# Machine Learning 

Lecture 10

Decision Tree Learning

## Decision Trees

- A hierarchical data structure that represents data by implementing a divide and conquer strategy
$\square$ Can be used as a non-parametric classification and regression method.
$\square$ Given a collection of examples, learn a decision tree that represents it.
$\square$ Use this representation to classify new examples


A

## Decision Trees: The Representation

- Decision Trees are classifiers for instances represented as features vectors. (color= ;shape= ;label= )
- Nodes are tests for feature values;
- There is one branch for each value of the feature
- Leaves specify the categories (labels)
- Can categorize instances into multiple disjoint categories - multi-class



## Boolean Decision Trees

They can represent any Boolean function.

- Can be rewritten as rules in Disjunctive Normal Form (DNF)
- green $\wedge$ square $\rightarrow$ positive
- blue $\wedge$ circle $\rightarrow$ positive
- blue $\wedge$ square $\rightarrow$ positive
- The disjunction of these rules is equivalent to the Decision Tree



## Decision Trees: Decision Boundaries

- Usually, instances are represented as attribute-value pairs (color=blue, shape=square, + )
- Numerical values can be used either by discretizing or by using thresholds for splitting nodes.
- In this case, the tree divides the feature space into axis-parallel rectangles, each labeled with one of the labels.




## Decision Trees

- Can represent any Boolean Function
- Can be viewed as a way to compactly represent a lot of data.
- Advantage: non-metric data
- Natural representation: (20 questions) http://www.20q.net/
- The evaluation of the Decision Tree Classifier is easy
- Clearly, given data, there are many ways to Represent it as a decision tree.
- Learning a good representation from data is the challenge.


## Basic Decision Trees Learning Algorithm

- DT(Examples, Attributes) If all Examples have same label: return a leaf node with Label Else
If Attributes is empty: return a leaf with majority Label
Else
Pick an attribute $A$ as root
For each value $v$ of $A$
Let Examples(v) be all the examples for which $A=v$
Add a branch out of the root for the test $A=v$
If Examples(v) is empty
create a leaf node labeled with the majority label in Examples
Else recursively create subtree by calling
DT(Examples(v), Attribute-\{A\})


## Picking the Root Attribute

- The goal is to have the resulting decision tree as small as possible (Occam's Razor)
- Finding the minimal decision tree consistent with the data is NP-hard
- The recursive algorithm is a greedy heuristic search for a simple tree, but cannot guarantee optimality.
- The main decision in the algorithm is the selection of the next attribute to condition on.


## Picking the Root Attribute

- Consider data with two Boolean attributes $(\mathrm{A}, \mathrm{B})$.

$$
\begin{array}{lr}
\{(A=0, B=0),-\}: & 50 \text { examples } \\
\{(A=0, B=1),-\}: & 50 \text { examples } \\
\{(A=1, B=0),-\}: r \text { examples } \\
\{(A=1, B=1),+\}: & 100 \text { examples }
\end{array}
$$

- What should be the first attribute we select?
- Splitting on A: we get purely labeled nodes.

- Splitting on B: we don't get purely labeled nodes.
$y^{A}{ }^{-}$- What if we have: $\{(A=1, B=0),-\}: 3$ examples


## Picking the Root Attribute

- Consider data with two Boolean attributes (A,B).

$$
\begin{array}{ll}
\{(A=0, B=0),-\}: & 50 \text { examples } \\
\{(A=0, B=1),-\}: & 50 \text { examples } \\
\{(A=1, B=0),-\}: & 3 \text { examples } \\
\{(A=1, B=1),+\}: & 100 \text { examples }
\end{array}
$$

- Trees looks structurally similar; which attribute should we choose?



## Picking the Root Attribute

-The goal is to have the resulting decision tree as small as possible (Occam's Razor)

- The main decision in the algorithm is the selection of the next attribute to condition on.
- We want attributes that split the examples to sets that are relatively pure in one label; this way we are closer to a leaf node.
- The most popular heuristics is based on information gain, originated with the ID3 system of Quinlan.


## Entropy

- $S$ is a sample of training examples
- $\mathrm{p}_{+}$is the proportion of positive examples in S
- $P_{-}$is the proportion of negative examples in S
- Entropy measures the impurity


Entropy $(S)=-p_{+} \log \left(p_{+}\right)-p_{-} \log \left(p_{-}\right)$

## Entropy

- Entropy (s) = expected number of bits needed to encode class (+ or -) of randomly drawn member of $S$ (under the optimal, shortest length code)

Why?

- Information theory: optimal length code assigns $-\log _{2} \mathrm{p}$ bits to message having probability $p$
- So, expected number of bits to encode + or - of random member of S:

$$
\begin{aligned}
& \quad p_{+}\left(-\log \left(p_{+}\right)\right)-p_{-}\left(-\log \left(p_{-}\right)\right) \\
& \text {Entropy }(S) \equiv-p_{+} \log \left(p_{+}\right)-p_{-} \log \left(p_{-}\right)
\end{aligned}
$$

Highly Disorganized
High Entropy
$+--+++--+-+-++$
$--+++--+-+--+--$
$+-+--+-+-++--+$
$+---+-+-++--++$
$+--+-+-++--+-+$

Highly Organized
Low Entropy


## Information Gain

- Gain $(S, A)=$ expected reduction in entropy due to sorting on $A$

$$
\operatorname{Gain}(S, A) \equiv \operatorname{Entropy}(S)-\sum_{v \in \operatorname{Values}(A)} \frac{\left|S_{v}\right|}{|S|} \operatorname{Entropy}\left(S_{v}\right)
$$

- Values (A) is the set of all possible values for attribute $A, S v$ is the subset of $S$ which attribute $A$ has value $v$
- Gain(S,A) is the expected reduction in entropy caused by knowing the values of attribute $A$.


## Picking the Root Attribute

- Consider data with two Boolean attributes $(\mathrm{A}, \mathrm{B})$.

$$
\{(A=0, B=0),-\}: 50 \text { examples }
$$

$$
\{(A=0, B=1),-\}: 50 \text { examples }
$$

$\{(A=1, B=0),-\}: 3$ examples
$\{(A=1, B=1),+\}: 100$ examples

- What should be the first attribute we select?
- Splitting on A:
- Splitting on B:


Information gain of A is higher

## An Illustrative Example

Day Outlook Temperature Humidity Wind PlayTennis

| 1 | Sunny | Hot | High | Weak | No |
| :--- | :--- | :---: | :--- | :---: | :--- |
| 2 | Sunny | Hot | High | Strong | No |
| 3 | Overcast | Hot | High | Weak | Yes |
| 4 | Rain | Mild | High | Weak | Yes |
| 5 | Rain | Cool | Normal | Weak | Yes |
| 6 | Rain | Cool | Normal | Strong | No |
| 7 | Overcast | Cool | Normal | Strong | Yes |
| 8 | Sunny | Mild | High | Weak | No |
| 9 | Sunny | Cool | Normal | Weak | Yes |
| 10 | Rain | Mild | Normal | Weak | Yes |
| 11 | Sunny | Mild | Normal | Strong | Yes |
| 12 | Overcast | Mild | High | Strong | Yes |
| 13 | Overcast | Hot | Normal | Weak | Yes |
| 14 | Rain | Mild | High | Strong | No |

## An Illustrative Example (2)

## Day Outlook Temperature Humidity Wind PlayTennis

|  | 1 | Sunny | Hot | High | Weak | No |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 2 | Sunny | Hot | High | Strong | No |  |
|  | 3 | Overcast | Hot | High | Weak | Yes | Entropy |
| Entropy $(S)=$ | 4 | Rain | Mild | High | Weak | Yes |  |
| $-9 / 14 \log (9 / 14)$ | 5 | Rain | Cool | Normal | Weak | Yes | 9+,5- |
| -5 | Rain | Cool | Normal | Strong | No |  |  |
| $-5 / 14 \log (5 / 14)$ | 7 | Overcast | Cool | Normal | Strong | Yes |  |
| $=0.94$ | 8 | Sunny | Mild | High | Weak | No |  |
|  | 9 | Sunny | Cool | Normal | Weak | Yes |  |
|  | 10 | Rain | Mild | Normal | Weak | Yes |  |
|  | 11 | Sunny | Mild | Normal | Strong | Yes |  |
|  | 12 | Overcast | Mild | High | Strong | Yes |  |
| 13 | Overcast | Hot | Normal | Weak | Yes |  |  |
| 14 | Rain | Mild | High | Strong | No |  |  |

## An Illustrative Example (2)

|  | Humidity | Wind | PlayTennis |
| :--- | :---: | :--- | :---: |
|  | High | Weak | No |
|  | High | Strong | No |
|  | High | Weak | Yes |
|  | High | Weak | Yes |
|  | Normal | Weak | Yes |
|  |  |  |  |
|  | Normal | Strong | No |
|  | Normal | Strong | Yes |
|  | High | Weak | No |
|  | Normal | Weak | Yes |
|  | Normal | Weak | Yes |
|  | Normal | Strong | Yes |
|  | High | Strong | Yes |
|  | Normal | Weak | Yes |
|  | High | Strong | No |

## An Illustrative Example (2)

|  | Humidity | Wind | PlayTennis |
| :---: | :---: | :---: | :---: |
|  | High | Weak | No |
| Humidity | High | Strong | No |
| 人 | High | Weak | Yes |
| , | High | Weak | Yes |
| , | Normal | Weak | Yes |
| High Normal | Normal | Strong | No |
| 3+,4- 6+,1- | Normal | Strong | Yes |
| $F=985 \quad F=597$ | High | Weak | No |
| $E=.985 \quad E=.592$ | Normal | Weak | Yes |
|  | Normal | Weak | Yes |
|  | Normal | Strong | Yes |
|  | High | Strong | Yes |
|  | Normal | Weak | Yes |
|  | High | Strong | No |
| $\operatorname{Gain}(\mathrm{S}, \mathrm{a})=\operatorname{Entropy}(\mathrm{S})-\sum_{\mathrm{v} \text { values(a) }} \frac{\left\|\mathrm{S}_{\mathrm{v}}\right\|}{\|\mathrm{S}\|} \operatorname{Entropy}\left(\mathbf{S}_{\mathrm{v}}\right)$ |  |  |  |

## An Illustrative Example (2)



## An Illustrative Example (2)



## An Illustrative Example (2)

|  |  | Humidity | Wind | PlayTennis |
| :---: | :---: | :---: | :---: | :---: |
|  |  | High | Weak | No |
| Humidity | Wind | High | Strong | No |
|  | $\Lambda$ | High | Weak | Yes |
|  | - | High | Weak | Yes |
|  | , | Normal | Weak | Yes |
| High Normal | Weak Strong | Normal | Strong | No |
| 3+,4- 6+,1- | 6+2- 3+,3- | Normal | Strong | Yes |
| $E=985 \quad E=592$ | $F=811 \quad F=10$ | High | Weak | No |
| $E=.985 \quad E=.592$ | $E=.811 \quad E=1.0$ | Normal | Weak | Yes |
| $\begin{aligned} & \text { Gain(S,Humidity)= } \\ & .94-7 / 140.985 \end{aligned}$ | Gain(S, Wind)= | Normal | Weak | Yes |
|  |  | Normal | Strong | Yes |
| $\begin{aligned} & -7 / 140.592= \\ & 0.151 \end{aligned}$ | $\begin{aligned} & -6 / 141.0= \\ & 0.048 \end{aligned}$ | High | Strong | Yes |
|  |  | Normal | Weak | Yes |
|  |  | High | Strong | No |

## An Illustrative Example (3)

## Day Outlook PlayTennis

Sunny

Gain(S,Outlook)=
0.246

| 1 | Sunny | No |
| :--- | :--- | :--- |
| $\mathbf{2}$ | Sunny | No |
| $\mathbf{3}$ | Overcast | Yes |
| $\mathbf{4}$ | Rain | Yes |
| $\mathbf{5}$ | Rain | Yes |
| 6 | Rain | No |
| 7 | Overcast | Yes |
| 8 | Sunny | No |
| 9 | Sunny | Yes |
| 10 | Rain | Yes |
| 11 | Sunny | Yes |
| 12 | Overcast | Yes |
| 13 | Overcast | Yes |
| 14 | Rain | No |

## An Illustrative Example (3)

Gain(S,Humidity)=0.151
Gain(S,Wind) $=0.048$
Gain(S,Temperature)=0.029
Gain(S,Outlook)=0.246

## An Illustrative Example (3)

## Day Outlook PlayTennis



## An Illustrative Example (4)



## An Illustrative Example (5)



## An Illustrative Example (5)



## An Illustrative Example (6)



## Summary: ID3 (Examples, Attributes, Label)

- Let $S$ be the set of Examples

Label is the target attribute (the prediction)
Attributes is the set of measured attributes

- Create a Root node for tree
- If all examples are labeled the same return a single node tree with Label
- Otherwise Begin
- $\mathrm{A}=$ attribute in Attributes that best classifies S
- for each possible value v of A
- Add a new tree branch corresponding to $A=v$
- Let $S v$ be the subset of examples in $S$ with $A=v$
- if Sv is empty: add leaf node with the most common value of Label in S
- Else: below this branch add the subtree

ID3(Sv, Attributes - \{a\}, Label)
End
Return Root

## Hypothesis Space in Decision Tree Induction

- Conduct a search of the space of decision trees which can represent all possible discrete functions.
- Goal: to find the best decision tree
- Finding a minimal decision tree consistent with a set of data is NP-hard.
- Performs a greedy heuristic search: hill climbing without backtracking
- Makes statistically based decisions using all available data


## Bias in Decision Tree Induction

- Bias is for trees of minimal depth; however, greedy search introduces complications; it positions features with high information gain high in the tree and may not find the minimal tree.
- Implements a preference bias (search bias) as opposed to restriction bias (a language bias)
- Occam's razor can be defended on the basis that there are relatively few simple hypotheses compared to complex ones. Therefore, a simple hypothesis is that consistent with the data is less likely to be a statistical coincidence


## History of Decision Tree Research

- Hunt and colleagues in Psychology used full search decision trees methods to model human concept learning in the 60's
- Quinlan developed ID3, with the information gain heuristics in the late 70's to learn expert systems from examples
- Breiman, Friedmans and colleagues in statistics developed CART (classification and regression trees) simultaneously
- A variety of improvements in the 80 's: coping with noise, continuous attributes, missing data, non-axis parallel etc.
- Quinlan's updated algorithm, C4.5 (1993) is commonly used (New:C5)
- Boosting and Bagging over DTs are often good general purpose algorithms


## Overfitting the Data

- Learning a tree that classifies the training data perfectly may not lead to the tree with the best generalization performance.
- There may be noise in the training data the tree is fitting
- The algorithm might be making decisions based on very little data
- A hypothesis $h$ is said to overfit the training data if there is another hypothesis, h', such that $h$ has smaller error than $h$ ' on the training data but $h$ has larger error on the test data than $h^{\prime}$.



## Overfitting - Example

Outlook = Sunny, Temp $=$ Hot, Humidity $=$ Normal, Wind $=$ Strong, NO


## Overfitting - Example

Outlook = Sunny, Temp $=$ Hot, Humidity $=$ Normal, Wind $=$ Strong, NO


## Overfitting - Example

Outlook = Sunny, Temp $=$ Hot, Humidity $=$ Normal, Wind $=$ Strong, NO


## Avoiding Overfiting

- Two basic approaches
- Prepruning: Stop growing the tree at some point during construction when it is determined that there is not enough data to make reliable choices.
- Postpruning: Grow the full tree and then remove nodes that seem not to have sufficient evidence.
- Methods for evaluating subtrees to prune:
- Cross-validation: Reserve hold-out set to evaluate utility
- Statistical testing: Test if the observed regularity can be dismissed as likely to be occur by chance
- Minimum Description Length: Is the additional complexity of the hypothesis smaller than remembering the exceptions?


## Trees and Rules

- Decision Trees can be represented as Rules
- (outlook=sunny) and (humidity=high) then YES
- (outlook=rain) and (wind=strong) then No
$\qquad$
Ounny


## Reduced-Error Pruning

- A post-pruning, cross validation approach
- Partition training data into "grow" set and "validation" set.
- Build a complete tree for the "grow" data
- Until accuracy on validation set decreases, do:

For each non-leaf node in the tree
Temporarily prune the tree below; replace it by majority vote.
Test the accuracy of the hypothesis on the validation set
Permanently prune the node with the greatest increase in accuracy on the validation test.

- Problem: Uses less data to construct the tree


## Continuous Attributes

- Real-valued attributes can, in advance, be discretized into ranges, such as big, medium, small
- Alternatively, one can develop splitting nodes based on thresholds of the form $A<c$ that partition the data in to examples that satisfy $A<c$ and $A>=c$. The information gain for these splits is calculated in the same way and compared to the information can of discrete splits.

How to find the split with the highest gain?

- For each continuous feature A:

Sort examples according to the value of $A$
For each ordered pair ( $\mathrm{x}, \mathrm{y}$ ) with different labels
Check the mid-point as a possible threshold. i.e,

$$
S_{a<=x} S_{a>=y}
$$

## Continuous Attributes

- Example: Length (L): 10152128324050 Class: - + + - + + -
- Check thresholds: $L<12.5 ; L<24.5 ; L<45$ Subset of Examples $=\{\ldots\}, \quad$ Split $=k+, j-$
- How to find the split with the highest gain?
- For each continuous feature a:

Sort examples according to the value of a
For each ordered pair ( $\mathrm{x}, \mathrm{y}$ ) with different labels
Check the mid-point as a possible threshold. i.e,

$$
S_{a<=x}, S_{a>=y}
$$

## Missing Values with Decision Trees

- diagnosis = < fever, blood_pressure,..., blood_test=?,...>
- Many times values are not available for all attributes during training or testing (e.g., medical diagnosis)
- Training: evaluate Gain(S,a) where in some of the examples a value for $a$ is not given

| Day | Outlook | Temperature | Humidity |  | Wind |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 1 | Sunny | Hot | HiayTennis |  |  |
| 2 | Hunny | Hot | High | Strong | No |
| Sot | No |  |  |  |  |
| 8 | Sunny | Mild | ??? | Weak | No |
| 9 | Sunny | Cool | Normal | Weak | Yes |
| 11 | Sunny | Mild | Normal | Strong | Yes |

## Missing Values


$\operatorname{Gain}\left(S_{\text {sunny }}, T e m p\right)=$
$\operatorname{Gain}\left(S_{\text {sunny }}\right.$, Humidity $)=$

## Missing Values

- diagnosis = < fever, blood_pressure,..., blood_test=?,...>
- Many times values are not available for all attributes during training or testing (e.g., medical diagnosis)
- Training: evaluate $G a i n(S, a)$ where in some of the examples a value for $a$ is not given
- Testing: classify an example without knowing the value of a


## Missing Values

Outlook = ???, Temp = Hot, Humidity = Normal, Wind = Strong, label = ??


## Other Issues

- Attributes with different costs

Change information gain so that low cost attribute are preferred

- Alternative measures for selecting attributes

When different attributes have different number of values information gain tends to prefer those with many values

- Oblique Decision Trees

Decisions are not axis-parallel

- Incremental Decision Trees induction

Update an existing decision tree to account for new
examples incrementally (Maintain consistency ?)

## Decision Trees - Summary

- Hypothesis Space:

Contains all functions (!)
Variable size
Deterministic; Discrete and Continuous attributes

- Search Algorithm

ID3 - Eager, batch, constructive search
Extensions: missing values

- Issues:

What is the goal?
When to stop? How to guarantee good generalization?

