Representing Nested Inductive Types
using W-types

Michael Abbott, Thorsten Altenkirch, and Neil Gharli

1 Department of Mathematics and Computer Science, University of Lieices
michael@araneidae.co.uk,ngl3@mcs.le.ac.uk
2 School of Computer Science and Information Technology, Nottinghaiveltsity
txa@cs.nott.ac.uk

Abstract. We show that strictly positive inductive types, constructed from
polynomial functors, constant exponentiation and arbitrarily nestedctivéu
types exist in any Martin-&f category (extensive locally cartesian closed
category with W-types) by exploiting our work on container types. This
generalises a result by Dybjer (1997) who showed that non-nesiettygiositive
inductive types can be represented using W-types. We also provideitede
analysis of the categorical infrastructure needed to establish the result.

1 Introduction

Inductive types play a central role in programming and aoe$ive reasoning. From an
intuitionistic point of view we can understand strictly fto® inductive types (SPITs)
as well-founded trees, which may be infinitely branchinge Ténguage of SPITs is
built from polynomial types and exponentials, enriched lepastructomu for inductive
types. In this language we can conveniently construct fantypes such as the natural
numbersN = uX. 1+ X; binary trees, BTrees uX. 1+ X x X; lists parameterised over
atype ListA = uX.14 A x X; ordinals, Ord= uX.1+ X + X~: and finitely branching
trees as the fixpoint of Lists, FTreeuY.ListY = puY.uX.1+ X x Y. Categoricallyu
corresponds to taking the initial algebra of a given functor

The grammar of SPITs can be easily defined inductively, sdmitien 6.1.
However, we would like to have a simple semantic criterionclvhguarantees the
existence of SPITs. Dybjer (1997) shows that inductive $ypeer strictly positive
operators constructed using only polynomials in a singleetyariable and fixed
exponentiation can be constructed in extensional Type fijhesing W-types, the type
of well-founded trees introduced in Martin3f. (1984). However, Dybjer (1997) does
not consider any nesting of inductive types, e.g. the exarRpree is not covered by
his definition. Here we present a more general result whiokwshhat nested inductive
types can be constructed using only W-types and we analgssategorical framework
in more detail.

An important ingredient in our construction is the insigh&t SPITs give rise to
containers, which we have investigated in Abbott et al. @@hd which are the topic
of Abbott (2003). The basic notion of @ntaineris a dependent pair of types- B
creating a functofa.gX = 5 a: A. XB®. A morphism of containeréA- B) — (CI- D)

is a pair of morphisméu: A — C, f : u*D — B). With this definition of a category of
containers we can construct a full and faithful functary — [C,C].

However, when constructing fixed points it is also necessarake account of
containers with parameters, so we defing4 — [C',C] for each parameter index set
|. For the purposes of this paper the indexIsedn be regarded as a finite set, but this
makes little practical difference to the development.

It is easy to show that containers are closed under sums addgis and constant
exponentiation, see Abbott et al. (2003); this is also dorigyibjer (1997) for containers
in one variable. W-types are precisely the initial algetosontainers in one variable
(theorem 3.6), hence constructing inductive types overnglsivariable SPITs is
straightforward and already covered (in part) by Dybjer&rkv However, the general
case for nested types corresponds to showing that corga@merclosed under initial
algebras. The problem boils down (proposition 4.1) to sgh\an equation on families
of types up to isomorphism, which is achieved in proposifidh

The work presented here also overcomes a shortcoming oftAbbal. (2003):
there we constructed initial algebras of containers usie@ssumption that the ambient
category is locally finitely presentable. Alas, this asstiomprules out many interesting
examples of categories, in particular realisability medalch asv-sets. This is fixed
here, since we only have to require that the category has-Jppés, i.e. initial algebras
of container functors, which can be easily established dalisability models. Since
dependent types and inductive types are the core of MaiifislType Theory, we
call categories with this structubMartin-Lof categoriessee definition 3.7. Dybjer and
Setzer (1999, 2001) present general schemes for inductive ihductive-recursive)
definitions but they do not present a reduction to a combirigd® W-types. Moreover,
they also use universes extensively.

Recently Gambino and Hyland (2004) have put our results ini@meneral context
and indeed their theorem 12 generalizes our propositiontd.dependently typed
containers, which they call dependent polynomial funct&imilarily, their theorem
14 is closely related to our proposition 4.1. We also learotnf their work that this
construction is related to the proof in Moerdijk and Palnmg(2000) that W-types
localise to slice categories.

2 Definitions and Notation

This paper uses the dependent internal language of a laatigsian closed category
C: see Streicher (1991), Hofmann (1994), Jacobs (1999) ahot#(2003) for details.
The key idea is regard an obj&t C/A as afamily of objects ofC indexed by elements
of A, and to regard? as thecontextin which B regarded as type dependent on i
defined.

Elementsof A will be represented by morphisnfsU — A in C, andsubstitution
of f for Aiin B is implemented by pulling back along f to f*B € C/U. We start to
build the internal language by writirg: A+ B(a) to express8 as a typelependenbn
values inA, and then the result of substitution bis written asu:U - B(fu). We will
treatB(a) as an alias foB andB(fu) as an alias forf *B, and we’'ll writea: A+ B(a)
or even justA + B for B € C/A—variables will be omitted from the internal language
where practical for conciseness.

Note that substitution by pullback extends to a funcfor. C/A— C/U: for
conciseness of presentation we will assume that substitotirresponds precisely to a
choice of pullback, but for a more detailed treatment of s#seés involved see Hofmann
(1994) and Abbott (2003).

Termsof type A+ B correspond tglobal elementsf B, which is to say morphisms
t:1— Bin C/A. Inthe internal language we write At-t(a): B(a) for such a morphism
in C. We will write t for t(a) where practical, again omitting a variable when it can be
inferred. Given objecA+ B andA+ C we will write A+ f :B — C for a morphism in
C/A, and similarlyAt f : B2 C for an isomorphism.

The morphism inC associated wittB € C/A will be written asmg:y,B— A
(the display mapfor B); the transformatiorB — 3 5B becomes a left adjoint functor
> 1715, where pulling back alongg plays the role ofweakeningwith respect
to a variableb: B(a) in contexta:A. In the type theory we’ll writey B € C
as 1+ ya:AB(a), or more concisely- 5B, with elementst (t,u): ya:AB(a)
corresponding to elemenitst : A and- u: B(t).

More generally, all of the constructions described heralise: given an arbitrary
context/” € C and an objectA € C/I" we can use the isomorphisgC/IM)/A =
C/SrAto interpret/,a: A+ B(a) both as a morphismi: B — Ain C/I" and
astg:>aB— S Ain C, andy extends to provide a left adjoint to every substitution
functor. We will writel” ,a: A, b:B(a) - C(a,b) or justl" ;A/B+ C as a shorthand for
I, (a,b):3ABFC(ab).

Local cartesian closed structure Gnallows right adjoints to weakeningy - [a
to be constructed for evelfy - A with type expressioft - [Ja:A.B(b) for I' - [aB
derived from/™, A B. Finally theequality type AA Eq, is represented as an object of
C/A x A by the diagonal morphisra: A — Ax A, and more generallif ,A,A+ Egj.
Given parallel morphisms, v into A the equality type has the key property that an
element of EQu,v) = (u,v)* Eq, exists precisely when = v as morphisms of.

For coproducts in the internal language to behave propérlyparticular for
containers to be closed under products, we require@Havedisjoint coproducts: the
pullback of distinct coprojections; : Aj — S A into a coproduct is always the initial
object 0. When this holds the funct@/A+B — (C/A) x (C/B) takingA+ B C to
(Al k*C, BF k’*C) is an equivalence: write- + — for the inverse functor. Thus given
AF BandC D (with display mapsi andmp) we writeA+C - B+ D for their disjoint
sum; this satisfies two identitieSia,c(B+ D) = Y4B+ ScD and g = I8 + H
(modulo the preceding isomorphism).

Given a (finite) index seit define[C', CY] to be the category dfbred functors and
natural transformation§' — C where the fibre of’' overl” € C is thel-fold product
(C/r)". Of course, whed = 1 we will write this agC', C].

Basic Properties of Containers
We summarise here the development of containers in Abbatt £003).
Definition 2.1. Given an index set | define tleategory of container®; as follows:

— Objects are pairgA c C, B < (C/A)'); write this as(A> B) € 4
— A morphism(A> B) — (C»> D) is a pair (u,f) for uuA—C in C and
f:(u)'D—Bin(C/A).

Note that the alternative of defining an- 1-ary container as an indexed familyrefry
containers is equivalent to this definition (Abbott, 200&gmsition 4.1.1).
A container(A> B) € 4 can be written using type theoretic notation as

FA i:l,a:AF Bi(a) .
A morphism(u, f): (A> B) — (C> D) can be written in type theoretic notation as
u:A—=C i:l,a:At fi(a):Dij(ua) — Bi(a) .

Finally, each A B) € 4, thought of as a syntactic presentation of a datatype, geter
a fibred functofa.g : C' — C which is its semantics.

Definition 2.2. Define thecontainer construction functdr: 4 — [C',C] as follows.
Given(Ar B) € % and X< C' define

TasX =Y a:A [ig xiBi(a> 7

and for (u, f): (A B) — (C»> D) define T 1 : Ta.e — Tcop t0 be the natural transfor-
mation T+ X : Ta.X — Tc-pX thus:

(@,9): TasX = TuX(a,9) = (U(@), (9 - fi)ier) -
The following proposition follows more or less immediatbly the construction of .

Proposition 2.3 (Abbott et al., 2003, proposition 3.3)For each container € ¢4 and
each container morphism : F — G the functor ¥ and natural transformation J are
fibred overC. O

By making essential use of the fact that the natural transdtions in[C', C] are fibred
we can show that is full and faithful.

Theorem 2.4 (ibid., theorem 3.4)The functor T:4 — [C',C] s full and faithful. O

This theorem gives a particularly simple analysis of polypiic functions between
container functors. For example, it is easy to observe thetet are precisely™
polymorphic functionsx" — X™: the data typeX" is the containef1 n) and hence
there is a bijection between polymorphic functiok$ — X™ and functionsm — n.
Similarly, any polymorphic function List — ListX can be uniquely written as a
functionu: N — N together with for each natural numhberN, a functionf,:un— n.

It turns out that eacly, inherits products and coproducts froBy and thatT
preserves them:

Proposition 2.5 (ibid., propositions 4.1, 4.2)If C has products and coproducts then
% has products and coproducts preserved by T. O

Given containerd- € 4,1 and G € 4 we can compose their images underto
construct the functor

(idcr, Te)

T
Te[Te] = (C c'xczct_Fsq) .

This composition can be lifted to a functer[—]: %11 x4 — 4 as follows. For a
container iné 1 write (A B,E) € 4,1, whereB € (C/A)" andE € C/A and define:

(A > B,E)[(C > D)= (a:A, f:CE@ & (Bi(a) + Y e:E(a). Di(fe))iel) .

In other words, given type constructd$X,Y) andG(X) this construction defines the
composite type construct®G|(X) = F (X, G(X)).

Proposition 2.6 (ibid., proposition 6.1). Composition of containers commutes with
composition of functors thusgTTg] = Tr(g).- O

This shows how composition of containers captures the ceitipo of container
functors. More generally, it is worth observing that a cosipon of containers of
the form —o —:% x ¢} — ¥ reflecting composition of functor€’ — C' — C can

also be defined making containers into a bicategory withli3-tiee index set$ and

the category of homs frorhto J given by the container categof§f’ (Abbott, 2003,

proposition 4.4.4).

3 Initial Algebras and W-Types

In this section we discuss the construction of initial algestfor container functors and
the principles in the ambient categdtyused to construct them.

Initial algebras can be regarded as the fundamental bgildlocks used to introduce
recursive datatypes into type theory. Initial algebrasndefivell founded” structures,
which can be regarded as the expression of terminating gsese

Definition 3.1. Analgebrafor a functor F: C — C is an object Xe C together with a
morphism hFX — X; refer to X as thecarrierof the algebra. Aralgebra morphism
(X,h) — (Y,k) is a morphism fX —Y satisfying the identity fh = k-Ff. An
initial algebrafor F is then an initial object in the category of algebras aaldebra
morphisms.

The following result tells us that initial algebras for a &tor F arefixed pointsof F,
and indeed the initial algebra is often called the least fp@idt.

Proposition 3.2 (Lambek’s Lemma).Initial algebras are isomorphisms. O

The following useful result about initial algebras tells that initial algebras with
parameters extend to functors, and so can be constructéuwjse”.

Proposition 3.3. Given a functor ED x C — C if each endofunctor EX,—) onC has
an initial algebra(GX, aX) then G extends to a functor:® — C and o to a natural
transformationa : F[G] — G. O

We can now define an operatipnconstructing the least fixed point of a functors. If we
regard a functoF : D x C — C as a type constructdf(X,Y) then we can can regard
the fixed points defined below as types.

Definition 3.4. Given a functor ED x C — C regarded as a type constructor(R,Y)
defineuY.F(X,Y) to be the initial algebra of the functor (X, —).

To extend this definition ofi-types to containers observe that for contairters 4 1
andG € ¢ the operatiorG — F[G], with Tgig X = Te (X, TeX) is an endofunctor on
9. Thus giverF € 4,1 we will write uF for the initial algebra ofF[—]: 4 — 4.

We will show in this paper that the functpr: 4.1 — ¢ exists, and that the initial
algebra of a container functor is a container functor.

W-Types

In Martin-Lof's Type Theory (Martin-bf, 1984; Nordstdm et al., 1990) the building
block for inductive constructions is the W-type. Given a ilgnof constructorsA+ B

the typeWa: A.B(a) (or WaB) should be regarded as the type of “well founded trees”
constructed by regarding eaahA as a constructor of aritB(a).

The standard presentation of a W-type is through one typmifay rule, an
introduction rule and an elimination rule, together with equation. As the type
theoretic development in this paper focuses entirely orgmatcal models, we take
W-types to beextensionallydefined. Indeed, extensional Type Theory as presented in
Martin-Lof (1984) represents the canonical example of a Martihdategory.

Definition 3.5. A type systerhas W-typesff it has a type constructor

rA-B

- WaB (W-type)

together with a constructor term
r,a:A f:(WaB)B@ I supga,b):WaB (sup)

and an elimination rule

I, WaB I C
I, a:A f:(WaB)B@ g:[b:B(a).C(fb) F h(a, f,g):C(supa, f))
[, w:WaB + wreg,(w):C(w)

(wrec)

satisfying the equation for variables A and f: (WaB)B@®:
wreg,(supa, f)) =h(a, f,wreq,-f) .

Note that the elimination rule together with equality typesures that wrgds unique.
It is easy to see that the rule (wrec) implies that e&¢kB is an initial algebra for
Tas-B, and indeed the following theorem (see, for example, AbROO3, theorem 5.2.2)
allows us to identify W-types and initial algebras of contas.

Theorem 3.6. W-types are precisely the initial algebras of containerdians in one
parameter:

WaB 2 pX. ZAXB = uX. TagX . O

We consider that this notion summarises the essence ofrMaifis Type Theory from
a categorical perspective, hence the following definition.

Definition 3.7. A Martin-Lof categoryis an extensive locally cartesian closed category
with an initial algebra for every container functor (i.e. Wpes).

We know that W-types exist in toposes with natural numbejsaib (Moerdijk and
Palmgren, 2000, proposition 3.6) and in categories whiehbath locally cartesian
closed and locally presentable (Abbott et al., 2003, thede3).

4 Initial Algebras of Containers

One consequence of theorem 3.6 is that in the presence op&¢-tye can immediately
constructu-types for containers in one parameter. However, the cactin of au-
type for a container in multiple parameters is a more dedicaatter and will require

the introduction of some additional definitions.
Let F:C'*1 — C be a container in multiple parameters, which we can write as

F(X.Y)=Tepa(X,Y) = ¥ 5:S ([T %7%) x YO = TS (T, X" < YQ)
The task is to comput@A > B) such thaffa.gX = uY.F(X,Y). Clearly

A=Tpgl=pY. F(LY)=pY. §s:S YR ~wWeQ |
but the construction ofVsQ - B is more tricky.

In the rest of this paper we will ignore the index setnd writeX” for], XP. In
particular, this means that the fami/c (C/WsQ)' will be treated uniformly (as if
I = 1). Itis a straightforward exercise to generalize the dgwelent to arbibrary index
sets. We will therefore take

FOGY) =5 (XPxYQ) .

To simplify the algebra of types we will writg, AQ - P+ Yoé& Basan abbreviation
for the type expression (whegeis the evaluation map® x Q — A):

s:S f:A%9 - P(s)+ 3 q:Q(s). B(fq) -
For conciseness, write the initial algebrads WsQ asy: 5 sAQ — A.

Proposition 4.1. Given the notation above, WsQ I B is equipped with an fibred
family of isomorphisms:

S AQ + $:P+Y ,e'B=yY'B

then FosX = uY.F(X,Y).

Proof. First we show that eachy.gX is anF (X, —) algebra thus:

F(X, TasX) = Zs(x" zAxB)Q) =y (x" XS e I—les*B)
oL (XP : noxs*s) DRI

N ZSZAQ z xB = TaX .

With variabless: S, g: XP® andh: (54 XB)%® note that we can decompobeinto

componentst-h: AR and 7 - h: Ma:Q(s). XB(mMAd) and so the algebra morphism
in:F(X,Ta-8X) — Ta.gX can be conveniently written as

in(s, 9, h) = (4’(37 Us h)7 [gv - h] '¢71) ;

conversely, given variables S, f : AQ andk: XB¥(SH) similarly note thak- ¢ - k’
can be regarded as a term of tyjel: Q(s). XB('9) and so we can write

inil(w(sa f)ak) = (57 K-¢-k, (f,k(l) 'K/)) .

To show thain is aninitial F (X, —)-algebra we need to construct from any algebra
a:F(X,Y) — Y aunique mamr : Ta.gX — Y satisfying the algebra morphism equation
a-in=a-F(X,0):

F(X, TasX) D> TapX
\ \
F(X,a)i a
¥ ¥
FX,Y) ——=Y
The mapa can be transposed to a tedt- @ : XB = Y which we will construct by
induction onA = WsQ. Givens:S, f : A andk: XB¥(s1) construcg=k- ¢ - k : XP©
andh=k- ¢ -k":[79:Q(s).XB'9. In this context defin¢i (s, f, B) (k) = a(s,g, B(h))
and compute

a(y(s 1)) (k) =a(y(sf).k =a-in-(sg,(f,h)
:GF(X,U) (g(’)):G(Sg, (f’h))
=a(sg (a-f)(h)=H(sfa-f)k) .

This shows thalr = wreqy and thus thala.gX is anF (X, —)-initial algebra. O

Note that we can discover from the proposition above Bé defined uniquely up
to isomorphism (sincgtY.F(X,Y) is unique). The intuitive reason for this is that
corresponds to the type of paths in a finite tree, and consdélgiubere cannot be any
infinite paths. The structure of the functér— P+ Yo &*X respects the structure of
the initial algebrap, which forcesB to be unique. Compare this with Wraith’s theorem
(Johnstone, 1977, theorem 6.19), for the special AaseN.

Of course, it remains to prove the hypothesis of the theoreovey that a family
At B with the given isomorphism exists; we do this below in proposition 5.1.

5 Constructing a Fixed Point over an Initial Algebra

Proposition 4.1 relies on the hypothesis that the funkter P+ yo&*X has a fixed
point “over” the initial algebrap: Ts.oA — A, or in other words there existsBasuch
thatP + 3 o €"B = ¢*B. This fixed point does indeed exist, asubtypeof a W-type.

Proposition 5.1. For each fixed pointy: Ts.oA =2 A there exists an objectAB such
that there is an isomorphism:

SAQ - P+ Y oEB=Y'B .

Proof. Write SAQ - ¢ :P+ Yo&'B— (B for the isomorphism that we wish to
construct. As already noted, we cannot directly appeal ttypes to construct this
fixed point, so the first step is to create a fixed point equatiabhwecansolve. Begin
by “erasing” the type dependency Bfand construct (writing oY = Q x Y, etc)

B=HY. 353 s0(P+QxY) 2 pY. (T AP+ (T (A2x Q) xY)
=~ List (ZS(AQ X Q)) x 3 (AQxP) ;

there is no problem in constructing arbitrary listsirsoB clearly exists.

The task now is to select the “well-formed” element®oA list in B can be thought
of as a putative path through a treelil. Ts.po (X, Y); we wantB(a) to be the set of all
valid paths toX-substitutable locations in the tree.

An element of8 can be conveniently written as a list followed by a tuple thus

([(s0, f0,q0), - - -, (Sn-1, fn-1,Gn-1)], (Sn, Tn, D))

for 5:S fi: ARS) g :Q(s) and p: P(sy). The condition that this is a well formed
element oB(((so, fo)) can be expressed as thequations

fi(q) = Y(s41, fizr) fori<n
which can be captured as an equaliser diagram

e . a
ZAB B ListA

wherea, B andw are defined inductively oB as follows (and = @ - €):

a(cons((s, ,q),1), p') = cons(fa,a(l,p'))
w(s f) @(cons((s, f,q),1),p) = w(s f)
B(Cons(bvl)v p) = COI’IS(W(|, p/)vﬁ(lap/)) .

a(nil, p)
w(nil, (s, f,p))
B(nil, p')

The property thab: B is an element oB can be writterb: B(wb) and uisng these
equations we can establish:

(nil, (s, f,p)) :B(Y(s T)) (1)
fa=a(l,p)A(I,p):B(fq) = (cons((s, f,a).1),p):B(y(s) . (2)

The converse to (2) also holds, sindeons((s,f,q),l),p): B(y(s,f)) <~
Cons(an a(l) p/)) = COI’]S(WU, p/)7B(| ’ p/)) — fq= w(l) d) A (I ’ p/) : B(fQ)

The isomorphismd: T3 xo(P+Qx B) =2 B can now be used to construct the
isomorphism¢ for B. Writing an element ofy g3 so (P + Q X B) as (s, f,kp) or
(s, f,k’(g,b)), the functionp can be computed thus:

0 List(sq(A?%x Q) =
S aPrxs) & VLTI
(s, f,kp) — (nil(sf,p)
(s, f,k'(a.(1,p))) < (cons((s. f.q),1).p) -
To show thafp restricts to a morphism : P+ 5 o £*B — ("B we need to show for each
s:Sandf: AP thatx: (P(s) + 3 q: Q(s).B(fq)) implies§ (s, f,x): B(y(s,)).

When x = kp we immediately have(s, f,kp) = (nil,(s, f,p)) : B(Y(s, f)) by
(1) above. Now let(s, f,«’(q,(I,p'))) be given with(l,p"): B(fq) (which means,
in particular, thatw(l,p’) = fq) and consider the equatiofi(s, f,k’(q,(l,p))) =
(cons((s, f,q),1),p), then by (2) this is also iB(y(s, f)). Thus restricts to

s:Sf1AU F ¢sr:P(s)+ Y q:Q(s). B(fa) — B(y(s. T))

We have, in effect, construct@dmaking the diagram below commute:

. ¢
Y530 (P+YocB) S AB
IT\‘\ ﬁ
ZSAQ L— A e
7'[/7 X
3 sy oP+QxB) 5 B .

To show thatp is an isomorphism we need to show tifat! restricts to an inverse
to ¢. As before we can analy®eB(y(s, f)) into two cases, and show that in both cases
6 'b:P(9)+5q:Q(9).B(fq).

Whenb = (nil, (s, f, p)) thend b= (s, f,k p) which can be regarded as an element
of P(s). Whenb = (cons((s, f,q),1),p) and sop b = (s, f,k’(qg,(I,p'))) it is enough

to observe thab: B(y(s, f)) implies (I, p') : B(fq) and hencep b arises from an
element ofs g: Q(s).B(fq). O

Combining 4.1 and 5.1 we obtain as a corollary:

Corollary 5.2. If C has W-types then containers are closed under the construofi
u-types.]

6 Strictly Positive Inductive Types

We now have enough machinery in place to observe that adtlgtpositive types can
be described as containers.

Definition 6.1. A strictly positive inductive type (SPIT) im variables (Abel and
Altenkirch, 2000) is a type expression (with type variabks...,X,) built up
inductively according to the following rules:

if K is a constant type (with no type variables) then K is a SPIT

each type variable Xs a SPIT;

if F, G are SPITs then so are +# G and Fx G;

if K is a constant type and F a SPIT then¥XF is a SPIT;

if F is a SPIT in 4 1 variables theruX.F is a SPIT in n variables (for X any type
variable).

Note that the type expression for a SHTcan be interpreted as a functer C" — C,
and indeed we can see that each strictly positive type quneks to a container i,.

Let strictly positive types=, G be represented by containdis> B) and (C > D)
respectively, then the table below shows the correspomdeetween strictly positive
types and containers.

K— (K> 0) Xi— (1> (8))jel)
F+G— (A+C > B¥D) F xGw (a:A, c:C > B(a) x D(c))
K=F (f:AC> S kK. B(fk))
As we have seen in this paper the construction of fixed poiatshe described in
a uniform way. LetF be represented b§S> P,Q) € 4.1, then for each fixed point

Y :Ts.oA = A of Te.g We have constructed in proposition 5.1 an isomorphism gner
written here af\ - By, of the form

s:S f:A%9 - ¢:P(s)+ 3 q:Q(s). Ba(fs) — Ba(@(s f)) ;
we can now define

pY. F— (WsQ > Bweo) -

Our development can be summarised by the following:

Theorem 6.2. All strictly positive inductive types can be representethiwia Martin-
Lof category.

Proof. This is a consequence of corollary 5.2 and the discussiomeabo O

7 Discussion and further work

An important extension of the work presented here is to mhelaoinductive types,
vX.F, corresponding to terminal coalgebras, to cover non-veelhtled data structures
such as streams (Stregkn= vX.A x X), which are used extensively in lazy functional
programming. We have also established (see Abbott, 20038 @nd Abbott et al.,
2004), that Martin-Ibf categories are closed undeftypes—this can be reduced to
constructing the dual of W-types which we dub M-types.

Another interesting extension would be to consider indecind coinductively
defined families (such as vectors or simply typederms). Again, we conjecture that
it should be possible to represent those within Martéf-tategories. This result would
provide further evidence establishing that these categgiovide a convenient and
concise base for intuitionistic Type Theory.

References

M. Abbott. Categories of Containerd?hD thesis, University of Leicester, 2003.

M. Abbott, T. Altenkirch, and N. Ghani. Categories of con&is. InProceedings
of Foundations of Software Science and Computation Stregtuolume 2620 of
Lecture Notes in Computer Scien2803.

M. Abbott, T. Altenkirch, and N. Ghani. Representing styigtositive types. Presented
at APPSEM annual meeting, invited for submission to ThécmbtComputer
Science, 2004.

A. Abel and T. Altenkirch. A predicative strong normalisatiproof for aA -calculus
with interleaving inductive types. Iiypes for Proof and Programs, TYPES ;99
volume 1956 ol_ecture Notes in Computer Scien@€00.

P. Dybjer. Representing inductively defined sets by wedlard)s in Martin-Lof's type
theory. Theoretical Computer Scienck76:329-335, 1997.

P. Dybjer and A. Setzer. A finite axiomatization of inductiexursive definitions. In
Typed Lambda Calculus and Applicatiopages 129-146, 1999.

P. Dybjer and A. Setzer. Indexed induction-recursidrecture Notes in Computer
Science2183, 2001.

N. Gambino and M. Hyland. Wellfounded trees and dependelynpmial functors.
In S. Berardi, M. Coppo, and F. Damiani, editofgpes for Proofs and Programs
(TYPES 2003)Lecture Notes in Computer Science, 2004.

M. Hofmann. On the interpretation of type theory in localgriesian closed categories.
In CSL, pages 427-441, 1994.

B. Jacobs.Categorical Logic and Type ThearfNumber 141 in Studies in Logic and
the Foundations of Mathematics. Elsevier, 1999.

P. T. JohnstoneTopos TheoryAcademic Press, 1977.

P. Martin-Lof. Intuitionistic Type TheoryBibliopolis, Napoli, 1984.

I. Moerdijk and E. Palmgren. Wellfounded trees in categoridnnals of Pure and
Applied Logi¢ 104:189-218, 2000.

B. Nordstbm, K. Petersson, and J. M. SmittProgramming in Martin-bf's Type
Theory Number 7 in International Series of Monographs on CompS8tgence.
Oxford University Press, 1990.

T. Streicher. Semantics of Type TheoryProgress in Theoretical Computer Science.
Birkhauser Verlag, 1991.

