
Pulling, Pushing and Grouping for Image
Segmentation

Guoping Qiu1 and Kin-Man Lam2

1 School of Computer Science, The University of Nottingham
qiu@cs.nott.ac.uk

2 Dept. of Electronic and Information Eng. The Hong Kong Polytechnic University
enkmlam@polyu.edu.hk

Abstract. This paper presents a novel computational visual grouping method,
termed pulling, pushing and grouping, or PPG for short. Visual grouping is
formulated as a functional optimisation process. Our computational function
has three terms, the first pulls similar visual cues together, the second pushes
different visual cues apart, and the third groups spatially adjacent visual cues
without regarding their visual properties. An efficient numerical algorithm
based on the Hopfield neural model is developed for solving the optimisation
process. Experimental results on various intensity, colour and texture images
demonstrate the effectiveness of the new method.

1. Introduction

Visual grouping is thought to be a crucial process in both human and computer vision
systems. The volume of computer vision/image processing literature relating to the
topic, often under different names, such as image segmentation, figure ground separa-
tion, and perceptual organization, is huge, and recent examples include [1-4]. Al-
though a large amount of effort has been put into the study of the topic, many compu-
tational issues remain very difficult. In this paper, we present a new computational
approach to visual grouping.

We consider visual grouping as a combined process of pulling, pushing and group-
ing, or PPG for short. Two visual cues that belong to the same visual group will pull
each other together to become members of the same group. Conversely, two visual
cues that belong to different visual groups will push each other apart to become mem-
bers of the different groups. Simultaneously, local neighboring visual cues, regardless
of their visual properties, will group together to become members of the same group.
Similar to many other approaches in the literature, the PPG process is formulated as a
functional optimization process. A PPG computational function, consisting of three
terms, namely, the pulling, the pushing and the grouping terms, is constructed in such
a way that the minimum of the function will correspond to a good solution to the vis-
ual grouping problem. An efficient numerical solution based on a neural computing
model is developed to solve the optimization problem.

The organization of the paper is as follows. Section 2 presents the new PPG visual
grouping method. Section 3 presents experimental results of the application of PPG to
the segmentation of intensity, colour, and texture images. Section 4 very briefly dis-
cusses related prior work in the literature. Section 5 concludes the presentation.

2. Perceptual Organization based on the Pulling, Pushing and
Grouping (PPG) Principle

Perceptual grouping is the process of organising visual elements into groups that
manifest certain regularities. The Gestalt psychologists have suggested that visual
grouping should follow some basic laws, including proximity, similarity, good con-
tinuation, amongst many others. To formulate computational models for the perceptual
grouping process, a common practice is to optimise some cost functions which meas-
ure the quality of the grouping. Although the Gestalt grouping laws are intuitive, cast-
ing them into a computational function proves to be difficult. A common approach is
to capture local interaction of visual cues in a global optimisation framework. Once a
cost function is formulated, computing an optimal solution is again very challenging.
In this section, we propose a pushing, pulling and grouping principle to formulate a
perceptual grouping computational energy and develop a neural network based opti-
misation algorithm.

2.1 The PPG Computational Energy Function

We first consider the case where the image is to be partitioned into two groups (figure
and ground). Let Vi, i = 1, 2, ...N, be the binary variables, Vi = 0 represents pixel i be-
long to group 0 and Vi = 1 represents pixel i belongs to group 1. If two pixels i and j
belongs to the same group, we define a pulling energy, A(i, j), between the pixels. If
two pixels i and j belong to different groups, we define a pushing energy, R(i, j), be-
tween the pixels. Then the PPG computational function is defined as

() ()() ()

() () () ()

()()







−−−

+



−+−

+



−−+=

∑ ∑

∑ ∑∑ ∑

∑ ∑∑ ∑

= ≠∈

= ≠== ≠=

= ≠== ≠=

N

i ijnj
ji

j

N

i

N

ijj
i

N

i

N

ijj
ji

N

i

N

ijj
ji

N

i

N

ijj
ji

i

VV

jiRVVjiRVV

jiAVVjiAVVE

1 ,
2

1 ,11 ,1

1 ,11 ,1
1

1212

,1,1

,11,

λ

λ
 (1)

where ni is a local neighbourhood of i. λ1, λ2 are non-negative weighting constants.
The values of Vi, i = 1, 2, ...N, that correspond to the minimum of E represent an
effective partition of the image into two perceptual groups.

At a first glance, it may seem strange to write (1) in such a redundant way. As will
become clear immediately, the current form of (1) helps an intuitive explanation of the
meanings of each term. The first term measures the cost of putting two pixels into the
same group (pulling). The second term measures the cost of putting two pixels into
different groups (pushing). The third term measures the cost of putting a pixel and its
neighbours into the same group regardless of the values of the original pixels (group-
ing). The relative importance of these terms is determined by their respective weight-
ing constants. However, the importance of the first and second terms is the same, so
the same weighting constant is used.

If two pixels have similar visual properties, such as similar intensity, similar colour,
similar texture or similar edgels, it is likely that they belong to the same group. If such
pixels are close to each other in the spatial domain, this likelihood (that they belong to
the same group) will increase. On the other hand, if two pixels have dissimilar visual
properties, different intensities, different colours, different textures or different edgels,
it is likely that they will belong to different groups. If they are far apart in the spatial
domain, this likelihood (that they belong to different groups) will increase. Based on

these reasoning and the form of (1), we can now define the form of the pulling energy
function A(i, j) and the pushing energy function R(i, j).

When two pixels have very similar visual cues or are very close to each other spa-
tially, A(i, j) should be small and R(i, j) should be large such that the first term in (1) is
favoured, effectively forcing a solution that Vi and Vj will have the same value, i.e.,
pulling pixels i and j into the same group. Conversely, when two pixels have very dif-
ferent visual cues and far apart spatially, A(i, j) should be large and R(i, j) should be
small such that the second term in (1) is favoured, effectively forcing a solution that Vi
and Vj will have different values, i.e., pushing pixels i and j to different groups. Let
F(i), i =1, ...N, be the visual cue of pixel i, one possible definition of the pulling and
pushing energy functions is (2) (other similar definitions are possible)

() ()

() () () () () ()

() () () () () ()jiRjiRjiRjiAjiAjiA

jFiF
jiR

jFiF
jiA

ji
ji

jiRji
ji

jiA

FSFS

F
F

F
F

S
S

S

S
S

SS

,,, ,,,

exp1, exp ,

 Otherwise 0

 if ,
 Otherwise 0

 if ,

==








 −
−−=







 −
−=







≤−
−−

=






≤−
−

=

σσ

σ
σ

σ
σ

σ
 (2)

Fig.2 shows the shape of the visual components and the spatial components of the
pulling and pushing energy. The shape is controlled by the free parameters σF and σS,
which determine when the pulling power outweighs the pushing power for the pair of
pixels, or vice versus. The pulling and pushing interactions amongst pixels are con-
fined to local regions. The rationale is that when two pixels are too far apart, they will
not affect one another.

2.2 A Numerical Algorithm

The Hopfield neural network models [5 -7] have been successfully used in solving op-
timization problems. Because a neural network is a naturally parallel structure, it has
the potential for solving many complex optimization problems much more rapidly
than other sophisticated and computationally intensive optimization techniques. Neu-
rons can be highly and selectively interconnected so as to give rise to collective com-
putational properties and create networks with good computational efficiency. Collec-
tive computational properties emerge from the existence of an energy function of the
states of the neuron outputs, namely the computational energy. The computational en-
ergy function of the Hopfield network has the following form

∑∑∑
== =

−−=
N

i
ii

N

i

N

j
jijiH VIVTVE

11 12
1 (3)

where Vi, i = 1, 2, ...N, is the outputs of the network, Tij is the connection strength be-
tween neuron i and neuron j, Ii, i =1, 2, ...N, is the external input to neuron i. Hopfield
has shown that if the connection matrix is symmetrical with zero diagonal elements
(i.e., Tij = Tji, and Tii = 0), the function of the neuron output in (4) is decreased by any
state changes produced by the following asynchronous rule:

∑
≠=

+=




 ≥

<
=

N

ijj
jijii

i

i

i VTIH
H

H
V

,1

 where
0 if 1

 0 if 0

 (4)

0

0.2

0.4

0.6

0.8

1

0 5 10 15

A SR S

|i - j |
0

0.2

0.4

0.6

0.8

1

0 5 10 15

A F

R F

||F (i) - F (j)||
Fig. 1. The spatial and visual components of the pulling and pushing energy function.

For a given initial state, the network updates its output Vi according to equation (4)
asynchronously, that is one neuron output at a time. When the network reaches its sta-
ble state in which further iterations do not change the output of Vi, the network outputs
correspond to a local minimum of the computational energy function of the form (3).
It follows that the interconnection strength between neurons, and the external inputs to
the neurons, have the following relationship with the computational energy function:

jVi

H
i

ji

H
ij

j
V

E
I

VV

E
T

∀=
∂
∂

=
∂∂

∂
=

,0

2

 (5)

Clearly, to use the collective computational properties of the Hopfield network to
solve a problem, a cost function (computational energy) has to be defined in such a
way that the lowest value represents an effective solution to the problem. For our cur-
rent application, we can use the Hopfield neural model to optimize the PPG energy
(1).

To find the optimum solution to (1), we find it numerically convenient to separate
the visual feature dependent part and the visual feature independent part, and mini-
mize each part in turn. We re-write (1) as

() ()() ()

() () () ()

()()







−−−=





−+−

+



−−+=

∑ ∑

∑ ∑∑ ∑

∑ ∑∑ ∑

= ≠∈

= ≠== ≠=

= ≠== ≠=

N

i ijnj
jiG

j

N

i

N

ijj
i

N

i

N

ijj
ji

N

i

N

ijj
ji

N

i

N

ijj
jiPP

i

VV E

jiRVVjiRVV

jiAVVjiAVVE

1 ,
2

1 ,11 ,1

1 ,11 ,1
1

1212

,1,1

,11,

λ

λ
 (6)

We can construct one Hopfield network to optimize EPP and another Hopfield network
to optimize EG. For the EPP network, we have the connection strengths and external
inputs as

() ()()

() ()()∑
≠=

−=

≠−−=
N

ijj

PP
i

PP
ij

jiRjiAI

ijjiRjiAT

,1
1

1

,,2

,,,4

λ

λ
 (7)

and for the EG network, we have the connection strengths and external inputs as

22)1(2 , ,4 λλ −−=∈≠= i
G
ii

G
ij nInjijT (8)

Then the PPG visual grouping algorithm can be summarized:

The PPG Visual Grouping Algorithm

Step 1, Initialize Vi, i = 1, 2, ...N, to random values in the range (0, 1)
Step 2, For all i = 1, 2, ...N, update Vi, one at a time according to

∑
≠=

+=




 ≥

<
=

N

ijj
j

PP
ij

PP
i

PP

PP

PP
i VTIH

H

H
V

i

i

i

,1

 where
0 if 1

 0 if 0

Step 3, For all i = 1, 2, ...N, update Vi, one at a time according to

∑
≠=

+=




 ≥

<
=

N

ijj
j

G
ij

G
i

G

G

G
i VTIH

H

H
V

i

i

i

,1

 where
0 if 1

 0 if 0

Step 4, go to Step 2, until converge.

From (8), it is not difficult to see that Step 3 performs majority voting. A pixel will be
assigned to the membership of that of the majority of its neighbours. It is also easy to
see that the weighting parameter λ2 for the grouping term becomes irrelevant in the
decision making. The complexity of this Step is O(mNni) binary operations, where N
is the number of pixels, ni the size of the local window and m the number of iterations.
To perform Step 2, the connections and external inputs in (7) need only to be done
once with a complexity of O(NσS), where N is the number of pixels and σS is size of
the local region within which the pulling and pushing are active. The complexity of
Step 2 after computing the Tij and Ii is O(mNσS) addition operations. Again, the
weighting parameter λ1 becomes irrelevant in the decision making. We have observed
that ni = 3 ~ 5, σS = 7 ~ 15, m = 5 ~ 10 worked well in our experiments. An important
parameter in the algorithm is σF in (2). Typically, this should be set based on the sta-
tistics of the visual features used in the interaction. We found setting it according to
the variance of the feature vectors worked well.

If it is required that the image be partitioned into more than two groups, the algo-
rithm can be applied recursively to the resultant groups, until the desired number of
groupings are generated.

3. Application to Scene Segmentation and Results

We have implemented the PPG algorithm based on intensity, colour and texture
features. For the intensity images, the visual feature F(i) in (2) takes the intensity of
the pixel. For the colour image, we used the HSV colour space and each pixel was
represented by a 3-d vector formulated as F(i) = (v(i)*s(i)*sin(h(i)), v(i) *s(i) *cos(h(i)),
v(i)), where v(i), s(i), h(i), are the Value, Saturation and Hue of pixel i. For texture im-
ages, we use Law's filtering approach to extract the texture features. The filter masks
were t1 = [1, 4, 6, 4, 1], t2 = [-1, -2, 0, 4, 1], t3 = [-1, 0, 2, 0, -1], t4 = [-1, 2, 0, -2, 1], and t5

= [1, -4, 6, -4, 1]. The resulting 25 filter outputs for each pixel position were used to form
a 25-d feature vector for each pixel [4]. In each case, the variance of the feature, varF, was
calculated as

() ()∑∑
==

=−=
N

i
F

N

i
FF iF

N
MMiF

N 11

1
 ,

1
var (9)

The pulling and pushing energy parameter in (2) is set as σF = αvarF, where α is a
constant, which is tuned manually. We found setting 0 < α ≤ 1 worked well.

Fig. 2 shows results of grouping grey scale intensity images. It is seen that the re-
sults are very good. The two salient groups of visual pattern have been successfully
separated.

Fig. 3 shows results of grouping images using colour features. It is again seen that
the two salient groups of visual pattern have been successfully separated.

Fig. 4 shows results of grouping images using texture features. It is again seen that
the two salient groups of visual pattern have been successfully separated. Notice that
in the grouping process, only texture features extracted from the achromatic channel
were used and colour information was not used. The images are shown in colour for
visually more appealing presentation.

4. Related Work

The volume of literature in the area of image segmentation is huge, so we do not in-
tend to list all possibly related prior work but merely to point out some recent work we
believe are most related to our current work. We believe the present work is most
closely related to recent work on graph based frameworks for image segmentation [1-
3]. Whilst [1,3] proposed eigenvector or graph spectral theory based solutions, [2]
used methods based on maximum likelihood graph clustering. Our method also can be
regarded as representing the segmentation or grouping using a graph. However, the
weights of the graph edges in our current work are defined differently, which not only
measure the similarity between the nodes but also explicitly measure the dissimilarity
of the nodes, i.e., the nodes not only pulling each other together, they also pushing one
another apart. We have formulated the energy function in such a way that it can be
numerically solved by a Hopfield neural network model. Our solution can be consid-
ered very efficient numerically because only addition and thresholding operations are
involved. We are investigating whether there are deeper relations between our current
algorithm and those in the literature.

5. Concluding Remarks

We have presented a novel algorithm for visual grouping. Our pulling, pushing and
grouping principle was proposed based on the rationale that, (i) if two pixels have
similar visual properties, it is likely that they belong to the same group and this likeli-
hood increases if they are close to each other spatially as well, on the other hand, (ii) if
two pixels have dissimilar visual properties, it is likely that they will belong to differ-
ent groups and this likelihood will increase if they are far away from each other spa-
tially, and (ii) spatially close pixels are more likely belong to the same group regard-
less of their photometric values. We then cast this principle in a computational energy
function and developed a neural network based solution. We have presented experi-
mental results to show that the new algorithms work very effectively and give very en-
couraging results.

As is the same with many other algorithms, there are several free parameters in
our algorithm that needed to be decided by empirical means. We have provided some
guidelines to select them and fortunately, we found that it was not difficult to find
their values that would work well on a variety of data. We also found the algorithm
converged very fast. However, one possible problem is that the algorithm may con-
verge to a local minimum, and in some cases, the algorithm may perform unbalanced

grouping resulting in one group being too large the other too small. Work is ongoing
to test the algorithm using a variety of data to gain deeper understanding of its behav-
iour.

Fig. 2. Results of PPG on intensity images. Images in the 1st column are the original
images. The two visual groups are shown in the 2nd and 3rd columns. All results are for
parameters σS = 5, ni =2, α =1 and after 5 iterations.

Fig. 3. Results of PPG on colour images. Images in the 1st column are the original im-
ages. The two visual groups are shown in the 2nd and 3rd columns. All results are for
parameters σS = 11, ni =2, α = 0.5 and after 15 iterations.

Fig. 4. Results of PPG based on texture features (notice that only achromatic signals were used
in the grouping). Images in the 1st column are the original images. The two visual groups are
shown in the 2nd and 3rd columns. All results are for parameters σS = 11, ni =2, α = 0.5 and after
15 iterations.

6. References

[1] J. Shi and J. Malik, "Normalized cuts and image segmentation", IEEE Trans PAMI, vol. 22,
no. 8, pp. 888 - 905, 2000

[2] A. Amir and M. Lindenbaum, "A generic grouping algorithm and its quantitative analysis",
IEEE Trans PAMI, vol. 20, no. 2, pp. 168-185,1998

[3] Y. Weiss, "Segmentation using eigenvectors: a unifying view", ICCV 1999
[4] T. Randen and J. Husøy, " Filtering for Texture Classification: A Comparative Study",

IEEE Trans PAMI, Vol 21, No. 4, pp. 291 - 310, 1999
[5] J. Hopfield, "Neural networks and physical systems with emergent collective computational

abilities", Proc. Natl. Acad. Sci., pp. 2554 - 2558, April 1982,
[6] J. Hopfield, "Neurons with graded response have collective computational properties like

those of two-state neurons", Proc. Natl. Acad. Sci., pp. 3088 - 3092, April 1984,
[7] J. Hopfield and D. W. Tank, "Neural computation of decisions in optimization problems",

Biol. Cyern., pp. 141 - 152, 1985

