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Abstract. We present a definition of untyped A-terms using a hetero-
geneous datatype, i.e. an inductively defined operator. This operator
can be extended to a Kleisli triple, which is a concise way to verify the
substitution laws for A-calculus. We also observe that repetitions in the
definition of the monad as well as in the proofs can be avoided by using
well-founded recursion and induction instead of structural induction. We
extend the construction to the simply typed A-calculus using dependent
types, and show that this is an instance of a generalization of Kleisli
triples. The proofs for the untyped case have been checked using the
LEGO system.
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1 Introduction

The metatheory of substitution for A-calculi is interesting maybe because it
seems intuitively obvious but becomes quite intricate if we take a closer look.
[Hue92] states seven formal properties of substitution which are then used to
prove a general substitution theorem. When formalizing the proof of strong nor-
malisation for System F [Alt93b,Alt93a] the first author formally verified five
substitution properties quite similar to those of [Hue92].

Therefore it seems a good idea to look for a more general and elegant way to
state and verify the substitution laws. Obviously, this is also related to the way
lambda terms are presented.

We find a partial answer in the work of Bellegarde and Hook [BH94] who
take the view that lambda terms should be represented by an operator Lam €
Set — Set, where Set denotes the universe of sets, such that Lam(X) is the set
of A\-terms with variables in X. This corresponds to the presentation of terms in
universal algebra as an operator Term € Set — Set. The substitution laws are
captured by verifying that Lam can be extended to a monad or equivalently to
a Kleisli triple (cf. Section 2.1, see also [Man76,Mog91]).

In this paper we are going to revise and extend the work of Bellegarde and
Hook in the following ways:



— The presentation of Lam, see Section 3.2, is improved by using a heteroge-
neous datatype', i.e. there are no meaningless terms in our representation.
Heterogeneous datatypes have already been discussed in [BM98], where they
are called nested datatypes and modelled by initial algebras in functor cat-
egories, which seems unsatisfactory. Building on this approach, in [BP99]
heterogeneous definitions of untyped A-terms are investigated.

— Repetitions in the definition of the monad and in the verification can be
avoided by using well founded recursion (along a primitive recursive well-
ordering) instead of structural recursion, see section 4.

— The development has been verified using the LEGO system, see section 4.5.

— We also extend this approach to the simply typed A-calculus, see Section 5.
To do this we present a generalization of Kleisli triples, which we call Kleisli
structures, see 5.1.

— We analyze the type of inductive definitions needed in every step of the
formalization using initial algebras of functors. We consider two generaliza-
tions of the usual scheme of inductive definitions: heterogeneous (see 3.1)
and dependent inductive definitions (see Section 5.2).

Our work seems to be closely related to recent work by Fiore, Plotkin and
Turi [FPT99] who pursue a more abstract algebraic treatment of signatures with
binders but do not cover the simply typed case. Higher order syntax can also be
used to represent A-terms, i.e. in [Hof99).

2 Preliminaries

As a metatheory we use an informal version of extensional Type Theory, details
can be found in [Mar84,Hof97]. Since we do not exploit the proposition-as-types
principle we work in a system quite close to conventional intuitionistic set theory.
We use Set and Prop to denote the types of sets and propositions.

Notationally, we adopt the following conventions: We write the type of im-
plicit parameters of dependent functions as subscripts, i.e. IT,enatFin(n) — Set
is a type of functions whose first argument is usually omitted. The hidden argu-
ment can be made explicit by putting it in subscript, i.e. we write e.g. fx € T'(X)
when we mean f € IIxccT(X) for some type C € Set obvious from the con-
text. Given P,Q € A — Prop we write P C @ for Va € A.P(a) — Q(a). Given
a curried function f € A4y — Ay — ... = A, we write the application to a
sequence of arguments ay,as,...,a, as f(ai,as,...,a,). The same convention
holds for IT-types.

The rest of this section briefly reviews Kleisli triples, initial algebras, and
inductive datatypes and might be skipped by the experienced reader.

2.1 Kleisli triples

We present monads as Kleisli triples, i.e.

! It seems that the idea for this presentation goes back to Hook, but he didn’t use it
in the paper because it cannot be implemented in SML.



Definition 1. A Kleisli-Triple (7,77, bind’) on a category C is given by

— an function on the objects: T e|C|—|C]
— a family of morphisms indexed by objects X € |C|: 7% € C(X,T(X))
— a family of functions indexed by X,Y € |C|:

bindk y € C(X,T(Y)) = C(T(X),T(Y))
which are subject to the following equations:

L. bind% x(n%) = lr(x)

2. bindk y (f)onk = f where f € C(X,T(Y)).

3. bind% ,(bindy, (f) o g) = bindy, ;(f) o bind y (9)
where f € C(Y,T(Z)),g9 € C(X,T(Y)).

Kleisli triples were introduced in [Man76], where they are also shown to be
equivalent to the conventional presentation of monads, see [ML71], pp.133.

2.2 Initial algebras

Definition 2. For any endofunctor T : C — C an initial T-algebra (u”, T, ItT)
is given by

— an object  uT € |C|
— a morphism cl' e C(T (™), u™)
— a family of functions indexed by X € |C|: Ity € C(T(X),X) = C(u”, X)

T(u") —— u"
such that given a T-algebra f € C(T'(X), X): T(Itﬁ(f))l lIt§(f)

T(X) X

commutes and It% (f) is the unique morphism with this property, i.e. given any
h e C(uT,X) we have h = Itk (f).
uT is called weakly initial if Itﬁ( f) exists but is not necessarily unique.

We assume that our ambient category Set is bicartesian closed, i.e. has finite
products 1,— x —, coproducts 0, — + — and function spaces — — —. We say
that a variable appears strictly positive in a type, if it appears never on the left
hand side of an arrow type, and positive, if it appears only on the left hand side
of an even number of nested arrow types.

2.3 Inductive datatypes

To model inductive types we introduce the concept of a strictly positive operator,
i.e. a function T € Set — Set which is given by a definition T'(X) = o(X) such
that X appears strictly positive in o(X). Here we write o(X) for a syntactic type



expression in which the variable X may occur. Every strictly positive operator
gives rise to an endofunctor on Set.

Given a strictly positive operator T' we introduce u” = pX.T(X) € Set to
denote the initial T-algebra. We extend strictly positive to u-types, s.t. p-types
can be used to define new operators. We say that Set has all strictly positive?
datatypes if all initial algebras defined by a strictly positive operator exist. This
gives rise to a A-calculus M, e.g. see [Alt98].

Examples for inductive datatypes are natural numbers Nat = puX.1 + X,
ordinal notations Ord = pX.1 + X + (Nat — X) or finitely branching trees
Tree = pX.uY 14+ X xY.

Datatypes can be conveniently presented by constructors and their types, i.e.
Nat € Set can be presented as 0 € Nat and succ € Nat — Nat, analogously
Ord € Set is given by 0’ € Nat, succ’ € Nat — Nat and lim € (Nat — Ord) —
Ord. Nested types like Tree correspond to simultaneous inductive definitions,
i.e. Tree, Forest € Set is given by nil € Forest, cons € Tree — Forest — Forest,
and span € Forest — Tree.

Parametrized datatypes like lists can be defined as a function List € Set —
Set given by List(X) = pY.14Y x X. List is homogeneous because the parameter
X does not change in the inductive definition.

Assuming weak initiality, the uniqueness property can be alternatively ex-
pressed by an induction principle, i.e. given a predicate P € u! — Prop we

have JT(P)C P
Vo € ut.P(x)
where ¢T(P) = {cT(z) | z € P}.
It is well known that all positive inductive types can be encoded impredica-
tively (i.e. in System F, [GLT89]):

pX.T(X)=1IX € Set.(T(X) > X) > X € Set
It7 = AX € Set.A\f € T(X) = XAz € uX.T(X).x X f
€cIXecSet.(T(X)—»X)—=p =X
¢’ =Xe € T(uX.T(X)).AX € Set\f € T(X) = X.f(TIt" X f) x)
€T(u") »pu”
Here T'(—) € IIx,ycset(X = Y) = T(X) — T(Y) is the morphism part
of the functor which can be derived from the fact that it is given by a posi-

tive definition. This encoding is weakly initial, uniqueness can be derived from
parametricity [Wad89,AP93].

Dat — Ind

3 A-terms as a heterogeneous datatype

3.1 Heterogeneous inductive datatypes

We interpret heterogeneous datatypes by initial algebras in the category of fami-
lies of sets Fam. Objects in Fam are families F' € Set — Set and given families

2 Strictly positive can be replaced by positive, but it is not obvious whether this ex-
tension is still predicative.



F,G € |Fam| morphisms are families of functions f € IIX € Set. F(X) —
G(X). A strictly positive operator on families is a function H € (Set — Set) —
(Set — Set) which is given by a definition H(F) = AX € Set.o(F, X) where
F appears only strictly positive in o(F, X). Every strictly positive operator on
families gives rise to an endofunctor on Fam.

Given a strictly positive operator H on families there exists an initial algebra
pf = pFAX € Set. H(F,X) € Set — Set. As before we define operators
and inductive types simultaneously. The constructors ¢ and It now refer to
morphisms in Fam — this can be spelt out as follows:

€ Mxeset H(n", X) = p(X)
ItH € HFESet—»Set(HXESetH(FJX) - F(X)) - HXESetNH(X) - F(X)
The uniqueness property of the inductively defined operator can be also

expressed by the following induction principle: Assume a family of predicates
P € IIxesetp™ (X) — Prop:

VY € Set. CH(Py) C Py

Het — Ind
VY € Set.Vz € u* (Y).Py ()

The A-calculus corresponding to heterogeneous polymorphic definitions has
to our knowledge not yet been explored.
Positive heterogeneous inductive types can be encoded impredicatively (i.e.
in System F“):
p? =AY € Set.ITF € Set — Set.(IIxeset H(F, X) = F(X)) = F(Y)
€ Set — Set
It" = \F € Set — Set. \f € IIxeset H(F, X) = F(X).AX € Set.
Az e p. z(Ff)
€ IIF € Set — Set. ([IxesetT(F, X) = F(X))
— IxesetpF . H(F,X) — F(X)
¢ = AX € Set. \x € T(u", X). \F € Set — Set.
M € xeset H(F, X) = F(X).f(HItY  F, f), )
€ MxesetH(p", X) — p" (X)

3.2 Definition of Lam

An example for a heterogeneous inductive datatype is the operator Lam € Set —
Set from the introduction which can be defined as

Lam = pF € Set — Set.\X € Set.X + (F(X) x F(X)) + F(X,)

where X| = 1+ X with two constructors new € ITX € Set.X ;| and old €
ITxcsetX — X1 and eliminator case € HX,YeSetY — (X — Y) - X, =Y.
Clearly (-), gives rise to a functor.



As before we can present inductively defined operators by giving the con-
structors, which in the case of Lam read as follows:

var € ITxecget X — Lam(X)
app € IxecgetLam(X) — Lam(X) — Lam(X)
abst € ITxegetLam(X ;) — Lam(X)

4 Lam is monadic

To show that Lam has the structure of a Kleisli triple we first have to define n}*™
and b1ndLam The former is simply varx and the latter can be defined recursively
or structural inductively which gives rise to two different constructions.

4.1 The recursive construction

In this case bind and an auxiliary map lift

lift € HX,YESet(X — La,m(Y)) - X, - Lam(YJ_)
bind € ITx yeset (X — Lam(Y)) — Lam(X) — Lam(Y)

are defined by simultaneous recursion. The equations defining lift and bind re-
cursively are given below.

lift(f, new (X))
lift(f, old(x))
bind(f, var(z))
)

)

var(new(Y'))
bind(var o old, f(z))
flz

)
pp(bind(f, s), bind(f, 1))
st(blnd(hft(f) t))

bind(f, app(s, t
bind(f, abst (¢

I
© L

We must first prove that bind is terminating.

Definition 3. Let f € A — Lam(B) for arbitrary A, B € Set then let isVar(f) <
Jdh: A — B.f =varg o h and

0 if  isVar(f)
1 otherwise

o) ={

Now we are in a position to define a termination order for bind. For any
recursive call bind(f’,#') inside of bind(f,t) we must have (f',t') <p (f,t). To
that end we define

(£,1) <o (f',t) @ o(f) <o(f)V ((f) =v(f) At <, 1))

where < is the structural order on terms. As < is the lexicographic order on
two well-founded orders we immediately get the following observation.



Proposition 4. The order <y is well-founded.
For the termination of bind the fact below is important.
Proposition 5. For any f of appropriate type it holds that v(lift(f)) < v(f).

Proof. Assume that v(f) = 0 hence f = var o h. By case analysis it is easily
verified that lift(f) = var o case(new, oldo h), hence v(lift(f)) = 0. Thus, we have
shown that v(lift(f)) < v(f).

Proposition 6. bind is a terminating function.

Proof. The only difficult case is bind(f, abst(t)) = abst(bind(lift(f)
v(lift(f)) < wo(f) and t <5 abst(t) we get that (lift(f),t) <s (f,abst(t

Condition 1. of Definition 1 holds by definition of bind.
Proposition 7. Condition 2. of Definition 1 holds, i.e.
Vt € Lam(X). bind(varx,t) = t.

,t)). Since
)

Proof. Proof by structural induction on ¢: The varx-case is trivial. Assume that
t = app(a, b) and bind(varx,a) = a and bind(varx,b) = b. Thus we obtain
bind (varx, app(a b)) = app(bind(varx, a), bind(varx, b)) = app(a, b).
Finally, assume that ¢ = abst(s) and that bind(varx ,s) = s. Then
bind(varx, abst(s)) = abst(bind(lift(varx), s)) = abst(bind(varx , s))
= abst(s) =t by induction hypothesis.
Proposition 8. Condition 3. of Definition 1 holds:
Vf e A — Lam(B).Vg € B — Lam(C). bind(g) o bind(f) = bind(bind(g) o f)

Proof. Using extensionality and well-founded induction this amounts to prove
three cases: The var and the app-cases are again easy. We concentrate on the

abst-case.
(bitnd(g) o bind(f)) (abst(t)) = bind(g, bind(f, abst(t)))

= bind(g, abst(bind(lift (f), ?)))
= abst(bind(lift(g), bind(lift (f), t)))
= abst(bind(lift(g) o bind(lift(f)),t)) (ind.hyp.)
= abst(bind(bind(lift(g) o lift(f)),t)).
On the other hand bind(bind(g) o f,abst(t)) = abst(bind(lift(bind(g) o f),t))
such that it remains to show
lift(bind(g) o f) = bind(lift(g)) o lift(f)

which is proved by extensionality and case analysis on the argument. First if the
argument is a “new” variable then by definition of lift and bind:

bind(lift(g) o lift(f), new(A)) = lift(bind(g) o f,new(A))
In the other case we first distinguish whether isVar(f) holds or not:



1. Case: isVar(f):
Then there is an h € A — B such that f = varpg o h.
lift(bind(g) o (varp o h)) o olda
=lift(g o h) ooldg (Def. bind)
= bind(varg, ooldg)ogoh (Def. lift)
=lift(g) ooldg o h (Def. bind)
= bind(lift(g)) o varg, ocoldg o h (Def. bind reverse)
= bind(lift(g)) o bind(varg, coldg) o varg o h (Def. bind reverse)
= bind(lift(g)) o lift(varp o h) o old4 (Def. lift reverse)
2. Case: —isVar(f):
lift (bind(g) o f) o old = bind(varc, o old¢) o bind(g) o f (*
= bind(lift(g)) o bind(varp o oldg) o f
= bind(lift(g)) o lift(f) o old4
For (*) it remains to show that
bind(varc, o olde) o bind(g) = bind(lift(g)) o bind(varg, o oldp)
which is proved below
bind(varg, o old¢) o bind(g)
= bind(bind(varg, ooldg) o g) (ind.hyp.)
= bind(lift(g) o oldg)
= bind(bind(lift(g)) o varg, ooldg) (Def. bind & ext.)
= bind(lift(g)) o bind(varg, ooldg) (ind.hyp.)

The induction hypothesis is used three times. As we do not use structural in-
duction we must give a termination order <’ such that when proving

(bind(g) o bind(f))(¢) = bind(bind(g) o f,t)
we use the induction hypothesis
(bind(g") o bind(f'))(¢') = bind(bind(g") o f',t')

only if (f',¢',t') <’ (f,g,t) for an appropriate well-founded order <’. We define
this order as follows

(f',98) <" (f,9,0) & (f = f'Ag =g Nt < )V (v(f) +o(g') <o(f)+v(g)) -

For the first application of the hypotheses the condition (f, g,t) <’ (f, g, abst(t))
holds by the structural order on the last argument. For the second we have to
show (g, varc, ooldg, s) <' (f, 9, s) in case —isVar(f) holds. As isVar(varc, o k)
holds for any k, 0 = v(varc, oolde) < v(f) = 1, hence v(g) + v(varc, oolde) <
v(f) + v(g). The proof of the third case, (varc, o oldg,lift(g),s) <' (f,g,s),
under the assumption —isVar(f), is similar.



One might argue that the proof is not constructive as we do a case analysis
on the undecidable predicate isVar(f). However, we can instead introduce an
additional precondition (isVar(f) V True) A (isVar(g) V True) where True corre-
sponds to don’t know. We do case analysis over the disjunctions. When using a
recursive hypothesis with f = varoh we prove the precondition by a left injection
(the same for g).

We summarize the result:

Corollary 9. (Lam(—), var,bind) is a Kleisli triple.

4.2 The construction by structural induction

There is also a proof by structural induction. In this case we define bind and lift
and also Lam(—) the morphism part of the functor:

Lam € ITx yeset(X = Y) = Lam(X) — Lam(Y')
lift(f,new (X)) = var(new(Y))
lift(f, old(z)) = Lam(old, f(z))
Lam(f, var(z)) = var(f(x))

)
)
Lam(f,app(s, )
Lam(f, abst(t)
)
)
)

app(Lam(f, s), Lam(f,1))
abst(Lam(fy,t))

f(=)

app(bind(f, s), bind(f,t))
abst(bind(lift (), t))

bind(f, var(z

bind(f,app(s,t
bind(f, abst(t

) =
)
)
)
)
)
)
)
)

Note that bind is defined as in the recursive case, but now lift is not defined in
terms of bind so all definitions are structural inductive.

Additional to the propositions shown above, one also needs to show that Lam
and (—), are functorial.

Note that here Lam(h) takes the part of bind(var o h) and thus the proof of
(*) can be done by structural induction showing first the following two special
instances of the third monad law:

Vf € B— CVg € A— Lam(B).Lam(f) o bind(g) = bind(Lam(f) o g)
Vf € B — Lam(C).Vg € A — B.bind(f) o Lam(g) = bind(f o g)

By combining those one immediately gets
Vg € A — Lam(B). bind (lift(g)) o Lam(old 4) = Lam(oldg) o bind(g)
and from this one can easily derive (*) in the proof of Proposition 7

lift (bind(g) o f) = bind(lift(g)) o Lift(f) .



The LEGO-code of the structural inductive and the general recursive proof is
interesting in the sense that the latter version is only of half the size of the former
— without the termination proof though. This emphasizes the significance of type
theory with general recursion as long as termination can be ensured externally
(possibly syntactically).

4.3 Substitution

dLam Lam

Once we have bin and 7 we can define a substitution operator on Lam-
terms subst € ITacsetLam(A; ) — Lam(A) — Lam(A) as follows

subst 4 (¢, s) = bind(case(s, vara),t)
The weakening weak € ITgcgetLam(A) — Lam(A ) can be written
weak 4 = bind(vars, ooldy)

That substitution and weakening have the right properties follows immediately
from the Kleisli properties for bind and var. As an example we show how to
derive subst(weak(t),u) = t:

subst(weak(t),u) = bind(case(u, var), bind(var o old, t))
= bind(bind(case(u, var), var o old), t) (3.)
= bind(case(u, var) o old, t) (2.)
= bind(var, t)
=t (1)

The numbers refer to the equations in Definition 1.

4.4 Implementations in Haskell and SML

Heteregeneous datatypes like Lam can be easily implemented in a functional
language like Haskell [HJW*92]. The implementation below by Sven Panne also
exploits predefined typeclasses like Monad and Functor in Haskell (where >>=,
return, Maybe, Just, Nothing, maybe denote bind, 1, (—) , , old, new, and case,
respectively).

data Lam a = Var a
| App (Lam a) (Lam a)
| Abs (Lam (Maybe a))

instance Functor Lam where
fmap f x = x >>= return . £

instance Monad Lam where
return = Var
Var x >>= f
App t u >>=f
Abs t >>= f

f x
App (t >>= £) (u >>= f)
Abs (t >>= 1lift f)



1lift :: (Monmad b, Functor b) => (a -> b c)

-> Maybe a -> b (Maybe c)
lift f Nothing = return Nothing
lift £ (Just x) = fmap Just (f x)

subst :: Monad a => a (Maybe b) -> ab -> a b
subst t u = t >>= maybe u return

Although the datatype Lam is definable in ML [HMMS86], 1ift is not ac-
cepted by the ML type system. The reason is that 1ift requires polymorphic
recursion, which is known to be undecidable. The Haskell type system is more
flexible because it does not try to infer the type of function if it is given anyway.
There is also an implementation of an improved ML typechecker [EL99] which
implements polymorphic recursion via a semialgorithm for semiunification. The
corresponding ML-code reads as follows:

datatype ’a Lift = new | old of ’a;

datatype ’a Lam = var of ’a | app of (’a Lam)*(’a Lam)
| abs of (’a Lift) Lam;

fun bind f (var x) = f
| bind £ (app (t,u)) app (bind f t,bind f uw)
| bind £ (abs t) = abs (bind (lift f) t)

and 1lift f new = var new
| 1ift £ (old x) = lam old (f x)

and lam f = bind (var o f);

n M

fun subst t u = bind (fn new => u | old x => var x) t;
fun weak t = lam old t;

4.5 Implementation in LEGO

Using the Inductive-statement such a heterogeneous datatype can be defined
in LEGO [LP92] as follows:
Inductive [Lambda:Set->Type] ElimOver Type
Constructors [var:{X|Set}X->Lambda X]
[app : {X|Set} (Lambda X)->(Lambda X)->(Lambda X)]
[abst: {X|Set} (Lambda (Lift X)) ->(Lambda X)];

In the formalization we assume a constant ext which makes the propositional
equality extensional and thus destroys the computational adequacy of Type The-
ory. This problem could be overcome by moving to a Type Theory as described
in [A1t99]. The complete LEGO code (for both variants) can be found in [RA99].

5 Extension to simple types

5.1 Kleisli structures

To capture the case of typed algebras, specifically the simply typed A-calculus, we
introduce a generalization of the Kleisli-triples, which we call Kleisli structure:



Definition 10. A Kleisli structure (I, F, G, n%%, bind®%) on a category C is
given by

— an index set I € Set

families of objects indexed by I F,Gel—|C|

— a family of morphisms indexed by i € I: nf’G € C(F(i),G())
— a family of functions indexed by ¢,j € I:

bind; ;¥ € C(F(0),G(7) = C(G(i), G(5))
which are subject to the following equations:

1. bindf;G(nf’G) =lgg)
2. bind{“(f)on;** =f  where f € C(F(i),G(j)).

3. bmdFG(bmdFG(f) g) = bind[ 7 (f) o bind; " (g)
whers € C{F(j),G(k)),g € C(FG),G()).

Kleisli triples are a special case of Kleisli structures where I = |C| and F is
the identity. Writing Cg for the category whose objects are elements of I and
Cr(i,j) = C(F(i), F(j)) we obtain a functor T : Cp — Cg which is given by
the identity on objects and on morphisms f € Cp(i,j) by

T(f) = bind];* (n]"“ o f)

In the special case of Kleisli triples this is the endofunctor on C given in section
2.1. Since T is not an endofunctor in general it cannot be a monad.

5.2 Dependent inductive types

Next we model dependent inductive types, which are also called inductive fam-
ilies, by initial algebras in categories of families [Dyb94]. Given an index type
I € Set, we define the category of I-indexed families: objects are F' € I — Set
and morphisms are I-indexed families of functions f € II;crF'(i) — G(i). An in-
ductively defined dependent type is an initial algebra in the category of I-indexed
families.

We assume that Set is also closed under I7-types, X-types and Equality types
Eq € HpcsetA — A — Set, where A € Set. We use the usual A-notation for I7-
types. Elements of YX-types are given by pairs, i.e. given A € Set, B € A — Set,
if a € A and b € B(a) then (a,b) € Ya € A.B(a). The only inhabitant of an
equality type is refl € IycsetlIa € A.Eq(a,a). We assume that the equality
type is extensional, i.e. a = b holds iff Eq4(a,b) is inhabited. For details see e.g.
[Mar84].

We define a strictly positive operator on families as a function G € (I —
Set) — I — Set which is given by a definition G(F) = M € I.o(F,i) where
F appears only strictly positive in o(F, ). Every strictly positive operator gives
rise to a functor on the category of I-indexed families.



Given a strictly positive operator G we introduce
pu¢ =pF € I - Set.\i € I.G(F,i) € I - Set

to denote the initial G-Algebra. As before we define strictly positive operators
simultaneously with dependent u-types such that x4 can be used in the definition
of new operators. We spell out the types of the constructor and iterator:

c® eIl € I.G(u%,i) = u®()
It € IF € I — Set.(ITi € I.G(F,i) = F(i)) = ITi € I. u% (i) = F(i)

It is convenient to present dependent inductive types by giving the con-
structors. As an example consider the type of finite sets: Fin € Nat — Set,
Orin € ITn € Nat.Fin(succ(n)), succpin € M,enatFin(n) — Fin(succ(n)). This
definition can be mechanically translated into the strictly positive operator

Grin(F € Nat — Set) = An € Nat.Xm € Nat.Eq(succ(m),n) x (1 + F(m)).

The type of cC is isomorphic to the product of the types of Opin, and succpiy- In-
ductive dependent types which are indexed over several sets, like ITa € A.B(a) —
Set correspond to u-types whose index set is a X-type, i.e. XYa € A.B(a).
Inductively defined dependent types can be encoded in the calculus of con-
structions along the same lines as heterogeneous datatypes, see section 3.1.
As before we can represent the uniqueness condition by an induction princi-
ple: Assume a family of predicates P € IT;c;u%(i) — Prop:

Vie I. c%(P(i)) C P(i)

Dep — Ind
Vi € LNz € p%(i).P(z) P

In Type Theory it is standard to use a dependent iterator which captures both
induction and iteration.

Heterogeneous datatypes as introduced previously can be seen as an instance
of dependent inductive types if we assume the existence of a universe U € Set
which reflects all the type formers introduced so far.

5.3 The definition of Lam for simple types

To extend the previous construction to simply typed A-calculus we have to use
dependent inductive types and Kleisli structures instead of triples. Given a set of
types Ty, the base category C is the category of Ty-indexed sets, whose objects
are families of sets indexed by types (F' € Ty — Set) and the morphisms are
type-indexed families of functions f € II,c1y F(0) = G(0).

The index set I is given by the inductively defined set of contexts Con and
the families involved are Var(I',a) — the set of variables of type o in context I’
—and Lam(I", o) — the set of terms of type o in context I". Var(I") and Lam(I")
are objects in our base category for any I' € Con.



We shall present the types involved by giving the constructors. The set of
types Ty and contexts Con are given by the following homogeneous definitions:
Ty € Set, 0 € Ty, — = — € Ty - Ty — Ty, Con € Set, empty € Con,
cons € Ty — Con — Con. Here cons corresponds to —, in the untyped case.
Var is given by a dependently typed inductive definition:

Var € Con — Ty — Set
old € IreconIT € Ty Il ety Var(I', o) — Var(cons(r,I'), 0)
new € IIT € Con.ITg € Ty.Var(cons(o, '), o)

Similarly, Lam is given by a dependent inductive type:

Lam € Con — Ty — Set
var € IIrccon,sety Var(l, o) — Lam(I, 0)
app € Ilrccon,o,retylam(I, 0 = 7) = Lam([,0) — Lam(I, 7)
abst € IIrecon,o,reTyLam(cons(o, I'),7) — Lam(I,0 = )
As in the untyped case var is the unit 7 of our Kleisli structure. We now define
bind and lift by simultaneous recursion:
bind € ITr accon(IIyety Var(I',o) — Lam(A, 0)) —
I, eryLam(I,0) — Lam(A, o)
lift € II'r acconlIT € Ty(Il ety Var(I',0) = Lam(A, 0)) =
I, ey Var(cons(r,I'),0) — Lam(cons(r, A), o)
lift(o, f,new (I, 0)) = var(new(A4,0))
lift (o, f,old(o, x)) = bind(var o old(o), f(z))

bind(f, var(z)) = f(z)
bind(f, app(t, u)) = app(bind(f,t), bind(g,1))
bind(f, abst(t)) = abst(bind(lift(o, f),t))

The termination argument is the same as for the untyped case, see Section 4.1.

5.4 Lam is a Kleisli structure

The verification of this fact has the same structure as the previous proof but
with different types. Let us state the result precisely:

Theorem 11. Lam gives rise to a Kleisli structure where

— C is the category of Ty-indexed families.

— I =Con

— F =Var € Con — |C|

— G =Lam € Con — |C|

— nr = varp € C(Var(I"),Lam(I"))

— bindr,a € C(Var(I"),Lam(A)) — C(Lam(I"), Lam(A))

Proof. See the proofs of Corollary 9.



6 Conclusions and open problems

We have discussed a uniform representation of untyped and typed A-terms based
on Kleisli triples in type theory using heterogeneous (generalized) datatypes. All
this can be easily implemented in Haskell and in a special version of SML and
formally verified in LEGO. The recursive construction of the Kleisli-triple turned
out to be much simpler than the structural inductive one which emphasizes our
point of view that recursive proofs are often easier and should be supported by
modern type theoretical systems. It is future work to look for a generalization
to terms of dependently typed A-calculi, thus suggesting a new approach for the
project of Type Theory in Type Theory (cf. [MP93]). A problem which needs
to be tackled in this context is that the type of the substitution function in a
dependently typed context may depend on its own graph.

Once having finished the examination of the Lam-monad and turning atten-
tion to other examples of heterogeneous datatypes many interesting questions
arise that deserve further investigation. There exist practically interesting ex-
amples that need a stronger notion of inductively defined functors, not just
operators. Moreover, can one find a useful characterisation of “being Kleisli” for
inductive families? A challenging open question is whether inductively defined
operators are proof-theoretically conservative with respect to standard induc-
tive ones, i.e. can one define more functions on natural numbers using inductive
operators?
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