
Chapter 2

Simple Types

Before jumping straight into dependent types with all its beautiful complexities
we will first have a look at something simpler, appropriately named simple

types. We start of with the most fundamental type of all, the function type
! (section 2.1).

One issue with simple types (which is repeated next chapter when we look
at propositional logic) is that it is not clear what to start with since we haven’t
yet got any types to built functions with. For examples I will use types line
N. We will also look at constructions which work for any type, called Set in
Agda. That is we will be using polymorphic constructions without introducing a
formal account for polymorphism which we will do later once we have dependent
types. A particular example of polymorphic constructions are identity id and
composition � (section 2.2) which give us a first taste of category theory.

We will have a superficial look at �-calculus (section 2.3), by which I always
mean typed �-calculus because the untyped one doesn’t make any sense to
me. At least enough to see that variables are causing a bit of a headache,
something which can be avoided my using combinatory logic which features
just two combinators (S and K), but the price we have to pay is the creation fo
some completely unreadable combinator code. However, I think it is worthwhile
to know about them and we will return to combinators later from a more formal
perspective.

Functions are not all there is to simple types and hence we are going to
look at sums (_]_) and products (_⇥_) (section 2.5 which let us encode finite
types. Finally we will meet some old acquaintances from high school in the
context of type theory.

2.1 Functions

In Type Theory functions are a fundamental concept. This is different from set
theory where functions are viewed as a special kind of relations, namely relations
that assign to each element of the domain (the input) exactly one element of

9

10 CHAPTER 2. SIMPLE TYPES

the codomain (the output). In Type Theory it is the other way around: we
start with functions and actually we need functions to say what a relations is,
namely a relation between A and B is a function from A and B to the type of
propositions. But lets not get ahead of ourselves.

Intuitively, a function between types A and B is a black box where we can
input elements of a : A and out come elements of f a : B.

You may notice that we don’t write f(a) as usual in Mathematics and in
many programming languages but instead save brackets and just write f a, which
is common in functional programming languages like Haskell. We write A ! B
for the type of functions from A to B and hence we write f : A ! B to express
that f is such a function.

I was saying black box, even though for reasons of readability I didn’t actually
draw a black box. The meaning here is rather metaphorical, it means we cannot
look into the box. If somebody gives you a function, all you can do it is to feed
it elements and observe the output. You have no way to explore the mechanism
(this is a sort of digital rights management for functions). This aspect will
become important when we discuss extensionality later.

Let’s look at some examples! For the purpose of illustration I will use some
types like the natural numbers N = {0, 1, 2, 3, . . . } 1 2 and the booleans Bool =
{true, false} even though we will only introduce them later. We will also use
some basic operations such as addition (_+_) on natural numbers.

Let’s define a function which adds 2 to its input

add2 : N ! N
add2 x = x + 2

To define add2 we introduce a parameter x. Now we can apply add2 to a number
as in 3 and observe add2 3 which is (no surprise) 5. Lets do this step by step:

add2 3 = 3 + 2 Use the definition of add2
= 5 Calculating the sum.

1In computer science unlike in mathematics we start counting with 0, which enables us to
answer questions like How many elephants are in your fridge?

2You may think I have succumbed to set theory already by using {. . . }. But this is not the
case, this is just a convenient notation for labelled coproducts which we will introduce soon.

2.1. FUNCTIONS 11

In the first step we replace the parameter x with the actual argument 2 and
then we use our knowledge about addition to conclude. The first step, replacing
the parameter with the argument, is called �-reduction.

The definition above combines naming and defining the function. If we just
want to write a function without giving it a name we can use �-abstraction.
That is we could have defined the same function as follows:

add2 : N ! N
add2 = � x ! x + 2

We can view the first definition as an abbreviation for the 2nd. We can now give
a more detailed derivation where we differentiate the unfolding of a definition
and �-reduction.

add2 3 = (� x ! x + 2) 3 Unfolding the definition of add2.
= 3 + 2 �-reduction
= 5 Calculating the sum.

Using � we can only define a functions with one parameter. To define a
function with several parameters we use currying, that is a function that returns
a function

add : N ! (N ! N)
add = � x ! (� y ! x + y)

So add 3 : N ! N is the function � y ! 3 + y that is the function that
adds 3, and (add 3) 5 reduces to 5 + 3 and hence 8. We can illustrate this – add
outputs another box add 3:

which we can then feed with the 2nd argument to get the final output:

12 CHAPTER 2. SIMPLE TYPES

There are some syntactic conventions to simplify the use of currying: ! is
right associative, hence we can write N ! N ! N for N ! (N ! N) and
application is left associative hence we can write g 3 5 for (g 3) 5 . Moreover
we can combine several �-abstractions and write � x y ! x + y for � x !
(� y ! x + y) . Consequently the same convention also applies for the explicit
function definition:

add : N ! N ! N
add x y = x + y

Instead of returning a function we can also have functions that have functions
as input (these are called higher order functions). An example is:

k : (N ! N) ! N
k h = h 2 + h 3

Note that in this case we cannot omit the brackets in the function type. k is
a function that gets a function on the natural numbers as input and returns a
number. What is k add2? We can reason as follows:

k add2 = add2 2 + add2 3
= (2 + 2) + (3 + 2)
= 9

2.2 Identity and composition

Some functions work for any type, we call them polymorphic. An example is
the identity function id : A ! A which works for every type A : Set. In Agda
we can write :

id : {A : Set} ! A ! A
id x = x

Writing {A : Set} ! ... indicates that the function works for every Set. Agda
will automatically instantiate A that is we can just write id 3 : N and Agda
infers that A = N in this case. In some cases it may be necessary to instantiate

2.2. IDENTITY AND COMPOSITION 13

the type variable explicitly in this case we can write id {N} or in case there
are many parametrs but we only want to instantiate a specific one we write
id {A = N}.

We will later explain types like {A : Set} ! ... which are actually instances
of dependent types. In the moment we view polymorphism as a metamathe-
matical notion, and we will use A B C : Set to indicate variable types. In Agda
this can be achieved by declaring:

variable
A B C : Set

which means that I can write

id : A ! A
id x = x

and Agda will automatically translate the type into {A : Set} ! A ! A.

We can draw a picture for the identity function which just consists of a wire
from the input to the output:

Another example is function composition: given g : A ! B and f : B ! C
we can construct a new function f � g : A ! C which feeds the output of g
into the input of f:

14 CHAPTER 2. SIMPLE TYPES

Composition can also be defined as a polymorphic function:

� : (B ! C) ! (A ! B) ! (A ! C)
(g � f) x = g (f x)

In Agda we can define infix functions (and indeed more complicated syntactic
schemes) by using to indicate where the arguments go. The price we have to
pay for this flexibility is that we have to separate any syntactical component
with spaces, e.g. Agda would read g�f just as one identifier.

Let’s do an example. Earlier we define the function add2 : N ! N, in the
same vain we can define a squaring function:

square : N ! N
square x = x * x

Now we can construct square � add2 : N ! N, what is (square � add2) 3? Let’s
calculate:

(square � add2) 3 = square (add2 3)
= square (3 + 2)
= square 5
= 5 * 5
= 25

This example can also be used to show that composition is not commutative,

2.3. �-CALCULUS 15

what is (add2 � square) 3?

(add2 � square) 3 = add2 (square 3)
= add2 (3 * 3)
= add2 9
= 2 + 9
= 11

Hence we can see that square � add2 and add2 � square are different functions.
In any case it isn’t always possible to turn around composition. Assume as
given a function IsEven : N ! Bool that returns true if the input is even but
false otherwise (e.g. isEven 3 = false but isEven 6 = true). Now we can form
isEven � square : N ! Bool (which actually behaves the same way as isEven)
but it doesn’t make sense to form square � isEven because the output of isEven
is Bool and this doesn’t match the input of square which is N.

You may note that there is a strange twist in the order of arguments to �
which is visible in its type (B ! C) ! (A ! B) ! (A ! C). Why is it not
(A ! B) ! (B ! C) ! (A ! C)? And indeed when we evaluate f � g we
first evaluate g and then f. However, the reason is that function application is
already written the wrong way around, that is when we evaluate square (add2 3)
we first evaluate add2 3 and then square 5, which is actually counterintuitive for
people who write and read from left to right. Maybe we should write function
application postfix 3 add2 instead of add2 3. However, it seems to be too late
to change this convention. And since (f � g) x = f (g x) it seems wiser not to
change the order when defining composition.

2.3 �-calculus

I don’t want to give a fully formal introduction to �-calculus at this point. We
will do this later when we have developed enough type theory to do this in Agda
itself.

As we have already discussed we can view the explicit definition of a function
like

� : (B ! C) ! (A ! B) ! (A ! C)
(f � g) x = f (g x)

is a shorthand for an explicit definition using �-terms:

� : (B ! C) ! (A ! B) ! (A ! C)
� = � f ! � g ! � x ! f (g x)

And since unfolding definitions is standard practice in Mathematics and else-
where we concentrate on what happens to �-terms.

When we form a �-term we are using variables. Hence beginners often ask
What is the type of a variable? The answer is that we assume that we are given
a type of any variable, this is often called the (typing-) context.

16 CHAPTER 2. SIMPLE TYPES

The other cases are application and �-abstraction:

variable A variable x has the type we have assumed for it in the context.

application Given a term M : A ! B and a term N : A we can form a term
M N : B.

abstraction Given a variable x 3 if from assuming x : A (here we extend the
context) we can show that M : B then we can form � x ! M : A ! B.
I need to add that we will only assume one type for a variable, that is by
assuming x : A we are ignoring all earlier assumptions regarding x.

This covers the pure �-terms which don’t use constructions specific to datatypes
like N or Bool (but we may assume that the types of standard functions like
+ or isEven are in the context.

I have already mentioned �-equality. By �-equality we mean that we can
reduce an application of a �-abstraction to an argument by substituting the
variable with the argument, that is

(� x ! M) N = M[x:=N]

where M[x:=N] is M with all occurrences of x replaced by N.
Hang on, actually it is a bit more complicated. We certainly do not want to

replace bound variables, that is (� x ! (� x ! x)) 3 should just by � x ! x
and not � x ! 3. We remedy this by saying that M[x:=N] is M with all free

occurrences of x replaced by N. An occurence is free if it is not bound.
We are not done yet! Consider � x ! (� y ! x + y) and let’s say we

have a variable y lying around. What is (� x ! (� y ! x + y)) y? If we
mechanically replace x by y we obtain � y ! y + y. This is wrong because
the y to refers to the bound variable y and not to our top-level y. This is called
variable capture and it has to be avoided.

But then what is (� x ! (� y ! x + y)) y? Here we introduce
another equality, ↵-equivalence which says that bound variables can be con-
sistently replaced, i.e. � y ! x + y = � z ! x + z. Using this we
can avoid capture by replacing the bound variable y avoiding capture, that is
(� x ! (� y ! x + y)) y = � z ! y + z. Note that any variable but y
would work here.

There is yet another equation, ⌘-equality which is motivated by the idea of
extensionality, that is that two functions which are equal when applied to the
same argument should be considered equal. In pure �-calculus this is obtained
by adding the following equation: assume M : A ! B and given a variable
x : A which does not appear free in M, then

� x ! M x = M
3Note that here x is not the specific variable called x but a metavariable standing for any

concrete variable.

2.4. COMBINATORY LOGIC 17

Reading it from right to left it means that if you want to show that two functions
M and N are equal it is enough to show that M x = N x where x is a variable
which does not appear in M or N because

M = � x ! M x
= � x ! N x
= N

As an example we use ⌘-equality to show that f � id = f:

f � id = � x ! f (id x)
= � x ! f x
= f

2.4 Combinatory logic

The polymorphic functions from section 2.2, id and � are also called combi-
nators. We are going to introduce two combinators in this section, called S and
K, which are functionally complete. This means that every function which we
can write in (pure) �-calculus can be written just using these two combinators.
This applies only to pure functions which do not refer to other datatypes (like
N or Bool), which would require additional combinators. We are going to show
this by providing a translation from �-terms into terms only using combinators,
which means that we can eliminate all variables. In a way combinators are a
form of functional machine code and they have indeed been used for compilation.

We start with K which introduces constant functions:

K : A ! B ! A
K x y = x

So for example K 2 : B ! N is the function that will always return 2. Note
that this function is still polymorphic, it works for any type B.

The other combinator is S which generalizes composition, given types A B C:

S : (A ! B ! C) ! (A ! B) ! (A ! C)
S f g x = f x (g x)

S is similar to � but the first functions gets to see not only the result of the 2nd
but also the original input. So for example: S (� x y ! x + y) (� x ! 2 * x)
is the same as � x ! x + 2 * x. 4

We can derive id (which is usually written I in combinatory logic) from S
and K. The idea is that we can derive it from S by replacing the first argument
f with K this obtaining S K = � g x ! K x (g x) = � g x ! x. To get the
identity we can substitute g with any function. The simplest choice is K, i.e.

4We need to instantiate A,B,C with N which is done automatically by agda.

18 CHAPTER 2. SIMPLE TYPES

id = S K K. When implementing this in Agda we run into a bit of a technical
problem, given a type A we would like to define:

id : A ! A
id = S K K

Actually Agda is going to complain because it cannot infer the argument B for
the 2nd K – indeed we can use any type here. The simplest choice is A and we
need to tell Agda this explictely:

id : A ! A
id {A} = S K (K {B = A})

We will now show that every pure lambda term can be translated into com-
binatory logic. I will do this informally we will later use Agda itself to give
formal proof of this theorem.

Now let’s do composition as an example. We can write � as a pure �-term

� = � f g x ! f (g x)

Actually for our purposes it is better to expand the shorthand for repeated
�-abstraction:

� = � f ! � g ! � x ! f (g x)

Our strategy is to eliminate the �s from inside out, that is first we translate
� x ! f (g x) into combinators. This term will still contain the variables f
and g. However, next we abstract g and then f to obtain a term using only
combinators that contains no variables.

The terms which appear during the translation are terms which have no
�-abstractions but may contain variables, applications and the combinators S
and K. We are going to construct � x ! M by looking at each of the possible
cases:

M=x In this case clearly � x ! x = id which we have already obtained as
S K K.

M=y If the variable is different from x we have a function � x ! y which is a
constant function, that is K y.

M = M1 M2 In this case we use the assumption that we know already how to
translate � x ! M1 and � x ! M2 Now we have

� x ! M = � x ! M1 M2

= S (� x ! M1) (� x ! M2)

which explains the need for S.

M = K Clearly � x ! K is just a constant function returning K, hence K K.

2.5. PRODUCTS AND SUMS 19

M = S As above � x ! S is just K S.

Ok, let’s apply the translation to our example � f ! � g ! � x ! f (g x).
We start with

� x ! f (g x)
= S (� x ! f) (� x ! g x)
= S (K f) (S (� x ! g) (� x ! x))
= S (K f) (S (K g) id)

Before proceeding let’s introduce some optimisations to avoid truly gigantic
terms. So for example we can see that � x ! g x is just g using ⌘. Another
optimisation is that if the variable x does not appear in M then � x ! M is
just K M and there is no need to go through M. Using these optimisations we
translate � in one go

� f ! � g ! � x ! f (g x)
= � f ! � g ! S (� x ! f) (� x ! g x)
= � f ! � g ! S (K f) g
= � f ! S (K f)
= S (� f ! S) (� f ! K f)
= S (K S) K

While this term is comparatively small it is still hard to understand. The
point of combinator is rather to show that we can avoid all the complications
involving variables and just get away with S and K instead.

2.5 Products and Sums

So far we have only encountered the function type. In this section we will get
to know some more basic type formers:

products Written A ⇥ B, and also called cartesian product. In basic Mathe-
matics we use products to represent coordinate systems, like

(1 ,1) : R ⇥ R.

sums In Agda we write A] B, I prefer A + B but this clashes with + on
numbers. They are also called disjoint unions and coproducts.

Actually lets start with sums which are less common in conventional Math-
ematics but more common in Type Theory and functional programming.

20 CHAPTER 2. SIMPLE TYPES

2.5.1 Sums

Sums are necessary to represent alternatives. We have one thing or another. To
define sums we use the data constructor:

data _]_ (A B : Set) : Set where
inj1 : A ! A] B
inj2 : B ! A] B

This says that an element of A] B is either inj1 a where a : A or it is inj2 b
where b : B.

A simple example is that if in a form you can either fill in your order number
(OrdNum) or your customer reference (CustRef) we can represent this as

OrdNum] CustRef.

Note that even if we use the same number, lets say 1704 as an order number
a customer reference we can always sure which is meant because we will use
inj1 1704 if it is an order number and inj2 1704 if it is a customer reference.

The symbol for sums in Agda is a bit strange: it is a combination of the
symbol for set theoretic union [and +, this is related to the name for sums in
set theory disjoint union. I prefer to just use + but this clashes with the use
for numbers.

How are [and] related? Indeed, there is no operation [on types. The
reason is that [in an intensional operator whose meaning depends on the choice
of representation. For example let A = {a, b} and B = {0, 1, 2} then

A [B = {a, b, 0, 1, 2}
A]B = {inj1 a, inj1 b, inj2 0, inj2 1, inj2 2}

However, we can view A just as the one possible representation of a type with
2 elements. Another choice would be A0 = {0, 1}. What happens now with [
and]?

A0 [B = {0, 1, 2}
A0]B = {inj1 0, inj1 1, inj2 0, inj2 1, inj2 2}

A0 [B now has only 3 elements, while A0] B again has 5 elements, hence is
just another representation of a type with 5 elements. Thus] is insensitive to
the representation of a type, this is a property which holds for all operations
definable in Type Theory (and hence in Agda).

What can we do with]? A useful general combinator is case that performs
case analysis. we can define it using pattern matching :

case : (A ! C) ! (B ! C) ! A] B ! C
case f g (inj1 a) = f a
case f g (inj2 b) = g b

2.5. PRODUCTS AND SUMS 21

case chooses between two functions, f knows how to handle A and g know
how to handle B. Going back to our example with the order form (OrdNum]
CustRef): if we have a function to lookup an order using the order number

lookupOrdNum : OrdNum ! Order

and a function
lookupCustRef : CustRef ! Order

we can use case to combine them

case lookupOrdNum lookupCustRef : OrdNum] CustRef ! Order

2.5.2 Products

We define products as a special case of a record type:

record _⇥_ (A B : Set) : Set where
field
proj1 : A
proj2 : B

that is we specify the projections, which are functions with the types:

proj1 : A ⇥ B ! A
proj2 : A ⇥ B ! B

We can construct elements of A ⇥ B by specifying what the result is when
applying projections. This is called copatternmatching. For example we can use
this to define the pairing constructor which in Agda is just the _,_, that is one
doesn’t have to put brackets around the tuple.

, : A ! B ! A ⇥ B
proj1 (a , b) = a
proj2 (a , b) = b

We can derive the constructor automatically by adding the constructor key-
word to the record definition:

record _⇥_ (A B : Set) : Set where
constructor _,_
field
proj1 : A
proj2 : B

What can we do with products? We derive a function curry that turns a
function from products into a curried function:

curry : (A ⇥ B ! C) ! (A ! B ! C)
curry f = � a b ! f (a , b)

22 CHAPTER 2. SIMPLE TYPES

We can also do the reverse and translate a curried function back into one on
products:

uncurry : (A ! B ! C) ! (A ⇥ B ! C)
uncurry g = � x ! g (proj1 x) (proj2 x)

Indeed, the two functions are inverse to each other, that is curry (uncurry g) = g
and uncurry (curry f) = f. The first equation follows from what we already
know:

curry (uncurry g)
= � a b ! uncurry g (a , b) Unfolding curry
= � a b ! g (proj1 (a , b)) (proj2 (a , b)) Unfolding uncurry
= � a b ! g a b Evaluating projections
= g Use ⌘ twice.

For the 2nd equation we need an ⌘=equality for products which says that
(proj1 x , proj2 x) = x. This is also called surjective pairing :

uncurry (curry f)
= � x ! curry f (proj1 x) (proj2 x) Unfolding uncurry
= � x ! f (proj1 x , proj2 x) Unfolding curry
= � x ! f x Surjective pairing
= f ⌘ for functions.

This shows that the type of functions over products and curried functions are
equivalent. Most functional programmers prefer to work with curried functions.

2.5.3 Strong sums?

We can try to play a similar game for coproducts. First of all using a product
we can uncurry case:

case-c : (A ! C) ⇥ (B ! C) ! A] B ! C
case-c = uncurry case

and hence the inverse of case is:

uncase : (A] B ! C) ! (A ! C) ⇥ (B ! C)
uncase h = (� a ! h (inj1 a)) , (� b ! h (inj2 b))

2.5. PRODUCTS AND SUMS 23

we would hope that the functions are inverse to each other, that is that uncase (case-c f) =
f and case-c (uncase g) = g. The first one is we can show:

uncase (case-c f)
= (� a ! case-c f (inj1 a)) , (� b ! case-c f (inj2 b)) Unfold uncase
= (� a ! proj1 f a , � b ! proj2 f b) Unfold case-c and case.
= (proj1 f , proj2 f) ⌘ twice.
= f Surjective pairing

However, the 2nd equality doesn’t hold in Agda. Actually we can prove it using
propositional equality _⌘_ we are going to introduce later. The equality _=_
we have been considering here when talking about

5 �-terms is called definitional
equality.

Indeed the ⌘-laws for functions and surjective pairing is already extending
the notion of definitional equality, they are mainly introduced for convenience.
Indeed, the corresponding laws for other types, eg. the natural numbers, would
destroy decidability and hence not be very useful for a language like Agda. It is
possible, even though not entirely straightforward, to add ⌘-laws for _+_ but
this is usually avoided, mainly because it would quickly lead to an exponential
blow up of cases and hence be computationally too costly.

2.5.4 Finite Types

The operation _⇥_ we have introduced handles the binary case of products.
We can use it several times to handle more components, as in A ⇥ B ⇥ C.
In practice it is better to use records which have more meaningful field names
than proj1 etc.

However, one interesting case not covered by binary products is the nullary
product or unit type. In Agda this is denoted as > and can be defined as a
record with no fields:

record > : Set where
constructor tt

It has one element tt : >.
We can play the same game with sums and derive the empty sum, that is a

sum with no injections:

data ? : Set where

The empty sum is the empty type, it is a type with no elements. A version of
case for the empty type is quite useful:

case? : {A : Set} ! ? ! A
case? ()

5Within Type Theory we cannot talk about definitional equality _=_ is is part of the
language itself.

24 CHAPTER 2. SIMPLE TYPES

We don’t need any cases for ? Agda marks this by () which basically means
this case analysis has been intentionally left empty. We observe that we get a
function from the empty type into any type. This is ok, because we will never
be able to run this function since there isn’t an element in the empty type as
the name suggests.

We can use the unit type > and sums] to construct some finite types. For
example Two : Set is a type with 2 elements:

Two : Set
Two = >] >

Here are the elements:

zero2 : Two
zero2 = inj1 tt
one2 : Two
one2 = inj2 tt

We can add one more element to Two to construct Three a type with 3 elements:

Three : Set
Three = >] Two
zero3 : Three
zero3 = inj1 tt
one3 : Three
one3 = inj2 zero2
two3 : Three
two3 = inj2 one2

However, as already in the case of products in practice it is usually preferable
to use data to define labelled sums: 6

data Two : Set where
zero2 one2 : Two

data Three : Set where
zero3 one3 two3 : Three

How many elements are in Two] Three? An example is inj1 one2. Ok
there is the choice between inj1 and inj2, if we choose inj1 we then have a choice
between 2 elements and if we choose inj2 we have a choice of 3 elements, and
hence we can choose out of 2 + 3 = 5 elements.

inj1 zero2 inj1 one2 inj2 zero3 inj2 one3 inj2 two3

In general if A has n elements and B has m elements then A] B has m + n
elements.

6Note that we can combine constructors with the same type in one line.

2.6. HISTORY 25

How many elements are in Two ⇥ Three? A typical example is one2 , two3.
Here we construct a pair and we have 2 independent choices, for the first com-
ponents we have 2 options and for the second we have 3 and since these choices
are independent we have 2 ⇥ 3 = 6 elements.

zero2 , zero3 zero2 , one3 zero2 , two3
one2 , zero3 one2 , one3 one2 , two3

In general if A has n elements and B has m elements then A ⇥ B are m ⇥ n
elements.

What about the function type? How many elements are in Two ! Three?
Here is a typical example:

foo : Two ! Three
foo zero2 = two3
foo one2 = one3

We can define any such function by pattern matching: we have 3 choices in each
case hence 3 ⇥ 3 = 32 = 9 elements. Now unlike products and sums function
types are not symmetric. How many elements are in Three ! Two? Here
again a typical example:

bar : Three ! Two
bar zero3 = zero2
bar one3 = one2
bar two3 = zero2

There are 3 cases because there are 3 elements in three and in each case we
have a choice of 2, hence we have 2 ⇥ 2 ⇥ 2 = 23 = 8 elements. From these
examples we can see that in general if A has n elements and B has m elements
then A ! B has mn elements.

Indeed, in Mathematics the function type is often written as an exponential,
that is A ! B is written as BA.

Previously, we have shown that types A ⇥ B ! C and A ! B ! C are
equivalent (via curry and uncurry). Writing this in exponential notation we find
an old friend from high school:

CA⇥B = (CB)A

Similarly, with strong coproducts we would have that (A ! C) ⇥ (B ! C)
and A] B ! C are equivalent (via case-c and uncase). If we write + for]
we arrive at another well known equation:

CA ⇥ CB = CA+B

2.6 History

�-calculus was invented by Alonzo Church who used it in papers about formal
logic in the 1930ies, e.g. [?]. The story goes that the use of � arose by accident:

26 CHAPTER 2. SIMPLE TYPES

Church used a graphical notation where he connected the binding and the usage
of a variable. I imagine he wrote something like this:

But the typesetter (this was not only before latex but before computers)
went back and said, Sorry Professor, I can’t do that. But this looks a bit like a

�. Is it ok if I use just this?

I don’t know wether this is actually true but it is a nice story. Church
realised that one of the problem of his calculus was that he could define two
many weird functions, including the so called fixpoint combinator which allows
to computer the fixpoint of any function by general recursion. But what is the
fix point of negation? To avoid this sort of problems Church also invented the
typed �-calculus. 7 Church had two primitive types, ◆ (the greek letter iota)

standing for individuals and o (the greek letter omikron but it is the same as
an o) standing for propositions, motivated by his intended application to formal
logic. In my presentation I am not considering any fixed set of base types but
a view them as type variables.

The untyped �-calculus is still useful as a universal programming language
which is an alternative to Turing machines. Indeed, when Alan Turing visited
Church they realised that Turing machines and �-calculus compute the same
set of computable functions. The generalisation of this observation to all com-
putational mechanism is known as the Church-Turing thesis.

In many papers about typed �-calculus one starts with the untyped �-
calculus and then introduces a type system on top, as a way of assigning types
to untyped terms. I do not follow this view which I think is too syntactic and
consider typed terms as primitive. We call this intrinsic typing. Yes, it is true
if we have to implement �-terms we will at some point think about untyped
terms but we also need to think about strings, characters bits etc and will not
talk about these implementation details.

Combinatory logic was actually invented before �-calculus by Moses Schön-

7A reference here is a a paper from 1940: [?]

2.7. EXERCISES 27

finkel in the 1920ies 8. Again his interest was in formal logic and he realised
that combinators are a nice way to avoid the complexities of variables. This was
also the motivation of Haskell Curry who reinvented combinatory logic more or
less in the form we know it now. 9 Some people say that the idea of currying a
function with several arguments which is named after Curry, should have been
called schönfinkeln but this never caught on - I wonder why? A good overview
over the history of �-calculus and combinatory logic is [?].

To understand my presentation of products and sums better (also called
coproducts) one needs to know about category theory. Category theory is basi-
cally an abstract form of algebra which was introduced by Saunders MacLane
and others. 10 Their motivation came mainly from pure Mathematics, alge-
braic topology, I believe. However, later it was realised that category theory is
also extremely useful for theoretical computer science. One important observa-
tion was Joachim Lambek’s observation that a fundamental notion in category
theory, cartesian closed categories, corresponds exactly to typed �-calculus. In
the categorical account products are already built-in and function types are
characterised by the curry-uncurry-equivalence. One of the beautiful features
of category theory is the presence of a mirror (duality) and it turns out that
the mirror image (the dual) of products are sums or coproducts as we have
introduced which are also extremely useful.

At this point you may wonder what the mirror image of functions is? This
is a longer story but the short answer is that there isn’t one. If you assume that
there is one, the theory collapses: all �-terms are equal.

�-calculus is important for programming, to be precise in functional pro-

gramming. Indeed the 2nd oldest programming language, LISP (The oldest is
FORTRAN) was developed by John McCarthy in the late 1950ies and was in-
spired by the (untyped) �-calculus [?]. Later types were introduced, famously by
Robin Milner in the form of ML which stands for Metalanguage as a component
of the Edinburgh LCF project (Logic for computable functions) [?]. Nowadays
languages like Haskell (named after Haskell curry) 11 and CAML are modern
instances of typed functional programming and Agda’s syntax and mechanisms
borrow a lot especially from Haskell.

2.7 Exercises

1. Given

add3 : N ! N
add3 x = x + 3

And for any type A:

8If you can read german, you can check out [?].
9An early reference is See [?]

10MacLanes book Categories for the working Mathematician is still worth a look. [?]
11A good introduction to Haskell is [?]

28 CHAPTER 2. SIMPLE TYPES

tw : (A ! A) ! A ! A
tw f n = f (f n)

Consider tw tw add3 1.

(a) What is its type? Justify your answer.
(b) What is its value? Show every step of the evaluation.

2. Derive a term in combinatory logic (that is only using S and K) for tw
using

tw : (A ! A) ! A ! A
tw = � f ! � n ! f (f n)

3. In section 2.2 we defined identity and composition:

id : A ! A
id x = x
� : (B ! C) ! (A ! B) ! (A ! C)

(f � g) x = f (g x)

Using � and ⌘ show that the following equations 12 hold definitionally:

f � id = f
id � f = f

f � (g � h) = (f � g) � h

4. Define an operation with the following type:

A⇥ : (B ! C) ! A ⇥ B ! A ⇥ C

and show that the following equations hold using �, ⌘ and surjective pair-
ing:

A⇥ id = id
A⇥ (f � g) = (A⇥ f) � (A⇥ g)

This shows that the operation A ⇥ on types is (definitionally) a functor.

5. Find elements of the following types using only pure �-terms and the
combinators for sums and products (proj1 , proj2 , _,_, inj1 , inj2, case).

x0 : (A ! B) ! (B ! C) ! (A ! C)
x1 : (A ! B) ! ((A ! C) ! C) ! ((B ! C) ! C)
x2 : A ⇥ (B] C) ! (A ⇥ B)] (A ⇥ C)
x3 : (A ⇥ B)] (A ⇥ C) ! A ⇥ (B] C)

12These are the equations of a category. We are establishing that types and functions from
a category, definitionally.

