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Learning to display high dynamic range images
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Abstract

In this paper, we present a learning-based image processing technique. We have developed a novel method to map high dynamic range scenes
to low dynamic range images for display in standard (low dynamic range) reproduction media. We formulate the problem as a quantization
process and employ an adaptive conscience learning strategy to ensure that the mapped low dynamic range displays not only faithfully
reproduce the visual features of the original scenes, but also make full use of the available display levels. This is achieved by the use of a
competitive learning neural network that employs a frequency sensitive competitive learning mechanism to adaptively design the quantizer.
By optimizing an L2 distortion function, we ensure that the mapped low dynamic images preserve the visual characteristics of the original
scenes. By incorporating a frequency sensitive competitive mechanism, we facilitate the full utilization of the limited displayable levels. We
have developed a deterministic and practicable learning procedure which uses a single variable to control the display result. We give a detailed
description of the implementation procedure of the new learning-based high dynamic range compression method and present experimental
results to demonstrate the effectiveness of the method in displaying a variety of high dynamic range scenes.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

With the rapid advancement in electronic imaging and com-
puter graphics technologies, there have been increasing interests
in high dynamic range (HDR) imaging, see e.g., Ref. [1–17].
Fig. 1 shows a scenario where HDR imaging technology will
be useful to photograph the scene. This is an indoor scene of
very HDR. In order to make features in the dark areas visible,
longer exposure had to be used, but this rendered the bright
area saturated. On the other hand, using shorter exposure made
features in the bright areas visible, but this obscured features
in the dark areas. In order to make all features, both in the dark
and bright areas simultaneously visible in a single image, we
can create a HDR radiance map [3,4] for the scene. Using the
technology of Ref. [3], it is relatively easy to create HDR maps
for high dynamic scenes. All one needs is a sequence of low
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dynamic range (LDR) photos of the scene taken with different
exposure intervals. Fig. 2 shows the LDR display of the scene
in Fig. 1 mapped from its HDR radiance map, which has been
created using the method of [3] from the photos in Fig. 1. It is
seen that all areas in this image are now clearly visible. HDR
imaging technology has also been recently extended to video
[13,14].

Although we can create HDR numerical radiance maps for
high dynamic scenes such as those like Fig. 1, reproduction
devices, such as video monitors or printers, normally have much
lower dynamic range than the radiance map (or equivalently
the real world scenes). One of the key technical issues in HDR
imaging is how to map HDR scene data to LDR display values
in such a way that the visual impressions and feature details of
the original real physical scenes are faithfully reproduced.

In the literature, e.g., Refs. [5–17], there are two broad
categories of dynamic range compression techniques for the dis-
play of HDR images in LDR devices [12]. The tone reproduc-
tion operator (TRO) based methods involve (multi-resolution)
spatial processing and mappings not only take into account the
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Fig. 1. Low dynamic range photos of an indoor scene taken under different exposure intervals.

Fig. 2. Low dynamic display of high dynamic range map created from the
photos in Fig. 1. The dynamic range of the radiance map is 488,582:1.
HDR radiance map synthesis using Paul Debevec’s HDRShop software
(http://gl.ict.usc.edu/HDRShop/). Note: the visual artifacts appear in those
blinds of the glass doors were actually in the original image data and not
caused by the algorithm.

values of individual pixel but are also influenced by the pixel
spatial contexts. Another type of approaches is tone reproduc-
tion curve (TRC) based. These approaches mainly involve the
adjustment of the histograms and spatial context of individual
pixel is not used in the mapping. The advantages of TRO-based
methods are that they generally produce sharper images when
the scenes contain many detailed features. The problems with
these approaches are that spatial processing can be computa-
tionally expensive, and there are in general many parameters
controlling the behaviors of the operators. Sometimes these
techniques could introduce “halo” artifacts and sometimes they
can introduce too much (artificial) detail. TRC-based methods
are computationally simple. They preserve the correct bright-
ness order and therefore are free from halo artifacts. These
methods generally have fewer parameters and therefore are eas-
ier to use. The drawbacks of this type of methods are that spa-
tial sharpness could be lost.

Perhaps one of the best known TRC-based methods is that
of Ward and co-workers’ [5]. The complete operator of Ref.
[5] also included sophisticated models that exploit the limita-
tions of human visual system. According to Ref. [5], if one
just wanted to produce a good and natural-looking display
for an HDR scene without regard to how well a human ob-
server would be able to see in a real environment, histogram
adjustment may provide an “optimal” solution. Although the
histogram adjustment technique of Ref. [5] is quite effective, it
also has drawbacks. The method only caps the display contrast

(mapped by histogram equalization) when it exceeds that of the
original scene. This means that if a scene has too low contrast,
the technique will do nothing. Moreover, in sparsely populated
intensity intervals, dynamic range compression is achieved by a
histogram equalization technique. This means that some sparse
intensity intervals that span a wide intensity range will be com-
pressed too aggressively. As a result, features that are visible
in the original scenes would be lost in the display. This un-
satisfactory aspect of this algorithm is clearly illustrated
in Figs. 9–11.

In this paper, we also study TRC-based methods for the dis-
play of HDR images. We present a learning-based method to
map HDR scenes to low dynamic images to be displayed in
LDR devices. We use an adaptive learning algorithm with a
“conscience” mechanism to ensure that, the mapping not only
takes into account the relative brightness of the HDR pixel val-
ues, i.e., to be faithful to the original data, but also favors the
full utilization of all available display values, i.e., to ensure the
mapped low dynamic images to have good visual contrast. The
organization of the paper is as follows. In the next section, we
cast the HDR image dynamic range compression problem in
an adaptive quantization framework. In Section 3, we present
a solution to HDR image dynamic range compression based
on adaptive learning. In Section 4, we present detailed imple-
mentation procedures of our method. Section 4.1 presents re-
sults and Section 4.2 concludes our presentation and briefly
discusses future work.

2. Quantization for dynamic range compression

The process of displaying HDR image is in fact a quantiza-
tion and mapping process as illustrated in Fig. 3. Because there
are too many (discrete) values in the high dynamic scene, we
have to reduce the number of possible values, this is a quantiza-
tion process. The difficulty faced in this stage is how to decide
which values should be grouped together to take the same value
in the low dynamic display. After quantization, all values that
will be put into the same group can be annotated by the group’s
index. Displaying the original scene in a LDR is simply to rep-
resent each group’s index by an appropriate display intensity
level. In this paper, we mainly concerned ourselves with the
first stage, i.e., to develop a method to best group HDR values.

Quantization, also known as clustering, is a well-studied
subject in signal processing and neural network literature. Well-
known techniques such as k-means and various neural network-
based methods have been extensively researched [18–21]. Let
x(k), k = 1, 2, . . ., be the intensities of the luminance compo-
nent of the HDR image (like many other techniques, we only
work on the luminance and in logarithm space, also, we treat
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Fig. 3. The process of display of high dynamic range scene (from purely a
numerical processing’s point of view).

each pixel individually and therefore are working on scalar
quantization). A quantizer is described by an encoder Q, which
maps x(k) to an index n ∈ N specifying which one of a small
collection of reproduction values (codewords) in a codebook
C={cn; n ∈ N} is used for reconstruction, where N in our case,
is the number of displayable levels in the LDR image. There
is also a decoder Q−1, which maps indices into reproduction
values. Formally, the encoding is performed as

Q(x(k)) = n if ‖x(k) − cn‖�‖x(k) − ci‖ ∀i (1)

and decoding is performed as

Q−1(n) = cn. (2)

That is (assuming that the codebook has already been de-
signed), an HDR image pixel is assigned to the codeword that
is the closest to it. All HDR pixels assigned to the same code-
words then form a cluster of pixels. All HDR pixels in the
same cluster are displayed at the same LDR level. If we order
the codewords such that they are in increasing order, that is
c1 < c2 < · · · < cN−1 < cN , and assign display values to pixels
belonging to the clusters in the order of their codeword values,
then the mapping is order preserving. Pixels belonging to a clus-
ter having a larger codeword value will be displayed brighter
than pixels belonging to a cluster with a codeword having a
smaller value.

Clearly, the codebook plays a crucial role in this dynamic
range compression strategy. It not only determines which pix-
els should be displayed at what level, it also determines which
pixels will be displayed as the same intensity and how many
pixels will be displayed with a particular intensity. Before we
discuss how to design the codebook, lets find out what require-
ments for the codebook are in our specific application.

Recall that one of the objectives of mapping are that we
wish to preserve all features (or as much as possible) of the
HDR image and make them visible in the LDR reproduction.
Because there are fewer levels in the LDR image than in the
HDR image, the compression is lossy in the sense that there
will be features in the HDR images that will be impossible to
reproduce in the LDR images. The question is what should be

preserved (and how) in the mapping (quantization) in order to
produce good LDR displays.

For any given display device, the number of displayable lev-
els, i.e., the number of codewords is fixed. From a rate dis-
tortion’s point of view, the rate of the quantizer is fixed, and
the optimal quantizer is the one that minimizes the distortion.
Given the encoding and decoding rules of Eqs. (1) and (2), the
distortion of the quantizer is defined as

E =
∑
i,k

�i (k)‖x(k) − ci‖ where

�i (k) =
{

1 if ‖x(k) − ci‖ ≤ ‖x(k) − cj‖ ∀j,

0 otherwise.
(3)

A mapping by a quantizer that minimizes E (maximizes rate
distortion ratio) will preserve maximum relevant information
of the HDR image.

One of the known problems in rate distortion optimal quan-
tizer design is the uneven utilization of the codewords where,
some clusters may have large number of pixels, some may have
very few pixels and yet others may even be empty. There may
be two reasons for this under utilization of codewords. Firstly,
the original HDR pixel distribution may be concentrated in a
very narrow range of intensity interval; this may cause large
number of pixels in these densely populated intervals to be
clustered into a single or very few clusters because they are
so close together. In the HDR image, if an intensity interval
has a large concentration of pixels, then these pixels could be
very important in conveying fine details of the scene. Although
such intervals may only occupy a relatively narrow dynamic
range span because of the high-resolution representation, the
pixels falling onto these intervals could contain important de-
tails visible to human observers. Grouping these pixels together
will loose too much detail information. In this case, we need
to “plug” some codewords in these highly populated intensity
intervals such that these pixels will be displayed into different
levels to preserve the details. The second reason that can cause
the under utilization of codewords could be due to the opti-
mization process being trapped in a local minimum. In order to
produce a good LDR display, the pixels have to be reasonably
evenly distributed to the codewords. If we assign each code-
word the same number of pixels, then the mapping is histogram
equalization which has already been shown to be unsuitable
for HDR image display [5]. If we distribute the pixel popula-
tion evenly without regarding to their relative intensity values,
e.g., grouping pixels with wide ranging intensity values just to
ensure even population distribution into each codeword, then
we will introduce too much objectionable artifacts because
compression is too aggressive. In the next section, we intro-
duce a learning-based approach suitable for designing dynamic
range compression quantizers for the display of HDR images.

3. Conscience learning for HDR compression

Vector quantization (VQ) is a well-developed field [16]
(although we will only design a scalar quantizer (SQ), we
will borrow techniques mainly designed for VQ. There are
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many methods developed for designing vector quantizers. The
k-means type algorithms, such as the LBG algorithm [18],
and neural network-based algorithms, such as the Kohonen
feature map [19] are popular tools. As discussed in Section 2,
our quantizer should not only be based on the rate distortion
criterion, but also should ensure that there is an even spread
of pixel population. In other words, our quantizer should min-
imize E in Eq. (3) and at the same time the pixels should be
evenly distributed to the codewords. Therefore the design algo-
rithm should be able to explicitly achieve these two objectives.
In the neural network literature, there is a type of conscience
competitive learning algorithm that will suit our application. In
this paper, we use the frequency sensitive competitive learning
(FSCL) algorithm [20] to design a quantizer for the mapping
of HDR scenes to be displayed in low dynamic devices. To
understand why FSCL is ideally suited for such an application,
we first briefly describe the FSCL algorithm.

The philosophy behind the FSCL algorithm is that, when a
codeword wins a competition, the chance of the same codeword
winning the next time round is reduced, or equivalently, the
chance of other codewords winning is increased. The end effect
is that the chances of each codeword winning will be equal. Put
in the other way, each of the codewords will be fully utilized.
In the context of using the FSCL for mapping HDR data to
low dynamic display, the limited number of low dynamic levels
(codewords) will be fully utilized. The intuitive result of fully
utilized display level is that the displayed image will have good
contrast, which is exactly what is desired in the display. How-
ever, unlike histogram equalization, the contrast is constrained
by the distribution characteristics of the original scene’s inten-
sity values. The overall effect of such a mapping is therefore
that, the original scenes are faithfully reproduced, while at the
same time, the LDR displays will have good contrast.

FSCL algorithm
Step 1: Initialize the codewords, ci(0), i=1, 2, . . . , N , to ran-

dom numbers and set the counters associated with each code-
word to 1, i.e. fi(0) = 1, i = 1, 2, . . . , N

Step 2: Present the training sample, x(k), where k is the
sequence index, and calculate the distance between x(k) and
the codewords, and subsequently modify the distances using
the counters values

di(k) = ‖x(k) − ci(k)‖ d∗
i (k) = fi(k)di(k) (4)

Step 3: Find the winner codeword cj (k), such that
d∗
j (k)�d∗

i (k) ∀i

Step 4: Update the codeword and counter of the winner as

cj (k + 1) = cj (k) + �(x(k) − cj (k)) fj (k + 1)

= fj (k) + 1 where 0 < � < 1 (5)

Step 5: If converged, then stop, else go to Step 2.
The FSCL process can be viewed as a constrained optimiza-

tion problem of the following form:

J = E + �
∑

i

((∑
k

�i (k)

)
− |x(k)|

N

)2

, (6)

where � is the Lagrange multiplier, |x(k)| represents the total
number of training samples (pixels), N is the number of code-
words (display levels), E and � are as defined in Eq. (3).

Minimizing the first term ensures that pixel values close to
each other will be grouped together and will be displayed as
the same single brightness. Minimizing the second term facil-
itates that each available displayable level in the mapped im-
age will be allocated similar number of pixels thus creating a
well contrast display. By sorting the codewords in an increasing
order, i.e., c1 < c2 < · · · < cN−1 < cN , the mapping also ensures
that the brighter pixels in the original image are mapped to a
brighter display level and darker pixels are mapped to a darker
display level thus ensuring the correct brightness order to avoid
visual artifacts such as the “halo” phenomenon.

Because the mapping not only favors an equally distributed
pixel distribution but also is constrained by the distances
between pixel values and codeword values, the current method
is fundamentally different from both traditional histogram
equalization and simple quantization-based methods. His-
togram equalization only concerns that the mapped pixels have
to be evenly distributed regardless of their relative brightness,
while simple quantization-based mapping (including many lin-
ear and nonlinear data independent mapping techniques, e.g.,
Ref. [2]) only takes into account the pixel brightness value
while ignoring the pixel populations in each mapped level.
As a result, histogram equalization mapping will create visu-
ally annoying artifacts and simple quantization-based method
will create mappings with under utilized display levels which
often resulting in many features being squashed and become
invisible. With FSCL learning, we could achieve a balanced
mapping.

4. Implementation details

Because the objective of our use of the FSCL algorithm in
this work is different from that of its ordinary applications,
e.g., vector quantization, there are some special requirements
for its implementation. Our objective is not purely to achieve
rate distortion optimality, but rather should optimize an ob-
jective function of the form in Eq. (6) and the ultimate goal
is, of course, to produce good LDR displays of the HDR im-
ages. In this section, we will give a detailed account of its
implementation.

4.1. Codebook initialization

We work on the luminance component of the image only and
in logarithm space, from the floating point RGB pixel values
of the HDR radiance map, we calculate

L = log(0.299 ∗ R + 0.587 ∗ G + 0.114 ∗ B),

Lmax = MAX(L), Lmin = MIN(L). (7)

In using the FSCL algorithm, we found that it is very important
to initialize the codewords to linearly scaled values. Let the
codebook be C = {ci; i = 1, 2, . . . , N}, N is the number of
codewords. In our current work, N is set to 256. The initial
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Fig. 4. Competitive learning without conscience mechanism will produce a mapping close to linear scaling. Left column: competitive learning without conscience
mechanism. Right column: linear scaling. Radiance map data courtesy of Fredo Durand.

values of the codewords are chosen such that they are equally
distributed in the full dynamic range of the luminance:

ci(0) = Lmin + i

256
(Lmax − Lmin). (8)

Recall that our first requirement in the mapping is that the dis-
play should reflect the pixel intensity distribution of the original
image. This is achieved by the optimization of E in Eq. (3) with
the initial codeword values chosen according to Eq. (8). Let
us first consider competitive learning without the conscience
mechanism. At the start of the training process, for pixels falling
into the interval ci(0) ± (Lmax − Lmin)/512, the same code-
word ci will win the competitions regardless of the size of pixel
population falling into the interval. The pixels in the intensity
intervals that are far away from ci will never have the chance
to access it. In this case, distance is the only criterion that de-
termines how the pixels will be clustered and pixel populations
distributed into the codewords are not taken into account. Af-
ter training, the codewords will not change much from their
initial values because each codeword will only be updated by
pixels falling close to it within a small range. In the encoding

or mapping stage, since the codewords are quite close to their
corresponding original positions which are linearly scattered in
the FDR, the minimum distortion measure will make the map-
ping approximately linear and extensive simulations demon-
strate that this is indeed the case. As a result, the final mapped
image will exhibit the pixel intensity distribution characteris-
tics of the original image. Fig. 4(a) shows a result mapped by
competitive learning without the conscience mechanism, com-
pared with Fig. 4(b), the linearly scaled mapping result, it is
seen that both the images and their histograms are very similar
which demonstrate that by initializing the codewords according
Eq. (8), optimizing the distortion function E in Eq. (3) has the
strong tendency to preserve the original data of the original im-
age. However, like linear compression, although the resulting
image reflects the data distribution of the scene, densely pop-
ulated intensity intervals are always over-quantized (too much
compression) which causes the mapped image lacking contrast.

With the introduction of the conscience mechanism, in the
training stage, competition is based on a modified distance
measure, d∗ in Eq. (4). Note that if a codeword wins the
competitions frequently, its count and consequently its modi-
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Fig. 5. Final mapped images and their histograms for fixed � and various �(0). Radiance map data courtesy of Fredo Durand.

fied distance increases, thus reducing its chance of being the
winner and increasing the likelihood of other codewords with
relatively lower count values to win. This property is exactly

what is desired. If a codeword wins frequently, this means
that the intensity interval it lies in gathers large population of
pixels. In order to ensure the mapped image having good
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Fig. 6. Final mapped images and their histograms for fixed �(0) and various �. Radiance map data courtesy of Fredo Durand.

contrast, these densely populated intensity intervals should be
represented by more codewords, or equivalently, more dis-
play levels. The incorporation of the conscience mechanism
makes the algorithm conscience of this situation and passes the

chances to codewords with lower count values to win the com-
petitions so that they can be updated towards the population
dense intensity intervals and finally join in the quantization of
these intervals.
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The training starts from linearly scattered codewords, with
the introduction of the conscience mechanism, the code-
words are moved according to both their values and the pixel
population distribution characteristics. At the beginning of the
training phase, the mapping is linear, and the mapped image’s
histogram is narrow, as training progresses, the mapped im-
age’s histogram is gradually wider, and when it reaches an
equilibrium, it achieves an optimal mapping that preserves the
appearance of the original scene and also has good visibility
and contrast.

Although initializing the codewords according to Eq. (8)
may lead to larger final distortion E than other (random) meth-
ods for codeword initialization, this does not matter. Unlike
conventional use of FSCL, our objective is not to achieve rate
distortion optimality, but rather, the aim is to cluster the HDR
image pixels in such a way that the groupings not only reflect
the pixel distribution of the original scene, the pixel populations
are also evenly distributed to the codewords such that the im-
age can be displayed in LDR devices with good visibility and
contrast.

Because of the special way in which the initial values
of the codewords are set, some codewords may scatter far
away from densely populated intensity intervals where more
codewords are needed to represent the pixels. In order to
achieve this, we let the fairness function, fi’s in Eq. (5) of the
FSCL algorithm, accumulate the counts throughout the entire
training process, thus increasing the chances to obtain more
contrast.

4.2. Setting the training rate �

The training rate � in Eq. (5) is an important parameter in the
training of the quantizer. It not only determines the convergence
speed but also affects the quality of the final quantizer. In the
neural network literature, there are extensive studies on this
subject. In our work, we use the following rule to set the training
rate as a function training iterations

�(k) = �(0) exp(−�k)), (9)

where �(0) is the initial value set at the beginning of the training,
� is a parameter controlling how fast the training rate decades
as training progresses.

In the experiments, we found that larger initial training rate
values and slower decreasing speeds (smaller � in Eq. (9))
led to higher contrast images when the algorithm achieved an
equilibrium state. The result is expected. Larger initial val-
ues and slower decreasing speed of the training rate make �
remain relatively large throughout. Once a codeword, which
may be far away from densely populated intensity intervals,
wins a competition, the larger training rate would drag it closer
to the densely populated intensity intervals and thus increasing
its chance to win again the next time round. The final result
is that densely populated intensity intervals are represented by
more codewords or more display levels and the displayed im-
ages will have more details. The effects for smaller training
rates are almost the opposite, small training rate will result in
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Fig. 7. Training curves for fixed � = 0.05 and various �(0) corresponding to
those in Fig. 5.

the image having a narrower histogram (lower contrast) and
more similar to the effect of linear compression. This is again
expected. Because we initialize the codewords by linear scal-
ing and small � will make the final codewords closer to their
initial values when the training achieves an equilibrium. Fig. 5
shows examples of mapped images and their histograms with
different �(0) and fixed �. Fig. 6 shows examples of mapped
images and their histograms with different � and fixed �(0).
By changing the training rate settings, the mapped image’s his-
togram can be controlled to have narrower shapes (lower con-
trast images) or broader shapes (higher contrast images). This
property of the training rate provides the users with a good
guidance to control the final appearance of the mapped HDR
images.

According to the above analysis, in order to control the
final appearance of the mapped image, we can fix one param-
eter and change the other. To achieve the same contrast for the
final mapping, we can either use a smaller �(0) and a smaller �,
or, a larger �(0) and a larger �. However in the experiments we
found that, with a smaller �(0) and a smaller �, the algorithm
took longer to converge to an equilibrium state. Fig. 7 shows
the training curves for the training rate settings corresponding
to those in Figs. 5 and 8 shows the training curves for the train-
ing rate settings corresponding to those in Fig. 6. The image
in Fig. 5 mapped with �(0) = 0.5 and � = 0.05 and the image
in Fig. 6 mapped with �(0) = 0.2 and � = 0.002 have similar
contrast. However, as can be seen from the training curves in
Figs. 7 and 8, for �(0) = 0.5 and � = 0.05, the training con-
verged within 100 iterations and for �(0) = 0.2 and � = 0.002
the training took more than 400 iterations to converge. Thus
as a guide for the use of the training algorithm, we recom-
mend that the control of the final image appearance be achieved
by fixing a relatively aggressive � and adjusting �(0) because
of the fast convergence speed under such conditions. Setting
�(0) = 0 ∼ 1 and � = 0.05, and train the quantizer for 100
iterations worked very well for all images we have tried. After
50 iterations, E changed very little by further iterations, there-
fore for most images, less than 50 iterations suffice. Through
experiments, we also found that it was only necessary to use
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Fig. 8. Training curve for fixed �(0) = 0.2 and various � corresponding to
those in Fig. 6.

about a quarter of the pixels in an image to train the mapping
quantizer.

4.3. Pixel clustering and mapping for display

Once the codebook has been designed and the codewords
ordered in an increasing order, a pixel x is assigned a display
value Ld , according to

Ld = arg(min
i

‖x − ci‖). (10)

Although not a focus of this paper, it is important to men-
tion how we render our quantized images for display. So far,
we have taken an HDR image and quantized it into 256 lev-
els. How should we use these quantized values to drive a
CRT? This is a complicated issue, and in this paper, we take
a simple (not necessarily the best) approach: All the pixels in
a group indicated by index n is mapped to display intensity
level n.

The rationale for this comes from what is known about light-
ness perception in our own vision. Using the CIE standards, it
is known that if we are to display a uniform gray scale on a
monitor then we choose uniform steps in ‘lightness’ and then
display these ‘lightness’ values (by carrying out the correct cal-
ibration). Let us consider our quantized values to be quantized
‘lightness’ values (since we wish each level to be visually equal
importance). In the CIE standard, lightness is defined to be the
cube root of a linear luminance signal. It follows then, that to
linearize our processed data we would have to raise it to the
power of 3. However, we note that the transfer function of a
typical monitor is often modeled as a power around 2.2–2.4.
That is, the monitor transforms our perceptual measures into
almost the correct linearized signal for display. Of course, if
the target for images is a medium other than a CRT moni-
tor then we may have to carry out a calibration and convert
our processed images accordingly. Finally, the LDR image is

rendered as

Rd =
(

Rin

Lin

)�

Ld, Gd =
(

Gin

Lin

)�

Ld, Bd =
(

Bin

Lin

)�

Ld ,

(11)

where Lin and Ld are luminance values before and after com-
pression, � controls display color (setting it between 0.4 and
0.6 worked well).

4.4. Implementation summary

One of the problems of neural network training is that the
final results are greatly influenced by the (random) initial set-
tings. In our application, the initial codewords are set in a de-
terministic way, i.e., linearly sampled from the full dynamic
range of the images’ intensity. We therefore remove one of the
stochastic elements of the training algorithm. We further show
that setting the initial codeword values according to Eq. (8)
not only removes one of the nondeterministic elements of the
algorithm but also fits perfectly into the tone mapping require-
ments of our application. Through empirical investigations, we
further developed principles for selecting the training rate pa-
rameters for faster convergence and for the use of the training
rate to control the final appearances of the mapped images.

Therefore, our implementation procedure is deterministic.
The algorithm starts from a linear scaling mapping and gradu-
ally adds contrast to the mapped image as training progresses.
By setting the training rate parameters appropriately, we can
control the final appearances of the mapped image. In fact, in
all our experiments, we fixed � = 0.05 and only varied �(0).
Therefore our algorithm only has one adjustable variables �(0),
which is used to control the final contrast of the mapped images.

5. Experimental results

We have applied our method to many HDR graphics and
photographs. Similar to work of other authors, we only map the
dynamic range of the luminance, and color correction on these
images was not performed. Our method belongs to the global
(spatially invariant) TRC category of technique [12]. We first
compare our technique with one of the well-known TRC-based
method of Ward and co-workers [5]. We thank Greg Ward for
making his software available for creating the results of his
technique.

Fig. 9 shows the mapping curves and LDR images of our new
method and those of histogram equalization and the method of
Ref. [5] for the bathroom image. It is seen that the mapping
curve of our method and that of Ref. [5] have a similar shape,
but it is also seen that at the very bright part of the image,
our mapping has less aggressive compression. This is reflected
in the mapped images. It is seen that in areas surrounding the
lamp, our mapping has retained more details than the method of
Ref. [5] and histogram equalization. This can be explained by
inspecting the mapping curves, where it is seen that our map-
ping curve has reserved more display levels for the bright part
of the intensity intervals. The reason that the method of Ref. [5]
compresses the dynamic range in this interval so aggressively
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Fig. 9. Top row: original HDR image’s histogram and display mapping curves for the bathroom image, the HDR input axis is in logarithmic scale and the
LDR display level output axis is normalized to 100. Compared with Ward’s method, our compression was less aggressive in the bright intensity intervals, this
is reflected in the mapped LDR image where our display has retained more details than both Wards method and histogram equalization. Middle row: left to
right, images mapped by the new method for �(0) = 0.6, � = 0.05, iterations = 80, Ward’s method and histogram equalization. Bottom row: amplified regions
of the images above them. Radiance map courtesy of Greg Ward. The dynamic range of the image is 56,731:1.

is because, the method is based on histogram equalization (by
accumulating pixel population) to produce its mapping curve,
however, pixel population in this interval is sparse, the display
produced in this region by the mapping curve will have low
contrast and in such case the algorithm of Ref. [5] does noth-
ing but approximately follows histogram equalization mapping.
What a good mapping should do is to be able to adjust the
number of display levels assigned to such sparsely populated
intervals and it is seen that our method can do just that.

Fig. 10 shows the mapping curves and LDR images of
our new method and those of histogram equalization and the
method of Ref. [5] for the Memorial Church image. It is again
observed that our mapping has been able to assign display

levels more sensibly. For example, in the areas around the win-
dows, both displays of the method of Ref. [5] and histogram
equalization have become very saturated, while our display
has retained more details. This is because our mapping has
assigned more display levels to these bright but sparsely pop-
ulated intensity intervals whilst histogram equalization and the
method of Ref. [5] have compressed this interval very aggres-
sively because the pixel populations in these intensity intervals
are very sparse.

Fig. 11 shows yet another example. Here we show that our
method can achieve satisfactory results for different �(0)’s. It
is again seen very clearly that our method was able to assign
display levels more sensibly than the method of Ref. [5]. It
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Fig. 10. Top row: original HDR image’s histogram and display mapping curves for the Memorial Church image, the HDR input axis is in logarithmic scale
and the LDR display level output axis is normalized to 100. Compared with Ward’s method, our compression was less aggressive in the brighter intensity
intervals where pixel population is sparse, this is reflected in the mapped LDR image where our display has retained more details than both Ward’s method and
histogram equalization. Middle row: left to right, images mapped by the new method for �(0) = 0.8, � = 0.05, iterations = 80 , Ward’s method and histogram
equalization. Bottom row: amplified regions of the images above them. Radiance map courtesy of Paul Debevec. The dynamic range of the image is 340,016:1.

is seen that because the method of Ref. [5] compresses the
sparsely populated bright intensity intervals so aggressively, the
areas surrounding the lamps have became completely saturated.
In contrast, our method has been able to distribute display levels
more appropriately and in our displays the lamps are clearly
visible.

Figs. 12 and 13 show comparisons of mapped images of
our method with other two methods in the literature. It is seen
that our method is clearly better than the simple quantiza-
tion method and comparable to photograph tone reproduction
approach.

It turns out that the models can be pre-trained, that is, the
mapping models trained using one image (or a group of images)
can be used to mapped those images that are not part of the
training data. Figs. 14 and 15 show results of mapped displays
using pre-trained (using other images) models. In the neural
network literature, this is known as the generalization capability
[21]. With such a capability, it is possible to collect training
images that are similar to the images we want to display to
pre-train the mapping models (quantizers). Therefore, an image
can be mapped directly using models pre-trained using similar
images without necessarily having to train the mapping model
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Fig. 11. Top row: original HDR image’s histogram and display mapping curves for the Atrium image, the HDR input axis is in logarithmic scale and the LDR
display level output axis is normalized to 100. Compared with Ward’s method, our compression was less aggressive in the bright intensity intervals where
pixel population is sparse, this is reflected in the mapped LDR images where our displays have retained more details than Ward’s method. Middle row: left
to right, images mapped by the new method for �(0) = 0.4, � = 0.05, iterations = 80, the new method for �(0) = 0.8, � = 0.05, iterations = 80 and Ward’s
method. Bottom row: amplified regions of the images above them. It is seen clearly that Ward’s method has made the lamps and their surrounding areas
completely saturated. Radiance map courtesy of Greg Ward. The dynamic range of the image is 3,900:1.

Fig. 12. Left: result of the new method (�(0)= 0.3, �= 0.05, iterations = 80). Right: results of Schlick’s rational sigmoid quantization technique [2]. Radiance
map courtesy of Program of Computer Graphics, Cornell University.
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Fig. 13. Left: result of the new method (�(0) = 0.4, � = 0.05, iterations = 80). Right: result of [9], image courtesy of Erik Reinhard. Radiance map courtesy
of Paul Debevec.

Fig. 14. Left: result of the new method, mapping model trained on its own data (�(0) = 0.5, � = 0.05, iterations = 80). Right: result of the new method,
mapping model trained on data from the image in Fig. 13 (�(0) = 0.5, � = 0.05, iterations = 80). Radiance map courtesy of Paul Debevec.

Fig. 15. Result of the new method. The left image’s mapping model was trained on the HDR data from the right image (�(0)=0.8, �=0.05, iterations = 100).
The right image’s mapping model was trained on the HDR data from the left image (�(0) = 0.5, � = 0.05, iterations = 100). Data courtesy of Greg Ward.

online, thus improving the mapping speed. Fig. 16 shows more
examples of our results.

If an image is to be mapped using its own model and the
quantizer is to be trained online, the training of the quantizer
will take up most of the computing time. Once the model is
trained, mapping is very fast. Our programs were written in
C, which had not been optimized for speed. For a 512 × 768
image, using a quarter of the pixels and training for 80 itera-
tions, it took a Pentium 3 GHz processor PC 18.6 s to train the

mapping quantizer. For most images, fewer than 50 iterations
suffice. Once the quantizer has been designed, it took 0.67 s to
map a 512 × 768 image. This training speed can be improved
by introducing fast training algorithms and optimized training
parameters.

As in many other tone mapping works in the literature, our
evaluations of results are mainly based on visual assessment
of displays on LDR devices. Due to the subjective nature of
the problem, a quantitative measure of tone mapping quality is
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Fig. 16. More examples mapped by the new method (using own models).
Radiance maps courtesy of Paul Debevec. The parameters used for the above
images are: top: �(0) = 0.4, � = 0.05, iterations = 80; Bottom: �(0) = 0.8,
� = 0.05, iterations = 80.

still very difficult to obtain. With the advent of HDR display
systems [22], tone mapping operators for HDR images can be
evaluated against HDR displays in the future.

6. Conclusions and future work

In this paper, we have presented a new method, which learns
to map high dynamic range image data to be displayed in low
dynamic range devices. The frequency sensitive competitive
learning (FSCL) algorithm, which ensures that all the available
levels in the low dynamic range display are fully utilized, has
been shown to give very good performances. We have presented
a very detailed procedure that removes the stochastic elements
of neural network training and turns the implementation into a
deterministic procedure where there is only one variable which
has also been used to control the appearances of the final dis-
play. Our contributions in this paper are the introduction of a
novel learning-based method and its detailed, deterministic and
practicable implementation procedure for the display of high
dynamic range image.

Our current method was strongly motivated from a computa-
tional perspective. Indeed, the contribution of this work should
be viewed as the introduction of a novel learning-based compu-
tational method for the display of high dynamic range image.

Our future work would investigate issues such as (i) ways to
incorporate perceptual aspects into the algorithm, for example,
taking inspirations from the works of Refs. [5,16,17], (ii) better
methods to render the output of the quantizer to produce better
display and (iii) fast training and rendering algorithms.
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