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Fig. 1. A monochrome image is scribbled with some initial colors (left), these colors are then propagated to the whole image using 
our color by linear neighborhood embedding method (middle). For reference, the original image is shown on the right. 

 
Abstract - This paper presents a new semiautomatic method for 
adding colors to monochrome images. The new method, termed 
color by linear neighborhood embedding (CLNE) first computes 
the geometry of local image patches in the monochrome image 
and then transmits the geometry to the chrominance. Following 
computational methods of the locally linear embedding (LLE) 
algorithm, we compute the geometry of the monochrome image 
by solving a constrained least squares problem and embed the 
computed geometry in the chrominance images by solving a 
linearly constrained quadratic optimization problem, both in 
closed forms. We also show that the computed geometry of 
different color channels are highly correlated thus empirically 
supporting methods that embed the geometry of the monochrome 
in the chrominance for colorization. 
 

I. INTRODUCTION 
 
Adding color to monochrome image has a long history, and 
recently there has been renewed effort to develop tools and 
algorithms for automating this laborious process [1, 2]. The 
work of [1], which also partially inspired this paper, used a 
simple premise that neighboring pixels that have similar 
intensities should have similar colors. Closely related to [1], 
[2] exploited the fact that the (scalar) luminance channel 
faithfully represents the geometry of the whole (vectorial) 
image and formalized the premise of [1] by inpainting using 
the gradients from the provided monochrome image thereby 
transmitting the geometry among the color channels. 
 

Another recent work which has also partially motivated 
this paper is the locally linear embedding (LLE) algorithm [3, 
4]. LLE characterizes the local geometry of a high 
dimensional manifold by linear coefficients that reconstruct 
each data point from its neighbors. The local geometry in a 

high dimensional space is then transmitted to a low 
dimensional space by (global) embedding. The LLE algorithm 
is an elegant method due to the fact that both the local 
geometry in the high dimensional space and the embedding in 
the lower dimensional space can be computed in closed forms 
using standard methods for solving constrained least squares 
problems and sparse eigenvector problems. 

 
In this paper, we also exploit the fact that luminance 

channel faithfully represents the geometry of the whole image, 
but we use a computational approach similar to LLE to 
compute the characteristics of the local geometry of the 
monochrome image provided. We then transmit the 
luminance’s geometry to the chrominance using a method 
similar to the embedding process of the LLE algorithm, which 
uses the colors scribbled on by the user as the linear 
constraints to solve a quadratic optimization problem. 

 
Our colorization algorithm, which we term color by linear 

neighborhood embedding (CLNE) and LLE may be described 
by following analogies. The LLE computes the local geometry 
of manifold patches in a high dimensional space and CLNE 
computes the geometry of local spatial neighborhood pixels in 
the provided monochrome image. The LLE embeds the 
geometry of the high dimensional space in a low dimensional 
space and CLNE embeds the geometry of the monochrome 
image in the chrominance images. The computational methods 
of CLNE follow closely those used by LLE but under different 
constraints. 

 
II. LOCAL PIXEL GEOMETRY 

 
Any two-dimensional image can be described as the sum of a 
set of points. Due to optical and other system aberrations, 
neighboring points (pixels) are correlated. A general imaging 



model can be expressed in terms of the light field that reaches 
the camera’s imaging plane and the system’s point spread 
function. Assume x = (x, y) ∈ R2and ξ = (ξ, η) ∈R2 are pixel 
coordinates in the imaging and object planes respectively, 
then an image, I(x) is formed as  
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where h( )is the point spread function (PSF) of the imaging 
system, E( ) is the light field that would have reached the 
imaging plane. For color image, different color channels will 
have different sensor responses to illumination wavelengths 
and there will be additions integrations over illumination 
wavelengths and over time. A true imaging model would have 
to consider noise as well. We omit these details in the imaging 
model since they should not affect our discussion in this 
paper. 
 

From the imaging formation model, it is clear that 
neighboring pixels would have been correlated by the PSF. 
h(x) will normally have a limited support, i.e., it will only 
have nonzero values in the vicinity of x and zero everywhere 
else, also h(x) is normalized, i.e., integration of h(x) over the 
entire space will result in unity.  
 
A. Within Channel Local Pixel Geometry 
 
To characterize the neighborhood pixels correlation within the 
same color channel, we can use a linear combination of a 
pixel’s neighbors to represent the pixel itself: 
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where m = (m, n) ∈ R2 denotes a two dimensional grid, Nx is a 
local pixel neighborhood centered around x. For a given 
image, I(x), we can compute the pixel neighborhood relation 
coefficients, wx(m)’s, by optimizing following cost function 

( ) ( ) ( )∑ ∑
∈

−=
x Nm

x
x

m-xmxWε
2

)( IwI   (3) 

Optimizing (3) is a constrained least squares problem, i.e., 
minimizing ε(W) subject to two constraints. The first 
constraint is that wx(m) = 0 for m ∉ Nx, and the second is that 
all neighborhood relation coefficients for each pixel, wx(m)’s, 
sum to 1. wx(m)’s characterize the geometry of a local 
neighborhood of pixels. 
 

We recognize that (3) is very similar to the first step in the 
locally linear embedding (LLE) algorithm developed for high 
dimensionality reduction [3, 4]. The local neighborhood 
relation coefficients that best reconstruct each pixel can be 
computed in closed form, and we follow the method suggested 
in [4] by solving a linear system of equations. Since in our 
case, finding the coefficients does not have a unique solution, 
we again follow the method of [4] to recondition the problem 
before solving the system of linear equations. For algorithm 
details, readers are referred to the excellent tutorial article [4]. 
 
B. Between Channel Local Pixel Geometry 
 
For different color channels, the PSF can be roughly assumed 
to be the same. It is therefore reasonable to expect that the 
local pixel relation coefficients, wx(m)’s, computed in one 
color channel will be similar to those computed from another 
color channel. To test the validity of this assumption, we have 
used many natural color photographs and computed the local 
pixel relation coefficients in separate color channels. We 

represented the color images in the YUV color space. For each 
image, we then computed the local relation coefficients on 
each channel, i.e., by solving following constrained least 
squares problems 
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We then computed the normalized cross correlation between 
the local relation coefficients of different channels as 
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ere |x| represents the total number of pixels in the image. 
Table 1 shows the values of these correlation measures for 
eight testing images 
 
Table 1, Cross correlations of local pixel relation coefficients across 
color channels 

Images 1 2 3 4 5 6 7 8 
ρYU 0.83 0.82 0.80 0.89 0.79 0.81 0.81 0.85 
ρYV 0.81 0.83 0.81 0.90 0.81 0.78 0.77 0.85 
ρVU 0.90 0.87 1.00 0.90 0.89 0.87 0.87 0.91 

From Table 1, it is seen that the local embedding 
coefficients across color channels are highly correlated with 
an averaged cross correlation coefficient above 0.85, which 
indicates that the relation of a pixels and its neighbors in 
different color channels follow a very similar pattern. This is 
also in agreement with other authors work, see e.g. [2] and 
reference therein, which states that the luminance faithfully 
represents the geometry of the whole image. 

 
Based on this highly correlated property of the cross 

channel local pixel relation coefficients, we develop a 
colorization method that embeds the local pixel relation 
coefficients computed from the luminance channel to the 
chrominance channels, in a way similar in spirit to the locally 
linear embedding algorithm for embedding the geometry of 
the high dimensional manifolds in lower dimensional ones [3, 
4]. 

 
III. COLOR BY NEIGHBORHOOD EMBEDDING 

 
For a given monochrome image, Y, to be colorized, we use it 
directly as the luminance channel (Y) in a YUV color space to 
construct a color version of the image. We first compute the 
local pixel neighborhood relations of Y by solving a 
constrained least squares problem similar to the first step of 
the LLE algorithm. We then compute the UV signals by 
assuming that the UV channels having the same local pixel 
neighborhood relations as the Y channel. This is achieved by 
solving a linearly constrained quadratic optimization problem 
similar to the embedding step of LLE with user scribbled 
colors as constraints. Our color by linear neighborhood 
embedding (CLNE) algorithm consists of following steps. 
 
Step 1: Computing luminance geometry  
 
For the given monochrome image Y(x), we solve the 
constrained least squares problem (4) to obtain the local pixel 
relation coefficients, wx(m)’s. The constraints and the closed 



form solution to this problem were discussed in the previous 
section.  
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Step 2: Embedding the colors 
 
Once the local pixel relation coefficients, wx(m)’s, have been 
computed from the given monochrome image, they are then 
fixed and used to (globally) embed the colors scribbled on by 
the user. The two chromaticity signals, C(x) = (U(x), V(x)), 
are generated by solving the following linearly constrained 
optimization problems 
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The cost function, similar to (4), is based on locally linear 
reconstruction errors, but this time the weights, wx(m)’s 
(computed from Step 1) are fixed while optimizing the 
chromaticity C(x) subject to the color constraints scribbled on 
by the user, i.e., at locations xi, C(xi) = (ui, vi), i = 1, 2, … 
This problem has some well-known solutions, we again follow 
the method of LLE under different constraints.  
 

It is worthy mentioning that [1] solved a similar problem 
but with different wx(m)’s to ours. The optimization approach 
of [1] implemented the intuitive premise “pixels with similar 
intensities should have similar colors”. Our approach is more 
formal in the sense that (5) and (4) have exactly the same form 
and the geometry of the monochrome computed using (4) is 
transmitted (unaltered) onto the chromas using (5). 
 

 
IV. RESULTS 

 
We have implemented our CLNE algorithm in Matlab. As 
discussed in the text, we followed the methods suggested by 
the authors of LLE [3, 4] (but under different constraints) to 
solve both the local relation coefficients (4) and the color 
embedding (5) problems in closed forms. The initial colors 
were scribbled on by the user similar to the way it was done in 
the work of [1, 2]. Fig.2 shows examples of the results of our 
colorization algorithm and that of [1]. More examples of our 
method are shown in Figures 1 and 3. These results show that 
the algorithm is quite effective. 

 
 

V. CONCLUDING REMARKS 
 
Our method is closely related to the method of [1] which 
partially inspired our work. Computationally, our method is 
more similar to LLE [3, 4]. Unlike [1] and [2] we computed 
the local pixel neighborhood geometry of the provided 
monochrome image by solving a constrained least squares 
problem. We also empirically showed that the (computed) 
geometries of the local pixel patches of different color 
channels were highly correlated hence justifying the 

embedding of the geometry from the monochrome to the 
chrominance images. Our work suggested an alternative 
approach to semiautomatically colorizing monochrome 
images, also, we provided empirical evidence that justified our 
method as well as supported methods of previous authors [1, 
2].  
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Fig. 2, Examples of colorization results. Monochrome images with 
user scribbled colors (left column), results of our CLNE method 
(middle column) and results of the method of [1] (right column). 
 
 
 
 
 
 
 
 
 
 
 



  

  

  

  

  
Fig. 3, More examples of our algorithm. Left column: original monochrome with user scribbled initial colors. Right column: colorization results 
by CLNE.  


