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ABSTRACT

This paper presents a principled and practical method for the
computation of visual saliency of spatiotemporal events in
full motion videos. Based on the assumption that uniqueness
or informative-ness correlates with saliency, our model
predicts the saliency of a spatiotemporal event based on the
information it contains. To compute the uniqueness of the
spatiotemporal events, we model the joint spatial and
temporal conditional probability distributions of the
spatiotemporal events and compute their spatiotemporal
saliencies in a natural and integrated framework. To make
the information theoretic model practical, we have
developed methods to simplify the model and computational
process. Testing results on several video sequences
demonstrate that our model is effective in predicting
visually salient spatiotemporal events and is comparable to
state of the art. It is expected that our principled and
practical model will find widespread applications in
multimedia content analysis and processing.

1. INTRODUCTION

Salient visual features and motions that attract human
attention can be important and powerful cues for visual
information analysis and processing, including content-
based coding, compression, transmission/rate control,
indexing, browsing, display and presentation. Whilst there
have been a fair amount of previous work investigating the
detection and extraction of visually salient features in still
images [1-3], not much has been done to address the same
problem in video sequences. Although several authors have
made some initial attempts, e.g., [4, 5], most of these
methods are rather ad hoc. A common approach of these
previous attempts is that they first compute the spatial and
temporal saliencies independently and then fuse them in
some rather arbitrary manners. For spatial saliency, these
methods manipulate the contrasts of various visual features
(intensity, colour, texture, etc.) in some heuristic ways to
generate the numerical scores of saliency. For temporal
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saliency, these methods assume that it is somehow related to
visual motion. They first detect motions based on some
known motion detection methods and then compute the
temporal saliency scores as some heuristically chosen
functions ofmotion vectors.

Ad hoc and heuristic spatial and temporal visual saliency
computational methods can have some serious weaknesses.
First, motion estimation is difficult. Second, even with
accurate true motion estimation, it is not clear how exactly
motion relates to visual saliency and a quantitative measure
that relates motion with visual saliency is difficult to obtain.
Third, assuming spatial and temporal saliencies can be
correctly computed, it is not clear how they should be fused
together. In most cases previous methods gave arbitrary
weightings to temporal and spatial saliencies to obtain a
final score of spatiotemporal saliency.

Whilst most of the spatial visual saliency models are
based on the calculation of visual contrasts, e.g, [1], Topper
[6] introduced the idea of using Shannon's self-information
to measure the perceptual saliency in still images. Recently,
Bruce [2] picked up Topper's original suggestion and
studied the relationship between visual saliency and local
statistics, again, in still images.

In this paper, we extend the information theoretic
approach to visual saliency computation to full motion video
and have developed a principled and integrated practical
method for computing spatiotemporal saliency. The
organization of the paper is as follows. In section 2, we
describe the integrated spatiotemporal visual saliency
model. In section 3, we present a practicable computational
method for the implementation of the model. In section 4,
we present experimental results and section 5 concludes the
paper.

2. AN INFORMATION THEORETIC MODEL OF
SPATIOTEMPORAL VISUAL SALIENCY

We wish to develop a computational model for predicting
the visual saliency of the pixels in each frame of a video. In
this work, we adopt an information theoretic approach and
assume that the "uniqueness" or "informative-ness"
correlates with visual saliency. According to Shannon's
information theory, an event contains high information if it
is unique; on the other hand, it contains low information if
the event occurs frequently. The information of an event x,
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I(x), is inversely proportional to the likelihood of observing
x, Shannon defined this quantity as

I(x) = - log(p(x)) (1)
Clearly, according to (1), the computational task now

becomes that of finding the probability distributions of the
pixels. Before formally presenting our model, we first
analyze what factors are likely to affect the uniqueness of
the pixels and how we can go about computing the
probability distributions of pixels in the context of a full
motion video.

Instead of trying to compute the visual saliency of each
individual pixel, we divide each frame into small patches
and we call a patch in a particular frame a spatiotemporal
event. The reason any given patch in any given frame is a
spatial and temporal event is because it has a spatial as well
as a temporal context, as illustrated in Figure 1. For a given
spatiotemporal event, B(x, y, t), its spatial context is its
current frame F(t); its temporal context is defined as the
spatiotemporal events with the same spatial location in the
previous N-I frames, V(x, y, t- 1)={B(x, y, t-l ), B(x, y, t-2),
... , B(x, y, t-N+1)}.

y

x

Figure 1: An illustration of the spatial time relations of
spatiotemporal events. A spatiotemporal event is an m x n block
(patch) of pixels, B(x, y, t), located at spatial co-ordinate (x, y) in
the frame at temporal (time) location t, F(t). N patches at spatial
locations (x, y) from frame F(t), F(t-l), ..., F(t-N+1) form a space-
time 3D patch volume V(x, y, t)={B(x, y, t), B(x, y, t-1), ..., B(x, y,
t-N+1)}, which records how the patch located at (x, y) evolves over
time.

The uniqueness of a spatiotemporal event B(x, y, t) is
clearly affected by its spatial and temporal contexts. If an
event is unique in the spatial context, it is likely that it is
salient; similarly, if it is unique in the temporal context it is
also likely to be salient. Obviously, the spatial and temporal
contexts jointly influence the uniqueness of a spatiotemporal
event. The task now becomes that of modeling these spatial
and temporal contexts to predict the uniqueness or saliency
of the spatiotemporal events.

2.1 The Model

Based on the assumption that saliency is directly related to
uniqueness or informative-ness, the spatiotemporal saliency
score of the spatiotemporal block B(x, y, t), SSS(x, y, t) can
be modeled by the amount of information contained in
B(x, y, t). According to Shannon information theory (1), the
information of the spatiotemporal event B(x, y, t) given its
spatial context F(t) and temporal context V(x,y,t-1) can be
computed as

SSS(x, y, t) = - log(p(B(x, y, t) V(x, y, t -1), F(t))) (2)

Equation (2) is our new information theoretic model of
spatiotemporal visual saliency which integrates spatial and
temporal information for predicting the visual saliency of
spatiotemporal events in a principled, concise and elegant
manner.

The model is concise and elegant, however, it is
important to point out that its practical realization is
extremely challenging. One of the reasons that information
theory has not been widely used in the analysis of video and
other very high dimensional data is that it involves some
extremely difficult computational tasks. The difficulty
primarily stems from the "curse of dimensionality". From
(2), our task of computing the saliency is to estimate the
conditional probability. The dimensionality of the variables
involved in the computation is usually high and the space
these variables reside grows exponentially with each new
dimension added. As the dimensionality increases, more and
more samples are needed to estimate the probability. For
example, for distributions in R6, even 2 million samples are
not sufficient to approximate the entropy correctly [7].
Furthermore, we not only have to face the "curse of
dimensionality" problem, but also have to make the
computational process reasonably fast in order to make the
model practically useful for applications such as real time
video analysis and processing. In the next section, we
present a practicable computational method for the
implementation of our new spatiotemporal visual saliency
model.

3. COMPUTATIONAL METHODS

3.1 Model Simplification

The conditional probability of the spatiotemporal event
B(x, y, t) has two conditions, spatial condition F(t) and
temporal condition V(x, y, t-1). It is not difficult to see that it
would be very difficult to estimate this probability. In order
to develop practical solutions, we simplify the model by
assuming that the spatial and temporal conditions are
independent. Based on this assumption, we can write the
joint conditional probability as

p(B(x,y,t) V(x,y,t -1),F(t))= (3)

p(B(x,y,t) V(x,y,t-1))p(B(x,y,t) F(t))
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With (3), we can now compute two conditional
probabilities of the spatiotemporal event, one for the spatial
condition and the other for the temporal condition. Even
though (3) has simplified the model somewhat, because the
variables involved are still of very high dimension, the task
of estimating these two conditional probabilities still poses
some serious computational difficulties.

3.2 Temporal Conditional Probability

We can write

p(B(x, y, t) V(x, y t 1))= p(B(x, y, t), V(x, y, t -1))
P(V(X' ,yt-1)) (4)

- p(V(x, y, t))
p(V(x, y, t -1)

From (4), we see that the temporal conditional
probability of the spatiotemporal event B(x,y,t) can be
computed by estimating the probability of the 3D space-time
patch volumes V(x,y,t) and V(x,y,t -1). Consider a 4x4 patch
and a temporal context of 2 frames (N=2), then
V(x,y,t) ER32, estimating the probability in the 32D space
will be impracticable requiring prohibitive large amount of
data and computational effort.

To get round this computational difficulty and to make
our computational task tractable, we can try and transform
our high dimensional spatiotemporal event vectors into a
space where each dimension is independent. The
independence in each dimension allows us to decompose the
multidimensional probability estimation problem into that of
estimating the distributions of multiple independent ID
random variables.

Computationally, this can be done by performing
independent component analysis (ICA) as in [2]. However,
ICA is an extremely under constrained problem and
computationally too expensive for real time video analysis.
Another way to overcome the computational difficulty is by
simplifying the assumption that the distributions of the
spatiotemporal events is approximately normally distributed,
in which case, we can transform the events into a space
where each dimension is uncorrelated. Given the normal
assumption, uncorrelated implies independence. In the
signal processing literature, there exist a number of
orthogonal transforms which can be used to project high
dimensional data into uncorrelated spaces. Principal
Component Analysis (PCA) is one possibility. Although
PCA is optimal in the mean square error sense, its transform
bases are data dependent and it can be computationally
expensive. Instead, we use a well-known data independent
orthogonal transform, the discrete cosine transform (DCT),
extensively used in image and video coding, to transform
our spatiotemporal events and volumes into uncorrelated
space for the purpose of estimating the spatiotemporal
events distributions.

Let. k, k = 1, 2, ... K, be the K orthogonal transform
bases, the procedure for computingp(V(x, y, t) follows these
steps:

Step 1: Ck (X,y, t) =-kV(X,y, t) Vx,y
Step 2: Compute the probabilities Pk p(ck(x, y, t)), Vk
Step 3: Compute p(V(x,y,t)) = n Pk

k

With this procedure, we can compute p(V(x, y, t) and
p(V(x, y, t-1), which in turn enables us to compute the
temporal conditional likelihood of the spatiotemporal event
B(x, y, t) according to equation (4).

3.3 Spatial Conditional Probability

It is important to note that the spatial context that will
influence the uniqueness of a spatiotemporal event B(x,y,t)
is the current frame F(t) because only the current frame and
B(x,y,t) will be simultaneously visible to the viewers. The
probability p(B(x,y,t) F(t)) is therefore equivalent to
p(B(x,y,t)). With this, we only need to estimate the
distribution of the spatiotemporal event B(x,y,t) against all
the events in F(t). We can again resort to the simplification
assumption and technique of sub-section 3.2 to perform the
estimation. The procedure can therefore proceed in the
following steps

Step 1: Ck (X,y, t)- /kB(x, y, t) Vx,y
Step 2: Compute the probabilities Pk = P(ck(x, y, t)), Vk
Step 3: Compute p(B(x,y, t)) = n Pk

k

3.4 The Spatiotemporal Saliency Score

Follow (2) and (3) the spatiotemporal saliency score of the
spatiotemporal event B(x,y,t) can be computed as

SSS(x,y, t) = - log(p(B(x,y, t) V(x, y, t -1), F(t)))
- log(p(B(x, y, t) V(x, y, t -1))) - log(p(B(x, y, t) F(t))) (5)
=,S(x,y,t)+ S, (X,y,t)

where St(x.y,t) and S,(x.y,t) are temporal and spatial saliency
scores respectively.

Note in (5) that the spatiotemporal saliency in our model
can also be written as the sum of spatial and temporal
components. However, unlike previous methods, where
these components are computed independently first and then
fused together in some arbitrary ways, in our model, this
decomposition is natural and derived from the joint
spatiotemporal saliency in a principled and naturally way.

4. EXPERIMENTAL RESULTS

To evaluate the effectiveness of our model, we have
implemented the model using C++ program and tested on
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several video sequence. The video data format used in our
experiment is CIF (352x288 pixels per frame). For
spatiotemporal event patch size = 4 x 4, and a temporal
context N= 2, using all DCT coefficients except the DC
component for the estimation of the probability
distributions, and without any code optimization, our
implementation is real time on a Pentium PC. This shows
that from a computational perspective our method is
practical.

A quantitative evaluation of results is difficult. Here we
present some visual examples. We have also conducted
experiments using data from an eye tracking system and
results are competitive with other state of the art methods.

Figure 2 shows the saliency maps of some particular
frames of two sequences used in the experiments, also
shown are the spatial and temporal components of the
saliency.

Figure 2: Spatiotemporal, temporal and spatial saliency scores of
two example sequences. Left: 118th frame of the Canoe sequence.
Right: 125th frame of the Soccer sequence. Top row: The
spatiotemporal saliency score (SSS). Middle: The spatial
component of the SSS (St). Bottom: The temporal component of
the SSS (S,). Note that in both sequences, the spatial saliency
scores are rather noisy while the temporal saliency scores are
relatively clean.

Figure 3 shows a comparison of our model with the method
in [1]. It is seen that our method performs similarly or better
than that in [1]. More example result of our method is
shown in Figure 4.

5. CONCLUDING REMARKS AND FUTURE WORK

In this work, we have developed an information theoretic
based spatiotemporal visual saliency model for predicting
the visual saliency of spatiotemporal events in full motion
video. Contrast to previous ad hoc approaches, we derive

Our model is currently being applied to various
multimedia processing tasks including video summarization
and object tracking.

Figure 3: Comparison with the method in L1] (based on our own
implementation of the method in [1] for video). Left: original
frame, Middle: top 20 salient regions detected by the method of
[1], Right: top 20 salient regions detected by our method. Note in
the figure, for each salient patch, pixels within a radius of 69 pixels
are shown.

Figure 4: More examples. From left to right: original frame image,
top 20 salient regions (for each salient patch, pixels within a radius
of 69 pixels are shown), another original frame, top 20 salient
regions.
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our concise and elegant model in a principled way guided by
information theory. To overcome the inherent computational
difficulties associated with the use of information theory, we
have developed fast and practical computational solutions
for the implementation of our model. Experimental results
further demonstrate the effectiveness and practicability of
our new method.
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