
MGS 2011: FUN Lecture 1
Lazy Functional Programming

Henrik Nilsson

University of Nottingham, UK

MGS 2011: FUN Lecture 1 – p.1/40

What Is a Functional Language? (1)

• Imperative Languages :
- Implicit state.
- Computation essentially a sequence of

side-effecting actions.
• Declarative Languages (Lloyd 1994):

- No implicit state.
- A program can be regarded as a theory.
- Computation can be seen as deduction

from this theory.
- Examples: Logic and Functional Languages.

MGS 2011: FUN Lecture 1 – p.2/40

What Is a Functional Language? (2)

Another perspective:
• Algorithm = Logic + Control
• Declarative programming emphasises the

logic (“what”) rather than the control (“how”).
• Examples:

- Resolution (logic programming)
- Lazy evaluation (found in some functional

and logic languages)

MGS 2011: FUN Lecture 1 – p.3/40

What Is a Functional Language? (3)

Declarative languages for practical use tend to
be only weakly declarative ; i.e., not totally free
of control aspects. For example:

• Equations in functional languages are
directed.

• Order of patterns often matters for pattern
matching.

• Constructs for taking control over the order of
evaluation. (E.g. cut in Prolog, seq in
Haskell.)

MGS 2011: FUN Lecture 1 – p.4/40

What Is a Functional Language? (4)

Exactly what constitute a functional language is
somewhat contentious.

Pragmatically, a functional language is one that
encourages a mostly declarative, functional
style of programming.

Typical features/characteristics:
• Functions are first-class entities.
• Computation expressed through function

application.
• Recursive (and co-recursive) definitions.

MGS 2011: FUN Lecture 1 – p.5/40

What Is a Functional Language? (5)
This “definition” covers both:

• Pure functional languages: no side effects
- (Weakly) declarative: equational reasoning

valid (with care); referentially transparent .
- Example: Haskell

• Mostly functional languages: some side
effects, e.g. for I/O.
- Equational reasoning with care.
- Examples: ML, OCaml, Scheme, Erlang

(Real purists would point out that non-termination
is also a side effect.)

MGS 2011: FUN Lecture 1 – p.6/40

This and the Following Lectures

• In this and the following lectures we will
explore Purely Functional Programming
through the use of Haskell .

• Theme of today: Relinquishing control:
exploiting lazy evaluation

Will assume some familiarity with functional
programming in a language like Haskell or ML.
Will explain Haskell syntax and other points as
needed: Just ask!

MGS 2011: FUN Lecture 1 – p.7/40

Evaluation Orders (1)

Consider:

sqr x = x * x

dbl x = x + x

main = sqr (dbl (2 + 3))

Many possible reduction orders. Innermost,
leftmost redex first is called Applicative Order
Reduction (AOR):

main ⇒ sqr (dbl (2 + 3)) ⇒ sqr (dbl 5)

⇒ sqr (5 + 5) ⇒ sqr 10 ⇒ 10 * 10 ⇒ 100

This is just Call-By-Value .

MGS 2011: FUN Lecture 1 – p.8/40

Evaluation Orders (2)

Outermost, leftmost redex first is called Normal
Order Reduction (NOR):

main ⇒ sqr (dbl (2 + 3))

⇒ dbl (2 + 3) * dbl (2 + 3)

⇒ ((2 + 3) + (2 + 3)) * dbl (2 + 3)

⇒ (5 + (2 + 3)) * dbl (2 + 3)

⇒ (5 + 5) * dbl (2 + 3) ⇒ 10 * dbl (2 + 3)

⇒ ... ⇒ 10 * 10 ⇒ 100

(Applications of arithmetic operations only con-
sidered redexes once arguments are numbers.)
Demand-driven evaluation or Call-By-Need

MGS 2011: FUN Lecture 1 – p.9/40

Why Normal Order Reduction? (1)

NOR seems rather inefficient. Any use?
• Best possible termination properties. Two

important theorems from the λ-calculus:
- Church-Rosser Theorem I:

No term has more than one normal
form.

- Church-Rosser Theorem II:
If a term has a normal form, then NOR
will find it.

MGS 2011: FUN Lecture 1 – p.10/40

Why Normal Order Reduction? (2)

• More expressive power; e.g.:
- “Infinite” data structures
- Circular programming

• More declarative code as control aspects
(order of evaluation) left implicit.

MGS 2011: FUN Lecture 1 – p.11/40

Strict vs. Non-strict Semantics (1)

• ⊥, or “bottom”, the undefined value ,
representing errors and non-termination .

• A function f is strict iff:

f ⊥ = ⊥

For example, + is strict in both its arguments:

(0/0) + 1 = ⊥ + 1 = ⊥

1 + (0/0) = 1 + ⊥ = ⊥

MGS 2011: FUN Lecture 1 – p.12/40

Strict vs. Non-strict Semantics (2)

Consider:

foo x = 1

What is the value of foo (0/0)?

• AOR: foo (0/0) ⇒ ⊥

Conceptually, foo ⊥ = ⊥; i.e., foo is strict.
• NOR: foo (0/0) ⇒ 1

Conceptually, foo ⊥ = 1; i.e., foo is non-strict.

Thus, NOR results in non-strict semantics.
Note: NOR gave well-defined result, AOR did not.

MGS 2011: FUN Lecture 1 – p.13/40

Lazy Evaluation (1)

Lazy evaluation is an technique for
implementing NOR more efficiently:

• An expression is evaluated only if needed .
• Sharing employed to ensure any one

expression evaluated at most once.

MGS 2011: FUN Lecture 1 – p.14/40

Lazy Evaluation (2)

sqr (dbl (2 + 3))

⇒ dbl (2 + 3) * (•)

⇒ ((2 + 3) + (•)) * (•)

⇒ (5 + (•)) * (•)

⇒ 10 * (•)

⇒ 100
MGS 2011: FUN Lecture 1 – p.15/40

Infinite Data Structures (1)

take 0 xs = []

take n [] = []

take n (x:xs) = x : take (n-1) xs

from n = n : from (n+1)

nats = from 0

main = take 5 nats

MGS 2011: FUN Lecture 1 – p.16/40

Infinite Data Structures (2)

main⇒1 take 5 (•) ⇒4 0:take 4 (•)

⇒6 0:1:take 3 (•) ⇒8 . . .

⇒ 0:1:2:3:4:take 0 (•) ⇒ [0,1,2,3,4]

nats ⇒2 from 0 ⇒3 0: from 1

⇒5 0:1: from 2 ⇒7 . . . ⇒ 0:1:2:3:4: from 5

MGS 2011: FUN Lecture 1 – p.17/40

Circular Data Structures (2)

take 0 xs = []

take n [] = []

take n (x:xs) = x : take (n-1) xs

ones = 1 : ones

main = take 5 ones

MGS 2011: FUN Lecture 1 – p.18/40

Circular Data Structures (2)

main⇒1 take 5 (•) ⇒3 1:take 4 (•)

⇒4 1:1:take 3 (•) ⇒5 . . .

⇒ 1:1:1:1:1:take 0 (•) ⇒ [1,1,1,1,1]

ones ⇒2 1 : •

MGS 2011: FUN Lecture 1 – p.19/40

Circular Programming (1)

A non-empty tree type:

data Tree = Leaf Int | Node Tree Tree

Suppose we would like to write a function that
replaces each leaf integer in a given tree with the
smallest integer in that tree.

How many passes over the tree are needed?

One!

MGS 2011: FUN Lecture 1 – p.20/40

Circular Programming (2)

Write a function that replaces all leaf integers by
a given integer, and returns the new tree along
with the smallest integer of the given tree:

fmr :: Int -> Tree -> (Tree, Int)

fmr m (Leaf i) = (Leaf m, i)

fmr m (Node tl tr) =

(Node tl’ tr’, min ml mr)

where

(tl’, ml) = fmr m tl

(tr’, mr) = fmr m tr

MGS 2011: FUN Lecture 1 – p.21/40

Circular Programming (3)

For a given tree t, the desired tree is now
obtained as the solution to the equation:

(t’, m) = fmr m t

Thus:

findMinReplace t = t’

where

(t’, m) = fmr m t

Intuitively, this works because fmr can compute
its result without needing to know the value of m.

MGS 2011: FUN Lecture 1 – p.22/40

A Simple Spreadsheet Evaluator

a b c

1 c3 + c2

2 a3 * b2 2 a2 + b2

3 7 a2 + a3

s

⇒

a b c

1 37

2 14 2 16

3 7 21

r
r = array (bounds s)

[((i,j), eval r (s!(i,j)))

| (i,j) <- indices s]

The evaluated sheet is again simply the solution
to the stated equation. No need to worry about
evaluation order. Any caveats?

MGS 2011: FUN Lecture 1 – p.23/40

Breadth-first Numbering (1)

Consider the problem of numbering a possibly
infinitely deep tree in breadth-first order:

1

3

7

10

1413

6

2

54

9

1211

8

MGS 2011: FUN Lecture 1 – p.24/40

Breadth-first Numbering (2)

The following algorithm is due to G. Jones and J.
Gibbons (1992), but the presentation differs.

Consider the following tree type:

data Tree a = Empty

| Node (Tree a) a (Tree a)

Define:
width t i The width of a tree t at level i

(0 origin).
label t i j The jth label at level i of a

tree t (0 origin).
MGS 2011: FUN Lecture 1 – p.25/40

Breadth-first Numbering (3)

The following system of equations defines
breadth-first numbering:

label t 0 0 = 1 (1)

label t (i + 1) 0 = label t i 0 + width t i (2)

label t i (j + 1) = label t i j + 1 (3)

Note that label t i 0 is defined for all levels i (as
long as the widths of all tree levels are finite).

MGS 2011: FUN Lecture 1 – p.26/40

Breadth-first Numbering (4)

The code that follows sets up the defining system
of equations:

• Streams (infinite lists) of labels are used as a
mediating data structure to allow equations
to be set up between adjacent nodes within
levels and between the last node at one level
and the first node at the next.

• Idea: the tree numbering function for a subtree
takes a stream of labels for the first node at
each level, and returns a stream of labels for
the node after the last node at each level.

MGS 2011: FUN Lecture 1 – p.27/40

Breadth-first Numbering (5)

• As there manifestly are no cyclic dependences
among the equations, we can entrust the
details of solving them to the lazy evaluation
machinery in the safe knowledge that a
solution will be found.

MGS 2011: FUN Lecture 1 – p.28/40

Breadth-first Numbering (6)
bfn :: Tree a -> Tree Integer

bfn t = t’

where

(ns, t’) = bfnAux (1 : ns) t

bfnAux :: [Integer] -> Tree a

-> ([Integer], Tree Integer)

bfnAux ns Empty = (ns, Empty)

bfnAux (n : ns) (Node tl _ tr) = ((n + 1) : ns’’ ,

Node tl’ n tr’)

where

(ns’, tl’) = bfnAux ns tl

(ns’’, tr’) = bfnAux ns’ tr

Eqns (1) & (2)

Eqn (3)

MGS 2011: FUN Lecture 1 – p.29/40

Dynamic Programming

Dynamic Programming :
• Create a table of all subproblems that ever

will have to be solved.
• Fill in table without regard to whether the

solution to that particular subproblem will be
needed.

• Combine solutions to form overall solution.

Lazy Evaluation is a perfect match as saves us
from having to worry about finding a suitable
evaluation order.

MGS 2011: FUN Lecture 1 – p.30/40

The Triangulation Problem (1)

Select a set of chords that divides a convex
polygon into triangles such that:

• no two chords cross each other
• the sum of their length is minimal.

We will only consider computing the minimal
length.

See Aho, Hopcroft, Ullman (1983) for details.

MGS 2011: FUN Lecture 1 – p.31/40

The Triangulation Problem (2)

v1

v2 v3

v4

v5

v6

v7

MGS 2011: FUN Lecture 1 – p.32/40

The Triangulation Problem (3)
• Let Sis denote the subproblem of size s

starting at vertex vi of finding the minimum
triangulation of the polygon vi, vi+1, . . . , vi+s−1

(counting modulo the number of vertices).
• Subproblems of size less than 4 are trivial.
• Solving Sis is done by solving Si,k+1 and

Si+k,s−k for all k, 1 ≤ k ≤ s − 2.

• The obvious recursive formulation results in
3s−4 (non-trivial) calls.

• But for n ≥ 4 vertices there are only n(n − 3)
non-trivial subproblems!

MGS 2011: FUN Lecture 1 – p.33/40

The Triangulation Problem (4)

vi

vi+k

vi+s−1

Si,k+1 Si+k,s−k

MGS 2011: FUN Lecture 1 – p.34/40

The Triangulation Problem (5)

• Let Cis denote the minimal triangulation cost
of Sis.

• Let D(vp, vq) denote the length of a chord
between vp and vq (length is 0 for non-chords;
i.e. adjacent vp and vq).

• For s ≥ 4:

Cis = min
k∈[1,s−2]

{

Ci,k+1 + Ci+k,s−k

+D(vi, vi+k) + D(vi+k, vi+s−1)

}

• For s < 4, Sis = 0.

MGS 2011: FUN Lecture 1 – p.35/40

The Triangulation Problem (6)

These equations can be transliterated straight
into Haskell:
triCost :: Polygon -> Double

triCost p = cost!(0,n) where

cost = array ((0,0), (n-1,n))

([((i,s),

minimum [cost!(i, k+1)

+ cost!((i+k) ‘mod‘ n, s-k)

+ dist p i ((i+k) ‘mod‘ n)

+ dist p ((i+k) ‘mod‘ n)

((i+s-1) ‘mod‘ n)

| k <- [1..s-2]])

| i <- [0..n-1], s <- [4..n]] ++

[((i,s), 0.0)

| i <- [0..n-1], s <- [0..3]])

n = snd (bounds b) + 1

MGS 2011: FUN Lecture 1 – p.36/40

Attribute Grammars (1)

Lazy evaluation is also very useful for evaluation
of Attribute Grammars :

• The attribution function is defined recursively
over the tree:
- takes inherited attributes as extra

arguments;
- returns a tuple of all synthesised attributes.

• As long as there exists some possible
attribution order, lazy evaluation will take care
of the attribute evaluation.

MGS 2011: FUN Lecture 1 – p.37/40

Attribute Grammars (2)

• The earlier examples on Circular Programming
and Breadth-first Numbering can be seen as
instances of this idea.

MGS 2011: FUN Lecture 1 – p.38/40

Reading

• John W. Lloyd. Practical advantages of
declarative programming. In Joint Conference
on Declarative Programming,
GULP-PRODE’94, 1994.

• John Hughes. Why Functional Programming
Matters. The Computer Journal,
32(2):98–197, April 1989.

• Thomas Johnsson. Attribute Grammars as a
Functional Programming Paradigm. In
Functional Programming Languages and
Computer Architecture, FPCA’87, 1987

MGS 2011: FUN Lecture 1 – p.39/40

Reading

• Geraint Jones and Jeremy Gibbons.
Linear-time breadth-first tree algorithms: An
exercise in the arithmetic of folds and zips.
Technical Report TR-31-92, Oxford University
Computing Laboratory, 1992.

• Alfred Aho, John Hopcroft, Jeffrey Ullman.
Data Structures and Algorithms.
Addison-Wesley, 1983.

MGS 2011: FUN Lecture 1 – p.40/40

	What Is a Functional Language? (1)
	What Is a Functional Language? (2)
	What Is a Functional Language? (3)
	What Is a Functional Language? (4)
	What Is a Functional Language? (5)
	This and the Following Lectures
	Evaluation Orders (1)
	Evaluation Orders (2)
	Why Normal Order Reduction? (1)
	Why Normal Order Reduction? (2)
	Strict vs. Non-strict Semantics (1)
	Strict vs. Non-strict Semantics (2)
	Lazy Evaluation (1)
	Lazy Evaluation (2)
	Infinite Data Structures (1)
	Infinite Data Structures (2)
	Circular Data Structures (2)
	Circular Data Structures (2)
	Circular Programming (1)
	Circular Programming (2)
	Circular Programming (3)
	A Simple Spreadsheet Evaluator
	Breadth-first Numbering (1)
	Breadth-first Numbering (2)
	Breadth-first Numbering (3)
	Breadth-first Numbering (4)
	Breadth-first Numbering (5)
	Breadth-first Numbering (6)
	Dynamic Programming
	The Triangulation Problem (1)
	The Triangulation Problem (2)
	The Triangulation Problem (3)
	The Triangulation Problem (4)
	The Triangulation Problem (5)
	The Triangulation Problem (6)
	Attribute Grammars (1)
	Attribute Grammars (2)
	Reading
	Reading

