
Representing Nested Inductive Types
using W-types

Michael Abbott1, Thorsten Altenkirch2, and Neil Ghani1

1 Department of Mathematics and Computer Science, University of Leicester
michael@araneidae.co.uk, ng13@mcs.le.ac.uk

2 School of Computer Science and Information Technology, Nottingham University
txa@cs.nott.ac.uk

Abstract. We show that strictly positive inductive types, constructed from
polynomial functors, constant exponentiation and arbitrarily nested inductive
types exist in any Martin-L̈of category (extensive locally cartesian closed
category with W-types) by exploiting our work on container types. This
generalises a result by Dybjer (1997) who showed that non-nested strictly positive
inductive types can be represented using W-types. We also provide a detailed
analysis of the categorical infrastructure needed to establish the result.

1 Introduction

Inductive types play a central role in programming and constructive reasoning. From an
intuitionistic point of view we can understand strictly positive inductive types (SPITs)
as well-founded trees, which may be infinitely branching. The language of SPITs is
built from polynomial types and exponentials, enriched by aconstructorµ for inductive
types. In this language we can conveniently construct familiar types such as the natural
numbers,N ≡ µX.1+X; binary trees, BTree≡ µX.1+X×X; lists parameterised over
a type ListA≡ µX.1+A×X; ordinals, Ord≡ µX.1+X +XN; and finitely branching
trees as the fixpoint of Lists, FTree≡ µY.ListY = µY.µX.1+X×Y. Categorically,µ
corresponds to taking the initial algebra of a given functor.

The grammar of SPITs can be easily defined inductively, see definition 6.1.
However, we would like to have a simple semantic criterion which guarantees the
existence of SPITs. Dybjer (1997) shows that inductive types over strictly positive
operators constructed using only polynomials in a single type variable and fixed
exponentiation can be constructed in extensional Type Theory using W-types, the type
of well-founded trees introduced in Martin-Löf (1984). However, Dybjer (1997) does
not consider any nesting of inductive types, e.g. the example FTree is not covered by
his definition. Here we present a more general result which shows that nested inductive
types can be constructed using only W-types and we analyse the categorical framework
in more detail.

An important ingredient in our construction is the insight that SPITs give rise to
containers, which we have investigated in Abbott et al. (2003) and which are the topic
of Abbott (2003). The basic notion of acontaineris a dependent pair of typesA ` B
creating a functorTA.BX ≡ ∑a:A.XB(a). A morphism of containers(A` B) → (C ` D)

is a pair of morphisms(u: A→C, f : u∗D → B). With this definition of a categoryG of
containers we can construct a full and faithful functorT :G → [C,C].

However, when constructing fixed points it is also necessaryto take account of
containers with parameters, so we defineT :GI → [CI ,C] for each parameter index set
I . For the purposes of this paper the index setI can be regarded as a finite set, but this
makes little practical difference to the development.

It is easy to show that containers are closed under sums and products and constant
exponentiation, see Abbott et al. (2003); this is also done in Dybjer (1997) for containers
in one variable. W-types are precisely the initial algebrasof containers in one variable
(theorem 3.6), hence constructing inductive types over a single variable SPITs is
straightforward and already covered (in part) by Dybjer’s work. However, the general
case for nested types corresponds to showing that containers are closed under initial
algebras. The problem boils down (proposition 4.1) to solving an equation on families
of types up to isomorphism, which is achieved in proposition5.1.

The work presented here also overcomes a shortcoming of Abbott et al. (2003):
there we constructed initial algebras of containers using the assumption that the ambient
category is locally finitely presentable. Alas, this assumption rules out many interesting
examples of categories, in particular realisability models such asω-sets. This is fixed
here, since we only have to require that the category has all W-types, i.e. initial algebras
of container functors, which can be easily established for realisability models. Since
dependent types and inductive types are the core of Martin-Löf’s Type Theory, we
call categories with this structureMartin-Löf categories, see definition 3.7. Dybjer and
Setzer (1999, 2001) present general schemes for inductive (and inductive-recursive)
definitions but they do not present a reduction to a combinator like W-types. Moreover,
they also use universes extensively.

Recently Gambino and Hyland (2004) have put our results in a more general context
and indeed their theorem 12 generalizes our proposition 5.1to dependently typed
containers, which they call dependent polynomial functors. Similarily, their theorem
14 is closely related to our proposition 4.1. We also learnt from their work that this
construction is related to the proof in Moerdijk and Palmgren (2000) that W-types
localise to slice categories.

2 Definitions and Notation

This paper uses the dependent internal language of a locallycartesian closed category
C: see Streicher (1991), Hofmann (1994), Jacobs (1999) and Abbott (2003) for details.
The key idea is regard an objectB∈C/A as afamilyof objects ofC indexed by elements
of A, and to regardA as thecontextin which B regarded as atype dependent on Ais
defined.

Elementsof A will be represented by morphismsf :U → A in C, andsubstitution
of f for A in B is implemented by pulling backB along f to f ∗B ∈ C/U . We start to
build the internal language by writinga : A` B(a) to expressB as a typedependenton
values inA, and then the result of substitution off is written asu :U ` B(f u). We will
treatB(a) as an alias forB andB(f u) as an alias forf ∗B, and we’ll writea : A ` B(a)
or even justA ` B for B∈ C/A—variables will be omitted from the internal language
where practical for conciseness.

Note that substitution by pullback extends to a functorf ∗ :C/A→ C/U : for
conciseness of presentation we will assume that substitution corresponds precisely to a
choice of pullback, but for a more detailed treatment of the issues involved see Hofmann
(1994) and Abbott (2003).

Termsof typeA` B correspond toglobal elementsof B, which is to say morphisms
t : 1→ B in C/A. In the internal language we writea:A` t(a) :B(a) for such a morphism
in C. We will write t for t(a) where practical, again omitting a variable when it can be
inferred. Given objectA` B andA`C we will write A` f : B→C for a morphism in
C/A, and similarlyA` f : B∼= C for an isomorphism.

The morphism inC associated withB ∈ C/A will be written asπB : ∑AB→ A
(the display mapfor B); the transformationB 7→ ∑AB becomes a left adjoint functor
∑A a π∗

B, where pulling back alongπB plays the role ofweakeningwith respect
to a variableb : B(a) in context a: A. In the type theory we’ll write∑AB ∈ C

as 1` ∑a: A.B(a), or more conciselỳ ∑AB, with elements` (t,u) : ∑a : A.B(a)
corresponding to elements̀t : A and` u: B(t).

More generally, all of the constructions described here localise: given an arbitrary
context Γ ∈ C and an objectA ∈ C/Γ we can use the isomorphism(C/Γ)/A ∼=
C/∑Γ A to interpretΓ ,a : A ` B(a) both as a morphismπB : ∑AB→ A in C/Γ and
asπB : ∑AB→ ∑Γ A in C, and∑ extends to provide a left adjoint to every substitution
functor. We will writeΓ ,a: A,b: B(a) `C(a,b) or justΓ ,A,B ` C as a shorthand for
Γ ,(a,b) : ∑AB`C(a,b).

Local cartesian closed structure onC allows right adjoints to weakeningπ∗
A a ∏A

to be constructed for everyΓ ` A with type expressionΓ ` ∏a : A.B(b) for Γ ` ∏AB
derived fromΓ ,A`B. Finally theequality type A,A`EqA is represented as an object of
C/A×A by the diagonal morphismδA : A→ A×A, and more generallyΓ ,A,A` EqA.
Given parallel morphismsu,v into A the equality type has the key property that an
element of Eq(u,v) = (u,v)∗EqA exists precisely whenu = v as morphisms ofC.

For coproducts in the internal language to behave properly,in particular for
containers to be closed under products, we require thatC havedisjoint coproducts: the
pullback of distinct coprojectionsκi : Ai → ∑i∈I Ai into a coproduct is always the initial
object 0. When this holds the functorC/A+B→ (C/A)× (C/B) takingA+B `C to
(A` κ∗C, B` κ ′∗C) is an equivalence: write− ◦

+− for the inverse functor. Thus given
A`B andC`D (with display mapsπB andπD) we writeA+C`B ◦

+D for their disjoint
sum; this satisfies two identities:∑A+C(B ◦

+ D) ∼= ∑AB+ ∑C D andπB ◦+D = πB + πD

(modulo the preceding isomorphism).
Given a (finite) index setI define[CI ,CJ] to be the category offibred functors and

natural transformationsCI → C where the fibre ofCI overΓ ∈ C is theI -fold product
(C/Γ)I . Of course, whenJ = 1 we will write this as[CI ,C].

Basic Properties of Containers

We summarise here the development of containers in Abbott etal. (2003).

Definition 2.1. Given an index set I define thecategory of containersGI as follows:

– Objects are pairs(A∈ C, B∈ (C/A)I); write this as(A . B) ∈ GI
– A morphism (A . B) → (C . D) is a pair (u, f) for u: A→C in C and

f : (u∗)I D → B in (C/A)I .

Note that the alternative of defining ann+1-ary container as an indexed family ofn-ary
containers is equivalent to this definition (Abbott, 2003, proposition 4.1.1).

A container(A . B) ∈ GI can be written using type theoretic notation as

` A i : I , a: A ` Bi(a) .

A morphism(u, f) : (A . B) → (C . D) can be written in type theoretic notation as

u: A−→C i : I , a: A ` fi(a) : Di(ua) −→ Bi(a) .

Finally, each(A. B)∈GI , thought of as a syntactic presentation of a datatype, generates
a fibred functorTA.B :CI → C which is its semantics.

Definition 2.2. Define thecontainer construction functorT :GI → [CI ,C] as follows.
Given(A . B) ∈ GI and X∈ C

I define

TA.BX ≡ ∑a: A. ∏i∈I XBi(a)
i ,

and for(u, f) : (A . B) → (C . D) define Tu, f : TA.B → TC.D to be the natural transfor-
mation Tu, f X : TA.BX → TC.DX thus:

(a,g) : TA.BX ` Tu, f X(a,g) ≡ (u(a), (gi · fi)i∈I) .

The following proposition follows more or less immediatelyby the construction ofT.

Proposition 2.3 (Abbott et al., 2003, proposition 3.3).For each container F∈ GI and
each container morphismα : F → G the functor TF and natural transformation Tα are
fibred overC.

By making essential use of the fact that the natural transformations in[CI ,C] are fibred
we can show thatT is full and faithful.

Theorem 2.4 (ibid., theorem 3.4).The functor T:GI → [CI ,C] is full and faithful.

This theorem gives a particularly simple analysis of polymorphic functions between
container functors. For example, it is easy to observe that there are preciselynm

polymorphic functionsXn → Xm: the data typeXn is the container(1 . n) and hence
there is a bijection between polymorphic functionsXn → Xm and functionsm→ n.
Similarly, any polymorphic function ListX → ListX can be uniquely written as a
functionu:N → N together with for each natural numbern:N, a function fn : un→ n.

It turns out that eachGI inherits products and coproducts fromC, and thatT
preserves them:

Proposition 2.5 (ibid., propositions 4.1, 4.2).If C has products and coproducts then
GI has products and coproducts preserved by T .

Given containersF ∈ GI+1 and G ∈ GI we can compose their images underT to
construct the functor

TF [TG] ≡ (C
I (idCI ,TG)

C
I
×C ∼= C

I+1 TF
C) .

This composition can be lifted to a functor−[−] :GI+1×GI → GI as follows. For a
container inGI+1 write (A . B,E) ∈ GI+1, whereB∈ (C/A)I andE ∈ C/A and define:

(A . B,E)[(C . D)] ≡
(

a: A, f :CE(a) .
(
Bi(a)+∑e: E(a). Di(f e)

)
i∈I

)
.

In other words, given type constructorsF(~X,Y) andG(~X) this construction defines the
composite type constructorF [G](~X) ≡ F(~X,G(~X)).

Proposition 2.6 (ibid., proposition 6.1).Composition of containers commutes with
composition of functors thus: TF [TG] ∼= TF [G].

This shows how composition of containers captures the composition of container
functors. More generally, it is worth observing that a composition of containers of
the form−◦− :GI ×G I

J → GJ reflecting composition of functorsCJ → C
I → C can

also be defined making containers into a bicategory with 0-cells the index setsI and
the category of homs fromI to J given by the container categoryG J

I (Abbott, 2003,
proposition 4.4.4).

3 Initial Algebras and W-Types

In this section we discuss the construction of initial algebras for container functors and
the principles in the ambient categoryC used to construct them.

Initial algebras can be regarded as the fundamental building blocks used to introduce
recursive datatypes into type theory. Initial algebras define “well founded” structures,
which can be regarded as the expression of terminating processes.

Definition 3.1. An algebrafor a functor F:C → C is an object X∈ C together with a
morphism h: FX → X; refer to X as thecarrierof the algebra. Analgebra morphism
(X,h) → (Y,k) is a morphism f: X →Y satisfying the identity f· h = k · F f . An
initial algebrafor F is then an initial object in the category of algebras andalgebra
morphisms.

The following result tells us that initial algebras for a functor F arefixed pointsof F ,
and indeed the initial algebra is often called the least fixedpoint.

Proposition 3.2 (Lambek’s Lemma).Initial algebras are isomorphisms.

The following useful result about initial algebras tells usthat initial algebras with
parameters extend to functors, and so can be constructed “pointwise”.

Proposition 3.3. Given a functor F:D×C → C if each endofunctor F(X,−) onC has
an initial algebra(GX,αX) then G extends to a functor G:D → C andα to a natural
transformationα : F [G] → G.

We can now define an operationµ constructing the least fixed point of a functors. If we
regard a functorF :D×C → C as a type constructorF(X,Y) then we can can regard
the fixed points defined below as types.

Definition 3.4. Given a functor F:D×C → C regarded as a type constructor F(X,Y)
defineµY.F(X,Y) to be the initial algebra of the functor F(X,−).

To extend this definition ofµ-types to containers observe that for containersF ∈ GI+1

andG ∈ GI the operationG 7→ F [G], with TF [G]X ∼= TF(X,TGX) is an endofunctor on
GI . Thus givenF ∈ GI+1 we will write µF for the initial algebra ofF [−] :GI → GI .

We will show in this paper that the functorµ :GI+1 → GI exists, and that the initial
algebra of a container functor is a container functor.

W-Types

In Martin-Löf’s Type Theory (Martin-L̈of, 1984; Nordstr̈om et al., 1990) the building
block for inductive constructions is the W-type. Given a family of constructorsA ` B
the typeWa : A.B(a) (or WAB) should be regarded as the type of “well founded trees”
constructed by regarding eacha: A as a constructor of arityB(a).

The standard presentation of a W-type is through one type forming rule, an
introduction rule and an elimination rule, together with anequation. As the type
theoretic development in this paper focuses entirely on categorical models, we take
W-types to beextensionallydefined. Indeed, extensional Type Theory as presented in
Martin-Löf (1984) represents the canonical example of a Martin-Löf category.

Definition 3.5. A type systemhas W-typesiff it has a type constructor

Γ ,A ` B
Γ ` WAB

(W-type)

together with a constructor term

Γ , a: A, f : (WAB)B(a) ` sup(a,b) :WAB (sup)

and an elimination rule

Γ , WAB ` C
Γ , a: A, f : (WAB)B(a), g: ∏b: B(a).C(f b) ` h(a, f ,g) :C(sup(a, f))

Γ , w :WAB ` wrech(w) :C(w)
(wrec)

satisfying the equation for variables a: A and f: (WAB)B(a):

wrech(sup(a, f)) = h(a, f ,wrech · f) .

Note that the elimination rule together with equality typesensures that wrech is unique.
It is easy to see that the rule (wrec) implies that eachWAB is an initial algebra for
TA.B, and indeed the following theorem (see, for example, Abbott, 2003, theorem 5.2.2)
allows us to identify W-types and initial algebras of containers.

Theorem 3.6. W-types are precisely the initial algebras of container functors in one
parameter:

WAB∼= µX. ∑AXB = µX. TA.BX .

We consider that this notion summarises the essence of Martin-Löf’s Type Theory from
a categorical perspective, hence the following definition.

Definition 3.7. A Martin-Löf categoryis an extensive locally cartesian closed category
with an initial algebra for every container functor (i.e. W-types).

We know that W-types exist in toposes with natural numbers objects (Moerdijk and
Palmgren, 2000, proposition 3.6) and in categories which are both locally cartesian
closed and locally presentable (Abbott et al., 2003, theorem 6.8).

4 Initial Algebras of Containers

One consequence of theorem 3.6 is that in the presence of W-types we can immediately
constructµ-types for containers in one parameter. However, the construction of aµ-
type for a container in multiple parameters is a more delicate matter and will require
the introduction of some additional definitions.

Let F :CI+1 → C be a container in multiple parameters, which we can write as

F(X,Y) ≡ TS.P,Q(X,Y) = ∑s: S.
(
∏i∈I XPi(s)

i

)
×YQ(s) = ∑S

(
∏I XP

×YQ)
.

The task is to compute(A . B) such thatTA.BX ∼= µY.F(X,Y). Clearly

A∼= TA.B1∼= µY. F(1,Y) ∼= µY. ∑s: S. YQ(s) ∼= WSQ ,

but the construction ofWSQ` B is more tricky.
In the rest of this paper we will ignore the index setI and writeXP for ∏I XP. In

particular, this means that the familyB ∈ (C/WSQ)I will be treated uniformly (as if
I = 1). It is a straightforward exercise to generalize the development to arbibrary index
sets. We will therefore take

F(X,Y) ≡ ∑S(X
P
×YQ) .

To simplify the algebra of types we will writeS,AQ `P+∑Q ε∗B as an abbreviation
for the type expression (whereε is the evaluation mapAQ×Q→ A):

s: S, f : AQ(s) ` P(s)+∑q: Q(s). B(f q) .

For conciseness, write the initial algebra onA = WSQ asψ : ∑SAQ → A.

Proposition 4.1. Given the notation above, ifWSQ ` B is equipped with an fibred
family of isomorphisms:

S, AQ
` ϕ : P+∑Q ε∗B∼= ψ∗B

then TA.BX ∼= µY.F(X,Y).

Proof. First we show that eachTA.BX is anF(X,−) algebra thus:

F(X,TA.BX) = ∑S

(
XP

×
(
∑AXB)Q

)
∼= ∑S

(
XP

×∑AQ ∏QXε∗B
)

∼= ∑S∑AQ

(
XP

×∏QXε∗B
)
∼= ∑S∑AQ XP+∑Q ε∗B

ϕ−1

∼= ∑S∑AQ Xψ∗B
(ψ,id)
∼= ∑AXB = TA.BX .

With variabless: S, g : XP(s) and h :
(
∑AXB

)Q(s)
note that we can decomposeh into

componentsπ · h : AQ(s) and π ′ · h : ∏q : Q(s).XB(πhq) and so the algebra morphism
in : F(X,TA.BX) → TA.BX can be conveniently written as

in(s,g,h) = (ψ(s,π ·h),
[
g;π ′

·h
]
·ϕ−1) ;

conversely, given variabless: S, f : AQ(s) andk : XB(ψ(s, f)), similarly note thatk ·ϕ ·κ ′

can be regarded as a term of type∏q: Q(s).XB(f q) and so we can write

in−1(ψ(s, f),k) = (s, k ·ϕ ·κ, (f ,k ·ϕ ·κ ′)) .

To show thatin is aninitial F (X,−)-algebra we need to construct from any algebra
α : F(X,Y) →Y a unique mapα : TA.BX →Y satisfying the algebra morphism equation
α · in = α ·F(X,α):

F(X,TA.BX)
in

F(X,α)

TA.BX

α

F(X,Y) α Y .

The mapα can be transposed to a termA ` α̃ : XB ⇒ Y which we will construct by
induction onA= WSQ. Givens:S, f :AQ(s) andk:XB(ψ(s, f)) constructg≡ k·ϕ ·κ :XP(s)

andh≡ k ·ϕ ·κ ′ : ∏q : Q(s).XB(f q). In this context defineH(s, f ,β)(k) ≡ α(s,g,β (h))
and compute

α̃(ψ(s, f))(k) = α(ψ(s, f),k) = α · in · (s,g,(f ,h))

= α ·F(X,α) · (s,g,(f ,h)) = α(s,g,α · (f ,h))

= α(s,g,(α̃ · f)(h)) = H(s, f , α̃ · f)(k) .

This shows that̃α = wrecH and thus thatTA.BX is anF(X,−)-initial algebra.

Note that we can discover from the proposition above thatB is defined uniquely up
to isomorphism (sinceµY.F(X,Y) is unique). The intuitive reason for this is thatB
corresponds to the type of paths in a finite tree, and consequently there cannot be any
infinite paths. The structure of the functorX 7→ P+ ∑Q ε∗X respects the structure of
the initial algebraψ, which forcesB to be unique. Compare this with Wraith’s theorem
(Johnstone, 1977, theorem 6.19), for the special caseA = N.

Of course, it remains to prove the hypothesis of the theorem above, that a family
A` B with the given isomorphismϕ exists; we do this below in proposition 5.1.

5 Constructing a Fixed Point over an Initial Algebra

Proposition 4.1 relies on the hypothesis that the functorX 7→ P+ ∑Q ε∗X has a fixed
point “over” the initial algebraψ : TS.QA→ A, or in other words there exists aB such
thatP+∑Q ε∗B∼= ψ∗B. This fixed point does indeed exist, as asubtypeof a W-type.

Proposition 5.1. For each fixed pointψ : TS.QA∼= A there exists an object ÀB such
that there is an isomorphism:

S,AQ
` P+∑Q ε∗B∼= ψ∗B .

Proof. Write S,AQ ` ϕ : P+∑Q ε∗B→ ψ∗B for the isomorphism that we wish to
construct. As already noted, we cannot directly appeal to W-types to construct this
fixed point, so the first step is to create a fixed point equationthat wecansolve. Begin
by “erasing” the type dependency ofB and construct (writing∑QY ∼= Q×Y, etc)

B̂≡ µY. ∑S∑AQ

(
P+Q×Y

)
∼= µY.

(
∑S(A

Q
×P)+

(
∑S(A

Q
×Q)

)
×Y

)

∼= List
(
∑S(A

Q
×Q)

)
×∑S(A

Q
×P) ;

there is no problem in constructing arbitrary lists inC soB̂ clearly exists.
The task now is to select the “well-formed” elements ofB̂. A list in B̂ can be thought

of as a putative path through a tree inµY.TS.P,Q(X,Y); we wantB(a) to be the set of all
valid paths toX-substitutable locations in the tree.

An element ofB̂ can be conveniently written as a list followed by a tuple thus

([(s0, f0,q0), . . . ,(sn−1, fn−1,qn−1)],(sn, fn, p))

for si : S, fi : AQ(si), qi : Q(si) and p : P(sn). The condition that this is a well formed
element ofB(ψ(s0, f0)) can be expressed as then equations

fi(qi) = ψ(si+1, fi+1) for i < n

which can be captured as an equaliser diagram

∑AB
e

πB

B̂

ϖ

α

β
ListA

A

whereα, β andϖ are defined inductively on̂B as follows (andπB ≡ ϖ ·e):

α(nil, p′) = nil α(cons((s, f ,q), l), p′) = cons(f q,α(l , p′))

ϖ(nil,(s, f , p)) = ψ(s, f) ϖ(cons((s, f ,q), l), p′) = ψ(s, f)

β (nil, p′) = nil β (cons(b, l), p′) = cons(ϖ(l , p′),β (l , p′)) .

The property thatb : B̂ is an element ofB can be writtenb : B(ϖb) and uisng these
equations we can establish:

(nil,(s, f , p)) : B(ψ(s, f)) (1)

f q = ϖ(l , p′)∧ (l , p′) : B(f q) =⇒ (cons((s, f ,q), l), p′) : B(ψ(s, f)) . (2)

The converse to (2) also holds, since(cons((s, f ,q), l), p′) : B(ψ(s, f)) ⇐⇒

cons(f q,α(l , p′)) = cons(ϖ(l , p′),β (l , p′)) ⇐⇒ f q = ϖ(l , p′)∧ (l , p′) : B(f q).
The isomorphismϕ̂ : ∑S∑AQ(P+Q× B̂) ∼= B̂ can now be used to construct the

isomorphismϕ for B. Writing an element of∑S∑AQ(P + Q× B̂) as (s, f ,κ p) or
(s, f ,κ ′(q,b)), the functionϕ̂ can be computed thus:

∑S∑AQ(P+Q× B̂)
ϕ̂
∼=

List
(
∑S(A

Q×Q)
)

×∑S(A
Q×P)

= B̂

(s, f ,κ p) ←→ (nil,(s, f , p))

(s, f ,κ ′(q,(l , p′))) ←→ (cons((s, f ,q), l), p′) .

To show that̂ϕ restricts to a morphismϕ : P+∑Q ε∗B→ ψ∗B we need to show for each
s: Sand f : AQ thatx : (P(s)+∑q: Q(s).B(f q)) impliesϕ̂(s, f ,x) : B(ψ(s, f)).

When x = κ p we immediately havêϕ(s, f ,κ p) = (nil,(s, f , p)) : B(ψ(s, f)) by
(1) above. Now let(s, f ,κ ′(q,(l , p′))) be given with (l , p′) : B(f q) (which means,
in particular, thatϖ(l , p′) = f q) and consider the equation̂ϕ(s, f ,κ ′(q,(l , p′))) =
(cons((s, f ,q), l), p′), then by (2) this is also inB(ψ(s, f)). Thusϕ̂ restricts to

s: S, f : AQ(s) ` ϕs, f : P(s)+∑q: Q(s). B(f q) −→ B(ψ(s, f)) .

We have, in effect, constructedϕ making the diagram below commute:

∑S∑AQ

(
P+∑Q ε∗B

) ϕ

π

∑AB

πB
e∑SAQ ψ

A

∑S∑AQ(P+Q× B̂)
ϕ̂

π

B̂

ϖ

.

To show thatϕ is an isomorphism we need to show thatϕ̂−1 restricts to an inverse
to ϕ. As before we can analyseb:B(ψ(s, f)) into two cases, and show that in both cases
ϕ̂−1b: P(s)+∑q: Q(s).B(f q).

Whenb= (nil,(s, f , p)) thenϕ̂−1b= (s, f ,κ p) which can be regarded as an element
of P(s). Whenb = (cons((s, f ,q), l), p′) and soϕ̂−1b = (s, f ,κ ′(q,(l , p′))) it is enough
to observe thatb : B(ψ(s, f)) implies (l , p′) : B(f q) and hencêϕ−1b arises from an
element of∑q: Q(s).B(f q).

Combining 4.1 and 5.1 we obtain as a corollary:

Corollary 5.2. If C has W-types then containers are closed under the construction of
µ-types.

6 Strictly Positive Inductive Types

We now have enough machinery in place to observe that all strictly positive types can
be described as containers.

Definition 6.1. A strictly positive inductive type (SPIT) inn variables (Abel and
Altenkirch, 2000) is a type expression (with type variablesX1, . . . ,Xn) built up
inductively according to the following rules:

– if K is a constant type (with no type variables) then K is a SPIT;
– each type variable Xi is a SPIT;
– if F, G are SPITs then so are F+G and F×G;
– if K is a constant type and F a SPIT then K⇒ F is a SPIT;
– if F is a SPIT in n+1 variables thenµX.F is a SPIT in n variables (for X any type

variable).

Note that the type expression for a SPITF can be interpreted as a functorF :Cn → C,
and indeed we can see that each strictly positive type corresponds to a container inGn.

Let strictly positive typesF , G be represented by containers(A . B) and(C . D)
respectively, then the table below shows the correspondence between strictly positive
types and containers.

K 7→ (K . 0) Xi 7→ (1 . (δi, j) j∈I)

F +G 7→ (A+C . B ◦
+D) F ×G 7→ (a: A, c:C . B(a)×D(c))

K ⇒ F 7→
(

f : AK . ∑k : K. B(f k)
)

As we have seen in this paper the construction of fixed points can be described in
a uniform way. LetF be represented by(S. P,Q) ∈ GI+1, then for each fixed point
ψ : TS.QA∼= A of TS.Q we have constructed in proposition 5.1 an isomorphism overψ,
written here asA` BA, of the form

s: S, f : AQ(s) ` ϕ : P(s)+∑q: Q(s). BA(f s) −→ BA(ψ(s, f)) ;

we can now define

µY. F 7→ (WSQ . BWSQ) .

Our development can be summarised by the following:

Theorem 6.2. All strictly positive inductive types can be represented within a Martin-
Löf category.

Proof. This is a consequence of corollary 5.2 and the discussion above.

7 Discussion and further work
An important extension of the work presented here is to include coinductive types,
νX.F , corresponding to terminal coalgebras, to cover non-well founded data structures
such as streams (StreamA = νX.A×X), which are used extensively in lazy functional
programming. We have also established (see Abbott, 2003, p.78 and Abbott et al.,
2004), that Martin-L̈of categories are closed underν-types—this can be reduced to
constructing the dual of W-types which we dub M-types.

Another interesting extension would be to consider inductive and coinductively
defined families (such as vectors or simply typedλ -terms). Again, we conjecture that
it should be possible to represent those within Martin-Löf categories. This result would
provide further evidence establishing that these categories provide a convenient and
concise base for intuitionistic Type Theory.

References
M. Abbott. Categories of Containers. PhD thesis, University of Leicester, 2003.
M. Abbott, T. Altenkirch, and N. Ghani. Categories of containers. InProceedings

of Foundations of Software Science and Computation Structures, volume 2620 of
Lecture Notes in Computer Science, 2003.

M. Abbott, T. Altenkirch, and N. Ghani. Representing strictly positive types. Presented
at APPSEM annual meeting, invited for submission to Theoretical Computer
Science, 2004.

A. Abel and T. Altenkirch. A predicative strong normalisation proof for aλ -calculus
with interleaving inductive types. InTypes for Proof and Programs, TYPES ’99,
volume 1956 ofLecture Notes in Computer Science, 2000.

P. Dybjer. Representing inductively defined sets by wellorderings in Martin-L̈of’s type
theory.Theoretical Computer Science, 176:329–335, 1997.

P. Dybjer and A. Setzer. A finite axiomatization of inductive-recursive definitions. In
Typed Lambda Calculus and Applications, pages 129–146, 1999.

P. Dybjer and A. Setzer. Indexed induction-recursion.Lecture Notes in Computer
Science, 2183, 2001.

N. Gambino and M. Hyland. Wellfounded trees and dependent polynomial functors.
In S. Berardi, M. Coppo, and F. Damiani, editors,Types for Proofs and Programs
(TYPES 2003), Lecture Notes in Computer Science, 2004.

M. Hofmann. On the interpretation of type theory in locally cartesian closed categories.
In CSL, pages 427–441, 1994.

B. Jacobs.Categorical Logic and Type Theory. Number 141 in Studies in Logic and
the Foundations of Mathematics. Elsevier, 1999.

P. T. Johnstone.Topos Theory. Academic Press, 1977.
P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.
I. Moerdijk and E. Palmgren. Wellfounded trees in categories. Annals of Pure and

Applied Logic, 104:189–218, 2000.
B. Nordstr̈om, K. Petersson, and J. M. Smith.Programming in Martin-L̈of ’s Type

Theory. Number 7 in International Series of Monographs on ComputerScience.
Oxford University Press, 1990.

T. Streicher. Semantics of Type Theory. Progress in Theoretical Computer Science.
Birkhäuser Verlag, 1991.

