Quantum Computing

- Can quantum effects be utilised to speed-up computation?
- **Quantum Parallelism** offers a significant speed-up in the computation of some algorithms:
 - Shor’s Factorisation Algorithm (exponential speed-up);
 - Grover’s Quantum Database Search (quadratic speed-up).

The Quantum Software Crisis

- How do we develop new quantum algorithms that are better than classical algorithms?
- Current state-of-the-art: use the **Quantum Circuit** metaphor.
- Problems:
 - The circuit model is low-level and circuits are difficult to design;
 - Comparable to programming classical computers using the **Billiard Ball** model of reversible computation.

Deutsch’s Algorithm

\[
|0\rangle \xrightarrow{H} |x\rangle \xrightarrow{U_y \otimes f(x)} |H\rangle \xrightarrow{\text{Measure}}
\]

Where:

\[
H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}
\]

\[
U_y = \begin{pmatrix} 1 & f(0) & 0 & 0 \\ f(0) & 1 & 0 & 0 \\ 0 & 0 & 1 & f(0) \\ 0 & 0 & f(0) & 1 \end{pmatrix}
\]

Deutsch :: (Qubit → Qubit) → Qubit

\[
\text{Deutsch } f = \text{Let } (x, y) = (H 0, H 1) \\
\quad (x', y') = (x, f \ x \ ? \ y) \\
\quad \text{in } \langle (H x') \rangle
\]

- The diagram on the left shows **Deutsch’s Algorithm** implemented as a quantum circuit, while the code above shows a QML program realising the same algorithm.
- Deutsch’s Algorithm is the prototypical example of quantum computing, making use of both quantum parallelism and interference. The algorithm takes a function \(f \in \{0,1\} \rightarrow \{0,1\} \) and can tell us with certainty, after only one run, whether \(f \) is a constant function. This is twice as fast as is classically possible.

Our Proposal

- We plan to develop high-level programming constructs for quantum computers, including:
 - Recursion;
 - Tree-like Data Structures;
 - Higher Order Functions.
- All based on a model of irreversible quantum computation.

QML: Quantum Meta Language

- QML is an impure functional language with monadic effects.
- The prototype is implemented in the functional language Haskell.
- Goals:
 - To produce a compiler for QML, which outputs Quantum Circuits;
 - Denotational semantics to support reasoning about QML programs.

Not enough money from EPSRC to get a real quantum computer ☹️

References:

- M Nielsen & I Chuang, Quantum Computation & Quantum Information, 2000
- P Selinger, Towards a Quantum Programming Language, 2003

Sponsored by EPSRC MathFIT grant GR/S30818/01