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Perceptron  
 

 This simple model calculates the weighted sum of the input feature vector and passes the weighted sum 

through a hard thresholding function, outputs either a +1 or a -1 

 This model can solve linearly separable problems. 

 When a problem is linearly non-separable, the Perceptron algorithm will not converge. 

 

Perceptron (Training) Algorithm 

 

Let {X(k), d(k)}, k =1, 2, …K, are the K training samples, where X(k) = (x1(k), x2(k), …, xN(k)) is kth N-

dimensional feature vector, d(k) = +1 or d(k) =  -1 is the desired output of X(k), then Perceptron training 

algorithm can be described in the following  pseudo code 

 

Initialization 
Define wi, i = 0, 1, 2, … N,  and set wi to small random values, e.g., in the range [-1, 1] 

Set x0(k) = 1, for all k =1, 2, … K 

Set training rate tr to a value in [0, 1] 

Set STOP_EPOCH = 100 // Training stops after STOP_EPOCH epochs (this value is set empirically) 

Define CORRECT // This records the number of training samples correctly trained 

Set epoch = 0  

 

do  

{ 

 epoch++ 

 CORRECT = 0 

 for k = 1 to k = K 

 { 

 R(k)=0 

  for i = 0 to i = N 

  { 

   R(k)+= wi*xi(k) 

  } 

   

if (R (k) > 0) o(k) = 1 else o(k) = -1 

 

if (o(k) = = d(k)) CORECT++ 

else 

{ 

   for i = 0 to N  

   { 

    wi = wi + tr*(d(k) – o(k))*xi(k) 

   } 

  } 

 } 

} 

while (CORRECT < K) //training stops when all training samples are correctly learned 

or 

while (epoch < STOP_EPOCH) //training stops after a pre-set number of iterations 
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ADLINE and Gradient Descent Learning (Delta Rule) 
 

 This model is similar to Perceptron, except that it directly outputs the weighted sum of the inputs. 

 There are several key concepts 

o Error function or cost function – this is defined as the squared difference between the actual 

output and the desired output summed over all training samples 

o Gradient descent training – training flows gradient descent or steepest descent rule where we 

first calculate the gradient of the error function and then move the weights along the opposition 

direction of the gradient. 

 

Training ADLINE with Gradient Descent Rule 

Let {X(k), d(k)}, k =1, 2, …K, are the K training samples, where X(k) = (x1(k), x2(k), …, xN(k)) is kth N-

dimensional feature vector, d(k) is the desired output of X(k), then ADLINE training with gradient descent 

rule can be described in the following  pseudo code 

 
Initialization 
Define wi, i = 0, 1, 2, … N,  and set wi to small random values, e.g., in the range [-1, 1] 

Set x0(k) = 1, for all k =1, 2, … K 

Set training rate tr to a value in [0, 1] 

Set STOP_EPOCH = 100 // Training stops after STOP_EPOCH epochs (this value is set empirically) 

Define ERROR = STOP_ERROR // This defines the value of the error function, when it is below a pre-defined value 

STOP_ERROR, training stops 

Set epoch = 0  

 
do  

{ 

 epoch++ 

 ERROR = 0 

  for i = 0 to N  

   { 

   Delta[i] = 0 //This Delta will be used in Batch Mode Learning  

   } 

 

 for k = 1 to k = K 

 { 

 o(k) = 0 

  for i = 0 to i = N 

  { 

   o(k)+= wi*xi(k) 

  } 

  ERROR+= (o(k)-d(k))^2 

 //If used online learning, then update the weights using the following for-loop 

  for i = 0 to N  

  { 

   wi = wi + tr*(d(k) – o(k))*xi(k) 

  } 

//If used batch mode learning, then cumulates the error signals using the following for-loop 

  for i = 0 to N  

  { 

   Delta[i]+= (d(k) – o(k))*xi(k) 

  } 

 

 } //end of k for-loop 

 

 //Update the weights in batch mode 

 for i = 0 to N  

  { 

   wi = wi + tr*Delta[i] 

  } 

}//end of do loop 

while (ERROR < STOP_ERROR) //training stops when overall error is smaller than a preset value 

or 

while (epoch < STOP_EPOCH) //training stops after a pre-set number of iterations   
  


