
Chapter 5

Dependent types

We are now getting to one of the main innovations of Type Theory: dependent
types. In general a dependent type is a function with codomain Set. Examples
are vectors Vec A : N ! Set where Vec A n is a sequence elements of A of
length n, and Fin : N ! Set where Fin n corresponds to numbers less then n.

Actually we have already seen dependent types. For example List : Set !
Set is a dependent type indexed by Set. Hence Polymorphism is actually sub-
sumed by dependent types! Dependent types can be indexed by several indices,
and indeed Vec : Set ! N ! Set if we spell out all the dependencies.

We will discuss ⇧-types which generalize function types and ⌃-types which
generalize products. There are a number of interesting relations between de-
pendent type formers and simply typed ones and we will also extend the type

arithmetic from 2.5.4 to dependent types.

5.1 Vectors and dependent functions

We are going to look at some examples for dependent functions using vectors.
I will postpone the actual definition of vectors until I have explained some
syntactic conventions. Vec A n is the type of sequences of elements of A of
length n, it is a refinement of the type of lists and we use the same constructors.
For example 1 :: 2 :: 3 :: [] : Vec N 3.

We can define a function that produces a list of 0s of length n a list:

zeroes-l : N ! List N
zeroes-l zero = []
zeroes-l (suc n) = 0 :: zeroes-l n

E.g. zeroes-l 3 = 0 :: 0 :: 0 :: []. Using vectors we can define an analogous
function with a more precise type because we know that zeroes-l n will produce
a list of length n. So instead we output a vector of the length given by the input.

zeroes-v : (n : N) ! Vec N n

77

78 CHAPTER 5. DEPENDENT TYPES

zeroes-v zero = []
zeroes-v (suc n) = 0 :: (zeroes-v n)

We see that now the function type is dependent and the function type construc-
tor actually introduces a variable.

In this example we can also see that we can often turn non-dependent func-
tions into dependent ones with a more precise type. Let’s look at another
example: append. We have already seen the append function on lists which was
defined infix but for the purpose of the current discussion I am going to redefine
it in prefix form:

append-l : List A ! List A ! List A
append-l [] ys = ys
append-l (x :: xs) ys = x :: (append-l xs ys)

We can define a very similar operation on vectors, which we call append-v which
appends two vectors and records in its type that the length of the result is the
sum of its inputs:

append-v : (i j : N) ! Vec A i ! Vec A j ! Vec A (i + j)
append-v zero j [] w = w
append-v (suc i) j (x :: v) w = x :: (append-v i j v w)

Here the type (i j : N) ! ... is just a shorthand for (i : N) ! (j : N) !
Let’s define some vectors

v1 : Vec N 2
v1 = 1 :: 2 :: []
v2 : Vec N 3
v2 = 3 :: 4 :: 5 :: []

and append them using append-v:

append-v 2 3 v1 v2 : Vec N 5

using that 2 + 3 = 5. And this term will evaluate to

1 :: 2 :: 3 :: 4 :: 5 :: [] : Vec N 5

Already at this point we note that always having to supply the indices for
an operation like append-v will clutter up the code and potentially make it
unreadable. However, it is also completely unnecessary because we can deduce
them from the subsequent arguments.

To avoid this clutter dependently typed languages have introduced the notion
of implicit arguments which are arguments which are filled in automatically by
the type checker. To make an argument implicit we replace (x : A) ! ... by
{x : A} ! Hence we can write

5.1. VECTORS AND DEPENDENT FUNCTIONS 79

append-v : { i j : N} ! Vec A i ! Vec A j ! Vec A (i + j)

and when applying append-v we just write

append-v v1 v2 : Vec N 5

and the type checker will insert the hidden arguments 2 and 3 which it can infer
from the later arguments. We can also make implicit arguments explicit again
by using curly brackets again:

append-v {2} {3} v1 v2 : Vec N 5

Actually using implicit parameters we can also switch to the more readable
infix definition of append for vectors resembling our original definition for lists:

++v : { i j : N} ! Vec A i ! Vec A j ! Vec A (i + j)
[] ++v w = w
(x :: v) ++v w = x :: (v ++v w)

We have already seen implicit arguments when looking at polymorphic func-
tions like length : List A ! N which exploited our convention that A is a set
parameter. Agda will expand this to

length : {A : Set} ! List A ! N

and in an application like length (1 :: 2 :: 3 :: []) the implicit parameter N is
inserted, i.e. this expression elaborates to length {N} (1 :: 2 :: 3 :: []).

We see that not only are datatypes like List : Set ! Set are actually
dependent types but also the mystery of polymorphic functions can be subsumed
by dependent function types without much notational overhead.

And indeed the constructor _::_ for lists already has an implicit parameter
namely:

:: : {A : Set} ! A ! List A ! List A

and hiding it enables us to use the customary infix notation.
After having explained this syntactic convention, I can reveal the actual

definition of vectors:

data Vec (A : Set) : N ! Set where
[] : Vec A 0
:: : {n : N} ! A ! Vec A n ! Vec A (suc n)

This is an inductive definition, very similar to the inductive definition of lists.
As before A : Set is a parameter but we define not a Set but a dependent type
N ! Set. The constructors create elements for different instances of Vec A.

We can also see that the overloaded 1 _::_ for vectors has actually two
implicit arguments:

1Agda allows the overloading of constructors since it can determine which actual construc-
tor is meant from the type.

80 CHAPTER 5. DEPENDENT TYPES

:: : {A : Set} {n : N} ! A ! Vec A n ! Vec A (suc n)

You may notice that the dependency on Set and on the N in the declaration of
Vec looks different. This is partly convenience since A is the same in the whole
declaration but in this case it also has an impact on keeping Vec A n in Set but
this is something which we will discuss later in more detail.

5.2 The family of finite sets

Using dependent types we can avoid run-time errors such as the typical index

out of range error we get when accessing an array. As a simple example lets look
at the indexing operation for lists. We would like to implement an operation:

!! : List A ! N ! A

but while we can fill in the cases where the list is a cons we get stuck on the
case where it is empty:

!! : List A ! N ! A
[] !! n = ?
(x :: xs) !! zero = x
(x :: xs) !! suc n = xs !! n

Indeed there is no way to complete this program since A could be empty.
We can handle the error explicitly by using Maybe:

!! : {A : Set} ! List A ! N ! Maybe A
[] !! n = nothing
(x :: as) !! zero = just x
(x :: as) !! suc n = as !! n

This is ok and we can use the fact that Maybe is a monad to write programs
with error handling. However, we still may get an error anywhere in the middle
of a computation.

Wouldn’t it better, if we could show statically that no such error can occur?
And indeed we can use vectors for this purpose. The other ingredient is Fin
which provides us with the allowed index-range of a vector. As Vec was a
refinement of List, Fin is a refinement of N:

data Fin : N ! Set where
zero : {n : N} ! Fin (suc n)
suc : {n : N} ! Fin n ! Fin (suc n)

The idea is that every non-empty finite type has a zero and that the elements
of Fin n get embedded into Fin (suc n) using suc for Fin. That is the first levels

5.3. ⇧-TYPES AND ⌃-TYPES 81

of Fin look like this

Fin 0 = {}
Fin 1 = {zero {0}}
Fin 2 = {zero {1}, suc {1} (zero {0})}
Fin 3 = {zero {2}, suc {2} (zero {1}), suc {2} (suc {1} (zero {0}))}

...
...

Here it is actually helpful to use the convention to make the implicit arguments
explicit.

Now we can use Vec and Fin to write a safe version of the lookup function:

!!v : {A : Set} {n : N} ! Vec A n ! Fin n ! A
(x :: v) !!v zero = x
(x :: v) !!v suc i = v !!v i

Using _!!v_ we can access

v1 !!v (suc zero) = 2

but

v1 !!v (suc (suc (suc zero)))

isn’t well-typed.

5.3 ⇧-types and ⌃-types

In the previous section we have encountered dependent function types which
are also called ⇧-types. 2 In general we have a type A : Set and a dependent
type B : A ! Set and we can form (x : A) ! B x : Set. We can understand
the simple function type A ! B as a special case where the 2nd type doesn’t
actually depends on the first and hence we omit the binding.

A ! B = (: A) ! B

In all other aspects dependent function types behave very much like simple
function types. The application rule now reads that given f : (x : A) ! B
and a : A we obtain f a : B a. We can define dependent function either by an
explicit definition or using �-abstraction.

Previously, after introducing _!_ we defined products _⇥_. And indeed
as ⇧ types generalize ! we also have a dependent generalisation of ⇥, the
⌃-type. As for _⇥_ this is just an instance of a record type:

2I will explain later in this chapter where the ⇧ comes from.

82 CHAPTER 5. DEPENDENT TYPES

record ⌃ (A : Set) (B : A ! Set) : Set where
constructor _,_
field
proj1 : A
proj2 : B proj1

Elements of ⌃ A B are pairs a , b where the 1st component is a : A and the
2nd component is b : B a, that is the type of the 2nd component depends on
the 1st. Correspondingly we have the projections

proj1 : ⌃ A B ! A
proj2 : (a : ⌃ A B) ! B (proj1 a)

Note that the type of the second projection is a dependent function type. To
improve readability I am introducing a special syntax for ⌃-types and write
⌃[x 2 A] P for ⌃ A (� x ! P). 3

A simple example would be a type of flexible vectors:

FlexVec : Set ! Set
FlexVec A = ⌃[n 2 N] Vec A n

An element of FlexVec A is a pair (n , v) where n : N and v : Vec A n. It isn’t
hard to see that FlexVec A is equivalent to List A and indeed we can implement
the standard functions on lists:

[]fv : FlexVec A
[]fv = 0 , []
::fv : A ! FlexVec A ! FlexVec A
a ::fv (n , v) = suc n , (a :: v)

I leave it as an exercise to derive ItList for FlexVec.
As before for function types products are a special case of ⌃-types:

A ⇥ B = ⌃[2 A] B

However, there is also a different relation we shall explore.

5.4 Relating simple and dependent type formers

You may have noticed that we haven’t got a dependent version of sums _]_.
However, doesn’t the use of the symbol ⌃ indicate that ⌃-types should be related
to sums and not products?

And indeed we can derive a binary sums from ⌃-types and if_then_else_.
4

3I am using 2 here because Agda doesn’t allow me to use : in abbrevations.
4if_then_else_ was defined in section 3.6, but only for Set. Here I need a level polymorphic

one to return sets. I will explain this later.

5.4. RELATING SIMPLE AND DEPENDENT TYPE FORMERS 83

]’ : Set ! Set ! Set
A]’ B = ⌃[x 2 Bool] if x then A else B

The idea is that an element of A]0 B is a pair (b , x) consisting of a boolean
b representing the choice between the two alternatives and then depending on
this choice an element of either A or B. Given this idea it is straightforward to
derive the injections:

inj1’ : A ! A]’ B
inj1’ a = true , a
inj2’ : B ! A]’ B
inj2’ b = false , b

We can also derive case using pattern matching:

case’ : (A ! C) ! (B ! C) ! A]’ B ! C
case’ f g (false , b) = g b
case’ f g (true , a) = f a

In the same vain we can derive _⇥_ from ⇧:

⇥’ : Set ! Set ! Set
A ⇥’ B = (x : Bool) ! if x then A else B

An element of A ⇥’ B is simply a dependent function from booleans to either A
or B depending on the input. Hence, the projections are realised by application:

proj1’ : A ⇥’ B ! A
proj1’ f = f true
proj2’ : A ⇥’ B ! B
proj2’ f = f false

The pairing constructor introduces a dependent function by pattern matching:

,’ : A ! B ! A ⇥’ B
(a ,’ b) false = b
(a ,’ b) true = a

We can relate all the basic type formers in one picture:

⇧

! ⇥

⌃

]
Here goes from the dependent to the non-dependent version while goes
from the indexed version to the binary one as discussed above.

You may notice that there are two ways to derive ⇥: either is the non-
dependent version of ⌃ or as the binary case of ⇧. This corresponds to the

84 CHAPTER 5. DEPENDENT TYPES

fact that ⇥ can be viewed inductively – if derived from ⌃ – or coinductively, if
derived from ⇧.

This also explains the use of symbols: ⇧-types are really infinite products
and ⌃-types are infinite sums.

5.5 Arithmetic of types

In section 2.5.4 we observed that there is a nice connection between operation
on finite types and operations on numbers. Using Fin we can make this relation
more precise:

Fin m] Fin n ⇠= Fin (m + n)
Fin m ⇥ Fin n ⇠= Fin (m * n)

Fin m ! Fin n ⇠= Fin (n " m)

By A ⇠= B we mean A and B have the same number of elements. This can be
made precises by saying that we have functions � : A ! B and : B ! A
which are inverse to each other, that is � � = id and � � = id. I usually
draw the following categorical diagram to depict this situation:

But I realized that it is not clear what compositions should commute. A
better diagram is:

5.5. ARITHMETIC OF TYPES 85

In any case since I still haven’t introduced equality types 5 we will limit
ourselves to just talking about the finctions in both direction. Hence I define:

record _~_ (A B : Set) : Set where
field
� : A ! B
 : B ! A

As an example we can give translations for Bool ⇠ Fin 2.

bool~2 : Bool ⇠ Fin 2
� bool~2 false = zero
� bool~2 true = suc zero
 bool~2 zero = false
 bool~2 (suc zero) = true

It should be clear that these two functions are indeed inverse to each other.
As an example I construct the first equivalence:

sum-eq : {m n : N} ! (Fin m] Fin n) ⇠ Fin (m + n)

The idea is that we implement the operations for Fin m] Fin n on Fin (m + n)
and then use this for the translation.

The first injection is an embedding which keeps the value the same but
changes the index:

inj1f : {m n : N} ! Fin m ! Fin (m + n)
inj1f zero = zero
inj1f (suc i) = suc (inj1f i)

5They are coming soon, but the equivalences involving functions realy on functional exten-
sionality which is only provable in cubical type theory.

86 CHAPTER 5. DEPENDENT TYPES

The second injection has to shift the elements over the first m that is it applies
m successors:

inj2f : {m n : N} ! Fin n ! Fin (m + n)
inj2f {zero} i = i
inj2f {suc m} x = suc (inj2f {m} x)

This is also an example where we make a hidden parameter explicit. We didn’t
really have to supply {m} in the recursive call but writing it here actually
increases readability.

We can now use the defined injections as the translations of the actual in-
jections and hence implement the first translation:

� sum-eq (inj1 x) = inj1f x
� sum-eq (inj2 y) = inj2f y
 sum-eq = ?

To implement the inverse direction we need to implement case on Fin (m + n)
and then use the original injections depending on the interval we are in.

casef : {m n : N} {C : Set} ! (Fin m ! C) ! (Fin n ! C)
! Fin (m + n) ! C

casef {zero} f g x = g x
casef {suc m} f g zero = f zero
casef {suc m} f g (suc i) =

casef {m} (� j ! f (suc j)) g i

To achieve this we recur both over the first index m and the input x : Fin (m + n).
If m = 0 we know that we are in the 2nd case and we can just apply g.
Otherwise suc m we check the input: if it is zero we are certainly in the first
case and we just use f zero. Otherwise we recur on m and i but we need to
adjust f by composing it with the successor.

Using casef we can complete our translation:

� sum-eq (inj1 x) = inj1f x
� sum-eq (inj2 y) = inj2f y
 sum-eq = casef inj1 inj2

We can now extend the equivalence to ⇧- and ⌃-types. In Mathematics
we use them to represent products and sums over a finite series (actually also
infinite but we won’t cover this here):

⌃i<n
i=0ai = a0 + a1 + · · ·+ an�1

⇧i<n
i=0ai = a0 ⇤ a1 ⇤ · · · ⇤ an�1

Using finite types we can implement these operations. The sequence a is simply
represented as a function Fin n ! N. We define

5.6. HISTORY 87

⌃N : (n : N) (a : Fin n ! N) ! N
⌃N zero vs = 0
⌃N (suc n) a = a zero + ⌃N n (� i ! a (suc i))

and using the same pattern:

⇧N : (n : N) (a : Fin n ! N) ! N
⇧N zero a = 1
⇧N (suc n) a = a zero * ⇧N n (� i ! a (suc i))

We now have the following equivalences:

⌃[i 2 Fin n] Fin (a i)) ⇠ Fin (⌃N n a)
((i : Fin n) ! Fin (f i)) ⇠ Fin (⇧N n f)

which is one explanation of the use of ⇧ and ⌃ for the operations on types.
Here is an example to illustrate the equivalence for ⌃-types. Let

i : N
i = 3
a : Fin i ! N
a zero = 3
a (suc zero) = 1
a (suc (suc n)) = 2

Now clearly

⌃N i a = 3 + 1 + 2
= 6

The following table shows the equivalence:

0 7! (0 , 0) 1 7! (0 , 1) 2 7! (0 , 2)
3 7! (1 , 0)
4 7! (2 , 0) 5 7! (2 , 1)

I leave it as an exercise to construct the equivalences. The idea is the same
as I have shown in the example of for _]_ we just have to implement the basic
operations on the type for the finite representation.

5.6 History

Dependent types were the main innovation which Per Martin-Löf introduced
when developing his Type Theory in the early 1970ies [?] . Hence it is sometimes
called dependent type theory. One motivation for dependent types is to extend
the proposition as types explanation to predicate logic, which we will study in
the next chapter.

88 CHAPTER 5. DEPENDENT TYPES

Martin-Löf already mentioned the possibility of implementing his theory and
this challenge was taken up in the 1980ies by Bob Constable and his group who
implemented the NuPRL system, where NuPRL is short for Nearly ultimate

Proof Representation Language [?].
A comprehensive overview over Martin-Löf’s Type Theory is given in [?]

which was coauthored with Giovanni Sambin. This book presents what we now
call extensional type theory a presentation of intensional type theory which is
closer to what is implemented in Agda can be found in [?].

My own first encounter with dependent types was Randy Pollack’s LEGO
system [?] which was based on Thierry Coquand’s calculus of constructions
[?] which combined dependent types and Girard’s System F [?]. The calculus
of constructions was also the basis of the Coq system [?] which has been in
development since the 1990ies and which is still very popular.

Apart from using it for proof assistants dependent types are very useful for
programming. A relatively early language with dependent types is Cayenne
by Lennart Augustsson [?]. The Agda system we are using was developed by
Ulf Norell [?] at Gothenburg. It was influenced by earlier implementations of
dependently typed languages in Gothenburg (like the ALF system [?]) and got
its name from a language developed by Catarina Coquand. It was also influenced
by Conor’s McBride’s Epigram system which famously featured a 2-dimensional
syntax [?]. Edwin Brady developed Idris emphasising the programming aspect
of dependent types [?] using type-driven program development.

5.7 Exercises

1. We implement some basic operations on vectors and matrices of natural
numbers.
We define vectors using Vec:

Vector : N ! Set
Vector m = Vec N m

Here Vector n is an n-dimensional vector. Here are some examples:

v1 : Vector 3
v1 = 1 :: 2 :: 3 :: []
v2 : Vector 3
v2 = 2 :: 3 :: 0 :: []

Implement the multiplication of a skalar with a vector:

*v : {n : N} ! N ! Vector n ! Vector n

Here is an example:

2 *v v1 = 2 :: 4 :: 6 :: []

5.7. EXERCISES 89

Next we implement vector addition:

+v : {n : N} ! Vector n ! Vector n ! Vector n

Here is an example:

v1 +v v2 = 3 :: 5 :: 3 :: []

Next we introduce matrices. A matrix is simply a Vec of row vectors:

Matrix : N ! N ! Set
Matrix m n = Vec (Vector n) m

Hence Matrix m n is an m⇥n-Matrix.
Here are some examples:

id3 : Matrix 3 3
id3 = (1 :: 0 :: 0 :: [])

:: (0 :: 1 :: 0 :: [])
:: (0 :: 0 :: 1 :: [])
:: []

inv3 : Matrix 3 3
inv3 = (0 :: 0 :: 1 :: [])

:: (0 :: 1 :: 0 :: [])
:: (1 :: 0 :: 0 :: [])
:: []

m3 : Matrix 3 3
m3 = (1 :: 2 :: 3 :: [])

:: (4 :: 5 :: 6 :: [])
:: (7 :: 8 :: 9 :: [])
:: []

m4 : Matrix 3 2
m4 = (1 :: 2 :: [])

:: (4 :: 5 :: [])
:: (7 :: 8 :: [])
:: []

The next task is to define the multiplication of a vector with a matrix:

*vm : {m n : N} ! Vector m ! Matrix m n ! Vector n

The vector is now viewed as a column vector. Here are some examples:

v1 *vm m4 = 30 :: 36 :: []
v1 *vm m3 = 30 :: 36 :: 42 :: []

90 CHAPTER 5. DEPENDENT TYPES

If the input vector is empty you have to produce a vector of 0s with the
size given by the matrix. This calls for an axilliary function.
Finally, the task is to implement matrix multiplication. It is recommended
to make use of the function we have just defined previously.

*mm : { l m n : N} ! Matrix l m ! Matrix m n ! Matrix l n

Here are several examples:

inv3 *mm m3 = (7 :: 8 :: 9 :: []) ::
(4 :: 5 :: 6 :: []) ::
(1 :: 2 :: 3 :: []) :: []

m3 *mm m4 = (30 :: 36 :: []) ::
(66 :: 81 :: []) ::
(102 :: 126 :: []) :: []

m3 *mm m3 = (30 :: 36 :: 42 :: []) ::
(66 :: 81 :: 96 :: []) ::
(102 :: 126 :: 150 :: []) :: []

2. We continue the topic of matrices. The task is now to define the transpose
of a matrix:

transpose : {m n : N} ! Matrix m n ! Matrix n m

There are certainly several ways to solve this exercise but a nice way is to
first establish combinators to establish that F A = Vec A n is a applicative

functor. That is we have operations

return : A ! F A
app : F (A ! B) ! F A ! F B

which are subject to some laws which we will ignore just now.

3. Derive the translations for _⇥_ and _!_ and their numerical counter-
parts. That is derive:

prod-eq : {m n : N} ! (Fin m ⇥ Fin n) ⇠ Fin (m * n)
exp-eq : {m n : N} ! (Fin m ! Fin n) ⇠ Fin (n " m)

4. Derive the translations for ⌃- and ⇧-types and their numerical counter-
parts. That is derive:

⌃�eq : {m : N} {f : Fin m ! N}
! (⌃[i 2 Fin m] Fin (f i)) ⇠ Fin (⌃N m f)

⌃�eq : {m : N} {f : Fin m ! N}
! ((i : Fin m) ! Fin (f i)) ⇠ Fin (⇧N m f)

