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Computer Arithmetic
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Number Systems

Binary:

Hexadecimal:

Word Size: (Fixed) number of bits used to represent a number
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Integer Representation

Representing arbitrary numbers

Human: -1101.01012 = -13.312510

Computer: 
Only binary digits
No minus signs
No dot (period)

Fixed point Representation:
radix point (binary point) assumed to be to the right of
the rightmost digit.
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Non Negative Integer Representation

If we want to represent nonnegative integers only

Then

If an n-bit sequence of binary digits bn-1bn-2 �b0 is interpreted
as an unsigned integer A, its value is
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Sign-magnitude representation

Sign-magnitude representation: Most significant bit (sign
bit) used  to indicate the sign and the rest represent the
magnitude.  if

sign bit = 0 Positive number
sign bit = 1 Negative number
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+18 = 00010010

-18 = 10010010
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Sign-magnitude representation

Problems with sign-magnitude representation:

�Addition and subtraction:

Require examination of  both sign and magnitude

�Representing zero: +0 and -0

+0 = 00000000

-0 = 10000000
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Twos complement representation

Characteristics of twos complement representation
and arithmetic

�Range: -2 n-1 to 2 n-1 - 1, one zero (For an n-bit word)

�Negation: Take the Boolean complement of each bit of the
corresponding positive number and add 1 to the resulting bit pattern

�Expansion of bit length: Add additional bit positions to the left and
fill in with the value of the original sign bit.

�Overflow rule: If two numbers have the same sign are added, then
overflow occurs iif (if and only if) the result has the opposite sign.

�Subtraction Rule: To subtract B from A, take the twos complement
of B and add it to A
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Conversion between twos complement and decimal

Decimal Sign  Twos
Magnitude Complement

+7 0111 0111
+6 0110 0110
+5 0101 0101
+4 0100 0100
+3 0011 0011
+2 0010 0010
+1 0001 0001
+0 0000 0000

Decimal Sign  Twos
Magnitude Complement

-0 1000 ------
-1 1001 1111
-2 1010 1110
-3 1011 1101
-4 1100 1100
-5 1101 1011
-6 1110 1010
-7 1111 1001

Twos complement representation

Awkward to human, but very convenient for computer�.
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Conversion between twos complement and decimal

Twos complement representation
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Value range for an n-bit number

Positive Number Range: 0 ~ 2n-2

Negative number range: -1 ~ - 2n-2

Examples: 

School of Computer Science G51CSA

10

Conversion between different bit lengths

+18 =                 00010010 (sign magnitude, 8-bit)
+18 = 0000000000010010 (sign magnitude, 16-bit)
-18 =                 10010010 (sign magnitude, 8-bit)
-18 = 1000000000010010 (sign magnitude, 16-bit)

+18 =                 00010010 (twos complement, 8-bit)
+18 = 0000000000010010 (twos complement, 16-bit)
-18 =                 11101110 (twos complement, 8-bit)
-18 = 1111111111101110 (twos complement, 16-bit)

Fixed point Representation

Twos complement representation
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Integer Arithmetic

Negation

Sign-magnitude: Invert the sign bit

Twos complement:

�Invert each bit (including the sign bit).
�Treat the result as unsigned binary integer, and add 1

E.g.
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Integer Arithmetic

Addition and Subtraction Overflow
Result larger than can be
held in the word size being
used resulting in overflow.

If two numbers have the same
sign are added, then overflow
occurs iif (if and only if) the
result has the opposite sign.

Carry bit ignored
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Subtraction
To subtract one number
(subtrahend) from another
number minuend), take the
twos complement (negation)
of the subtrahend and add it
to the minuend.

Integer Arithmetic

(M - S)

Overflow rule
applies here also
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Integer Arithmetic

Addition and Subtraction Hardware Block Diagram
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Integer Arithmetic

Multiplication: Unsigned binary integers
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Integer Arithmetic
Multiplication

Flowchart for unsigned binary multiplication
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Integer Arithmetic (IV)

Division: Unsigned binary integer
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� Numbers with fractions

� Could be done in pure binary
1001.1010 = 24 + 20 +2-1 + 2-3 =9.625

� Where is the binary point?

� Fixed?
Very limited - cannot represent very large or very small numbers

� Moving?
How do you show where it is?

Real Numbers
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Floating Point Representation
Principles

Scientific notation:

141043.5000,000,000,000,543 ��

Slide the decimal point to a convenient location
Keep track of the decimal point use the exponent of 10

Do the same with binary number in the form of
EBS �

�� �Sign: + or -
�Significant: S
�Exponent: E
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Floating Point Representation

Example

�32-bit floating point format.
�Leftmost bit = sign bit (0 positive or 1 negative).
�Exponent in the next 8 bits. Use a biased representation.

A fixed value, called bias, is subtracted from the field to get the true exponent
value.  Typically, bias = 2k-1 - 1, where k is the number of bits in the exponent
field. Also known as excess-N format, where N = bias = 2k-1 - 1. (The bias could
take other values)

In this case: 8-bit exponent field, 0 - 255. Bias = 127. Exponent range -127 to
+128

�Final portion of word (23 bits in this example) is the significant
(sometimes called mantissa).
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Floating Point Representation

Many ways to represent a floating point number, e.g., 

625 20110.021102110.0 ���

Normalization:  Adjust the exponent such that the leading bit
(MSB) of mantissa is always 1. In this example, a normalized
nonzero number is in the form

Ebbbb �
�� 2... .1

�Left most bit always 1 - no need to store
�23-bit field used to store 24-bit mantissa with a value
between 1 to 2
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Floating Point Representation

�Sign stored in the first bit
�Left most bit of the TRUE mantissa always 1 - no need to store
�The value of 127 is added to the TRUE exponent to be stored
�The base is 2
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Floating Point Representation

�Expressible Numbers
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Floating Point Representation

The number of individual values - same for any fixed
length binary

Range:

Precision:

1 8 16

�Range and Precision
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IEEE 754 Standard

Floating Point Representation (VII)

�Single Format and Double Format

�Single Precision format:
�32 bits, sign = 1 bit, Exponent = 8bits, Mantissa = 32 bits

�Numbers are normalised to form:                                ;  where b = 0 or 1 

�Exponent formatted using excess-127 notation with implied base of 2

�Theoretical exponent range 2-127 to 2128

�Actuality, exponent values of 0 and 255 used for special values

�Exponent range restricted to -126 to 127

�0.0 defined by a mantissa of 0 and the special exponent value of 0

�Allows + - infinity defined by a mantissa value of 0 and exponent value 255

Ebbbb �
�� 2....1
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Floating Point Arithmetic

Addition and Subtraction

�Check for zero
�Align the significants
�Add or subtract the significants
�Normalise the result

E.g. 0.5566 x 103 + 0.7778 x 103

0.5323 x 102 + 0.7268 x 10-1


