
G52MLE Course Note

1

Perceptron

 This simple model calculates the weighted sum of the input feature vector and passes the weighted sum

through a hard thresholding function, outputs either a +1 or a -1

 This model can solve linearly separable problems.

 When a problem is linearly non-separable, the Perceptron algorithm will not converge.

Perceptron (Training) Algorithm

Let {X(k), d(k)}, k =1, 2, …K, are the K training samples, where X(k) = (x1(k), x2(k), …, xN(k)) is kth N-

dimensional feature vector, d(k) = +1 or d(k) = -1 is the desired output of X(k), then Perceptron training

algorithm can be described in the following pseudo code

Initialization
Define wi, i = 0, 1, 2, … N, and set wi to small random values, e.g., in the range [-1, 1]

Set x0(k) = 1, for all k =1, 2, … K

Set training rate tr to a value in [0, 1]

Set STOP_EPOCH = 100 // Training stops after STOP_EPOCH epochs (this value is set empirically)

Define CORRECT // This records the number of training samples correctly trained

Set epoch = 0

do

{

 epoch++

 CORRECT = 0

 for k = 1 to k = K

 {

 R(k)=0

 for i = 0 to i = N

 {

 R(k)+= wi*xi(k)

 }

if (R (k) > 0) o(k) = 1 else o(k) = -1

if (o(k) = = d(k)) CORECT++

else

{

 for i = 0 to N

 {

 wi = wi + tr*(d(k) – o(k))*xi(k)

 }

 }

 }

}

while (CORRECT < K) //training stops when all training samples are correctly learned

or

while (epoch < STOP_EPOCH) //training stops after a pre-set number of iterations

G52MLE Course Note

2

ADLINE and Gradient Descent Learning (Delta Rule)

 This model is similar to Perceptron, except that it directly outputs the weighted sum of the inputs.

 There are several key concepts

o Error function or cost function – this is defined as the squared difference between the actual

output and the desired output summed over all training samples

o Gradient descent training – training flows gradient descent or steepest descent rule where we

first calculate the gradient of the error function and then move the weights along the opposition

direction of the gradient.

Training ADLINE with Gradient Descent Rule

Let {X(k), d(k)}, k =1, 2, …K, are the K training samples, where X(k) = (x1(k), x2(k), …, xN(k)) is kth N-

dimensional feature vector, d(k) is the desired output of X(k), then ADLINE training with gradient descent

rule can be described in the following pseudo code

Initialization
Define wi, i = 0, 1, 2, … N, and set wi to small random values, e.g., in the range [-1, 1]

Set x0(k) = 1, for all k =1, 2, … K

Set training rate tr to a value in [0, 1]

Set STOP_EPOCH = 100 // Training stops after STOP_EPOCH epochs (this value is set empirically)

Define ERROR = STOP_ERROR // This defines the value of the error function, when it is below a pre-defined value

STOP_ERROR, training stops

Set epoch = 0

do

{

 epoch++

 ERROR = 0

 for i = 0 to N

 {

 Delta[i] = 0 //This Delta will be used in Batch Mode Learning

 }

 for k = 1 to k = K

 {

 o(k) = 0

 for i = 0 to i = N

 {

 o(k)+= wi*xi(k)

 }

 ERROR+= (o(k)-d(k))^2

 //If used online learning, then update the weights using the following for-loop

 for i = 0 to N

 {

 wi = wi + tr*(d(k) – o(k))*xi(k)

 }

//If used batch mode learning, then cumulates the error signals using the following for-loop

 for i = 0 to N

 {

 Delta[i]+= (d(k) – o(k))*xi(k)

 }

 } //end of k for-loop

 //Update the weights in batch mode

 for i = 0 to N

 {

 wi = wi + tr*Delta[i]

 }

}//end of do loop

while (ERROR < STOP_ERROR) //training stops when overall error is smaller than a preset value

or

while (epoch < STOP_EPOCH) //training stops after a pre-set number of iterations

