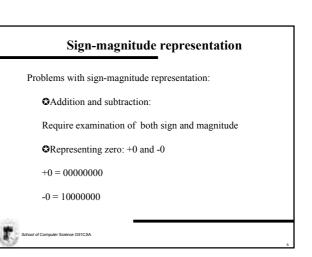
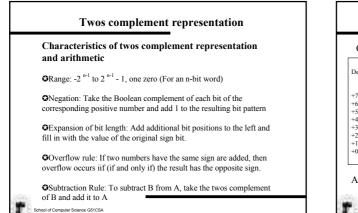


	Number Systems				
	Binary:				
	Hexadecimal:				
	Word Size: (Fixed) number of bits used to represent a number				
9	School of Computer Science GS1CSA				

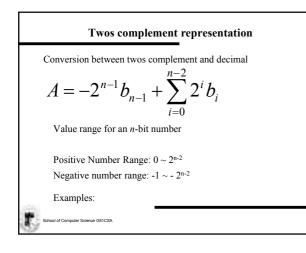
Non Negative Integer Representation

If we want to represent nonnegative integers only

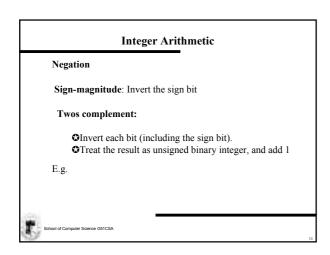

Then

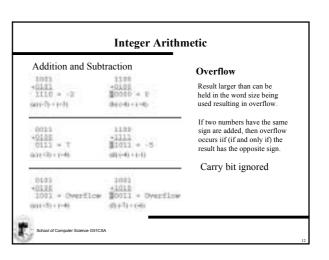

If an *n*-bit sequence of binary digits $b_{n-1}b_{n-2}...b_0$ is interpreted as an unsigned integer A, its value is

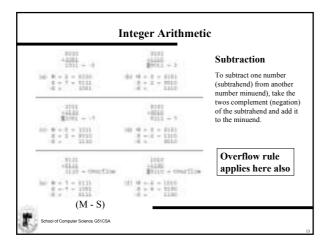
 $A = \sum_{i=0}^{n-1} 2^i b_i$

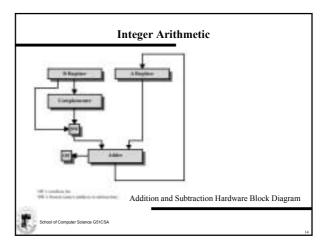

An 8-bit can represent the numbers from 0 -255

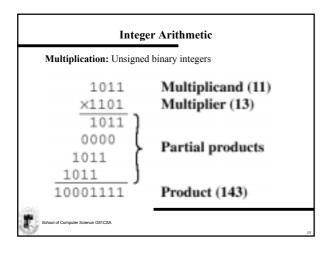
Sign-magnitude representation Sign-magnitude representation: Most significant bit (*sign bit*) used to indicate the sign and the rest represent the magnitude. if sign bit = 0 Positive number sign bit = 1 Negative number $A = \begin{cases} A = \sum_{i=0}^{n-2} 2^i b_i & \text{if } a_n = 0 \\ A = -\sum_{i=0}^{n-2} 2^i b_i & \text{if } a_n = 1 \end{cases}$ +18 = 00010010 -18 = 10010010

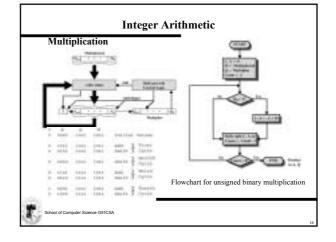


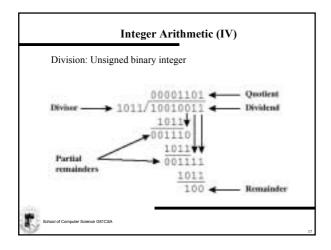


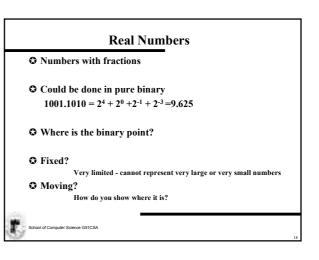

Decimal	Sign	Twos	Decimal	Sign	Twos
	Magnitude	Complement		Magnitude	Complement
+7	0111	0111	-0	1000	
+6	0110	0110	-1	1001	1111
+5	0101	0101	-2	1010	1110
+4	0100	0100	-3	1011	1101
+3	0011	0011	-4	1100	1100
+2	0010	0010	-5	1101	1011
+1	0001	0001	-6	1110	1010
+0	0000	0000	-7	1111	1001
D	0000	0000	-7	1111	1001

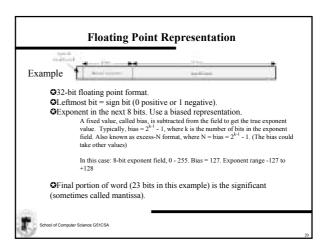


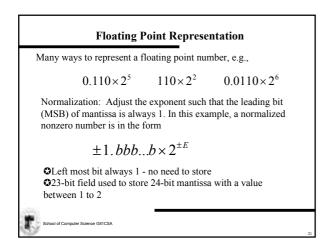

Conversion between different bit lengths						
		6				
+18 =	00010010	(sign magnitude, 8-bit)				
	000000010010	(sign magnitude, 16-bit)				
-18 =	10010010	(sign magnitude, 8-bit)				
-18 = 10000	00000010010	(sign magnitude, 16-bit)				
+18 =	00010010	(twos complement, 8-bit)				
+18 = 0000	000000010010	(twos complement, 16-bit)				
-18 =	11101110	(twos complement, 8-bit)				
-18 = 1111	111111101110	(twos complement, 16-bit)				
Fixed poin	t Representatio	n				

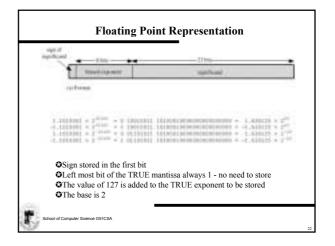


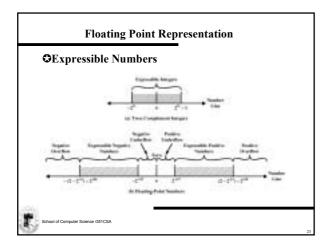


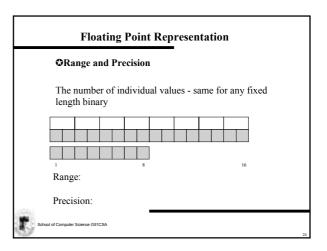











Principles	
Scientific notati	on:
543,000,0	$000,000,000 = 5.43 \times 10^{14}$
	al point to a convenient location e decimal point use the exponent of 10
Do the same wi	th binary number in the form of
$\pm S \times B^{\pm E}$	©Sign: + or - ©Significant: S ©Exponent: E

Floating Point Representation (VII)

IEEE 754 Standard

Single Format and Double Format

⇔Single Precision format:

- ⇔32 bits, sign = 1 bit, Exponent = 8bits, Mantissa = 32 bits
- □>Numbers are normalised to form: $\pm 1.bbb \dots b \times 2^{\pm k}$; where b = 0 or 1 □>Exponent formatted using excess-127 notation with implied base of 2
- Exponent formatted using excess-127 notation with implied
 Theoretical exponent range 2⁻¹²⁷ to 2¹²⁸
- ⇒Actuality, exponent values of 0 and 255 used for special values
- ⇒Exponent range restricted to -126 to 127
- ⇒0.0 defined by a mantissa of 0 and the special exponent value of 0
- O defined by a manussa of o and the special exponent value of o
 →Allows + infinity defined by a manussa value of 0 and exponent value 255

School of Computer Science G51CSA

Floating Point Arithmetic

Addition and Subtraction

Check for zero
Align the significants
Add or subtract the significants
Normalise the result

E.g. $0.5566 \ge 10^3 + 0.7778 \ge 10^3$

 $0.5323 \ge 10^2 + 0.7268 \ge 10^{-1}$

School of Computer Science G51CSA