

Sign-magnitude representation

Sign-magnitude representation

Sign-magnitude representation: Most significant bit (sign bit) used to indicate the sign and the rest represent the magnitude. if
sign bit $=0 \quad$ Positive number
sign bit $=1 \quad$ Negative number

$\boldsymbol{*}$ Addition and subtraction:
Require examination of both sign and magnitude

Representing zero: +0 and -0
$+0=00000000$
$-0=10000000$

Twos complement representation					
Conversion between twos complement and decimal					
Decimal	Sign Magnitude	Twos Complemen	Decimal	Sign Magnitude	Twos Complement
+7	0111	0111	-0	1000	------
+6	0110	0110		1001	1111
+5 +4 +4	0101 0100	0101 0100		1010 1011	1110 1101
+4 +3	0100 0011	0100 0011		1011 1100	1101 1100
	0010	0010		1101	1011
+1 +0	0001 0000	0001 0000	-6 -7	1110 1111	1010 1001
Awkward to human, but very convenient for computer....					
School of Computer Science G51CSA					

Twos complement representation

Conversion between different bit lengths

$+18=00010010$	(sign magnitude, 8-bit)
$+18=0000000000010010$	(sign magnitude, 16-bit)
$-18=10010010$	(sign magnitude, 8-bit)
$-18=1000000000010010$	(sign magnitude, 16-bit)
$+18=00010010$	(twos complement, 8-bit)
$+18=0000000000010010$	(twos complement, 16-bit)
$-18=\quad 11101110$	(twos complement, 8-bit)
$-18=1111111111101110$	(twos complement, 16-bit)
Fixed point Representatio	

Floating Point Representation (VII)
IEEE 754 Standard ©Single Format and Double Format \propto Single Precision format: $\Theta 32$ bits, sign $=1$ bit, Exponent $=8$ bits, Mantissa $=32$ bits \odot Numbers are normalised to form: $\pm 1 . b b b \ldots b \times 2^{ \pm E} \quad$; where $\mathrm{b}=0$ or 1 \odot Exponent formatted using excess-127 notation with implied base of 2 \rightarrow Theoretical exponent range 2^{-127} to 2^{128} \bigcirc Actuality, exponent values of 0 and 255 used for special values \rightarrow Exponent range restricted to -126 to 127 $\odot 0.0$ defined by a mantissa of 0 and the special exponent value of 0 \leftrightarrow Allows + - infinity defined by a mantissa value of 0 and exponent value 255
School of Computer Science G51CSA

Floating Point Arithmetic

Addition and Subtraction

©heck for zero
Align the significants
\boldsymbol{A} Add or subtract the significants
\boldsymbol{N} Normalise the result
E.g. $\quad 0.5566 \times 10^{3}+0.7778 \times 10^{3}$
$0.5323 \times 10^{2}+0.7268 \times 10^{-1}$ 26

