
Learning Sample Subspace with Application to Face Detection 
 

Jianzhong Fang and Guoping Qiu 
School of Computer Science, The University of Nottingham 

{jzf | qiu} @cs.nott.ac.uk 
 
 

Abstract 
 

In this paper, we present a novel maximum correlation 
sample subspace method and apply it to human face 
detection [1] in still images. The algorithm starts by 
projecting all the training samples onto each sample and 
selects the sample with the largest accumulated 
projection as the first subspace base vector. After a base 
vector is selected, all other samples are made orthogonal 
to the current base vector and which is in turn used to 
form the training samples for learning the next base 
vector. Each subspace base is created by a one-pass 
process and therefore the method is computationally very 
efficient. These bases form a transform and we use it to 
derive discriminative features for face detection by 
training a support vector machine classifier. We perform 
testing on both CMU and MIT face detection image data 
sets. Extensive experiments demonstrate that our results 
are comparable to those published in state of the art 
literature.  
 
1. Introduction 
 
In this paper, we present a novel adaptive learning 
approach to selecting class specific sample subspace and 
use human face detection to illustrate the usefulness and 
effectiveness of the new method. In the following section, 
we present the development of a learning procedure to 
construct a set of orthogonal base from training samples. 
In section 3, we apply the new set of orthogonal base to 
construct feature vectors for (face/nonface) pattern 
representation. In section 4, we use the new feature 
vectors for human face detection and present experiment 
results. We give concluding remarks in section 5. 
 
2. Maximum Correlation Sample Subspace 
 
There are several techniques available for dimension 
reduction in face detection. Principal component analysis 
or PCA [6], is probably one of the most well-known. PCA 
derives a transform from the eigenvectors corresponding 
to the largest eigenvalues of the covariance matrix of the 
training samples. The objective of PCA is to seek a 
representation, which is optimal in terms of minimal mean 
square error between the representation and the original 
data. Although PCA is optimal for dimension reduction 

(in mean square error sense), it is not a transform for 
developing discriminative features optimal for 
classification. In face detection and other pattern 
recognition tasks, feature representation vectors not only 
have to be compact but also discriminative.  

There are several reasons that make PCA not the best 
transform for developing feature vectors for pattern 
recognition. It is well known that PCA is optimal when 
the data is under the unimodal Gaussian assumption, and 
this assumption is almost always not true in real world 
applications. In many applications, such as face detection, 
training sample size is often small. The eigenvectors point 
to directions that have the largest variance on “average”. 
This “average” may smear the representation due to both 
limited sample size and non-Gaussian nature of the data. 
This is reminiscent to linear filtering in digital 
signal/image processing which has the tendency of 
removing Gaussian noise but destroying (non-Gaussian) 
signal features as well. One of the alternatives to linear 
filtering is nonlinear filtering. One type of nonlinear 
filtering, often known as rank order filtering, ranks the 
data according to a certain criterion and take one of the 
data samples of a certain rank as output (e.g., median 
filtering takes the sample in the middle as output) 

We have developed a method for learning a transform 
in which, the transform bases are selected from the 
training samples based on a maximal correlation criterion. 
It is related to PCA in the sense that the base vectors are 
orthonormal, however, they are not the eigenvectors of the 
covariance matrix. The transform bases are directly 
selected from the training samples. The relation between 
this new transform and PCA is analogy to that between 
linear and rank order filtering in digital signal processing.  

Let S = {X1, X2, …, XN,} be the set of training 
samples, where Xi, is an M dimensional vector. We use 
the following algorithm to construct K orthonormal base 
vectors 
 

Maximum Correlation Sample Subspace Algorithm (MCSSA) 
 
Step 1: Set k = 1, E(0) = 0, T = a preset value, and 
compute 
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Step 6: Set k = k +1, if k > K, stop, else go to Step 2  
 

The algorithm starts by projecting all the training 
samples onto each sample and select the sample with the 
largest accumulated projection as the first base vector. 
After a base vector is selected, all other samples are made 
orthogonal to this base by (3), and which is in turn used to 
form the training samples for the construction of next base 
vector. The algorithm produces a set of K base vectors. 
The number of base vectors (K) is determined by the 
preset value of T. The larger T is, more bases will be 
created. It is easy to show that the base vectors in the set 
are orthonormal vectors. 

Compared with PCA, the bases selected by the new 
algorithm are more robust against outliers, just as rank 
order filtering is more robust against outliers than linear 
filtering. The algorithm is adaptive and suitable for online 
training. In the next section, we will use the algorithm to 
develop transform base vectors for human face 
representation.  
 
3. Human Face Representation in Maximum 
Correlation Sample Subspace 
 
The maximum correlation sample subspace developed in 
the last section can have various applications. In this 
section we apply it to represent face subspace. In this 
case, all the samples in the training set S = {X1, X2, …, 
XN,} are M dimensional face image patterns. Examples of 
the maximum correlation sample subspace base vectors 
are shown in Fig. 1. 
 

       

       
Fig. 1. Example of a set of 16 face subspace bases obtained 
from a set of over 3000 face image patterns.  

 
After the creation of the orthonormal base set ΦK, the 

original pattern can be projected onto the subspace as  
 

i
T
Ki XY Φ=      (4) 

 
where Yi is a K (K << M) dimensional projection vector of 
the face pattern Xi. The dimensionality of the projection 
vectors is much lower than that of the original data and 
can be used for recognition applications. In the next 
section, we use such a representation scheme to train a 
support vector machine for human face detection.  
 
4. Experimental Results 
 
To illustrate the effectiveness of the maximum correlation 
sample subspace in representing patterns for 
classification, we apply it to face detection. We first 
collected face image sample from various sources. In 
total, there are 3061 face samples forming the training set. 
In order to train the classifier, non-face samples are 
collected from Corel data set. The non-face categories 
include scenery, texture, surface, fur, desert, underwater 
shimmering, art and skin patches. There are a total of 
3239 initial non-face samples. All the face samples and 
non-face samples are normalized to 32 x 32 pixels in size.  

In order to achieve good contrast and normalize the 
amount of energy for images taken under different 
conditions, local histogram equalization is performed on 
the 32x32 pixel normalized image. We also apply a spade-
shaped mask to eliminate the background noise, and 
finally a 934 dimensional vector is retrieved for the face 
or non-face image representation.  

A set of orthonormal bases is developed using the 
maximum correlation sample subspace algorithm 
(MCSSA) from the face image set only. In our particular 
data set, 168 bases are generated for T = 91%. A support 
vector machine classifier [4] is trained to play the role of 
decision-maker. We employ exhaustive search method by 
moving rectangular windows of different sizes across the 
testing images. We use 20 different window sizes in 
search of different sized faces, the smallest face size is 
defined as 20x24 pixels and the biggest face is defined as 
149x182 pixels, each scale is about 10% larger than the 
previous one. 

To evaluate the performance of our method, we 
perform testing on 3 publicly available data sets that are 
widely used in the face detection community. Set A and C 
is provided by CMU Set B is provided by MIT, all the 
data were obtained from the CMU website [5]. Table 1 
lists the correct detection and false alarm rates of each set 
and combined sets at a particular threshold. 



 
Data Set Faces 

(Images) 
Faces 

Correctly 
Detected 

Correct 
Detection 

Rate 

False 
Positive 

Rate 
Set_A 

(CMU) 
169(42) 149 88.1% 1.20E-5 

Set_B 
(MIT) 

155(23) 133 85.8% 1.23E-5 

Set_C 
(CMU) 

183(65) 166 90.7% 1.29E-5 

Set A, B 
and C 

507(130) 448 88.3% 1.26E-5 

Table 1. Testing results performed on open data sets [5] 
over 130 images with 507 faces for a particular threshold. 
 

In total, our detector evaluated 41,679,874 patterns on 
Set A, Set B and Set C. The false positive rate is very 
small compared with evaluated patterns. The full 
characteristics of a detector is represented by the receiver 
operating curve (ROC). The ROC curve of our detector is 
shown in Fig. 2.  

Fig. 3 shows pictorial examples of our testing results. 
These results are at least comparable to state of the art. It 
is worthy mentioning that our experiments used all 130 
images which contained 507 faces whilst most others only 
included a subset of the testing data, e.g., [2], [3], reported 
results using 125 testing images contained fewer faces. 

 
5. Concluding Remarks 
 
In this paper, we have presented a new method, the 
maximum correlation sample subspace algorithm 
(MCSSA), for developing orthogonal linear bases and we 
have applied it for developing transforms for human face 
detection. The method is similar to PCA in spirit, 
however, it differs from PCA in a number of significant 
ways. Whilst the bases of PCA captures the averaged 
directions with the largest variance, the bases of the new 
MCSAA are derived directly from one of the samples. 
Therefore, when the samples are noisy (nonGaussian) or 
the training sample sizes are limited, MCSAA may be 
more advantageous for representing patterns for 
classification purposes. Whilst the bases of PCA are 
computed through manipulation of (very large) covariance 
matrix or through iterative learning, the bases of MCSAA 

are obtained by a deterministic one-pass processes. The 
relationship between PCA and MCSAA can be 
understood as similar to that between the linear and rank 
order filtering in digital signal/image processing. To 
illustrate the effectiveness and usefulness of such a 
subspace, we have successfully applied it to face 
detection, which achieves results that are competitive to 
state of the art. 
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Fig. 2. ROC curve of MCSSA subspace face detector 
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Fig. 3, Examples of detection results. Please note that if the image is printed in black and white, the detection windows 
may not be clearly visible, in that case either print in colour or view the electronic version  


