
Pattern Recognition 40 (2007) 1711–1721
www.elsevier.com/locate/pr

Visual guided navigation for image retrieval

Guoping Qiu∗, Jeremy Morris, Xunli Fan
School of Computer Science, University of Nottingham, Jubilee Campus, Nottingham NG8 1BB, UK

Received 12 April 2006; accepted 27 September 2006

Abstract

In this work, we are interested in technologies that will allow users to actively browse and navigate large image databases and to
retrieve images through interactive fast browsing and navigation. The development of a browsing/navigation-based image retrieval system
has at least two challenges. The first is that the system’s graphical user interface (GUI) should intuitively reflect the distribution of the
images in the database in order to provide the users with a mental picture of the database content and a sense of orientation during the
course of browsing/navigation. The second is that it has to be fast and responsive, and be able to respond to users actions at an interactive
speed in order to engage the users. We have developed a method that attempts to address these challenges of a browsing/navigation based
image retrieval systems. The unique feature of the method is that we take an integrated approach to the design of the browsing/navigation
GUI and the indexing and organization of the images in the database. The GUI is tightly coupled with the algorithms that run in the
background. The visual cues of the GUI are logically linked with various parts of the repository (image clusters of various particular visual
themes) thus providing intuitive correspondences between the GUI and the database contents. In the backend, the images are organized
into a binary tree data structure using a sequential maximal information coding algorithm and each image is indexed by an n-bit binary
index thus making response to users’ action very fast. We present experimental results to demonstrate the usefulness of our method both
as a pre-filtering tool and for developing browsing/navigation systems for fast image retrieval from large image databases.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords: Image database; Image retrieval; Browsing/navigation; Entropy; Information theory; Color

1. Introduction

Managing large image database and providing effective
tools for users to quickly find image items they are looking
for is still a very challenging problem. In the past decade or
so, the content-based image indexing and retrieval (CBIR)
paradigm has dominated the research community, e.g. Refs.
[1–6]. There are a number of intrinsic weaknesses associ-
ated with the traditional CBIR paradigm, which have hin-
dered progress. First, the objectives of CBIR are ill defined.
Although the idea of using visual examples to find similar
images is sound and intuitive, it is problematic in practice.
It is not clear in what circumstances/application scenarios
users would want/prefer to search images by example. The
definition of CBIR is too broad and vague; retrieval by ex-
ample can mean different things to different users and in

∗ Corresponding author. Tel.: +44 115 8466507; fax: +44 115 9514254.
E-mail address: qiu@cs.nott.ac.uk (G. Qiu).

0031-3203/$30.00 � 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2006.09.020

different applications. Even finding a starting query exam-
ple can be problematic because some visual forms are in-
trinsically hard to describe precisely. Second, current state
of the art technologies are not yet mature enough to realize
the ideal of CBIR. In particular, it is difficult to compute
image similarity measures that match the perceptual differ-
ences between images. Automatically retrieved images are
often not what the users expected, hence there is a gap be-
tween the retrieval results and users’ expectation. Third and
fundamentally, the CBIR paradigm puts the user in a pas-
sive position in the sense that retrieval results are largely de-
termined by the computational algorithms; the user cannot
actively control the retrieval results. The immaturity of the
enabling computational algorithms has only made the task
even more difficult.

Recent trends in CBIR have been to introduce brows-
ing, navigation and relevant feedback facilities to enable
users to interact with the retrieval system and to engage the
users, examples include Refs. [7–12]. The advantages of a

http://www.elsevier.com/locate/pr
mailto:qiu@cs.nott.ac.uk

1712 G. Qiu et al. / Pattern Recognition 40 (2007) 1711–1721

browsing-based approach are that it allows the user to take
a more active initiative in the retrieval process thus enhanc-
ing their experiences in dealing with image retrieval. In our
experience, it seems that a browsing-based paradigm also
more naturally matches users’ behaviors. Informal experi-
ments we conducted have showed that users tended to like
browsing/navigating through the database when looking for
a particular item. Of course, since image retrieval is such a
complicated and subjective process, a comprehensive sys-
tem will necessarily require technologies for CBIR, brows-
ing/navigation and relevant feedback etc. to work together.
In this work, we attempt to develop a browsing/navigation-
based tool for image retrieval.

To design and implement an effective browsing/navigation
tool for image retrieval, there are several challenges. Firstly,
it will require an appropriately designed graphical user inter-
face (GUI). The GUI should provide cues and visualization
facilities to “guide” users to navigate through the database.
This means that the design of the GUI and the way the im-
age items are indexed/organized have to be coordinated. In
other words, the GUI should intuitively reflect the distribu-
tion of the images in the database thus providing the users
with a mental picture of the database content and to pro-
vide the users with a sense of orientation during the brows-
ing/navigation process. Secondly, it has to be fast, respon-
sive and instant. The tool should be able to respond to users
action at an interactive speed, otherwise it will not be able to
engage the users and users may loose interest thus reducing
the effectiveness of the tool. This means that indexing and
organization of the database content have to be designed in
such a way that responses to user requests can be computed
very efficiently and fast.

In this paper, we present a method that attempts to address
aforementioned challenges of a browsing/navigation-based
image retrieval system. The unique feature of the method
is that we take an integrated approach to the design of the
browsing/navigation GUI and the indexing and organization
of the images in the database. The GUI is integrated with the
algorithms that run in the background. The visual cues of the
GUI are logically linked with various parts of the repository
(image clusters of various particular visual themes) thus pro-
viding intuitive correspondences between the GUI and the
database contents. In the backend, the images are organized
into a binary tree data structure. Each image is indexed by an
n-bit binary index. Image retrieval is performed by travers-
ing through the binary tree data structure using the n-bit bi-
nary keys thus making response to users’ action very fast.1

The organization of the paper is as follows. In Section
2, we introduce a maximal information indexing method to

1 Strictly speaking, most CBIR systems do not actually index images,
but rather store metadata of the image content such as color histogram,
texture descriptor, etc. Image retrieval is normally performed by calcu-
lating the distance measures of these metadata features. Such approach
may be more accurate but demand more storage space and higher com-
putational costs.

index and organize the images in the database. In Section
3, we exploit the maximal information indexing method to
design a GUI which naturally links images and indexing
features with visual cues in the GUI. Section 4 presents our
experimental prototype and experimental results. Section 5
concludes the presentation. Preliminary versions of this work
have been published in Refs. [25,26].

2. Maximal information fast image indexing

In traditional CBIR, an image is represented by some
low-level feature vectors. Image retrieval is based on com-
paring the querying image’s low-level features with those
of model images in the database. These features are nor-
mally of very high dimension and therefore comparing the
images is computationally a very expensive process. Not
only is distance calculation expensive, but also image search
is very time consuming as well because a querying image
has to be compared with all the images in the database (ex-
haustive/sequential search). Previous fast approaches such
as Ref. [8] uses tree data structure to reduce the search ef-
fort but still requires the computation of high dimensional
distances for traversing the tree.

Ideally, we want to have a simple data structure and effi-
cient indexing scheme. Each image in the database should
have a key and image querying should only amount to re-
trieving images in the database that have the same or similar
keys as the querying image without the need to compute low
level distance measures. When it is necessary to use high di-
mensional feature vectors, it should ideally only perform on
a (much smaller) sub group of images that is most likely to
contain the targets instead of searching the whole database.

Perhaps a good starting point for developing computer
systems to manage large image databases is to ask the ques-
tion: how would humans do it? After all, humans are very
good at this task. We have done a very informal psychovisual
experiment to try to answer this question. We found that the
most common approach taken by the participating subjects is
to first divide the images into small number of groups, each
containing images with easily describable common visual
themes. Then each group is divided recursively into smaller
sub groups, again with each sub group containing easily de-
scribable common visual themes. We also found that color
tones are the most apparent visual themes to come out of the
grouping. Such a hierarchical division of images according
to certain visual themes is schematically illustrated in Fig. 1.

Although we are not sure exactly how human might have
been “programmed” to perform tasks as this, we find the
approach illustrated in Fig. 1 interesting and illuminating
which might offer us useful guidance to design computer
programs to manage large image database. From a pragmatic
point of view, such a scheme makes engineering sense also
because it is generally a good idea to divide a large task
into smaller, more manageable sub tasks and tackle each sub
tasks in turn according to the unique nature of these smaller

G. Qiu et al. / Pattern Recognition 40 (2007) 1711–1721 1713

Fig. 1. A schematic illustration of one of the possible approaches to
organizing large image collections by recursively dividing large collections
into smaller groupings according certain visual themes.

sub problems. How can computer divide a large image repos-
itory into smaller groups that make visual sense? Note that
it is important to emphasise that each grouping should have
an intuitive visual theme that can be easily grasped by the
users. Because visual experiences are subjective, this is one
of the most challenging problems in computational vision.
From the computer’s point of view, pixel values are all it
has got and therefore it will have no choice but to use these
low-level representations. The question is, how?

There have been many studies that support the hypothesis
that biological sensory neurons are adapted to the statistical
signal to which they are exposed [13]. Although such hy-
pothesis is still not proven, we believe it helps our thinking
in terms of relating low level visual features to high level
visual phenomenon. Therefore, we believe any meaningful
visual theme division should be based on statistics of the
visual stimulus occur in natural scenes. A number of psy-
chophysical studies have shown that animals are sensitive to
both first and second-order properties of the visual input. The
statistics that have been studied include intensity statistics,
color statistics, spatial correlation, higher order statistics in-
cluding principal component analysis (PCA) and indepen-
dent component analysis (ICA), and spatial—time statistics
[13].

How do these (low-level) statistics relate to visual phe-
nomenon? This is a difficult and not very well under-
stood problem. Equally difficult and crucially important
from building computer systems point of view is the
question—how can we relate the (low-level) visual statistics
to (high-level) visual phenomenon numerically? There have
been much cognitive neuroscience studies on the topic of
scene categorization performed by human and their relation
to low-level scene statistics [13–19]. However, high-level
scene categories, such as the so-called superordinate (e.g.,

man-made/natural), basic (e.g., city/highway) and subor-
dinate (e.g., particular example of a city), are still very
difficult to represent and distinguish numerically. These
cognitive neuroscience studies may eventually be exploited
in managing large image database for image retrieval, but
in the current work we take a more intuitive and simpler
route. We attempt to categorize scenes according to their
color impressions. This is because many studies have shown
that color is an important and useful cue in recognizing im-
ages, and from a computational point of view, this is more
manageable. Although the use of color has been extensively
studied in the image database literature [1–6], our use of
color information in this paper is rather unique. We use
color to unify image indexing and browsing graphical user
interface design. Furthermore, our use of color can be seen
as a design philosophy for image retrieval systems. The
design principles of our work may be extended to include
more visual cues.

In developing our solution, we are reminded of the chal-
lenges, which are that we have to seek computationally fast
and organizationally simple indexing methods, and simulta-
neously, such simple methods have to be easily exploited to
design an effective and intuitive browsing GUI. Ordinarily,
color histogram can be used to characterize the color dis-
tributions of images, however, we decided to go against the
idea of using color histogram for two reasons. Firstly, color
histograms are high-dimensional vectors that will inevitably
involve computationally expensive processes such as com-
puting the L1 or L2 norms of the (high dimensional) his-
tograms. Secondly and equally importantly is that, it is not
easy to tell the apparent “visual themes” of an image from
its high dimensional color histogram. That is, from an im-
age’s k-bin color histogram, we cannot easily describe the
color impressions of the image. What we want is something
much simpler, for example, a single number that can be used
to describe the rough visual impression of the image, which
users can grasp intuitively. We believe this is possible. Af-
ter all, it has long been established [23] and supported by
more recent comprehensive studies [24] that there exists a
cross-linguistic universal inventory of exactly 11 basic color
categories from which the 11 or fewer basic color terms of
any given languages are always drawn. In English, these
11 color terms include, eight chromatic terms, red, yellow,
green, blue, purple, brown, orange, pink; and three achro-
matic terms, black, white and gray. So how can we use the
color statistics simply and in a visually apparent, intuitive,
and meaningful way to organize large image database for
retrieval?

A well-known color vision theory is the opponent color
theory [20], which suggests that there are three visual path-
ways in the human color vision system. One pathway is sen-
sitive mainly to light–dark variations; this pathway has the
best spatial resolution. The other two pathways are sensitive
to red–green and blue–yellow variation (the opponent chan-
nels). The blue–yellow pathway has the worst spatial resolu-
tion. In opponent-color representation, the spatial sharpness

1714 G. Qiu et al. / Pattern Recognition 40 (2007) 1711–1721

Green-Red

Y
el

lo
w

-B
lu

e

Fig. 2. Color appearances in the red–green (rg) and yellow–blue (yb)
chromatic space (the light dark component was fixed to a constant).

of a color image depends mainly on the sharpness of the
light dark component of the images and very little on the
structure of the opponent-color image components. There is
evidence to suggest that different visual pathways process
color and spatial pattern in the human visual system. These
human vision theories suggest that the colors of an image are
mainly encoded in the opponent color signals whilst the spa-
tial patterns or textures are mostly encoded in the light–dark
component. In the current work, we concentrate our effort
on the use of colors and therefore only use the opponent
color components to index the images. To add texture we can
add the light–dark component of the image follow a similar
principle (we will discuss this extension later in the paper).

Assuming that the original data is in RGB color space,
the red–green (rg) and blue–yellow (by) components can be
calculated as (we have experimented with other forms of
chromaticity calculation formulae, results are similar)

rg = R − G, by = 1
2 (R + G) − B. (1)

Fig. 2 plots the chromaticity diagram in the rg–by space. As
we move from the origin along the rg-axis the colors changes
from green to red, whilst moving from the origin along the
by-axis the colors change green/red to blue. Clearly, a certain
value of rg or by has an intuitive correspondence with the
color appearance, e.g., a large rg value indicate the red color
and a large by value indicates the blue color, etc.

Our idea is to directly use the chromaticity diagram as
our GUI and use the rg and by signals as the indexing fea-
tures. We want to divide our image database into clusters,
each having a particular visual theme corresponding to a
color, or equivalently, a particular pair of rg/by values on
the chromaticity diagram. In this way, we establish a simple
and intuitive link amongst the (color) appearance of the im-
age, the numerical representation of the image, as well as a
region in the GUI. We will now first describe an algorithm
for using the rg/by opponent components to cluster images
and then describe in more detail how such an image clus-
tering scheme can be combined with the chromatic diagram
to design an image database browsing/navigation GUI.

There have been many research works studied sensory
coding and natural scene statistics. The efficient coding

hypothesis predicts that individual neurons should maximize
information transmission [13,21]. Although we are not in-
terested in the hypothesis itself, the information maximiza-
tion coding principle may be “borrowed” for indexing large
image database. Suppose we have a signal, X, to be coded
by an encoder as C(X) and the response of the encoder is
limited within some bonded intervals. In order to convey the
maximal information, it is straightforward to show that the
distribution of the encoder response must be uniformly dis-
tributed within the bonded interval. According to Shannon
information theory [22], information content is measured as
entropy

H(X) = −
∑

∀X

P (X) ln(P (X)). (2)

H(X) reaches maximum when P(X) is a uniform distribu-
tion. Therefore, maximal information and maximum entropy
(maxent) are equivalent.

To exploit the maximal information encoding principle for
image indexing and retrievals turns out to be less straight-
forward than at first sight. In the human visual system, there
could well be multiple channels that code the incoming sen-
sory signal in parallel. However, in engineering practice, it
is very difficult to compute information of multidimensional
random variables because of the difficulty in estimating the
probability density functions in high-dimensional spaces.
To get round this computational difficulty, we simplify the
model by assuming (not necessarily make biological sense)
that the channels are coded independently in a sequential
manner and each follows a maximal information principle.
For any given image, each rg/by component in Eq. (1) is
still of very high dimension (image height by image width).
To simplify the problem further, we only model the first or-
der statistics by considering pixels in each of the component
independently, that is, we collapse each component into a
sequence of scalar values. In this case, a histogram of the
pixel distribution in each of the channels can be easily com-
piled. For a scalar random variable, constructing a maximal
information encoder with limited alphabets becomes a sim-
ple task. All is needed is to ensure that the pixel populations
distributed to each alphabet is identical. With such a simpli-
fied model, we can encode the components in Eq. (1) inde-
pendently. Each component is then again treated as multiple
instances of a scalar random variable. A scalar encoder that
conveys the maximal information for each channels can then
be easily constructed.

How the maximal information encoders such as those de-
scribed above can be used for image database indexing and
retrieval? Here is a scheme we have developed which has
been found to work well. In our developed scheme, a bi-
nary tree data structure is constructed by encoding the rg/by
components in Eq. (1) in a hierarchical order as illustrated
in Fig. 3.

Starting from level 0, for a pre-selected component Ch(0)
(each Ch(m, n) represents either rg or by), we find a thresh-
old value, T (0), that cuts all pixels in this component from

G. Qiu et al. / Pattern Recognition 40 (2007) 1711–1721 1715

Fig. 3. Binary tree indexing of images based on maximal information sequential visual coding.

all images in the database into two equal population halves,
this value is sometime known as the median of the pixels. It
is important to note that at this initial node, all pixels from
all images in the database participate in finding this median
value. Note also that to code the component into two alpha-
bets, the maximal information coding dictates that the pix-
els must be equally distributed into the two alphabets [22].
Once we have found the median value T (0), we then divide
the images in the database into two clusters, each placed
in one of the two child nodes. Those images whose Ch(0)
component have more pixels with values greater than T (0)

are classified to the right child node and those images have
more pixels with values smaller than T (0) are put into the
left child node. The two child nodes of the root node form
level 1 of the hierarchy. At level 1, images are indexed by a
1-bit key. All images in the left child node will be indexed
by a 0-value and all images in the right child node will be
indexed by a 1-value. The component used by the node and
the median value of that component is stored with the tree.

For each non-leaf node in the tree, a pre-selected com-
ponent (rg or by) and its median value computed from pix-
els from all images falling into that node, are again used to
divide the images in this node into its left and right child
nodes. For images classified into the left child node, a 0-
value bit is appended to their key and for images classified
into the right child node, a 1-value bit is appended to the
images key. Again information about the component used in
the node and its median value are stored with the tree. For
an n-level tree so constructed, each image is indexed by an
n-bit binary key. The keys between images in a parent node
and its immediate two child nodes differ by one bit.

Once the tree has been constructed, new images can be
easily put into the tree. All we have to do is to compare
the median values of the various components of the image

corresponding to those orders used in the tree to assign the
image into appropriate nodes, and the image will be indexed
with the keys of the nodes it belongs. The reasons we can
do this is that we can assume that a large number of images
have been used to construct the initial tree and by adding one
extra image will not change the overall median pixel values
much. Of course, if a lot more images are to be added to the
database, the tree can be easily reconstructed by including
the new images. Because only the median values of the pixels
need to be found, the indexing process is computationally
very simple.

The indexing scheme also enables querying by example
images. Query-by-example follows the same procedures as
that for adding an image to the database. Once the binary key
of the query image has been computed, there is considerable
flexibility in retrieval. We can either return all images in the
leaf node the querying image falling into, or images at the
non-leaf nodes of the tree the querying image belongs to
(more returns).

Navigating through the tree (and therefore the database)
is also easy. We can transverse the tree by going up and
down the nodes. At any particular node, we could output
the images at the node for visualization and then decide to
see more images (by going to the parent node) or see fewer
images (by going to one of the child nodes).

From storage’s point of view, each image has only n-bit
binary extra information to store. This is in contrast to tra-
ditional CBIR [3,4] where very high-dimensional metadata
such as histogram, texture descriptor etc. have to be stored.
For the tree itself, we only need to store information of the
component used in each non-leaf node and the component’s
median value of all (training) images. Therefore, the over-
head of our system is very small. We are not aware of any
CBIR image database management system has the efficiency

1716 G. Qiu et al. / Pattern Recognition 40 (2007) 1711–1721

of this method. Because we actually index our images, which
makes image retrieval very efficient in our scheme. Unlike
many existing methods for CBIR, where much side informa-
tion in the form of image content descriptors, such as color
histograms, will have to be stored, and image retrieval is
done by first computing the distance measures of these image
descriptors and then linearly searching the image database,
our method needs only to make n (n = levels of the tree)
scalar comparison operations to obtain the key and n-bit bi-
nary comparison to retrieval the images.

Of course, since our indexing scheme is simple, it may
not have the accuracy of the traditional CBIR technology
(however, due to the subjective nature of the problem, ac-
curacy may be itself very difficult to define and it is not
yet clear whether a more complicated system will be actu-
ally better). There might be a trade off between simplistic
and accuracy. We believe our scheme is useful to pre-filter a
large image database and to narrow down the search scope
so that more accurate but computationally more demanding
retrieval technologies can be applied to a smaller number of
images. As mentioned in the introduction, human users tend
to have the habit of actively browsing the database. One of
the advantages of our new indexing technique is that it can
be easily exploited to design intuitive and easy to use GUI
for browsing and navigating image database. In the next sec-
tion, we will describe a GUI design that exploits our index-
ing scheme for browsing/navigating image databases and for
fast image retrieval.

3. Visual guided browsing/navigation

The indexing scheme described in Section 2 renders the
red–green/blue–yellow chromaticity diagram readily usable
as a graphical user interface for browsing/navigating image
database. The process of constructing the indexing tree in
Fig. 3 in fact partitions the chromaticity diagram as illus-
trated in Fig. 4.

The partitioned regions of the chromaticity diagram and
the nodes of the tree in Fig. 3 have a one to one correspon-
dence. At the root node, the chromaticity diagram is parti-
tioned into two halves; each associated with the two child
nodes at level 1. The images classified into the left child

Fig. 4. Constructing the indexing tree recursively partitions the chromatic-
ity diagram into smaller regions. Each partitioned region share the same
key with images distributed into the tree node with the same key. The
images having the same key as a partitioned region in the diagram share
similar color appearances.

node and the left half of the chromaticity diagram can be
assigned one key value and the images classified into the
right child node and the right half of the chromaticity di-
agram can be assigned another key value. As we construct
the tree into more levels, the chromaticity diagram is be-
ing recursively partitioned into smaller regions, each asso-
ciated with a tree node and the images distributed into the
node. A region in the chromaticity diagram and the images
classified into its corresponding node are assigned the same
indexing key. In this way, each region of the chromaticity
diagram is associated with a key, which is coupled with im-
ages with the same key. Importantly, if an image and an
interface region share the same key, they will share similar
visual appearance (color in this case) because when an im-
age and an interface region are assigned the same key, the
image will have majority of its pixel’s chromaticity values
falling within that region, therefore it is reasonable to as-
sume the overall visual (color) impression of the image will
be similar to its corresponding interface region. This is use-
ful because it can provide a sense of orientation and visually
guide browsing/navigation process.

Based on these associations between the chromaticity di-
agram and the image indexing/clustering scheme in Section
2, we can design a GUI for navigating and browsing images
in the database, as illustrated in Fig. 5.

4. Experimental results

In the first experiment, we tested the indexing method’s re-
trieval performances. There were 60,000 color images (from
Corel photo CD collection) in our database, which have been
put into a tree constructed using the method described in
Section 2. In constructing the tree, we simply alternated the
rg and by channels from one level to the next and all nodes
on the same level used the same channel for indexing. We
used two testing image sets to evaluate the performances.
The first testing set consists of 168 pairs of images. Exam-
ples of these pairs are shown in Fig. 6. We put the 168 pairs
of images in the tree constructed using the 60,000 images.
The purpose is to see whether each pair of images will have
the same key at various level of the tree. If so, then imag-
ine using one of the pairs as querying image, it will directly
find the image cluster of the corresponding target image. If
the cluster is of small size, then finding the target should be
made much easier.

Table 1 shows the number of image pairs staying together
at various leaf nodes for different depths of the indexing tree.
The longer are the keys, the smaller are the sizes of image
clusters in the leaf nodes, hence the chances of the same pair
falling into the same node are decreased. It is seen that even
using an 11-bit key (on average, a leaf node will contain
a cluster of about 30 images and of course the numbers of
images in the nodes are unevenly distributed), 111 out of
168 pairs managed to stay together in various leaf nodes.
Reducing the key length to 9 bits (on average a leaf node

G. Qiu et al. / Pattern Recognition 40 (2007) 1711–1721 1717

Fig. 5. Using the chromaticity diagram directly in the graphical user interface. Each region and images shared the same key will have similar color
appearances, hence the chromaticity diagram can guide the browsing of the database. By placing the mouse cursor on a particular area (color) in the
chromaticity diagram, the action is automatically associated with the images having similar color appearances, and by clicking a mouse button, images
having the same key as the color pointed at by the mouse can be quickly returned to the user.

Fig. 6. Testing image set 1. For an image in set A, there is one corresponding image in set B. The corresponding images form a pair of querying and
target images. The purpose is to test if the same pair of image will be assigned the same key at various level of the tree.

cluster will contain about 117 images), there were 162 out
of 168 pairs managed to stay together at various leaf nodes
of the tree.

These results indicated that the method could be very
useful. For example, if we were to use one of the pairs as
querying example and the other image of the pair was in the
database and we wanted to find it. If we used 9-bit index-
ing keys to organize our database using the indexing method
of Section 2, then in 162 out of 168 queries, on average,

we can quickly narrow down the search to 117 images, in-
stead of having to search through 60,000 images. Therefore,
our method can be first used as a pre-filtering technique to
reducing the search range, and then computationally more
demanding (perhaps more accurate) methods such as tradi-
tional CBIR techniques can be used to search a smaller sub-
set that is most likely to contain the target images. Further-
more, manually browsing through a subset of 117 images
also becomes manageable.

1718 G. Qiu et al. / Pattern Recognition 40 (2007) 1711–1721

Table 1
Pairs of images stayed together at various leaf nodes of the tree (total
168 pairs)

Key length 11 bits 10 bits 9 bits

pairs stay together at various leaf nodes 111 156 162

In another test, we used 120 classes of color texture im-
ages. Each class consists of six similar images. Examples of
these are shown in Fig. 7. Again, we put these 720 images
(6×120) into the indexing tree constructed using the 60,000
images and the method described in Section 2. This time, the
purpose is to test how many of the classes will have all of
their member images stay together at the various leaf nodes
of the tree of different depths. Again, we can imagine that
using one of the images from a particular class to query the
image database with the aim of finding the other five images
belong to the same class. If all images of the same class
stay together at a particular leaf node, then we need only to
search images belong to that leaf node. Results for various
tree depths are shown in Table 2. It is seen that, when using
a 9-bit key to index the images, each and every class’s six
images all stay together at a particular leaf node. That is, in
each query (out of a total 720 queries), on average, we need
only to search 117 images to find all five targets from the
60,000-image database. These results further demonstrated
the usefulness of our indexing method in narrowing down
the search range in preparation for more accurate but more
computationally demanding retrieval or even for manually
browsing a subset to find the targets.

Fig. 7. Testing image set 2. Each row is the six images belonging to the same class and there were a total of 120 classes.

To validate the usefulness of our technique for brows-
ing/navigation as well as image retrieval, we have imple-
mented the indexing scheme of Section 2 and the image
database browsing/navigation GUI schematic of Fig. 5 in a
prototype system. Fig. 8 shows screenshots of our system
using the chromaticity diagram to navigate/browse image
database. The indexing scheme of Section 2 can be used to
retrieve image based on example. For a given querying ex-
ample, we can easily compute the example image’s indexing
key by comparing the rg/by channels median values with
those stored in the indexing tree. With the indexing key, we
can retrieve those images having the same key as the query-
ing example. As we have seen in the first experiment, we
can indeed narrow down the search range dramatically. We
have implemented this functionality into our prototype as
shown in Fig. 9.

The interface of the system was implemented as a proof
of concept for testing the technology proposed in this paper,
therefore, the features are by no means complete or optimal.
Briefly, the system allows the users to do the following.
It has a chromaticity diagram, each color is assigned an
indexing key as illustrated in Fig. 4. Implicitly, these keys
correspond to the nodes of the indexing tree (hence images

Table 2
Number of classes with all six sub images stay together at various leaf
nodes of the tree

Key length 11 bits 10 bits 9 bits

classes with all six images stay
together at various leaf nodes

92 115 120

G. Qiu et al. / Pattern Recognition 40 (2007) 1711–1721 1719

Fig. 8. Image database navigation/browsing. User places the mouse cursor in an area in the chromaticity diagram where the color corresponds with the
color appearances of the images the user have in mind. By clicking a mouse button, all image in the database having the same key as the color currently
under the mouse cursor will be displayed instantly on the display panel. User can navigate through the image database by moving the mouse cursor
around the chromaticity diagram and browsing images with a color theme similar to that pointed to by the mouse cursor. The chromaticity diagram is
served as a mirror to the image database because any color region on the diagram is associated with images having similar color appearances. Therefore
the chromaticity diagram acted as a visual guide for browsing/navigating the database.

Fig. 9. Query by example. By pressing a button, a random set of initial images are displayed on the left display panel from where a querying example can
be selected. We can also use the chromaticity diagram to retrieve an initial set of example images. Once an example image is selected, all images in the
leaf node having the same index as the example will be displayed on the right display panel. There are also two navigation buttons for traversing up and
down the tree. The figure on the right shows images at a parent node two levels up from those shown on the left figure (by pressing the up button twice).

in the database). By selecting a color from the chromatic
diagram, images in the leaf node having the same key as
the color will be displayed instantly. The system also allow
query by example. The query example can be selected ran-
domly from the database, or from a set of images returned
by selecting a color from the chromaticity diagram. Once
a querying example is selected, all images in the leaf node
having the same key as the example image will be displayed
instantly. There are also two navigation buttons allow user
to traverse up and down the tree to allow more or fewer im-
ages to be displayed.

Ultimately, we wish to use our method to develop a useful
tool to help users to manage their image database. One way
to test the usefulness of a tool is to see if it can actually help
users to find image items quickly. To do this, we have per-
formed a subjective experiment using our prototype system.

This time, we used 10,000 images (a subset of the 60,000
image used in the first experiment) in our prototype system.
From these 10,000 images, we randomly selected 10 images
as shown in Fig. 10.

We then printed these images in hardcopies and gave
these hardcopies to five users (all computer science

1720 G. Qiu et al. / Pattern Recognition 40 (2007) 1711–1721

Fig. 10. Ten images randomly picked from a 10,000-image database used in the subjective experiment.

Table 3
Averaged time taken by 5 users to find 10 images printed on paper from
a 10,000-image database

Image number Searching manually Searching using our prototype

1 7 min 3 s 1 min 6 s
2 7 min 43 s 3 min 59 s
3 1 min 34 s 44 s
4 25 s 5 min 36 s
5 1 min 54 s 1 min 43 s
6 5 min 41 s 2 min 6 s
7 3 min 38 s 2 min 21 s
8 11 min 29 s 6 min 35 s
9 2 min 39 s 2 min 19 s
10 5 min 3 s 9 s

undergraduate students without any knowledge of our sys-
tem and our technique). We asked these five users to find
the 10 images printed on paper from the database. The user
could find the image using two methods. Firstly they would
find the image manually by trawling through the directories
on the system until the image was found. The tool used for
manual search was MS Windows Explorer. The images in the
system were organized into subdirectories each contained
100 images. Once a directory is selected, the thumbnail im-
ages will be displayed instantly without delay on a latest
Pentium PC with 512MB memory. Secondly they would use
our prototype system to find the same images. We timed how
long it took a user to find the images. We then compared
the times taken to find the printed images using both meth-
ods to find out whether our system shortened retrieval times
and therefore was useful to the user. Results are shown in
Table 3.

The times in Table 3 suggest that the systems and tech-
niques developed in this paper is a useful aid in which to
retrieve images. Out of the 10 query images, only image 4
was retrieved faster using a manual search technique. Im-
age 4 was situated in an early searched directory, which is
the reason that it was retrieved so quickly. We must accept
that if the user is fortunate enough to find the image quickly
by manually trawling through directories, then the retrieval

time is likely to be faster than by using the prototype sys-
tem. But in general our system has performed better than a
manual search and on average has cut the retrieval time by
half.

Because of the subjective nature of image retrieval, accu-
rate system evaluation is difficult. However, all users who
have tested our prototype system have agreed that the us-
ability of the system is adequate. They have all been able to
search for query images effectively and seem to enjoy using
the system. In 50 rounds (5 users × 10 images) of image
retrieval exercises, users were able to use a primitive tool
developed based on our technology to half the average time
taken to find a particular image.

Because the technique was based on color only, as ex-
pected, it has its drawbacks. As the algorithm calculates the
median value from all pixels in an image, images with many
colors have not performed so well as an image that has one
predominant color. Using our prototype system, the two im-
ages which took the longest time to retrieve were images 4
and 8. These two images are both made up of three predom-
inant colors as opposed to the other images which mainly
have one predominant color. Despite retrieval time being
longer for mixed color images, our system still retrieved
those images in reasonable time. The system does have oc-
casional incongruent images but generally the groupings are
accurate and representational. In a sense, our technique and
system trades simplicity for accuracy. Whether a computa-
tionally more demanding but more accurate indexing tech-
nique will be better and enables faster image retrieval than
a simple and fast but less accurate method is something of
interest for future research.

It is worth mentioning that the purpose here is not to com-
pete with the most comprehensive and state of the art image
retrieval systems because these will inevitably depending
on the software utilities as well as image indexing method-
ologies. Rather, we want to show how simple and yet ef-
fective our proposed technique is. A web-based system that
implements the same techniques and ideas of this paper can
be viewed online at: http://www.theimagerepository.co.uk.
This web-based system was implemented by Ben Bedwell
in his BSc(Hon) Computer science final project. This shows

http://www.theimagerepository.co.uk

G. Qiu et al. / Pattern Recognition 40 (2007) 1711–1721 1721

yet again the simplicity of the technique which can be eas-
ily implemented by even people without much knowledge
of image processing.

5. Conclusions and future work

In this paper, we have developed a simple and very ef-
ficient technique to organize large image database. The ad-
vantage of the method is that indexing and retrieval can be
computed very fast and efficiently. The method requires very
little storage overheads. An important feature of the tech-
nique is that it readily renders itself for developing intuitive
and easy to use graphical user interface for browsing im-
age database. We have conducted two sets of experiments
to evaluate the developed technology. The first experiment
tested the usefulness of the technique as pre-filtering method
for narrowing down the search range in preparation for more
accurate and computationally more demanding retrieval or
for manually browsing a subset of images likely to contain
the target images. Results have demonstrated quite convinc-
ingly that our method as a pre-filtering method is useful. In
the second experiment, we integrated our technology into a
primitive prototype system and used real users to test the
usefulness of our technology. In a small scale test, results
indicated that the technique can be employed to almost half
the image search time from a 10,000 image database, again
demonstrated the usefulness of our technique.

The technique can be extended in the future. One obvi-
ous direction is to include visual feature other than color,
e.g., texture, or shape and size of objects contained in the
images. For example, we could easily compute a Wavelet
transform on the dark-light component of the images and
follow the same information maximization principle of Sec-
tion 2 to partition the database according to their Wavelet
coefficients. Intuitively, larger Wavelet coefficients indicate
rougher surface and smaller Wavelet coefficients indicate
smoother surface. However, as more features are added, the
indexing structure may become more complicated, what is
more, it may not be as easy to develop GUIs that have a
direct and intuitive correspondence with the database struc-
ture which will allow users to form a mental picture of
the database to intuitively browsing/navigating through the
database. Our future work will investigate the incorporation
of more indexing features such that image groupings will
be more accurate, but simultaneously, we want to maintain
the design philosophy of this paper, i.e., fast indexing, small
overheads, instance response, intuitive GUIs and tight cou-
pling of the GUIs and the indexing data structure. The ques-
tion of whether to use fewer indexing feature, hence sim-
pler indexing structure and more intuitive GUI, or to use
more indexing features, hence more complicated indexing
structure and more cluttered GUI, will lead to better image
retrieval systems needs systematical investigation. How to
combine our current method with existing computationally
and storage more demanding CBIR technology and/or rele-
vant feedback is also a direction we will study in the future.

References

[1] W. Niblack, et al., Querying images by content using color, texture
and shape, Proc. SPIE 1908 (1993) 173–187.

[2] M. Swain, D. Ballard, Color indexing, Int. J. Comput. Vision 7
(1991) 11–32.

[3] Y. Rui, T.S. Huang, S.F. Chang, Image retrieval: current techniques,
promising directions, and open issues, J. Visual Commun. Image
Representation 10 (1999) 39–62.

[4] A.W.M. Smeulders, et al., Content-based image retrieval at the end
of the early years, IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000)
1349–1380.

[5] B.S. Manjunath, W.Y. Ma, Texture features for browsing and retrieval
of image data, IEEE Trans. Pattern Anal. Mach. Intell. 18 (1996)
837–842.

[6] C. Carson, S. Belongie, H. Greenspan, J. Malik, Blobworld: image
segmentation using expectation-maximization and its application to
image querying, IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002)
1026–1038.

[7] J. Vendrig, et al., Filter image browsing: interactive image retrieval
by using database overviews, Multimedia Tools Appl. 15 (2001)
83–103.

[8] J.Y. Chen, C.A. Bouman, J.C. Dalton, Hierarchical browsing and
search of large image databases, IEEE Trans. Image Process. 9 (3)
(2000) 442–455.

[9] J. Laaksonen, et al., Self-organizing maps as a relevant feedback
technique in content-based image retrieval, Pattern Anal. Appl. 4
(2001) 140–152.

[10] Y. Rubner, Perceptual metrics for image database navigation, Ph.D.
Thesis, Stanford University, May 1999.

[11] S. Santini, R. Jain, Integrated browsing and querying for image
databases, IEEE MultiMedia 7 (3) (2000) 26–39.

[12] Int. J. Comput. Vision 56 (1–2) (2004) (Special Issue on Content-
based Image Retrieval).

[13] E. Simoncelli, B. Olshausen, Natural image statistics and neural
representation, Annu. Rev. Neurosci. 24 (2001).

[14] M. McCotter, F. Gosselin, P. Sowden, P. Schyns, The use of visual
information in natural scenes, Vis. Cogn. 12 (6) (2005) 938–953.

[15] A. Torralba, A. Oliva, Statistics of natural image categories, Network:
Comput. Neural Syst. 14 (2003) 391–412.

[16] E. Rosch, et al., Basic objects in natural categories, Cognitive
Psychol. 8 (1976) 384–439.

[17] B. Tversky, K. Hemenway, Categories of environmental scenes,
Cognitive Psychol. 15 (1983) 121–149.

[18] C.G. Gross, Coding for visual categories in the human brain, Nature
Neuralsci. 3 (2000) 855–856.

[19] E. Miller, et al., Neural correlates of categories and concepts, Current
Opin. Neurobiol. 13 (2003) 198–203.

[20] P.K. Kaiser, R.M. Boynton, Human Color Vision, Optical Society of
America, Washington, DC, 1996.

[21] S.B. Laughlin, A simple coding procedure enhances a neuron’s
information capacity, Z. Naturforsch 36c (1981) 910–912.

[22] T.M. Cover, Elements of Information Theory, Wiley, New York, 1991.
[23] B. Berlin, P. Kay, Basic Color Terms, University of California Press,

Berkeley and Los Angeles, 1969.
[24] P. Kay, T. Regier, Resolving the question of color naming universals,

Proc. Natl. Acad. Sci. 100 (15) (2003) 9085–9089.
[25] G. Qiu, L. Ye, X. Feng, Fast image indexing and visual guided

browsing, CBMI 2003, Third International Workshop on Content-
Based Multimedia Indexing, September 22–24, 2003 IRISA, Rennes,
France.

[26] G. Qiu, J. Morris, X. Fan, From sensory coding to scene classification,
MMSP2004, IEEE International Workshop on Multimedia Signal
Processing, Siera, Italy, September 29–October 1 2004.

	Visual guided navigation for image retrieval
	Introduction
	Maximal information fast image indexing
	Visual guided browsing/navigation
	Experimental results
	Conclusions and future work
	References

