
Chapter 4

Datatypes

The types we have seen so far, that is functions (_!_), products (_⇥_,>)
and sums (_+_, ?) are finite or preserve finiteness. In computation but also
in Mathematics we often use infinite types, such as the natural numbers (N),
which I have already used for illustration. In this chapter we will look at such
datatypes, starting with the natural numbers as the canonical example. We
discuss primitive recursion first in a schematic way and then given by combina-
tors: the recursor which can be reduced to the iterator (also called fold). We
then look at various examples of inductive types such as lists, syntax trees and
infinite trees representing ordinal notations. We investigate the limits of what
constitutes a reasonable inductive type and what not — this is related to the
notion of positivity. Using the notion of categorical mirror we also investigate
the dual of inductive types: coinductive types. Examples here are streams and
coinductive natural numbers, which can also be infinite.

4.1 The natural numbers

One of the most versatile datatypes we consider is the type of natural numbers,
i.e. the counting numbers 0, 1, 2, 3, 4, Indeed, because we are computer
scientists we are starting counting with 0, which is useful when calculating
off-sets in datastructures but it is also the answer to the question How many

elephants do you have in your fridge (I hope).
It was Guiseppe Peano from Torino who wrote down the precise laws of

the natural numbers in predicate logic at the end of the 19th century, this is
nowadays known as Peano Arithmetic. We aren’t going to study these laws
in detail but use one important idea: according to Peano a natural number is
either zero or it is the successor of another natural number. We can implement
this in Agda:

data N : Set where
zero : N
suc : N ! N

45

46 CHAPTER 4. DATATYPES

This is the definition of a sum, but the novelty is that it is recursive, that is we
are using N which is just being defined in the argument of the constructor suc.

Given this we can derive the usual notation: 1

0 = zero
1 = suc 0 = suc zero
2 = suc 1 = suc (suc zero)
3 = suc 2 = suc (suc (suc zero))
...

...

Let’s define a function on the natural numbers, for example the predecessor:

pred : N ! N
pred zero = zero
pred (suc n) = n

Here we use pattern matching to analyse the constructor as we have seen already.
Actually this function is a bit of a cheat because there isn’t really a predecessor
of 0. A better version uses Maybe where Maybe A is just a shorthand for >] A:

data Maybe (A : Set) : Set where
nothing : Maybe A
just : A ! Maybe A

Using Maybe we can now define a version of pred that signals an error on 0 by
returning nothing:

pred : N ! Maybe N
pred zero = nothing
pred (suc n) = just n

This version of pred indicates an error on 0 by returning nothing but for any
other number returns just the predecessor.

This predecessor is the exact inverse of the constructors which can be com-
bined into one function:

zerosuc : Maybe N ! N
zerosuc nothing = zero
zerosuc (just n) = suc n

It is not hard to see that the functions pred and zerosuc are inverse to each
other.

1Luckily we can tell Agda to use the standard notation for numbers simply by invoking a
pragma:

{-# BUILTIN NATURAL N #-}

4.1. THE NATURAL NUMBERS 47

4.1.1 Recursion

To define more interesting functions on the natural numbers we need to use
recursion, for example let’s define the doubling function:

double : N ! N
double zero = zero
double (suc n) = suc (suc (double n))

That is the double of 0 is 0 and the double of a number of the form suc n is
2 + double n, which as we haven’t yet defined _+_ is just suc (suc (double n).

For example double 3 = 6. Let’s go through this step by step:

double 3 = double (suc (suc (suc zero)))
= suc (suc (double (suc (suc zero))))
= suc (suc (suc (suc (double (suc zero)))))
= suc (suc (suc (suc (suc (suc (double zero))))))
= suc (suc (suc (suc (suc (suc zero)))))
= 6

We can justify the use of recursion: all natural numbers are constructed via
zero and suc. To define a function f over the natural numbers we just have to
give a case for zero and one for suc n. Since the number n has to be constructed
before we suc n we can construct the answer to the function f in the same way
and compute the answer to f n before we compute the answer to f (suc n) hence
we can use f n when constructing f (suc n).

Not all functions are exactly of this form, already the inverse of double, that
is half which forgets the remainder, uses a slightly more general scheme

half : N ! N
half zero = zero
half (suc zero) = zero
half (suc (suc n)) = suc (half n)

That is half of 0 and 1 is zero and half orf 2 + n is 1 + half n. The recurrence
from suc (suc n) can be justified in the same way as before because certainly n
is constructed before suc (suc n).

4.1.2 Arithmetic operations

Let’s define the standard functions of arithmetic starting with addition:

+ : N ! N ! N
zero + n = n
suc m + n = suc (m + n)

48 CHAPTER 4. DATATYPES

The idea of this definition of addition is that for example 3 + 5 is the 3rd
successor of 5 that suc (suc (suc 5)). This means that 0 + n is just n and
suc m + n is one more than m + n.

Next we define multiplication _*_ which is repeated addition in the same
way as _+_ is repeated suc.

* : N ! N ! N
zero * n = 0
suc m * n = n + m * n

That is for example 3 * 5 is 5 + 5 + 5 + 0. Recursively we express this by
saying that 0 * n is just 0 and suc n * m is n + (m * n).

We can go further and define exponentiation as repeated multiplication. In
the previous cases it didn’t matter over which argument we recursed because
they were commutative. But exponentiation certainly isn’t, e.g. 23 = 8 but
32 = 9. If we want to mimic the usual order of arguments for exponentiation
we need to recur on the 2nd argument:

^ : N ! N ! N
m " zero = 1
m " suc n = m * m " n

For example 3 " 5 is 3 * 3 * 3 * 3 * 3 * 1. Hence m " 0 = 1 and
m " suc n = m * m " n.

4.1.3 The Ackermann function

Each instance of recursion correspond to using a for-loop in conventional pro-
gramming. While addition is just defined using one for-loop, multiplication calls
addition inside its loop, hence we have a nested for-loop. And exponentiation
uses a double nested for-loop. Historically functions that only use for-loops are
called primitive recursive, and all the examples we have seen are examples of
primitive recursion. Hilbert, a famous german Mathematician, asked wether all
total recursive functions can be defined using primitive recursion. His student
Ackermann showed that this is not the case by exhibiting a function that is not
primitive recursive because it grows faster than any primitive recursive function.
The idea of the Ackermann function is to have one extra parameter which deter-
mines the nesting of for loops, that is he defined a function ack : N ! N ! N
such that

ack 0 m n = suc n
ack 1 m n = m + n
ack 2 m n = m * n
ack 3 m n = m " n

...
...

4.1. THE NATURAL NUMBERS 49

The next function, hyperexponentiation that is repeated exponentiation doesn’t
really have a standard notation anymore. We can define ack using recursion over
the natural numbers:

ack : N ! N ! N ! N
ack zero m n = suc n
ack (suc zero) m zero = m
ack (suc (suc zero)) m zero = 0
ack (suc (suc (suc zero))) m zero = 1
ack (suc (suc (suc (suc l)))) m zero = m
ack (suc l) m (suc n) = ack l m (ack (suc l) m n)

To stay consistent with exponentiation we define the functions by recursion over
the 2nd argument. The first line defines ack 0 to be just the successor of the 2nd
argument because then we can obtain addition by repeating it. The next three
lines define the 0 cases for addition m + 0 = m, multiplication m * 0 = 0 and
exponentiation m " 0 = 1. The idea for multiplication and exponentiation is to
use the neutral element of the previous operation, corresponding to 0 iterations.
However, since the is no neutral element for exponentiation, that is no number
such that xn = n, we just use the first argument as for addition. The last line
uniformly expresses that the function for ack (suc l) is defined by iterating the
previous function ack l n times.

Actually the definition above is a bit complicated due to all the different cases
for 0, hence often a simplified version of the Ackermann function is used where
the levels don’t exactly correspond to the usual definitions of the arithmetic
operations but have the same nesting of for loops:

acks : N ! N ! N ! N
acks zero m n = suc n
acks (suc l) m zero = m
acks (suc l) m (suc n) = acks l m (acks (suc l) m n)

Using either ack or acks we can define the function fast:

fast : N ! N
fast n = ack n n n

We can only evaluate the first few instances of fast

fast 1 = 1 + 1 = 2
fast 2 = 2 * 2 = 4
fast 3 = 3 " 3 = 27
fast 4 = 4 " (4 " (4 " 4)) = ?

Due to the fact that our implementation of numbers using a unary representation
we can’t even compute fast 4 in a reasonable time. But even using a very
efficient implementation of numbers will not save us much, the incredible fast

50 CHAPTER 4. DATATYPES

growing behaviour of fast will spoil any attempt to compute many more results.
And indeed, fast grows faster than any primitive recursive function that is any
function definable only with for-loops.

4.2 Iterator and recursor

We intuitively explained and justified recursive definitions over the natural num-
bers but now we shall be more precise and say exactly what recursive definitions
are permissable.

In general we define a function f : N ! M 2 by recursion over the natural
numbers

f 0 = z
f (suc n) = s (f n)

where

z : M
s : M ! M

We can turn this into a higher order function, the iterator 3:

ItN : M ! (M ! M) ! N ! M
ItN z s zero = z
ItN z s (suc n) = s (ItN z s n)

4 We call M the motive and z,s methods. Our claim is that we can reduce
recursion over the natural number to the iterator. Ok, we haven’t actually made
precise what we mean by recursion over the natural numbers and introducing
the iterator is exactly one way to do this.

We can derive dbl using only the iterator:

double-it : N ! N
double-it = ItN 0 (� double-n ! suc (suc double-n))

The instances for the methods z and s can be read off the recursive definition
of double:

double : N ! N
double zero = zero
double (suc n) = suc (suc (double n))

The reduction of half is less obvious - here again the recursive definition:
2In the following I use A B M : Set as variables as in chapter 2.
3In category theory ItN z s : N ! M is the universal morphism from the initial algebra.

It is also called a fold in functional programming, or a catamorphism.
4Remember that M is one of the names we have declared to be used as implicit parameters

for Set.

4.2. ITERATOR AND RECURSOR 51

half : N ! N
half zero = zero
half (suc zero) = zero
half (suc (suc n)) = suc (half n)

half doesn’t follow exactly the pattern we have stated before but it is reducible
to it. The idea is that we define an auxiliary function half-aux which computes
the results of half n and half (suc n) simultaneously using a product.

half-aux : N ! N ⇥ N
half-aux zero = zero , zero
half-aux (suc n) = proj2 (half-aux n) , suc (proj1 (half-aux n))

5 The first line is justified by the observation that half 0 , half 1 = 0 , 0.
The recursive call follows form the fact that we have already half (suc n) as the
2nd component of half-aux n and by the recursive defintion half (suc (suc n)) =
half n which explains the 2nd component. Now half-aux is an instance of our
scheme and we can define

half-aux-it : N ! N ⇥ N
half-aux-it = ItN (zero , zero) (� p ! proj2 p , suc (proj1 p))
half-it : N ! N
half-it n = proj1 (half-aux-it n)

The definition of _+_ is straightforward, here the recursive version:

+ : N ! N ! N
zero + n = n
suc m + n = suc (m + n)

We can transform it into an instance of our scheme using higher order functions:

zero +_ = � n ! n
suc m +_ = � n ! suc (m + n)

And hence we define

+it : N ! N ! N
+it = ItN (� n ! n) (� m+ n ! suc (m+ n))

5The 2nd line can be more nicely written using a local definition:

half-aux (suc n) = proj2 hn, suc (proj1 hn)
where hn = half-aux n

or even better using with which enables pattern matching on an intermediate result:

half-aux (suc n) with half-aux n
half-aux (suc n) | half-n , half-sn = half-sn , (suc half-n)

52 CHAPTER 4. DATATYPES

The same technique works for multiplication:

*-it : N ! N ! N
*-it = ItN (� n ! 0) � m* n ! n + (m* n)

A more interesting case is a function which doesn’t only use the recursive
result but also the input. An example is the factorial function which can be
recursively defined we follows:

_! : N ! N
zero ! = 1
suc n ! = suc n * n !

n ! is the number of ways we can put n people on n chairs. If there are no people
and no chairs we have to do nothing hence the answer is 1 (this seems to confuse
some people). Otherwise in the case (suc n) ! there are suc n ways to place the
first person and then n ! to distribute n people on n chairs.

The factorial function is an instance of a slightly modified scheme, to define
f : N ! A we use:

f 0 = z
f (suc n) = s n (f n)

where

z : A
s : N ! A ! A

As above we can turn this into a general higher order function, called the recursor
6:

RN : M ! (N ! M ! M) ! N ! M
RN z s zero = z
RN z s (suc n) = s n (RN z s n)

We can define the factorial function using only the recursor:

_!-r : N ! N
_!-r = RN 1 (� n n! ! suc n * n!)

We can actually derive RN from ItN by (re-)computing the input and the output
together:

RN-it : M ! (N ! M ! M) ! N ! M
RN-it {M} z s n = proj2 (ItN z’ s’ n)

where
z’ : N ⇥ M

6Called paramorphism by Meertens.

4.2. ITERATOR AND RECURSOR 53

z’ = 0 , z
s’ : N ⇥ M ! N ⇥ M
s’ (n , m) = suc n , s n m

That is we use N ⇥ M as the motive, the first component is identical to the
input. Hence in the 0-case we use 0 , z and in the successor case given n , m we
compute suc n , s n m, hence we are able to supply the extra argument. In the
end we have only to extract the 2nd component to obtain the result.

Finally let’s have a look at the simplified Ackermann function:

acks : N ! N ! N ! N
acks zero m n = suc n
acks (suc l) m zero = m
acks (suc l) m (suc n) = acks l m (acks (suc l) m n)

Can we compute the Ackermann function using the iterator or the recursor?
It seems that our scheme exactly captures primitive recursion. However, the
traditional notion of primitive recursion doesn’t include the use of higher or-
der functions which leads to a much more powerful scheme. And indeed the
Ackermann function is definable:

acks-it : N ! N ! N ! N
acks-it = ItN (� m n ! suc n)
(� ack-l m ! ItN m � ack-sl-m-n ! ack-l m ack-sl-m-n)

The main idea here is to translate the pattern using higher order functions as
in the case for addition and multiplication, and then use the iterator again to
translate the nested pattern.

Indeed, the power of primitive recursion with higher order function is much
more than ordinary primitive recursion. We can define all recursive functions
that can be proven total in Peano Arithmetic. Indeed a lambda calculus with a
type of natural numbers and the recursor is called System T and was introduced
by Gödel as a functional system corresponding to Peano Arithmetic.

4.2.1 Non primitive recursive functions

There are recursive functions over the natural numbers that cannot be defined
directly using primitive recursion. An example is the computation fo the greatest

common divisor using subtraction. First we define cut-off subtraction which
stops at 0:

- : N ! N ! N
zero - n = zero
suc m - zero = suc m
suc m - suc n = m - n

That is 3 - 2 = 1 while 1 - 2 = 0. Another ingredient is a comparison function
comp which gets two numbers m,n and returns different values depending on
wether m < n , m = n or m > n:

54 CHAPTER 4. DATATYPES

comp : N ! N ! A ! A ! A ! A
comp zero zero m<n m=n m>n = m=n
comp zero (suc n) m<n m=n m>n = m<n
comp (suc m) zero m<n m=n m>n = m>n
comp (suc m) (suc n) m<n m=n m>n = comp m n m<n m=n m>n

Now we can define gcd where we always subtract the smaller number from the
larger one until they are equal:

gcd : N ! N ! N
gcd m n = comp m n (gcd m (n - m)) m (gcd (m - n) m)

e.g. gcd 56 84 = 27.
However, Agda complains Termination checking failed because it cannot see

that the arguments were reduced during recursion. 7 And indeed, there is no
obvious way to translate this function into one using the iterator or the recursor.

I this case we can save the day by noticing that the recursion is bounded by
the sum of the numbers and define:

gcd-aux : N ! N ! N ! N
gcd-aux zero m n = zero
gcd-aux (suc fuel) m n =

comp m n (gcd-aux fuel m (n - m)) m (gcd-aux fuel (m - n) m)

gcd’ : N ! N ! N
gcd’ m n = gcd-aux (m + n) m n

The first argument is often called fuel because it acts like the fuel for a car,
we have to pay one unit for each recursive call. However, we have set up our
definition so that we can never run out of fuel. Hence the first line in the
definition of gcd-aux will never be executed and we could have put in any vaule
instead of 0. There are better ways to deal with this situation, especially once
we have dependent types.

However, there are recursive and terminating functions which we cannot
define using higher order primitive recursion.

4.3 Inductive Types

4.3.1 Lists

The type of natural numbers

data N : Set where
zero : N
suc : N ! N

7We can override this warning by using the pragma

{-# TERMINATING #-}

before the declaration of the function.

4.3. INDUCTIVE TYPES 55

of an inductive datatype which we can view as a recursively defined sum. An-
other example of an inductive datatype is the type of lists, representing finite
sequences of a given type:

data List (A : Set) : Set where
[] : List A
:: : A ! List A ! List A

Constructors in this case are the empty list [] (pronounced nil) and given
a : A and another list l : Lis A we can construct a new list a :: l using the
constructor _::_ 8 (pronounced cons). All lists are made from [] and _::_, for
example 1 :: 2 :: 3 :: [] : List N.

Recursive definitions on lists follow the same idea as for natural numbers.
Examples are the length function:

length : List A ! N
length [] = 0
length (x :: l) = 1 + length l

which computes the length of a list; a function that sums the numbers in a list:

sumList : List N ! N
sumList [] = 0
sumList (n :: ns) = n + sumList ns

and the append function which concatenates two lists:

++ : List A ! List A ! List A
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

So for example

length (1 :: 2 :: 3 :: []) = 3
sumList (1 :: 2 :: 3 :: []) = 6
(1 :: 2 :: 3 :: []) ++ (4 :: 5 :: []) = 1 :: 2 :: 3 :: 4 :: 5 :: []

Append is very similar to addition, indeed addition can be viewed as a special
case of append if we identify N with List >. However, unlike _+_, _++_ is
not commutative in general, since the order of elements matter.

Lists are a functor, that is an operation that can not only applied to elements
but also to functions. This is witnessed by the map-function, that applies a
function to every element of a list, producing a new list:

8In the language Haskell a single : is used for cons, and a double :: for typing. Type
Theoreticians put more emphasis on typing hence they prefer to have the shorter notation for
this.

56 CHAPTER 4. DATATYPES

map : (A ! B) ! List A ! List B
map f [] = []
map f (x :: xs) = f x :: map f xs

So for example

map suc (1 :: 2 :: 3 :: []) = 2 :: 3 :: 4 :: []

As for natural numbers recursive definitions over lists can be reduced to one
combinator, which is usually called fold but which we consequently call ItList:

ItList : M ! (A ! M ! M) ! List A ! M
ItList n c [] = n
ItList n c (a :: l) = c a (ItList n c l)

All the recursive functions over lists we have defined can be reduced to ItList
using the ideas we have established in the previous section:

length-it : List A ! N
length-it = ItList 0 (� a length-l ! suc length-l)
sumList-it : List N ! N
sumList-it = ItList 0 _+_
++it : {A : Set} ! List A ! List A ! List A
++it = ItList (� l ! l) (� a m++ l ! a :: (m++ l))
map-it : {A B : Set} ! (A ! B) ! List A ! List B
map-it f = ItList [] (� a map-f-l ! f a :: map-f-l)

We can also derive a recursor for lists and other inductive datatypes which
allows to use the input list in the recursive call but we leave the details as an
exercise.

4.3.2 Syntax trees

A common application of inductive datatypes is the representation of syntax.
An expression like 2 * (3 + 4) can be viewed as a tree generated by constructors
for constants and for each of the operators:

data Expr : Set where
const : N ! Expr
[+] : Expr ! Expr ! Expr
[*] : Expr ! Expr ! Expr

So our example expression can be represented as follows:

const 2 [*] (const 3 [+] const 4) : Expr

An obvious function we want to define is the evaluator which computes the
numeric value of an expression:

4.3. INDUCTIVE TYPES 57

eval : Expr ! N
eval (const x) = x
eval (e1 [+] e2) = eval e1 * eval e2
eval (e1 [*] e2) = eval e1 + eval e2

So for example

eval (const 2 [*] (const 3 [+] const 4)) = 14

As for other inductive types we introduce an iterator for Expr:

ItExpr : (N ! M) ! (M ! M ! M)
! (M ! M ! M)
! Expr ! M

ItExpr c p m (const x) = c x
ItExpr c p m (e1 [+] e2) = p (ItExpr c p m e1) (ItExpr c p m e2)
ItExpr c p m (e1 [*] e2) = m (ItExpr c p m e1) (ItExpr c p m e2)

I hope that the general scheme for deriving iterators is now evident. The meth-
ods correspond to the constructors where every occurence of the datatype is
replaced with the motive M. The function which is computed by the iterator
recursively replaces each constructor with the method.

We can define the evaluator using the iterator:

eval-it : Expr ! N
eval-it = ItExpr
(� n ! n)
(� eval-e1 eval-e2 ! eval-e1 + eval-e2)
(� eval-e1 eval-e2 ! eval-e1 * eval-e2)

4.3.3 Rose trees

The syntax trees from the previous section were binary trees, the nodes created
by _[+]_ and _[*]_ each have two subtrees. Using lists of subtrees we can
define trees with an arbitrary number of subtrees which are called rose trees.

data RoseTree : Set where
node : List RoseTree ! RoseTree

We don’t need a special constructor for leaves, because we can just have a node
with no subtrees node [].

As an example we define the following rose tree:

rt : RoseTree
rt = node (node []

:: node (node (node [] :: []) :: node [] :: [])

58 CHAPTER 4. DATATYPES

:: node (node [] :: [])
:: [])

As an example for a recursive function on rose trees we count the number of
nodes:

countNodes : RoseTree ! N
countNodes (node ts) = suc (countNodesList ts)

where countNodesList : List RoseTree ! N
countNodesList [] = 0
countNodesList (t :: ts) = countNodes t + countNodesList ts

Here we use an auxiliary function which counts the nodes in a list of rose trees.
We use where to do this. 9

So for example countNodes rt evaluates to 8.
What is the iterator for Rose Trees? We just apply the scheme and obtain

the type of methods by replacing RoseTree with the motive. We end up with

ItRoseTree : ((List M) ! M) ! RoseTree ! M

But how can we recursively apply the iterator to the arguments which are
inside a list. A good way to address this is to use map:

ItRoseTree m (node ts) = m (map (ItRoseTree m) ts)

However, Agda’s termination checker isn’t clever enough to see that recursion
through map will terminate and we have to use the following more elaborate
version where we implement an instance of map locally to the iterator:

ItRoseTree {M} m (node ts) = m (mapIt ts)
where mapIt : List RoseTree ! List M

mapIt [] = []
mapIt (t :: ts) = ItRoseTree m t :: mapIt ts

Now we can derive our count function from the iterator. The method is the
function sumList which, as we have seen, can be defined using only the iterator
for lists:

countNodes-it : RoseTree ! N
countNodes-it = ItRoseTree (� ns ! suc (sumList ns))

4.3.4 Ordinals

All the trees we have seen so far were finitely branching that is any node only
had finitely many subtrees. We can also consider infinitely branching trees and
a nice application of those is a notation for ordinal numbers.

9Agda has both let and where, but for reasons I don’t understand only where supports the
definition of functions by pattern matching.

4.3. INDUCTIVE TYPES 59

The idea of ordinal numbers is that we also consider infinite numbers. That
is we have the sequence

0, 1, 2, 3, 4, . . .

but now we add an element on the top which we call !:

0, 1, 2, 3, 4, . . .!

The idea is that ! is greater than any of the numbers in the sequence 0, 1, 2, 3, 4, . . .
and it is the smallest such ordinal. We can continue this and create a new infinite
sequence:

0, 1, 2, 3, 4, . . .!,! + 1,! + 2,! + 3,! + 4, . . .

And again we have an element on the top:

0, 1, 2, 3, 4, . . .!,! + 1,! + 2,! + 3,! + 4, . . .! + !

We can continue this game infinitely and produce yet another ordinal ! ⇤ !
and so on. The main idea is that every ordinal number is associated with the
corresponding _<_ relation. In each case this relation is well-founded, that is
you can only go down a finite number of steps before reaching 0. Note that
this also holds for !, in the first step we can go down to any finite number and
after this it is clear that we will end up at 0. However, there is no bound to the
length of this sequence.

Here is the definition of our notation for ordinals. It starts like the definition
for natural numbers but then we add another constructor lim which allows us
to construct ordinals from infinite sequences:

data Ord : Set where
zero : Ord
suc : Ord ! Ord
lim : (N ! Ord) ! Ord

We can embed the natural numbers into the ordinals:

emb : N ! Ord
emb zero = zero
emb (suc x) = suc (emb x)

Using emb we can derive !:

! : Ord
! = lim emb

We can lift the arithmetic operations to ordinals to derive ordinals like ! + !
and ! * !. Before we define addition it is a good idea to note that ordinal
addition is not commutative, that is ↵ + � is not the same as � + ↵. We can
understand addition by just putting the ordinals next to each other. So for
example 1 + ! looks like this:

⇤, 0, 1, 2, 3, 4, . . .

60 CHAPTER 4. DATATYPES

Here we write ⇤ for the 0 in the ordinal 1. On the other hand ! + 1 looks like
this

0, 1, 2, 3, 4, · · · ⇤

In the first case we have just shifted the ordinals by 1, but the order we obtain
is equivalent to the one of !, that is in the sense of orders the ordinals 1 + !
and ! are equivalent. This is not the case for ! + 1 because this time there
is an infinite gap between the finite elements and the new one, which is not
equivalent to !.

While when defining _+_ for natural numbers it didn’t matter over which
argument we did the recursion for the ordinals it does. And the correct choice
is to do recursion over the 2nd argument:

+ord : Ord ! Ord ! Ord
m +ord zero = m
m +ord suc n = suc (m +ord n)
m +ord lim f = lim (� i ! m +ord f i)

We define addition for a limit ordinal, that is an ordinal of the form lim f by
adding the same element to each element of the sequence and then taking the
limit of the sequence. So for example ! + ! is obtained by taking the limit of
the sequence !,! + 1,! + 2, . . . matching our intuitive explanation.

Ordinals can be used to quantify the recursive strength of a recursion scheme
but also the strength of a logic. A famous example is related to the fight of
Hercules against the Hydra. The Hydra is a monsters with many heads which
we view as a rose tree. Hercules can chop of one head of the Hydra (that is
remove a subtree of the form node [] but as a response the Hydra can grow an
arbitrary number of heads at lower levels. However, Hercules will always win
after a finite number of steps and be able to chop off all the heads.

The fact that Hercules will win is an instance of a particular ordinal called
✏0 which we can obtain by defining multiplication and exponentiation and then
take the limit of !-towers of the form

!,!!,!(!!), . . .

Any Hydra configuration can be viewed as an ordinal in this sequence and any
move by Hercules chooses a smaller ordinal. However, one can show that the
ordinal ✏0 corresponds to the logical strength of Arithmetic and hence we cannot
prove that the game terminate using only induction and natural numbers.

Before we finish let’s derive the iterator for Ord:

ItOrd : {M : Set} ! M ! (M ! M) ! ((N ! M) ! M)
! Ord ! M

ItOrd z s l zero = z
ItOrd z s l (suc x) = s (ItOrd z s l x)
ItOrd z s l (lim f) = l (� i ! ItOrd z s l (f i))

and implement ordinal addition as an instance:

4.4. POSITIVITY 61

+ord-it : Ord ! Ord ! Ord
↵ +ord-it � = ItOrd ↵ suc lim �

Note that we explicitly do recursion over the 2nd argument.

4.4 Positivity

Introductions to �-calculus often start with the untyped �-calculus which presents
the syntax of the �-calculus without types. We can try to simulate this idea by
defining a strange datatype ⇤:

data ⇤ : Set where
lam : (⇤ ! ⇤) ! ⇤

Agda won’t accept this definition (for good reasons) but for the moment
we can switch this off by saying NO_POSITIVITY_CHECK. The idea is that any
function ⇤ ! ⇤ gives rise to another untyped �-term which corresponds to its
�-abstraction. The simplest example is the identity function � x ! x which
is represented as lam (� x ! x) : ⇤. To be able to form more interesting
terms we need to use application. However, this is easy to define using pattern
matching:

app : ⇤ ! ⇤ ! ⇤
app (lam f) x = f x

Since every untyped �-term is produced by an abstraction, we can just use
this to obtain a function and hence we have application. We can obtain some
interesting terms such as self-apply which is

� x ! x x

Hence using ⇤ we define:

self-apply : ⇤
self-apply = lam (� x ! app x x)

What happens if we apply self-apply to itself? This term is called ⌦:

⌦ = (� x ! x x) (� x ! x x)

we translate this to

⌦ : ⇤
⌦ = app self-apply self-apply

Now the strange thing about ⌦ is that when we �-reduce it we get back to ⌦:

⌦ = (� x ! x x) (� x ! x x)
= (x x) [x 7! (� x ! x x)]
= (� x ! x x) (� x ! x x)
= ⌦

62 CHAPTER 4. DATATYPES

This means that we have constructed an element of ⇤ which is not generated
by lam. And indeed if we try to evaluate ⌦ Agda will hang.

It is the negative occurence of the type we are defining which causes this.
Another example of a type which only has a negative occurence is the the
following (and again we have to switch off the positivity checker).

data Weird1 : Set where
foo : (Weird1 ! ?) ! Weird1

It is hard to explain Weird1 but that is the point. We can show that Weird1
is empty using pattern matching. The idea is that if there is an element of
Weird1 then we have a function Wierd1 ! ? and hence we can derive ?:

¬weird1 : Weird1 ! ?
¬weird1 (foo x) = x (foo x)

However, now using ¬weird1 we can actually construct an element of Wierd1,
namely foo ¬weird. But since we have shown that Weird1 is empty we can derive
an element of the empty type:

bad : ?
bad = ¬weird1 (foo ¬weird1)

This is certainly bad, because the empty type was supposed to be empty.
These examples illustrate that we need to have some restrictions on the types

of constructors when defining an inductive datatype. The question to answer
first is what do we actually mean by an inductive datatype? All the elements of
an inductive datatype are generated from the constructors. In the case that an
argument of the constructor is the type we are defining means that this should
be an element which we know already. That is we create the elements in stages,
e.g. with the natural numbers in the first step we can only create zero : N,
or for the expressions we can only create the constants const 1 : Expr. But in
the next step we can create suc n : N or in the case of Expr we can create for
example const 1 [+] const 2 and so on. This also justifies the recursion principles
expressed via the iterators. This line of thought explains inductive datatypes
where the type appears as an argument to a constructor.

This also works for rose trees but here we have to create a whole list of trees
before we can go on creating a new tree.

An interesting example is

data T1 : Set where
foo : T1 ! T1

What are the elements of this type? Since we have no leaves we can’t even get
started to create elements. Hence the type is empty. We can actually show this
by defining a function into the empty type by recursion:

¬t1 : T1 ! ?
¬t1 (foo x) = ¬t1 x

4.5. COINDUCTIVE TYPES 63

Understanding infinitely branching trees like Ord is a bit more involved. We
first create all the trees we can build in finitely many stages. These include some
of the lim-trees but only the one which only use the trees we have constructed
before, hence which have only a finite number of different subtrees. Once we
have created all of them we have reached a stage !. Now we can continue to
create trees using all the infinitely many we have created up to !. And so on,
we can repeat this process to get more and more trees.

Hence we can allow constructor arguments which are of the form A ! X
where X is the type we are defining just now and A is a type we already know.
This is called a strictly positive type and this is the condition Agda is using to
decide wether a datatype declaration is acceptable.

But what about the following type?

data Weird2 : Set where
foo : ((Weird2 ! Bool) ! Bool) ! Weird2

In this example the occurence of Weird2 in the argument is not strictly positive
but still positive, i.e. double negative.

Should we allow such types? Agda doesn’t think so, but why? First of all
our semantic explanation is out of the window, we cannot generate Weird2 in
stages. But is it inconsistent? This doesn’t seem to be the case even though the
proof needs quite strong logical principles. However, this type is inconsistent
with classical logic.

If we assume TND or RAA then the type Bool is the type of propositions and
Weird2 constructs a fixpoint of the double power set and we can use well known
constructions (Cantor’s diagonalisation) to derive a contradiction.

Hence, while positive datatypes on their own seem to be consistent, they
rule out certain assumptions like the assumption of classical logic. Moreover
they are not justified semantically. These seem to be good reasons to rule them
out.

4.5 Coinductive types

One of the nice features of category theory is the availability of a mirror: for any
construction X there is a dual one, which is usually called co-X. For example
from the point of category products are dual to sums and indeed sums are
sometimes called coproducts. We have seen that recursive sums aka inductive
types are very useful, hence now we wonder what can we do with recursive
products or coinductive types.

4.5.1 Streams

An example of a coinductive type is the type of streams, or infinite sequences.
Given a stream over A we can obtain its head which is an element of A and its
tail which is another stream. Hence we define:

64 CHAPTER 4. DATATYPES

record Stream (A : Set) : Set where
coinductive
field

head : A
tail : Stream A

Unlike in the case for sums we have to indicate that we want to define a
recursive record by invoking the keyword coinductive.

To construct a stream we just have to present a head and a tail. We can
derive a constructor for streams using copattern matching which we have already
seen for products:

:: : A ! Stream A ! Stream A
head (a :: as) = a
tail (a :: as) = as

Indeed we can automatically derive the constructor by saying:

record Stream (A : Set) : Set where
constructor _::_
coinductive
field

head : A
tail : Stream A

We can use copatternmatching which we have already seen for products to
define the function

from : N ! Stream N

which for any number n returns the stream of numbers staring with n that is
n, n+1, n+2,

head (from n) = n
tail (from n) = from (suc n)

Clearly the head of from n is just n, while the tail is the stream starting with
the next number, hence from (suc n).

While we understood inductive types by construction, that is all elements
are constructed using the constructors, we understand coinductive types by the
way they are destructed. E.g. a stream is anything of which we can take a head
and a tail.

The recursive definition of from n is reasonable, because we can always com-
pute the head and the tail of the result of from n, we never get stuck.

Clearly we cannot define from for lists

fromList : N ! List N
fromList n = n :: fromList (suc n)

4.5. COINDUCTIVE TYPES 65

because the recursive definition is not justified by descending along an induc-
tively defined type eg N.

On the other hand while we can define a function that filters out elements
from a list given a boolean function:

filterL : {A : Set} ! (A ! Bool) ! List A ! List A
filterL f [] = []
filterL f (x :: xs) with f x
filterL f (x :: xs) | false = filterL f xs
filterL f (x :: xs) | true = x :: filterL f xs

However, Agda will complain if we try to do the same for streams:

filterS : {A : Set} ! (A ! Bool) ! Stream A ! Stream A
filterS f xs with f (head xs)
filterS f xs | false = filterS f (tail xs)
filterS f xs | true = (head xs) :: filterS f (tail xs)

Indeed, we cannot answer the question what is the head of filterS f xs. And
indeed there may be none, we can define a stream of false:

falses : Stream Bool
head falses = false
tail falses = falses

but what is head (filterS (� x ! x) falses) : Bool?

4.5.2 Conatural numbers

Actually streams are not the dual of lists because they do not allow empty
streams. We can define a type of colists which contain both finite and infinite
sequences but instead we are going to study the dual of natural numbers, the
conatural numbers. As we have observed previously the destructor for natural
numbers is pred : N ! Maybe N. Hence we define conatural numbers as
objects that have a predecessor:

record N1 : Set where
coinductive
field

pred1 : Maybe N1

As we have derived the predecssor for the natural numbers we can now derive
0 and suc for conatural numbers:

zero1 : N1
pred1 zero1 = nothing
suc1 : N1 ! N1
pred1 (suc1 n) = just n

66 CHAPTER 4. DATATYPES

The rationale behind these definitions should be clear: zero1 is the conatural
number on which pred1 returns an error, while the sucessor of a conatural
number is the one whose predecessor is just that number.

Apart from those finite numbers we can also create an infinite number:

1 : N1
pred1 1 = just 1

The definition is straightforward: what is the predecessor of 1? It is certainly
not 0 but it is just 1.

Let’s define addition for conatural numbers. It is a good idea to have the
definition of addition of natural numbers in mind:

+ : N ! N ! N
zero + n = n
suc m + n = suc (m + n)

In contrast to define _+1_ we have to determine what is the predeccessor of
m +1 n?

+1 : N1 ! N1 ! N1
pred1 (m +1 n) with pred1 m
pred1 (m +1 n) | nothing = pred1 n
pred1 (m +1 n) | just m’ = just (m’ +1 n)

To find this out we query the first argument. If it was 0, that is pred1 m
returns nothing then it is the predecessor of the 2nd argument. However, if the
predecessor is just m’ then the result is just m’ +1 n.

+1 is the infinite extension of _+_. To make this statement a bit more
precise, we can define an embedding

N!N1 : N ! N1
N!N1 zero = zero1
N!N1 (suc n) = suc1 (N!N1 n)

just using recursion. Now the definng property of _+1_ wrt _+_ is

N!N1 (m + n) ⌘ (N!1 m) +1 (N!1 n)

We haven’t yet developed the machinery to prove this and we havent explained
when two coinductive numbers are equal.

4.5.3 Coiterator and corecursor

As for recursion over an inductive type we can derive a general combinator to
do corecursion over a coinductive type. To define a function f : W ! Stream A
corecursively we are using copattern patching:

4.5. COINDUCTIVE TYPES 67

head (f x) = h x
tail (f x) = f (t x)

where

h : A ! W
t : W ! W

This scheme of coiteration can be expressed as one higher order function:

CoItStream : {A W : Set} ! (W ! A) ! (W ! W)
! W ! Stream A

head (CoItStream h t x) = h x
tail (CoItStream h t x) = CoItStream h t (t x)

As an example the from function can be defined using only the coiterator:

from-coit : N ! Stream N
from-coit = CoItStream (� n ! n) (� n ! suc n)

Similarily in the case of the conatural numbers we can define:

CoItN1 : {W : Set} ! (W ! Maybe W) ! W ! N1
pred1 (CoItN1 p x) with p x
pred1 (CoItN1 p x) | nothing = nothing
pred1 (CoItN1 p x) | just x’ = just (CoItN1 p x’)

As an example we can derive

1-coit : N1
1-coit = CoItN1 just tt

However, it turns deriving _+1_ is a bit more difficult. Here is the code we
have written using copatternmatching:

+1 : N1 ! N1 ! N1
pred1 (m +1 n) with pred1 m
pred1 (m +1 n) | nothing = pred1 n
pred1 (m +1 n) | just m’ = just (m’ +1 n)

We clearly do corecursion on the first argument. However, if the first argument
is 0, that is of pred1 m is nothing we immediately return pred1 n. This sort
of behaviour cannot be directly achieved with the coiterator, but requires a
corecursion. The corecursor can stop corecursion and just return an answer,
hence the method returns a sum:

CoRN1 : {W : Set} ! (W ! N1] Maybe W) ! W ! N1
pred1 (CoRN1 p x) with p x
pred1 (CoRN1 p x) | inj1 n = pred1 n

68 CHAPTER 4. DATATYPES

pred1 (CoRN1 p x) | inj2 nothing = nothing
pred1 (CoRN1 p x) | inj2 (just x’) = just (CoRN1 p x’)

Using the corecursor we can define _+1_. We are also using a case com-
binator for Maybe

caseMaybe : {A M : Set} ! M ! (A ! M) ! Maybe A ! M
caseMaybe n j nothing = n
caseMaybe n j (just x) = j x

+1-corec : N1 ! N1 ! N1
m +1-corec n =

CoRN1 (� x ! caseMaybe (inj1 n) (� m’ ! inj2 (just m’)) (pred1 x)) m

The corecursor is dual to the recursor, which can be also formulated using a
product but this is curried in the usual formulation. And as for the recursor,
the corecursor can be derived from the coiterator.

4.6 Functorial semantics

Ok, we have seen a number of examples of inductive and coinductive defini-
tions but what is the general scheme. Let’s start with inductive definitions, for
example once again the natural numbers:

data N : Set where
zero : N
suc : N ! N

Instead of using two constructors we could have used a sum and combine them
into one:

data N’ : Set where
zerosuc : Maybe N’ ! N’

The function zerosuc which we defined previously now is the constructor. We
recover zero and suc as

zero’ : N’
zero’ = zerosuc nothing
suc’ : N’ ! N’
suc’ n = zerosuc (just n)

What about the iterator? Its type should be the following:

ItN’ : (Maybe M ! M) ! N’ ! M

Now we want to define ItN’ m (zerosuc n) by recursively using m and ItN’ on
n. However, the problem is that n : Maybe N so we cannot directly apply it.

4.6. FUNCTORIAL SEMANTICS 69

However, luckily Maybe is a functor that is it comes with a map function so
that we can apply it to functions:

map-Maybe : (A ! B) ! Maybe A ! Maybe B
map-Maybe f nothing = nothing
map-Maybe f (just x) = just (f x)

Now using map-Maybe we can complete the definition of It-N’: 10

ItN’ m (zerosuc n) = m (map-Maybe (ItN’ m) n)

This can be turned into a general pattern: an inductive datatype is given by a
functor (often called the signature functor), i.e. an operation

T : Set ! Set

together with a map function:

map-T : (A ! B) ! T A ! T B

The datatype definition µT then is given by just one constructor:

data µT : Set where
in-T : T µT ! µT

and the iterator is:

It-T : (T M ! M) ! µT ! M
It-T m (in-T x) = m (map-T (It-T m) x)

This is a good opportunity to draw a categorical diagram:

10Actually Agda rejects this definition because the recursion goes through map-Maybe which
is defined separately. We could have fixed this by defining map-Maybe-ItN’ mutually but here
I just said {-# TERMINATING #-} .

70 CHAPTER 4. DATATYPES

This diagram expresses that

in-T � (mapT (It-M m)) = (It m) � m

In general categorical diagrams express that different paths through the diagram
yield the same result, where sequencing of arrows is interpreted as composition.

We can also describe the recursor in this framework:

R-T : (T (µT ⇥ M) ! M) ! µT ! M
R-T m (in-T x) = m (map-T (� y ! y , R-T m y) x)

And indeed we can generically derive it from the iterator:

R-T-it : (T (µT ⇥ M) ! M) ! µT ! M
R-T-it {M} f x = proj2 (It-T {µT ⇥ M} (� p ! in-T (map-T proj1 p) , f p) x)

We can define functors for all the examples we have considered so far:

T-List : Set ! Set ! Set
T-List C X = Maybe (C ⇥ X)
T-Expr : Set ! Set
T-Expr X = N] X ⇥ X] X ⇥ X
T-RoseTree : Set ! Set
T-RoseTree X = List X
T-Ord : Set ! Set
T-Ord X = Maybe (X] (N ! X))

As already indicated we can view codatatypes as the mirror image. Co-
datatypes are also given by functors, in the case of streams this is T-stream X =

4.6. FUNCTORIAL SEMANTICS 71

A ⇥ X and the conatural numbers use Maybe, ie. the same as the natural num-
bers. The coinductive type corresponding to T is:

record ⌫T : Set where
coinductive
field

out-T : T ⌫T

and the coiterator is given by copattern matching:

CoIt-T : (M ! T M) ! M ! ⌫T
out-T (CoIt-T f x) = map-T (CoIt-T f) (f x)

This calls for another diagram:

Comparing this with the previous diagram we can see that the directions
of all the arrows have been reversed. I leave it as an exercise to define the
corecursor and derive it from the Coiterator.

You may have noticed that I have cheated in a number of ways. None of the
definitions I have given are acceptable in Agda as they stand. The definitions of
the µT and ⌫T are rejected because they go through T and Agda doesn’t know
anything about T. Ok, we have assumed that it is a functor but actually this is
not enough because Wierd2 is given by a functor:

T-Weird2 : Set ! Set
T-Weird2 X = (X ! Bool) ! Bool
T-Wierd2-map : (A ! B) ! T-Weird2 A ! T-Weird2 B
T-Wierd2-map f g h = g (h � f)

We will get back to this later and give a definition which only applies to strictly
positive types but we need dependent types for this.

72 CHAPTER 4. DATATYPES

I would also like to add that it is not enough to have map-T but to be a proper
functor also needs to preserve identity and composition, i.e. map-T id = id
and map-T (f � g) = map-T f � map-T g but we need equality types to specify
this in Type Theory.

4.7 History

Guiseppe Peano lived in Turino in the late 19th century. He wrote down the
rules of reasoning for the natural numbers which is now in his honour called
Peano Arithmetic. A proper account of Peano Arithmetic uses predicate logic
which we haven’t yet introduced. Peano only used addition and multiplication
in his presentation but it can be shown that all primitive recursive functions can
be derived. Interestingly, this ceases to be the case if you leave out multiplication
which leads to something called Pressburger Arithmetic.

By primitive recursive functions one means traditionally functions which can
be derived using no function types, that is with RN but only products and N can
be used. This intuitively corresponds to for-loops in programming. Ackermann
formulated his function to show that there are computable functions which
cannot be defined with primitive recursion.

It was Gödel who formulated a system which can express all functions that
are definable in Peano arithmetic. This is called System T 11 and it is basically
what we have presented, i.e. you have RN and function types. There are still
functions which are not definable in this system, corresponding to the problem
of Archilles and the hydra which we have mentioned already in the section on
ordinals.

Our presentation of inductive types goes back to algebraic datatyes and pat-
tern matching invented by my PhD supervisor Rod Burstall which were first
implemented in a language called Hope [?]. Subsequently algebraic datatypes
and pattern matching was used in many functional programming languages in-
cluding Miranda and Haskell. Coinductive types were investigated by Coquand
[?] who also formulated the guarded corecursion principle we are using. Co-
patternmatching was introduced much later in the context of Type Theory by
Andreas Abel and and Brigitte Pientka [?]. The functorial understanding of
datatypes and codatatypes can be found in the thesis of Tatsuyo Hagino [?]. 12

We only briefly touched upon the untyped �-calculus which, together with
untyped combinatory logic, is a basic computational mechanism indeed an al-
ternative to Turing machines. A good overview over the untyped �-calculus is
Barendregt’s book [?].

11Gödel introduced System T in [?] (in german).
12Hagino was also supervised by Rod Burstall, but he finished before I arrived in Edinburgh.

4.8. EXERCISES 73

4.8 Exercises

1. Define the following functions using pattern matching and structural re-
cursion on the natural numbers.

(a) Define a function even that determines wether its input is even.

even? : N ! Bool

Examples :

even? 3 = false
even? 6 = true

(b) Define a function sum that sums the numbers from 0 until n-1.

sum : N ! N

Examples:

sum 2 = 3
sum 10 = 55

(c) Define a function max that calculates the maximum of 2 numbers.

max : N ! N ! N

Examples:

max 2 3 = 3
max 10 1 = 10

(d) Define a function fib which calculates the nth item of the Fibonacci
sequence: 1, 1, 2, 3, 5, 8, 13, . . . (each number is the sum of the two
previous ones).

fib : N ! N

Examples:

fib 0 = 1
fib 6 = 13

(e) Define a function eq that determines wether two numbers are equal.

eq? : N ! N ! Bool

Examples:

eq? 4 3 = false
eq? 6 6 = true

74 CHAPTER 4. DATATYPES

(f) Define a function rem such that rem m n returns the remainder when
dividing m by suc n (this way we avoid division by 0).

rem : N ! N ! N

Examples:

rem 5 1 = 1
rem 11 2 = 2

(g) Define a function div such that div m n returns the result of dividing
m by suc n (ignoring the remainder).

div : N ! N ! N

Examples:

div 5 1 = 2
div 11 2 = 3

2. Define all the functions of the previous question but this time only use the
iterator ItN and/or the recursor RN.

Use the following naming convention: if the function was called f then
call it f-i if you only use the iterator, but f-r if you use the recusor (and
possibly the iterator).

3. In this exercise we implement tree-sort to sort a list of natural numbers.

We define the type of trees with labels on the nodes.

data Tree (A : Set) : Set where
leaf : Tree A
node : Tree A ! A ! Tree A ! Tree A

Here is an example tree:

node (node leaf 1 (node leaf 2 leaf)) 5 leaf

Define a function tree2list which collects all the leaves from left to right
in a list.

tree2list : {A : Set} ! Tree A ! List A

Here is a simple unit test

tree2list t = 1 :: 2 :: 5 :: []

4.8. EXERCISES 75

We are going to produce sorted trees. A sorted tree is one where for every
node the leaves on the left have smaller values and the leaves on the right
have larger values.
I give you a comparison function on N.

6? : N ! N ! Bool
zero 6? m = true
suc n 6? zero = false
suc n 6? suc m = n 6? m

Write a function that transforms a list of natural number into a sorted
tree.

list2tree : List N ! Tree N

Here is a test:

list2tree (10 :: 2 :: 1 :: 5 :: [])
= node (node leaf 1 (node leaf 2 leaf)) 5 (node leaf 10 leaf)

Hint: it may be a good idea to write a function

insert : N ! Tree N ! Tree N

that inserts one value into a sorted tree maintaining its sortedness.
Using the previous function it is now easy to define tree-sort a function
that sorts lists.

tree-sort : List N ! List N

Here is a unit test for treesort.

tree-sort (10 :: 2 :: 1 :: 5 :: []) = 1 :: 2 :: 5 :: 10 :: []

4. Reimplement tree-sort using only the iterators for lists and trees (also
called folds).
The functions should not use pattern matching on lists or trees or any
recursion but only use the combinators defined here:

foldList : {A : Set} {M : Set} !
M ! (A ! M ! M) ! List A ! M

foldList mnil mcons [] = mnil
foldList mnil mcons (x :: xs) = mcons x (foldList mnil mcons xs)
foldTree : {A : Set} {M : Set} !

M ! (M ! A ! M ! M) ! Tree A ! M
foldTree mleaf mnode leaf = mleaf

76 CHAPTER 4. DATATYPES

foldTree mleaf mnode (node l x r) =
mnode (foldTree mleaf mnode l) x (foldTree mleaf mnode r)

If the original function is called x then the function with folds only is called
x-f.

5. We have already defined addition for conatural numbers:

+1 : N1 ! N1 ! N1
prd1 (m +1 n) with prd1 m
prd1 (m +1 n) | just m’ = just (m’ +1 n)
prd1 (m +1 n) | nothing = prd1 n

Our goal is now to define multiplication:

*1 : N1 ! N1 ! N1

This is not so easy because we need to make sure that the recursion is
syntactically guarded, i.e. the recursive call has to appear directly at the
right hand side not inside another function.
Hint: Define an auxilliary function first which solves a more general prob-
lem.
Now here is a simple unit test:

N1!N (N!N1 3 *1 N!N1 5) = 15

6. Define the map operations for all the examples of functors:

T-List-map : (A ! B) ! T-List C A ! T-List C B
T-Expr-map : (A ! B) ! T-Expr A ! T-Expr B
T-RoseTree-map : (A ! B) ! T-RoseTree A ! T-RoseTree B
T-Ord-map : (A ! B) ! T-Ord A ! T-Ord B

7. Dualize the derivation of the generic recursor in section 4.6
That is define the corecursor:

CoR-T : (M ! T (⌫T] M)) ! M ! ⌫T

using copattern matching, map-T and guarded recursion.
The show that it can be derived directly from CoIt without recursion:

CoR-T-coit : (M ! T (⌫T] M)) ! M ! ⌫T

