodes (called vertices) are the elements of a and we draw an arrow (called
edge) from x to y , if R x y holds.

We cannot draw relations on the natural numbers, however, we will instead use
the type Four = {0, 1, 2, 3, 4} and drwaw the graph of the relation restricted to
the numbers upto 4.

6.1.1 Equality

The graph of (=) ∈ Four → Four → Prop is extremely simple:

0 1 2 3 4

6.1.2 Inequality

We say x 6= y if x and y are not equal. This relation is polymorphic, i.e. it is
uniformly defined for any type.

(6=) ∈ a → a → Prop
x 6= y = ¬ (x = y)

The graph of (6=) ∈ Four → Four → Prop contains an edge everywhere the
previous graph had none, hence it looks pretty wild:

0 1 2 3 4

6.1.3 Less or equal

We have already defined the relation (6) on the natural numbers. Here is the
graph of the relation restricted to Four:
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0 1 2 3 4

6.1.4 Less than

We say m < n if m is strictly less than n.

(<) ∈ Nat → Nat → Prop
m < n = Succ m 6 n

The graph of (<) : Four → Four → Prop looks pretty similar as the one of (6),
only the little circles pointing from every element to itself are missing.

0 1 2 3 4

6.1.5 Congruence modulo k

This is an important 3-ary (ternary) relation used in number theory. We say
that two numbers m,n : Nat are congruent modulo k , if they have the same
remainder when divided by k . We write cmod : Nat → Nat → Nat → Prop,
that is we write cmod k m n or m‘cmod k ‘n 15 , for m is congruent to n modulo
k . The standard mathematical notation is mλcong n mod k . We can define
this relation formally as:

cmod ∈ Nat → Nat → Nat → Prop
cmod k m n = ∃ p, q , r ∈ Nat . (r < n) ∧ p ∗ k + r = m ∧ q ∗ k + r = n

Usually cmod is only considered for k > 1. For k = 1 our definition of cmod k
is just (=) and for k = 0 it is the empty relation. In number theory cmod k is
defined a relation on the integers, not just the natural numbers.

While we cannot draw ternary relations so easily, we can do so for mod 2 ∈
Four → Four → Prop:

0 1 3 42

15Here we adopt also the Haskell convention that any operator f can be made infix by
writing ‘f ‘.
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6.1.6 Suffix of a list

We say that a list xs is a suffix of ys, we write xs � ys, if it is occurs at the end
of the list. To be precise we define

(�) ∈ [a ] → [a ] → Prop
xs � ys = ∃ zs . ys = zs ++ xs

This time we consider lists built from {0, 1} with no more than two elements
for a finitisation if the relation:

[0,0] [1,0] [1,1]

[0] [1]

[]

[0,1]

There is also a strict version of the suffix relation:

(≺) ∈ [a ] → [a ] → Prop
xs ≺ ys = ∃ x ∈ a . x : xs � ys

and here is its graph

[0,0] [1,0] [1,1]

[0] [1]

[]

[0,1]

6.2 Equivalence relations

An important class of relations are equivalence relations, which group similar
things together. Formally, an equivalence relation R ∈ a → a → Prop has the
following properties:

Reflexivity Every element is similar to itself.

∀ x ∈ a .R x x

We can recognize the graph of a reflexive relation by the little circles on
each node.

43



Symmetry Similarity is symmetric:

∀ x , y ∈ a .R x y =⇒ R y x

We can see that for every arrow in the graph there is one going into the
other direction.

Transitivity If one thing is similar to a second, and the second is similar to a
third then the first thing is similar to the third.

∀ x , y , z ∈ a .R x y =⇒ R y z =⇒ R x z

We recognize transitivity in the graph by noticing that all shortcuts exist:

Of the relations we have discussed above equality = and cmod k for any k are
equivalence relations. 6=, <,� are not equivalence relations, because they are
not reflexive. It is a common mistake to think that 6= is transitive but it isn’t:
1 6= 2 and 2 6= 1 but 1 6= 1 doesn’t hold. 6,� are reflexive and transitive but
not symmetric, e.g. 2 6 3 but 3 6 2 does not hold.

6.3 Order relations

Another important class of relations are orders, when we order objects we can
either include equality as in 6 or not as in <. We will concentrate on the former
case here but have a closer look on relations auch as < in the next section. We
say a relation is a partial order, if it is reflexive, transitive and antisymmetric.
The first two we have already seen in the previous section.

Reflexivity

∀ x ∈ a .R x x

Transitivity

∀ x , y , z ∈ a .R x y =⇒ R y z =⇒ R x z

Antisymmetry Antisymmetry is what makes the relation an order relation,
if you can go one way you cannot come back. However, since we have
included equality, we have to allow for the possibility that we went from
one element to itself.

∀ x , y ∈ a .R x y =⇒ R y x =⇒ x = y

Looking at the graph we can easily recognize an antisymmetric relation
by the fact that if there is an arrow one way there is never one going back:
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Of the relations we have introduced so far, 6 and � are partial orders. 6 is
even a total order, because it has the property

Totality

∀ x , y : a .R x y ∨ R y x

We can recognize the graph of a total order by noticing that between any
two nodes there is an arrow going one way or another.

Indeed, for two numbers it is the case that one of them os less or equal the the
other. However � is not total, e.g. [1] and [0] are not suffixes of each other.
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7 Subset and Quotients

7.1 Subsets and comprehension

With every predicate, like Even:Nat → Prop we associate a new type, the type
of elements which satisfy the predicate. We define a new type by comprehension
and write {n ∈ Nat | Even n } for the type of even numbers: E.g. we have

{n ∈ Nat | Even n } = {0, 2, 4, ...}
We call this a subset, because this construction comes from set theory and isn’t
usually associated with types. E.g. Haskell doesn’t support subsets or subtypes.

In general, given a type A and a predicate P ∈ A → Prop we can construct a
subset by comprehension, we write {a ∈ A | P a }. We write S ⊆ A to express
that S is a subset of A, in particular we have that {a ∈ A | P a } ⊆ A. Given
S ⊆ A we define a relation

(∈) ∈ A → S → Prop
x ∈ {a ∈ A | P a } = P x

You may notice that we have used ∈ before to indicate membership of a type.
We overload this symbol now to also mean the subset membership relation. Our
understanding of subsets is extensional: all we can see about a subset is which
elements it contains. Hence two subsets with the same elements are the equal:
(∀ a ∈ A.a ∈ P ⇐⇒ a ∈ Q) =⇒ P = Q .

We define a finite subset by enumerating the elements, e.g.

onetwothree ⊆ Nat
onetwothree = {1, 2, 3}

Actually this can be understood as a special case of comprehension — i.e. we
can read the definition above as a shorthand for

onetwothree = {n ∈ Nat | n = 1 ∨ n = 2 ∨ n = 3}

We write P A for the the powerset, i.e. type of all subsets of A. That is every
subset P ⊆ A gives rise to an element of the powerset P ∈ A. In the case of
finite types we can enumerate the powerset, e.g.

P Bool = {{ }, {False}, {True}, {False,True}}
We can iterate powersets, e.g.

P (P Bool) = {{ }, {{ }}, {{False}}, {{ }, {False}}, {{True}}, {{ }, {True}},
{{False}, {True}}, {{ }, {False}, {True}}, {{False,True}},
{{ }, {False,True}}, {{False}, {False,True}}, {{ }, {False}, {False,True}},
{{True}, {False,True}}, {{ }, {True}, {False,True}},
{{False}, {True}, {False,True}}, {{ }, {False}, {True}, {False,True}}}

In the case of a finite type with n elements, the powerset has 2n elements.

On subsets we define a relation, the subset relation:

(⊆) ∈ P A → P A → Prop
P ⊆ Q = ∀ a ∈ A.a ∈ P =⇒ a ∈ Q

As before ∈ we use ⊆ in two situations; first to say that P is a subset of a given
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type P ⊆ A and second as a relation between two subsets of the same type.

⊆ is a partial order on subsets, it is

reflexive P ⊆ P holds because ∀ a ∈ A.a ∈ P =⇒ a ∈ P is a tautology

transitive Given P ⊆ Q and Q ⊆ R we know that ∀ a ∈ A.a ∈ P =⇒ a ∈ Q
and ∀ a ∈ A.a ∈ Q =⇒ a ∈ R. From this we can prove ∀ a ∈ A.a ∈
P =⇒ a ∈ R, which means that P ⊆ R

antisymmetric Given P ⊆ Q and Q ⊆ P we have that ∀ a ∈ A.a ∈ P =⇒
a ∈ Q and ∀ a ∈ A.a ∈ Q =⇒ a ∈ P . This implies ∀ a ∈ A.a ∈ Q ⇐⇒
a ∈ P and by extensionality we have P = Q .

It is not a total order, e.g. {True}, {False} ⊆ Bool but neither {True} ⊆
{False} nor {False} ⊆ {True} holds.

7.2 Operations on subsets

We commonly use the following operations on subsets which can be illustrated
by Venn diagrams, where each region represents a subset.

intersection The elements in the intersection of P and Q , P ∩ Q , are the
ones which are in both subsets.

(∩) ∈ P A → P A → P A
P ∩ Q = {a ∈ A | a ∈ P ∧ a ∈ Q }

P ∩Q

P

Q
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union The elements in the union of P and Q , P ∪ Q , are the ones which are
in either subset.

(∪) ∈ P A → P A → P A
P ∪ Q = {a ∈ A | a ∈ P ∨ a ∈ Q }

P
Q

P ∪Q

difference The elements in the difference of P and Q , P − Q , are the ones
which are in P but not in Q .

(−) ∈ P A → P A → P A
P −Q = {a ∈ A | a ∈ P ∧ ¬ a ∈ Q }

P
Q

P −Q

Venn diagrams also work fine for three sets, e.g. we can mark all the areas
created by three circles with the appropriate subsets.
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P
Q

R

P − (Q ∪R) Q− (P ∪R)
P ∩Q−R

Q ∩R− PP ∩R−Q

P ∩Q ∩R

R− (P ∪Q)

7.3 Finite subsets as lists

We can represent the enumeration of a finite subset as a list, e.g. we can
represent {1, 2, 3} by the list [1, 2, 3]. The basic predicates on sets can be
decided on this representation and the operations from the previous section can
be implemented as operations on lists, if the equality of elements is decidable.
For simplicity we shall carry out this construction only for finite sets of natural
numbers, where we have already seen that equality can be decided.

We first implement a function deciding set membership (that is (∈) ∈ Nat →
P Nat → Prop) on the list representation:

mem ∈ Nat → [Nat ] → Bool
mem n [ ] = False
mem n (m : ms) = if n ≡ m then True

else mem n ms

Using mem we can decide (⊆) ∈ P Nat → P Nat → Prop by checking whether
every element of the first list belongs to the second.

subseteq ∈ [Nat ] → [Nat ] → Bool
subseteq [ ] ns = True
subseteq (m : ms) ns = mem m ns&&subseteq ms ns

Does subseteq implement a partial order? We can show that the relation decided
by subseteq is reflexive and transitive but it is not antisymmetric, e.g. we have
that subseteq [1, 2, 3] [3, 2, 1] = True and subseteq [3, 2, 1] [1, 2, 3] = True but
clearly [1, 2, 3] 6= [3, 2, 1].

We shall use precisely this observation to decine set equality, i.e. a function
whether two lists are equal as representations of sets, i.e. whether they contain
the same elements:

seteq ∈ [Nat ] → [Nat ] → Bool
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seteq ms ns = subseteq ms ns&&subseteq ns ms

The relation decided by seteq is an equivalence relation. It is reflexive and
transitive because subseteq is and it is symmetric by definition.

We implement ∩ on lists by checking for every element of the first lists whether
it is a member of the second and only returning those which path the test:

intersect ∈ [Nat ] → [Nat ] → [Nat ]
intersect [ ] ns = [ ]
intersect (m : ms) ns = if mem m ns then m : (intersect ms ns)

else intersect ms ns

We could implement ∪ on the list representation simply as ++ but this may lead
to duplicates, e.g. [1, 2, 3]++ [2, 3, 4] = [1, 2, 3, 3, 4, 4] containing duplicates. An
better implementation only uses those elements of the first subset that are not
elements of the second.

union ∈ [Nat ] → [Nat ] → [Nat ]
union [ ] ns = ns
union (m : ms) ns = if mem m ns then union ms ns

else m : (union ms ns)

Indeed, we now have union [1, 2, 3] [2, 3, 4] = [1, 2, 3, 4].

The implementation of set difference proceeds similarily, we only return those
elements of the first list that are not elements of the second:

setminus ∈ [Nat ] → [Nat ] → [Nat ]
setminus [ ] ns = [ ]
setminus (m : ms) ns = if mem m ns then setminus ms ns

else m : (setminus ms ns)

7.4 Quotients

In the previous section we used the type of lists to implement finite sets. How-
ever, we would want to identify two lists which are equal as sets. This construc-
tion is known as a quotient in set theory while in Computer Science the term
abstract data type is used. In this case we shall use the mathematical terminol-
ogy. Lets write SetEq ∈ [Nat ] → [Nat ] → Prop for the relation decided by
seteq, i.e.

SetEq ∈ [Bool ] → [Bool ] → Prop
SetEq bs cs = ∀ b ∈ Bool .mem b bs = mem b cs

We introduce FinSet as the quotient of [Nat ] by SetEq, that is we look at
[Nat ] but we identify lists which represent equal sets

type FinSet = [Nat ] / SetEq

A list of natural numbers ms : [Nat ] gives rise to an element of the quotient
<ms> ∈ FinSet, two lists which are identified by SetEq are identified as finite
sets, that is if SetEq ms ns then <ms> = <ns> holds.

To define a predicate or a function on FinSet we first define it on [Nat ] and
then show that it is invariant under SetEq. E.g. we can use mem on FinSet
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after showing that if SetEq ms ns then for all n ∈ Nat it is the case that
mem n ns = mem n ns. Hence mem gives rise to mem ′ ∈ Nat → FinSet →
Bool. We can show that all the operations defined in the previous section, i.e.
subseteq ,intersect ,union and setminus can be lifted to FinSet. However, we
shall not verify this in detail here.

In general given a type a and an equivalence relation R ∈ a → a → Prop
we introduce the quotient type a / R, whose elements <x> ∈ a / R can be
constructed from x ∈ a. Two elements of the quotients are equal <x> = <y>
if R x y holds. We can lift predicates or functions from a to a /R after verifying
that they are invariant under R.

Quotients are useful to define the number types which we have ignored so far.
E.g. we represent integers as pairs of natural numbers, which represent their
difference, e.g. (2, 1) represents 2 − 1 = 1 while (1, 2) represents 1 − 2 = −1.
However, different pairs represent the same integers, e.g (1, 0) also represents
1− 0 = 1 and (0, 1) also represents 0− 1 = −1. We would like to say that (a, b)
and (c, d) represent the same integer, if a − b = c − d , however subtraction
already requires integers which we are just about to define. However, we can
save the situation by using the equivalent condition that a + d = c + b. That
leads to the following definition

type IntRep = (Nat,Nat)
IntEq ∈ IntRep → IntRep → Prop
IntEq (a, b) (c, d) = a + d = c + d
type Int = IntRep / IntEq

We can implement the standard arithmetical operation, on the integers, by first
defining it in IntRep. We start with addition, certainly a − b + c − d =
a + c − (b + d) hence

intAdd ∈ IntRep → IntRep → IntRep
intAdd (a, b) (c, d) = (a + c, b + d)

To define multiplication we observe that (a−b)∗(c−d) = a∗c+b∗d−(b∗c+a∗d)
hence

intMult ∈ IntRep → IntRep → IntRep
intMult (a, b) (c, d) = (a ∗ c + b ∗ d , b ∗ c + a ∗ d)

For both function we can show that they are invariant under IntEq, e.g. if
IntEq i i ′ and IntEq j j ′ then IntEq (intAdd i j ) (intAdd i ′ j ′) and also
IntEq (intMult i j ) (intMult i ′ j ′). Hence we can use them to define (+) ∈
Int → Int → Int and (∗) ∈ Int → Int → Int. We also can define additive
inverses by

minus ∈ IntRep → IntRep
minus (a, b) = (b, a)

which gives rise to (∼) ∈ Int → Int. Now we can define

(−) ∈ Int → Int → Int
i − j = i +∼j
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A similar idea works for the rational numbers, e.g. a rational number can be
represented as a pair of an integer and a natural number (i ,n) standing for
i / (n + 1). Here we avoid the complication of dvision by zero by adding one
to the denominator. Two representations (i ,n) and (j ,m) represent the same
number if i / (n + 1) = j / (m + 1) and as before with subtraction we can avoid
division by instead requiring i ∗ (m + 1) = j ∗ (n + 1). Hence we define

type RatRep = (Int,Nat)
RatEq ∈ RatRep → RatRep → Prop
RatEq (i ,n) (j ,m) = i ∗ (m + 1) = j ∗ (n + 1)
type Rat = RatRep / RatEq

I leave it to the reader to work out how to define arithmetical operations on ra-
tional numbers. We will also use the function abs :Rat → Rat, which calcuates
the absolute value of a rational number.

Let’s just have a quick look at the Reals, following Cauchy a real number can
be represented as an infinite sequence of rational numbers such that the abso-
lute difference between the subsequent elements of the sequence gets arbitrarily
small. We use functions Nat → Rat to represent infinite sequences. Two real
numbers are equal if the sequence of differences gets arbitrarily small. Hence
we define:

type RealRep = {seq ∈ Nat → Rat
| ∀ r : Rat.r > 0 =⇒ ∃ i ∈ Nat.abs (seq (i + 1)− seq i) 6 r }

RealEq seq seq ′ = ∀ r : Rat.r > 0 =⇒ ∃ i ∈ Nat.abs (seq i − seq ′ i) 6 r
Real = RealRep / RealEq

It is interesting to note that in the case of Int and Rat we can actually avoid
the use of quotients, i.e. we can represent integers as a pair (Bool,Nat) where
the boolean indicates whether the number is negative — we an easily avoind
redundant representations of 0 by decreeing that −1 is represented by (True, 0)
and 0 as (False, 0). In the case of Rat we use pairs that have no common
divisors, i.e. we replace quotients by subset. However, in the case of Real we
cannot avoid the use of quotients.
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8 Functions

8.1 Identity and composition

The identity function id is the function which just which just echos its input.
It can be defined polymorphically at any type a:

id ∈ a → a
id x = x

If we have two functions f ∈ a → b and g ∈ b → c we can compose them by
first running f and then g giving rise to a new function g ◦ f ∈ a → c. That is
for x ∈ a we have g ◦ f x = g (f x ).

As an example consider the previously defined functions:

length ∈ [a ] → Nat
length [ ] = 0
length (a : as) = 1 + length as
even ∈ Nat → Bool
even 0 = True
even (n + 1) = not (f n)

What is even ◦ length ∈ [a ] → Bool? Basically, this function calculates the
length of a list an then determines whether it is even. We can fuse the two
functions into one:

evenLength ∈ [a ] → Bool
evenLength [ ] = True
evenLength (a : as) = not (evenLength as)

To show that even ◦ length = evenLength it is sufficent to show

∀ as ∈ [a ] . even ◦ length as = evenLength as

using the principle of extensionality. Unfolding the definition of ◦ this boils
down to

∀ as ∈ [a ] . even ◦ length as = evenLength as

which can be shown by induction over as.

Maybe you have noticed that composition is written backwards. When we ex-
ecute even ◦ length we first calculate the length and then determine whether
it was even. Wouldn’t it be more natural to write length first and then even
that is since we read from left to right, we would write length left from even
as in length; even. However, consequently we should then also change the way we
write function application, because when we actually calculate even (length [1, 2, 3])
we first have to calculate length [1, 2, 3] = 3 and then even 3 = False. Indeed,
the way we write composition merely reflects the way we write application.
Actually, it has been suggested to write both application and composition the
other, more intuitive, way around. However, since most people write it back-
wards, we follow this convention for ease of communication.
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8.2 Higher order functions

◦ is itself a function, that is

(◦) ∈ (b → c) → (a → b) → a → c
(f ◦ g) a = f (g a)

(◦) is a higher order function, that is it is a function on functions: it takes two
functions as inputs and returns a function. In general we could define the order
of a type as follows (here ∗ is the type of ordinary types):

order ∈ ∗ → Nat
order Nat = 0
order Bool = 0
order ∅ = 0
order [a ] = order a
order (a, b) = max (order a) (order b)
order (a + b) = max (order a) (order b)
order (a → b) = max (1 + (order a)) (order b)

I said we could because this sort of definition of a function by recursion over
the type is not valid in Haskell. It has the intrinsic problem that each time we
want to define a new type (e.g. like Tree), we have to extend the function. It
also raises the question whether ∗ ∈ ∗ — remember the trouble the barber was
having?

Leaving this aside, as a consequence any instance of (◦) has an order of at least
2. I say it least, because I haven’t assign orders to type variables, because they
could be instantiated at any type and hence could have any order. However,
most people are a bit sloppy and say that (◦) is a 2nd order function.

E.g. a function like even ∈ Nat → Bool is a first order function, because its
type has order 1:

order (Nat → Bool)
= { definition of order }
max (1 + (order Nat)) (order Bool)
= { definition of order and + }
max 1 0
= { definition of max }
1

Note that add ∈ Nat → Nat → Nat is also first order — currying does not
increase the order of the type.

If we instantiate the type variables of ◦ by data, i.e. by types of order 0,
e.g. (◦) ∈ (Nat → Bool) → ([Nat ] → Nat) → [Nat ] → Bool then (◦)
is 2nd order. Can we find functions of even higher order? Yes, just consider
composing compositions. To be precise lets fix the first argument in the example
above (◦) even ∈ ([Nat ] → Nat) → [Nat ] → Bool and use it again as the
first argument to (◦) as in

(◦) ((◦) even) ∈ (a → ([Nat ] → Nat)) → a → ([Nat ] → Bool)

which has an order of at least 3 depending on the order of the type variable a.
What is this function actually doing? It expects as argument a function which
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returns a function of type [Nat ] → Nat and it transforms this into a function
which returns [Nat ] → Bool instead by composing with even. It should be
clear that we can repeat this process any number of times reaching types of any
order. However, intuition will be lost quickly.

8.3 The category of types

Composition and identity have some simple properties:

∀ f ∈ a → b . f ◦ id = f
∀ f ∈ a → b . id ◦ f = f
∀ f ∈ a → b, g ∈ b → c, h ∈ c → d . (h ◦ g) ◦ f = h ◦ (g ◦ f )

All of these are easy to verify, e.g. to show the first ∀ f ∈ a → b . f ◦ id = f we
assume as given f ∈ a → b and to show f ◦ id = f using extensionality reduces
to showing ∀ x ∈ a . f ◦ id x = f x . That is given x ∈ a we have

f ◦ id x
= { definition of ◦ }
f (id x )
= { definition of id }
f x

The verification of the other properties proceed in a similar manner.

We say that types and functions form a category. This is the central notion
of category theory which was introduced by Saunders McLane and others to be
able to concisely state generic properties of mathematical constructions. Cate-
gory theory is nowadays used extensively in Computer Science because it offers
a convenient way to express and reason about concepts which are central in
computing.

To catch but a glimpse of this power lets discuss some basic concepts of category
theory using the catgory of types as an example. Lists can be constructed at
any type, hence we may say that List a = [a ] is actually a function on types,
i.e. List ∈ ∗ → ∗. Even better List can be extended to act on functions, that
is we can define

map ∈ (a → b) → [a ] → [b ]
map f [ ] = [ ]
map f (a : as) = (f a) : (map f as)

What is map doing? E.g. map even ∈ [Nat ] → [Bool ] applies even to every
element of a list, that is map even [1, 2, 3] = [False,True,False]. Note that map
is a higher order function, it has at least order 2.

map preserves identity and composition, that is we have

map id = id
map (f ◦ g) = (map f ) ◦ (map g)

We can verify these properties by using extensionality and induction on lists.

We say that List is a functor. In category theory one uses the same name for
the operation on types and functions, that is we would write List f for map f .16

16Alas, this is inconsistent with the Haskell convention to use uppercase names for construc-
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The function rev ∈ [a ] → [a ], which reverses a list, is defined uniformly on all
types. We note that rev commutes with map that is

∀ f ∈ a → b . rev ◦ (map f ) = (map f ) ◦ rev

This property can be expressed in a more readable form by a categorical dia-
gram:

List A

map f

��

rev
// List A

map f

��
List A rev

// List A

We say that the diagram commutes, that is if we follow different paths we will
end up with the same function. Intuitively this reflects the fact that it doesn’t
matter whether we first map a function and then reverse the result or first
reverse and then map the same function. E.g. if we apply map even to [1, 2, 4]
we obtain [False,True,True] and after reversing we get [True,True,False]. If
on the other hand we first reverse [1, 2, 4] we obtain [4, 2, 1] and after applying
map even we also end up with [True,True,False]. In general we can show this
porperty by induction over lists.

We say that rev is a natural transformation from List to List because the
diagram commutes. This reflects the fact that rev acts uniformly on all types.
E.g. if we had a function rev ′ ∈ [a ] → [a ] which reverses lists on all types but
is just the identity on Bool, it is easy to see that the above property would
fail. In fact it is impossible to define such a function in Haskell and hence that
naturality holds is called a free theorem.

8.4 Properties of functions

A function is injective (or one-to-one) if it doesn’t identify any elements, e.g.
the function double ∈ Nat → Nat with double n = 2 ∗ n is injective while
the function half ∈ Nat → Nat with half n = n ’div’ 2 isn’t because it
half 2 = half 3 = 1. A function is surjective (or onto), if it covers the whole
range, e.g. half is surjective but double isn’t because odd numbers like 3 are
never reached by double. A function which is both injective and surjective is
called bijective, neither half nor double are bijective. However, the function

switch ∈ Nat → Nat
switch n = if even n

then n + 1
else n − 1

is a bijection: it sends every even number to the next odd number and every
odd number to the previous even number. Here is the precise definition of the
three predicates on functions:

Injective ∈ (a → b) → Prop
Injective f = ∀ x , y ∈ a . f x = f y =⇒ x = y
Surjective ∈ (a → b) → Prop
Surjective f = ∀ y ∈ b .∃ x ∈ a . f x = y

tors.
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Bijective ∈ (a → b) → Prop
Bijective f = Injective f ∧ Surjective f

We use the nouns injection, surjection and bijection for functions with the cor-
responding properties. A bijection is just a reordering of elements, there are
only bijections between finite types with the same number of elements. E.g.
there is a bijection f ∈ {1, 2, 3} → {4, 5, 6} but there isn’t any between {1, 2}
and {4, 5, 6}. E.g. there is no surjection from {1, 2} to {4, 5, 6} because we
are always one element short and there is no injection from {4, 5, 6} to {1, 2}
because any such function will inevitably identify some elements.

We say that two types are in bijection, if there is a bijection between them.
This is an equivalence relation on types, it is reflexive because the identity is
a bijection, it is symmetric because we can turn around any bijection and it
is transitive because the composition of bijections is a bijection. Two bijective
types are basically the same upto renaming of elements. Using this relation
we can compare infinite types and see whether they have the same number of
elements.

Unlike for finite types, for infinite types it is not the case that adding an element
makes the type different ass for as bijection is concerned. We can generically
add an element to a type a by a +() where () is the type with only one element
() ∈ (). However, we can construct the following bijection:

succnat ∈ Nat + () → Nat
succnat (Left n) = n + 1
succnat (Right ()) = 0

Even if we double the type, i.e. by a + a, we still get a bijection:

doublenat ∈ Nat + Nat → Nat
doublenat (Left n) = 2 ∗ n
doublenat (Right n) = 2 ∗ n + 1

What about the square of a type, i.e. (a, a)? We can still obtain a bijection

squarenat ∈ (Nat,Nat) → Nat
sqarenat (m,n) = (m + 1) ∗ (m + n + 1) ’div’ 2 + n

The idea of this function is to use the enumeration of pairs starting like this:

0 1 2 3 . . .
0 0 1 3 6 . . .
1 2 4 7 . . .
2 5 8 . . .
3 9 . . .

. . . . . .

As a concequence of these constructions we notice that Nat, Int and Rat are
in bijection, i.e. have the same number of elements. However, we get bigger
types as soon as we use function types. Indeed, we can show that there is no
surjection from Nat to Nat → Bool: Assume as given a function f ∈ Nat →
(Nat → Bool), then we can construct g ∈ Nat → Bool by g n = not (f n n).
Now for every i ∈ Nat the function f i ∈ Nat → Bool is different from
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g ∈ Nat → Bool at i because g i = not (f i i). Hence f cannot be surjective,
because it will never return g .

This proof method is called diagonalisation. We can use the same method to
show that there is no bijection between Nat and Real.
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9 Formal proof

What is a proof? Here is an attempt at a definition:

A proof is an argument which will convince a critical but not ob-
noxious person that a proposition is a tautology.

A proof in science is usually read by other scientists (who can be assumed to be
critical but not obnoxious) and is accepted as correct, if all the experts agree
that it is correct. However, this process may need some iterations — see Imre
Lakatos’ nice book Proofs and Refutations.

Here we are concerned with formal proofs, which are especially interesting for
Computer Science. Many of the facts which we want to verify in Computer
Science aren’t interesting from a scientific point of view (program X works cor-
rectly) but we often want to avoid to many iterations (program X may control
a nuclear power station). Some typical properties of formal proofs are:

• written in a precisely defined syntax (like a program).

• uses only a fixed set of deduction rules.

• can be checked by a computer program (a proof checker)

In this course we are going to work with tutch tutorial proof checker a proof
checker for educational purposes implemented by Andreas Abel (Munich) when
he was working for Frank Pfenning at Carnegie Mellon University, USA in 2001.

tutch works similar to a java compiler. A java compiler processes java source
files (.java) and produces either error messages or a .class file.

error messages

.class

.java

javacsource

In contrast tutch reads proof sources (.tut) and produces as output either
error messages or it reports that it accepts the proof: QED (latin quod erat
demonstrandum — what there was to be proven).
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error messages

source

.tut

tutch

QED

In general tutch knows two sorts of error messages:

syntax errors Like in java, tutch doesn’t like it if you forget a semicolon etc.

incomplete proofs tutch complains if a step in the proof doesn’t seem to be
justified.

With respect to the first definition for a proof given above tutch behaves like
a very stupid (but reasonable) person who is hard to convince that something
is true. There are better tools available (e.g. COQ, Isabelle, NuPRL, . . . ) but
its stupidity makes tutch ideal for educational purposes. The best way to learn
the art of proofs is if you have to convince somebody (or in this case something)
very stupid.

9.1 tutch syntax

A tutch proof is a sequence of propositions or frames separated by semicolons
(;), each of them is justified by some of the previous propositions or frames.
A frame is a sequence of propositions or frames which is enclosed in [ and ].
Frames are used for hypothetical reasoning: the first proposition in a frame is
an assumption form which the following propositions can be derived.

Here is an example of a simple propositional proof of the fact A∧B =⇒ B∧A
in tutch syntax:

proof comAnd : A & B => B & A =
begin
[A & B;
A;
B;
B & A];

A & B => B & A
end;

The first thing we notice is that tutch isn’t actually using the symbols we have
introduced previously. A simple reason for this is that they aren’t available
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on the computer keyboard. In general tutch uses the following translation:
Logic tutch
∧ &
∨ |
¬ ~

=⇒ =>
True T
False F
⇐⇒ <=>
∀ !
∃ ?

However, in these notes we shall use the proper symbols. The tutch proof scripts
are available via links in the online version. hence the previous proof looks like
that (comAnd.tut)

proof comAnd : A ∧ B =⇒ B ∧ A =
begin
[A ∧ B;
A;
B;
B ∧ A];

A ∧ B =⇒ B ∧ A
end;

This example shows also the basic structure of a tutch proof: It starts with
the word proof which is followed by the name of the proof (here comAnd) and
then after : we write the proposition we are going to prove, followed by = and
the proof. The proof starts with begin and ends with end; The last line of
the proof is identical to the proposition which we were going to prove. A tutch
proof script may contain several proofs and in each proof we can use the ones
which were proven previously.

To run tutch we save the proof script in a text file using any text editor like
emacs or notepad (but not something like word) and then run tutch by typing

tutch proof-file.tut

on the UNIX command prompt. E.g. in our example we would save the proof
in comAnd.tut and type

[mytutch]$ tutch comAnd.tut

tutch replies with 17

TUTCH 0.51 beta,
[Opening file comAnd.tut]
Proving comAnd: A ∧ B =⇒ B ∧ A ...
QED
[Closing file comAnd.tut]

17Ok, I am cheating — it will use the ASCII symbols. . .
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We can also ask tutch to be a bit more explicit and tell us why it accepts our
proofs by typing

tutch -v proof-file.tut

Here -v stands for verbose. Tutch replies by

TUTCH 0.51 beta, $Date: 2005/10/09 20:17:05 $
[Opening file comAnd.tut]

Proving comAnd: A ∧ B =⇒ B ∧ A ...
1 [ A ∧ B;
2 A; by AndEL 1
3 B; by AndER 1
4 B ∧ A ]; by AndI 3 2
5 A ∧ B =⇒ B ∧ A by ImpI 4

QED

I will explain the meaning of words like AndEL etc in a moment. Note that the
numbers after this are line numbers which refer to previous propositions (or
frames) which justify the current line.

9.2 Propositional logic in tutch

tutch accepts a proof if each proposition can be justified from the previous
propositions or frames by some basic rules. These rules were introduced by
Gerhard Gentzen in the 1930ies and are referred to as Gentzen’s natural deduc-
tion calculus.

9.2.1 Rules for ∧

And introduction To show P ∧Q show P and show Q.
P Q

AndI
P ∧Q

An example is the line 4 in the proof above, where B ∧ A is justified by
having proven A and B previously in line 3 and 2 — the order doesn’t
matter. Note, that P and Q in the rule are placeholders for arbitrary
propositions.

And elimination left If we know P ∧Q we also know P .
P ∧Q

AndEL
P

An example is line 2 where A is justified A ∧B (in line 1).

And elimination right If we know P ∧Q we also know Q.
P ∧Q

AndER
Q

An example is line 3 where B is justified again by A ∧B (in line 1).
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Rules in natural deduction come in two varieties:

introduction rules These are rules which tell us how to prove something, e.g.
and introduction (AndI) tells us how to prove a conjunction : To show . . .

elimination rules This rules tell us how to use something which we have es-
tablished previously: If we know . . .

9.2.2 Rules for =⇒

Frames are essential for the rule implication introduction. Frames are used
to represent hypothetical reasoning, i.e. in line 1 of the proof comAnd an as-
sumption A ∧ B is made and the subsequent lines of this frame may use this
assumption. The assumption cannot be used any longer after the frame is closed
in line 4. However assumptions can be used in nested frames.

[ A; an assumption A is made.
... A can be used here.

[ ...
... A can be used here as well.

]
... A can be used here!

]
... A cannot be used here!

This resembles the scoping rules used in programming language, e.g. in java

{ int i; a variable i is declared.
... i can be used here.

{
... i can be used here as well.

}
... i can be used here!

}
... i cannot be used here!

Implication introduction To show P =⇒ Q assume P and show Q.
[ P

...
Q ]

ImpI
P =⇒ Q

In the example comAnd we use this rule to justify line 5 it refers back to
line 4 which is the last line of a frame — to refer to a frame tutch uses
the last line of this frame.
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Implication elimination If we know P =⇒ Q and we can show P we can
also show Q.
P =⇒ Q P

ImpE
Q

This rule is not used in comAnd, here is an example ((monAnd.tut)):

proof monAnd : (A =⇒ B) =⇒ (A ∧ C =⇒ B ∧ C) =
begin
[ A =⇒ B;
[ A ∧ C;
A;
C;
B; % here we use ImpE

B ∧ C];
A ∧ C =⇒ B ∧ C];

(A =⇒ B) =⇒ (A ∧ C =⇒ B ∧ C)
end;

and here is tutch’s output

Proving monAnd: (A =⇒ B) =⇒ A ∧ C =⇒ B ∧ C ...
1 [ A =⇒ B;
2 [ A ∧ C;
3 A; by AndEL 2
4 C; by AndER 2
5 B; by ImpE 1 3
6 B ∧ C ]; by AndI 5 4
7 A ∧ C =⇒ B ∧ C ]; by ImpI 6
8 (A =⇒ B) =⇒ A ∧ C =⇒ B ∧ C by ImpI 7

QED

There is also a rule Hyp which says that you can prove something which you
have assumed previously.

Hypothesis If we know P then we know P .
P

Hyp
P
An example for the use of Hyp is the following proof (I.tut) of the tautology
A =⇒ A.

proof I: A =⇒ A =
begin
[ A;
A]; % use Hyp here

A =⇒ A
end;

and here is tutch’s output:
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Proving I: A =⇒ A ...
1 [ A;
2 A ]; by Hyp 1
3 A =⇒ A by ImpI 2

QED

9.2.3 Rules for ∨

Here is an example of a proof using ∨— we verify A∨B =⇒ B∨A (comOr.tut):

proof comOr : A ∨ B =⇒ B ∨ A =
begin
[ A ∨ B;
[ A;
B ∨ A];

[ B;
B ∨ A];

B ∨ A];
A ∨ B =⇒ B ∨ A
end;

and here is tutch’s ouput:

Proving comOr: A ∨ B =⇒ B ∨ A ...
1 [ A ∨ B;
2 [ A;
3 B ∨ A ]; by OrIR 2
4 [ B;
5 B ∨ A ]; by OrIL 4
6 B ∨ A ]; by OrE 1 3 5
7 A ∨ B =⇒ B ∨ A by ImpI 6

QED

Or introduction left To show P ∨Q, show P .
P

OrIL
P ∨Q

This is used in line 5 in the proof above.

Or Introduction Right To show P ∨Q, show Q.
P

OrIR
P ∨Q

This is used in line 3 in the proof above.

Or elimination If we know P ∨Q and we can show R assuming P and we can
show R assuming Q then we can show R.

P ∨Q

[ P
...
R ]

[ Q
...
R ]

OrE
R
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This is used in line 6 above.

9.2.4 True and False

There is only an introduction rule for True (which is rather obvious) and only an
elimination rule for False — indeed there shouldn’t be a way to prove something
false. . .

True introduction To show True you don’t need to do anything.

TrueI
True

False elimination If we know False we can show anything.
False

FalseE
P

9.2.5 ¬ and ⇐⇒

There are no special rules for ¬ and ⇐⇒ there are simply defined in terms of
the other connectives:

¬A = A =⇒ False
A ⇐⇒ B = (A =⇒ B) ∧ (B =⇒ A)

As an example for ¬ let’s show ¬(A ∧ ¬A) (incons.tut):

proof incons : ¬(A ∧ ¬ A) =
begin
[ A ∧ ¬ A;

A;
¬ A;
F];

¬ (A ∧ ¬ A)
end;

and here is tutch’s output:

1 [ A ∧ ¬ A;
2 A; by AndEL 1
3 ¬ A; by AndER 1
4 F ]; by ImpE 3 2
5 ¬ (A ∧ ¬ A) by ImpI 4

As an example for ⇐⇒ let’s show A =⇒ B =⇒ C ⇐⇒ A ∧ B =⇒ C
— If A then if B then C is the same as If A and B then C. We call this
lemma curry (curry.tut) after Haskell Curry after whom also the programming
language Haskell is named.
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proof curry : ( A ∧ B =⇒ C ) ⇐⇒ (A =⇒ (B =⇒ C)) =
begin
[ (A =⇒ (B =⇒ C));
[ A ∧ B;
A;
B;
B =⇒ C;
C];

( A ∧ B =⇒ C )];
(A =⇒ (B =⇒ C)) =⇒ ( A ∧ B =⇒ C );
[ A ∧ B =⇒ C;
[ A;
[ B;

A ∧ B;
C ];

B =⇒ C];
A =⇒ (B =⇒ C)];

( A ∧ B =⇒ C ) =⇒ (A =⇒ (B =⇒ C));
( A ∧ B =⇒ C ) ⇐⇒ (A =⇒ (B =⇒ C))
end;

and here is tutch’s output

Proving curry: A ∧ B =⇒ C ⇐⇒ A =⇒ B =⇒ C ...
1 [ A =⇒ B =⇒ C;
2 [ A ∧ B;
3 A; by AndEL 2
4 B; by AndER 2
5 B =⇒ C; by ImpE 1 3
6 C ]; by ImpE 5 4
7 A ∧ B =⇒ C ]; by ImpI 6
8 (A =⇒ B =⇒ C) =⇒ A ∧ B =⇒ C; by ImpI 7
9 [ A ∧ B =⇒ C;

10 [ A;
11 [ B;
12 A ∧ B; by AndI 10 11
13 C ]; by ImpE 9 12
14 B =⇒ C ]; by ImpI 13
15 A =⇒ B =⇒ C ]; by ImpI 14
16 (A ∧ B =⇒ C) =⇒ A =⇒ B =⇒ C; by ImpI 15
17 A ∧ B =⇒ C ⇐⇒ A =⇒ B =⇒ C by AndI 16 8
QED

9.2.6 Using lemmas

A lemma is an auxiliary theorem which is only needed to prove some bigger
theorem. E.g. if we want to prove an equivalence like (A ∨ B =⇒ C) ⇐⇒
(A =⇒ C) ∧ (B =⇒ C) it may be convenient first to establish (A ∨ B =⇒
C) =⇒ (A =⇒ C) ∧ (B =⇒ C) and (A =⇒ C) ∧ (B =⇒ C) =⇒
(A ∨B =⇒ C) as lemmas which can be used to establish the equivalence.
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In tutch we can just use a previously established proposition in a proof (an-
dAdj.tut):

proof lem1 : (A ∨ B =⇒ C) =⇒ (A =⇒ C) ∧ (B =⇒ C) =
begin
...
end;

proof lem2 : (A =⇒ C) ∧ (B =⇒ C) =⇒ (A ∨ B =⇒ C) =
begin
...
end;

proof andAdj : (A ∨ B =⇒ C) ⇐⇒ (A =⇒ C) ∧ (B =⇒ C) =
begin
(A ∨ B =⇒ C) =⇒ (A =⇒ C) ∧ (B =⇒ C);
(A =⇒ C) ∧ (B =⇒ C) =⇒ (A ∨ B =⇒ C);
(A ∨ B =⇒ C) ⇐⇒ (A =⇒ C) ∧ (B =⇒ C)
end;

and here is tutch’s output for andAdj

Proving andAdj: A ∨ B =⇒ C ⇐⇒ (A =⇒ C) ∧ (B =⇒ C) ...
1 (A ∨ B =⇒ C) =⇒ (A =⇒ C) ∧ (B =⇒ C); by Lemma lem1
2 (A =⇒ C) ∧ (B =⇒ C) =⇒ A ∨ B =⇒ C; by Lemma lem2
3 A ∨ B =⇒ C ⇐⇒ (A =⇒ C) ∧ (B =⇒ C) by AndI 1 2

QED

9.3 Classical logic

We have seen to views on propositional logic: truth tables and formal proofs
ala tutch. It is interesting to compare the two. We say a proof system is:

sound All provable propositions are tautologies.

complete All tautologies are provable.

It turns out that tutch is sound, because all the rules are sound but it is not
complete. The simplest counterexample is to be or not to be:

A ∨ ¬A

is a tautology (simple exercise in checking its truth table) but it is not provable
in tutch: Since we have no assumption to play with we have to prove either A
or ¬A but which one should we choose if we don’t know anything about A?

However, this incompleteness can be easily cured by adopting the principle of
indirect proof also called proof by contradiction. In tutch this corresponds to
the following rule:
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indirect proof To prove P assume ¬P and show that this leads to a contra-
diction (False).

[ ¬P
...

False ]
Class

P
This rule is called Class because it distinguishes classical logic from intu-
itionistic logic. Accordingly any tutch proof using class has to be marked
classical proof. Here is a classical proof of A ∨ ¬A (TND.tut):

classical proof TND : A ∨ ¬ A =
begin
[¬ (A ∨ ¬ A);
[A;
A ∨ ¬ A;
F];
¬ A;
A ∨ ¬ A;
F];
A ∨ ¬ A
end;

and here is tutch’s output:

Proving TND: A ∨ ¬ A ... (classically)
1 [ ¬ (A ∨ ¬ A);
2 [ A;
3 A ∨ ¬ A; by OrIL 2
4 F ]; by ImpE 1 3
5 ¬ A; by ImpI 4
6 A ∨ ¬ A; by OrIR 5
7 F ]; by ImpE 1 6
8 A ∨ ¬ A by Class 7

QED

9.4 Predicate logic in tutch

Additional to propositions we also have typings of the form u : T where u is a
term and T is a type. A proof may depend on the fact that a term has a type
- however typings are not propositions.

To understand the rules for Forall elimination and Exists introduction we need
to introduce substitution, if we have a proposition P which may contain a vari-
able x and a term u we write P [x := u] for P where x is replaced by u. Here
are some examples:

Q(x)[x := u] = Q(u)
(∀x.Q(x))[x := u] = ∀x.Q(x)

(∀y.R(x, y))[x := u] = ∀y.R(u, y)
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In the 2nd line x is not replaced because it is a bound variable.

9.5 Rules for ∀

Forall introduction To show ∀x : t.P assume as given x : t and show P .

[ x : t
...
P ]

ForallI
∀x : t.P

Forall elimination If we know ∀x : t.P (x) and u : t then P (u)
∀x : t.P u : t

P [x := u]

As an example here is a proof that we can commute universal quantifiers: ∀x :
t.∀y : t.P (x, y) =⇒ ∀y : t∀x : t.P (x, y) (allCom.tut).

proof allCom : (∀ x:t . ∀ y:t. P(x,y)) =⇒ (∀ y:t.∀ x:t.P(x,y)) =
begin
[∀ x:t . ∀ y:t. P(x,y);
[ y:t;
[ x:t;
∀ y:t. P(x,y);
P(x,y)];

∀ x:t.P(x,y)];
∀ y:t.∀ x:t.P(x,y)];
(∀ x:t . ∀ y:t. P(x,y)) =⇒ (∀ y:t.∀ x:t.P(x,y));
end;

The tutch output (tutch -v) shows where the rules are used:

Proving allCom: (∀ x:t. ∀ y:t. P (x, y)) =⇒ ∀ y:t. ∀ x:t. P (x, y) ...
1 [ ∀ x:t. ∀ y:t. P (x, y);
2 [ y: t;
3 [ x: t;
4 ∀ y:t. P (x, y); by ForallE 1 3
5 P (x, y) ]; by ForallE 4 2
6 ∀ x:t. P (x, y) ]; by ForallI 5
7 ∀ y:t. ∀ x:t. P (x, y) ]; by ForallI 6
8 (∀ x:t. ∀ y:t. P (x, y)) =⇒ ∀ y:t. ∀ x:t. P (x, y) by ImpI 7

QED

9.6 Rules for ∃

Exists introduction To show ∃x : t.P (x) construct u : t and show P (u).
u : t P [x := t]

ExistsI
∃x : t.P
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Exists elimination If we know ∃x : t.P and we can show Q assuming x : t
and P then we can show Q.

∃x : t.P

[ x : t, P
...
Q ]

existsE
Q

Note the , in the first line of the frame. This is needed because we need
to assume both: the typing and the proposition at once.

As an example for a proof involving existential quantifiers we show an interesting
interaction between universal and existential quantifiers. (∃x : t.P (x)) =⇒
(∀y : t.P (y) =⇒ Q) =⇒ Q (exAll.tut):

proof exAll : (∃ x:t.P(x)) =⇒ (∀ y:t.P(y) =⇒ Q) =⇒ Q =
begin
[∃ x:t.P(x);
[ ∀ y:t.P(y) =⇒ Q;
[x:t,P(x);
P(x) =⇒ Q;
P(x);
Q];
Q];

(∀ y:t.P(y) =⇒ Q) =⇒ Q];
(∃ x:t.P(x)) =⇒ (∀ x:t.P(x) =⇒ Q) =⇒ Q
end;

and here are tutch’s comments on the proof:

Proving exAll: (∃ x:t. P x) =⇒ (∀ y:t. P y =⇒ Q) =⇒ Q ...
1 [ ∃ x:t. P x;
2 [ ∀ y:t. P y =⇒ Q;
3 [ x: t, P x;
4 P x =⇒ Q; by ForallE 2 3
5 P x; by Hyp 3
6 Q ]; by ImpE 4 5
7 Q ]; by ExistsE 1 6
8 (∀ y:t. P y =⇒ Q) =⇒ Q ]; by ImpI 7
9 (∃ x:t. P x) =⇒ (∀ x:t. P x =⇒ Q) =⇒ Q by ImpI 8

QED
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