
COLOR IMAGE CODING, INDEXING AND RETRIEVAL
USING BINARY SPACE PARTITIONING TREE

G Qiu and S Sudirman

School of Computer Science, University of Nottingham, United Kingdom

ABSTRACT

This paper presents a unified approach to colour image
coding, content-based indexing, and retrieval for database
applications. The binary space partitioning (BSP) tree,
traditionally used in gray scale image coding [1, 2] is
extended to represent colour images. The BSP tree, hence
the structure, of the image is explicitly coded. A method is
developed to compute the similarities of images based on
their BSP tree representations. In image database
applications, the images in the database are coded by BSP
tree to achieve a good balance between storage efficiency
and easy manipulation of image data. Content-based image
querying is performed in the compressed bit streams by
comparing the BSP tree of the query image with those of
the images in the database.

1. INTRODUCTION

Image coding is one of the most successful fields
compared to other relative fields in the sense that many
mature technologies have been developed and widely used
in many real life applications. Traditionally, the goal of
image coding is to strive for high compression ratio and
low distortion. However, with the rapid advancement in
processor speed, storage device technology and faster
network connection, low bit rate coding is no longer a
critical factor in many practical applications. Based on a
certain trade-off, higher bit rate and complexity can be
acceptable. On the other hand, with very large image
collections becoming more and more common, effectively
managing large image database, making images easily
accessible have become a challenge. Modern imaging
systems not only require efficient coding, but also easy
manipulation, indexing, and retrieval, the so-called “4th

criterion” in image coding [3].
Recently, image database indexing/management has

been actively researched by researchers from a wide range
of disciplines including those from computer vision, image
processing and traditional database areas. One particularly
promising approach to image database indexing and
retrieval is the query by image content (QBIC) method [4].
QBIC uses the visual contents of the images, such as
colour distribution (colour histogram), texture attributes

and other image features as indexing keys. In an image
database, these visual keys are stored along with the actual
imagery data, and image retrieval from the database is
based on the matching of the models visual keys with
those of the query images. Because extra information has
to be stored with the image, traditional approach to QBIC
is not efficient in terms of data storage. Not only is it
inefficient, it is also inflexible in the sense that image
matching/retrieval can only based on the pre-computed set
of image features.

It is therefore desirable to build up image databases
that are accessible “midstream” [5], i.e. using a
compression model which allows image query, retrieval
and modification to proceed on the compressed
representation [4]. Although it is possible to index images
in the compressed domain of transform-based image
coding, such as JPEG (DCT) [6] and Wavelet [7], the
compressed image streams of these models are not directly
usable and quite complicated processing is required to
compute image features for image indexing and
recognition purposes [8]. Furthermore, indexing in the
compressed domains of these transform-based models is
based on histogram technique [6, 7], which lacks
information about the spatial distribution and relation of
image features and provides no visual semantic for linking
high level contextual information with low level bits. To
meet the new requirements, segmentation-based approach
[9], or the “second generation” image coding [10], which
divides image into meaningful regions, may provide a
better solution than transform-based models.

However, current state of the art computer
vision/image processing techniques are still not mature
enough yet to ensure accurate segmentation of the images
into meaningful regions (objects). Even if accurate
segmentation can be performed, there is the added
problem of representing the images into constituent
regions effectively and efficiently to meet the multiple
requirements of compression, indexing and retrieval. The
binary space partitioning tree method [1, 2] is a second
generation image coding technique based on constraint
image segmentation providing a binary tree data structure
which not only has a compact representation but also
preserve the scene semantics. In this work, we extend the
BSP tree coding method to colour image and present a

method for computing the similarities of images based on
their BSP tree representation for image database
applications.

2. COLOUR IMAGE CODING USING BSP TREE

We have extended the BSP tree image coding method to
colour image, a brief description is given here and more
details can be found in [11]. The method is proceeded as
follow:

A binary quaternion moment thresholding [12] is used
to binaries the whole colour image.

A partitioning (straight) line is then chosen to divide
the image into two regions such that at least one of the
regions is relatively homogenous, i.e., for a binary image it
is either mostly black or mostly white. Since there are
infinite number of possible lines which will partition the
image, the line parameters are quantized [2]. A line
selection criterion is used to allow the pixel impurity on
either sides of the line to be controlled to enable more
meaningful partitioning [11]. The mean colours of the two
partitioned regions are then computed.

The process of thresholding, finding an optimal line
and the calculation of the mean colours, is repeated for
each region. The data used for the thresholding is the data
from the original image. However, this time instead of
thresholding the whole image, we threshold the regions
resulted from the previous partition independently of each
other. A region will not be partitioned if it becomes too
homogenous or if it becomes too small. The process is
repeated until no more regions can be partitioned or until
it has reached a certain number of iterations.

The partitioned image information is put into a binary
tree data structure (Fig. 1) where each non-leaf node holds
the average colour and parameters of the straight line
which partitioning the region, and the leaf nodes hold the
average colours of the smallest region (not further
partitioned)

Fig.1 The image structure is encoded in a binary tree

The tree is coded in a top-down fashion. Starting from
the root node, then the left child, and then the right child,
until it reaches the leaves. 1 bit is used to signify whether a
node is partitioned or not. It a node is partitioned, the line
parameters (ρ and θ in normal representation ρ =
xcosθ+ysinθ) are coded, if not the average colour is

coded. θ is quantized to 8 possible values and ρ is
quantized according to the method of [2].

Although we have not exploited all possible
redundancies exist in the BSP tree representation, the
compression performance are satisfactory. Fig. 2 shows an
example of coding an outdoor scene at various bit rates.
Compared with transform-based coding, such as JPEG, at
moderate bit rates, typically, about 1.5 bpp, the rate
distortion performances of the BSP tree method are
comparable to those of JPEG’s [11].

Fig.2, BSP Tree coded outdoor scene. From left to right and top
to bottom: Original image (24 bpp), 1st partition (4e-4 bpp), 2nd

(6e-4 bpp), 4th partition (2e-3 bpp), 8th partition (0.33 bpp), 10th

partition (0.1 bpp), 12th partition (0.27 bpp) and 20th partition
(1.3 bpp).

3. COMPUTING THE SIMILARITIES
OF COLOUR IMAGES USING THEIR BSP TREES

A tree is a special type of connected graph, a systematic
approach to image matching based on the BSP tree
representations could follow a graph-matching approach
[13, 14]. Alternatively, we could compute the distance
between trees [16, Chapter 4]. Our ongoing work is being
directed towards these directions. Graph-matching/tree
distance computation are themselves very complicated
tasks. The association of the visual semantics with the tree
(graph) makes the tasks even harder, because it is not only
the structure of the tree, but also the contents of the nodes
have to be matched in an appropriate manner to reflect the
visual similarities of images. In this section, we should
present a somewhat empirical method for computing the
similarities of images based on their BSP tree
segmentation. We are hopeful to report a more formal
approach (based on graph matching [14] and tree distance
[16]) to the conference in 10 months time.

We define an entity in the tree called node-family of a
tree. A node family is a sub-tree consisting of a node and
its two children. Let Nk(i,j) denote the jth node family at
layer i of tree k, and Nl(m,n) denote the nth node family at
layer m of tree l. Comparison of the contents of the two
images represented by trees k and l is performed as follow:
For each Nk(i,j), for all i and j, calculate the node family
differences DN (definition given later) between Nk(i,j) and
all the node families of the tree l at levels i-1, i, and i+1 (i
and i+1 if i is the root layer, and i-1 and i if i is a leaf
layer), and take the minimum node family difference value
and denote it as Dk(i,j). The difference from tree k to tree l
DTk-l is the average of Dk(i,j) over all i and j. The same
process is repeated from tree l to tree k to calculate DTl-k

since DTk-l is not necessarily equal to DTl-k. And the
overall tree difference DT(k,l) is calculated as the average
of the two,

DT(k,l) = (DTk-l + DTl-k)/2 (1)

Let j and n be two node families. Let Ljp and Lnp be
the lines associated with the parent nodes of j and n
respectively. Let Cjl and Cjr be the colors associated with
the left and right child node of j respectively. Let Cnl and
Cnr be the colors associated with the left and right child
node of n respectively. The node family difference
between j and n, DN(j,n) is defined as the sum of the
differences between the lines and the colors, i.e.

DN(j,n)=λ1D(Ljp, Lnp)+λ2(D(Cjl,Cnl) + D(Cjr, Cnr))/2 (2)

where λ1 and λ2 are weighting factors giving different
importance to the colour and line (structure) differences
(they have to be determined empirically) and

D(Ljp, Lnp) =(D(θjn)+D(ρjn))/2
D(θjn) = min(|θj-θn|, π-|θj-θn|); D(ρjn) = |ρj-ρn|
D(Cjl,Cnl) = || Cjl- Cnl||; D(Cjr,Cnr) = || Cjr- Cnr||

Because the line parameters and colors represent
different modalities, care must be taken in combining them
together. One difficulty in combining the distances of the
partitioning lines and the distance of colors is that they
represent a priori not comparable modalities, with
different dynamic ranges. In the absence of any systematic
method for combining different modalities, we propose to
normalize all difference entities before combining them.
We believe the problem of combining different modalities
is intrinsically hard, extensive experimenting work is
necessary to assess the importance of different modalities
after normalization. Experiments are currently on going to
select more appropriate values for λ1 and λ2, however, the
results presented here are those of λ1 = λ2 = 1.

In our co-ordinate definition, the origin is the top-left
hand corner of the image, the values of θ range from -π/2
to π/2. Assuming the image height is H and width W, the
values of ρ range from –H to √(H2+W2), and the RGB

values of the color has a range between 0 – 255. Before
calculating the distances, θ's are normalized to [-0.5,+0.5],
ρ's are also normalized to (-0.5,+0.5] and RGB's are
normalized to [0,1].

Fig. 3, Illustration of image matching based on BSP tree
representation

The explanation of the matching method just
described can be illustrated using Fig. 3. These are the
actual BSP tree partitions of two similar images. A circle
in the figure indicates a family node, i.e., it covers one
straight line and the two regions separated by the line. As
illustrated, a family node on the right image is compared
with 7 node families on the left image (depending on the
layer position of the node, the number of comparisons is
different). Intuitively, each family node captures a
microstructure of the scene (at different resolutions), the
matching algorithm tries to match these microstructures of
the two matching image at a similar resolution. The
rationale is that if two images have similar microstructures
(as partitioned by BSP tree) then they are likely to be
similar overall. Bearing in mind that these microstructures
are themselves formed by hierarchical segmentation, and
therefore represent meaning scene partitions. As an
example, Fig. 4 illustrates two similar scenes and their first
level partition, and in fact we have observed similar
meaningful structural partitioning on many scenes. This is
a major advantage compared to other retrieval approaches
based on colour or texture. As we will show in the next
section, state of the art techniques, such as color
correlogram will fail to match these two images even
though they are the same building (but taken at different
angle and under different weather conditions).

Fig 4 BSP Tree partitioning scenes into meaning structures

4. IMAGE RETRIEVAL RESULTS USING BSP
TREES

The image comparison method was implemented in a
database consists of just over 1000 photographic images.
We hand picked 61 pairs of query images and embedded
them in the database. Each pair consists of similar scenes
or similar objects, 18 pairs of which are shown in Fig. 5.

Fig 5 A subset of query image pairs

The tree matching were done up to partition level 5.
For each query image, the differences between its tree and
those of the image in the database was calculated and the
results were sorted in ascending order. To measure the
matching performance, we calculated the matching
percentile defined as

MP = 100 × (N-R) / (N-1) if R ≤ 10 or 0 otherwise (3)

where N is the total number of images, R is the rank of the
target image (paired with the query). As a comparison, we
also implemented the color correlogram method [15].
Each of the 61 pairs of query images was used in turn as
the query image (a total of 122 queries were performed).
In the ideal case, the image paired with the query image
should be returned in the first rank. The experiment
showed very promising results. The average matching
percentile for all 122 queries using the BSP method was
94.2 and that of color correlogram was 93.4. By analysing
the results, we found that in most cases, color correlogram
failed on images of very similar scenes taken at a slightly
different angle; or under different lighting/weather
conditions. Fig. 6 shows two more examples (plus Fig. 4)
where similar scenes taken under slightly different
conditions and the colour correlogram method failed to
pick up the targets and the BSP tree method succeeded.

5. CONCLUDING REMARKS

In this paper, we have proposed the use of a second-
generation constraint adaptive segmentation based image
coding method to construct image database for efficient
storage and easy access of image data. We extended the
binary space partitioning tree method to colour images and
developed an image matching method based the BSP tree
representation. We have shown that the method achieved
good coding performance at moderate bit rates and have
good potential in image database applications. We believe

the BSP tree provides a powerful, efficient and flexible
approach to image representation. The potential in image
matching is yet to be fully exploited. For example, the
partition forms a series of polygon [1], which along with
their spatial relations can be used to form powerful image
matching methods. Our on going work includes the use of
formal graph matching/tree distance approaches to fully
exploit the potential of this representation scheme.

Fig. 6. Query images pairs color correlogram failed whilst the
BSP tree method succeeded.

6. REFERENCES

[1] X. Wu, “Image coding by adaptive tree-structured
segmentation”, IEEE Trans Information Theory, vol. 38, pp.
1755 – 1767, 1992
[2] H. Radha, et al, "Image compression using binary space
partitioning tree", IEEE Trans. on Image Processing, vol.5, pp
1610-1624, 1996
[3] R.W. Picard, "Content Access for Image/Video Coding: "The
Fourth Criterion"", MIT Media Lab TR No. 295. 1994
[4] W. Niblack et al, “Querying images by content using color,
texture and shape”, Proc. SPIE, vol. 1908, pp. 173 – 187, 1993
[5] G. Schaefer and G. Qiu, “Midstream content access based on
visual pattern coding”, Proc. SPIE, vol. 3972, pp.284 – 292,
2000
[6] E. Freg and C. S. Li, “Computing image histogram from
compressed data”, Proc. SPIE, Vol. 2898, pp. 118 –124, 1996
[7] M. K. Mandal et al, “Fast Wavelet histogram techniques for
image indexing”, Computer Vision and Image Understanding,
vol. 75, pp. 99-110, 1999
[8] W. B. Seales et al, “Object recognition in compressed
imagery”, Image and Vision Computing, 16, pp. 337-352, 1998
[9] C. Carson et al, “Blobworld: A system for region-based
image indexing and retrieval”, Proc. Int. Conf. Vis. Inf. Sys.
1999
[10] M. Kunt et al, “Second generation image coding”, Proc.
IEEE, vol. 73, pp. 549 –574, 1985
[11] S. Sudirman and G. Qiu, “Colour image representation
using BSP Tree”, Proc. of CGIP 2000, Color in Graphics and
Image Processing October 1- 4, 2000, Saint-Etienne, France
[12] S.C. Pei and C.M. Cheng, "Color image processing by
using binary quaternion moment-preserving thresholding", IEEE
Trans. on Image Processing, vol. 8, pp.614-628, 1999
[13] M. Pelillo et al "Matching hierarchical structures using
association graphs", IEEE PAMIvol.21, pp.1105-1120, 1999
[14] H. D. Tagare et al, “Arrangement: A spatial relation
between parts for evaluating similarity of tomographics sections”
IEEE PAMI, vol. 17, pp. 880 – 893, 1995
[15] J. Huang, et. al., "Image indexing using color correlogram",
Proc. CVPR, pp. 762-768, 1997
[16] L. Miclet, Structural Methods in Pattern Recognition, North
Oxford Academic Publishers Ltd., 1986

