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Abstract. We present an information theoretic approach for learning a linear 
dimension reduction transform for object classification. The theoretic guidance 
of the approach is that the transform should minimize the classification error, 
which, according to Fano’s optimal classification bound, amounts to maximiz-
ing the mutual information between the object class and the transformed fea-
ture. We propose a three-stage learning process. First, we use a support vector 
machine to select a subset of the training samples that are near the class 
boundaries. Second, we search this subset for the most informative samples to 
be used as the initial transform bases. Third, we use hill-climbing to refine these 
initial bases one at a time to maximize the mutual information between the 
transform coefficients and the object class distribution. We have applied the 
technique to face detection and we present encouraging results. 

1. Introduction 

Representation plays a key role in the success of computer vision and pattern recogni-
tion algorithms. An effective representation method should be compact and discrimi-
native. It is desired that the representation should have low dimensionality to combat 
the “curse of dimensionality” problem and to improve computational efficiency. The 
representation should also ideally be in a space where different classes of objects are 
well separated. 

Classical techniques such as principal component analysis (PCA), linear discrimi-
nant analysis (LDA) [7] are well studied in the literature. Although PCA can produce 
compact representation, it cannot enhance the discriminative power. Since LDA only 
makes use of covariance, it is only optimal for classes having unimodal Gaussian den-
sity with well-separated means. In many applications, it may be beneficial to exploit 
higher than second order statistical information. 

Theoretically, information theoretic approaches [8] have a number of advantages. 
For example, mutual information measures general statistical dependence between 
variables rather than the linear correlation. The mutual information is also invariant to 
monotonic transformations performed on the variables. 

In this paper, we present a learning procedure for developing a dimension reduction 
linear transform based on the mutual information criterion, and apply it to object de-
tection. The organization of the paper is as follows. Section 2 gives a brief back-



ground overview on the Shannon information theory and Fano’s inequality on the rela-
tionship between mutual information and a lower bound of misclassification error [2]. 
Section 3 describes a 3-step learning procedure for deriving a mutual information 
maximizing linear dimension reduction transform. Section 4 presents experiments and 
results of applying the method to human face detection. Section 5 concludes the paper. 

2. Information Theory Background 

Let ensemble X be a random variable x with a set of possible outcomes, AX = {a1, a2, 
…. an}, having probabilities {P(x = ai)}, and ensemble Y be a random variable y with 
a set of possible outcomes, AY = {b1, b2, …. bm}, having probabilities {P(y = bj)}. Let 
p(x, y), x ∈ AX , y ∈ AY be the joint probability. We can define the following Shannon 
information theory functions 

The entropy of X is defined as 

( ) ( )∑
∈

−=
xAx

xPxPXH )(log)(  (1) 

The joint entropy of X and Y is defined as  
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The mutual information between X and Y can be defined as (other forms of defini-
tion also exist) 
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The entropy measures the information content or uncertainty of the random vari-
able. The mutual information measures the average reduction in uncertainty of x as a 
result of learning the value of y, or vice versa. Another interpretation of the mutual in-
formation measure is that it measures the amount of information x conveys about y.  

2.1 Fano’s Mutual Information Bound 

In the context of object classification, Fano’s inequality [2] gives a lower bound for 
the probability of error (an upper bound for the probability of correct classification). 
Our present application uses Fano’s inequality in much the same way as it is used by 
other authors [3, 4]. The classification process can be interpreted as a Markov chain as 
illustrated in Fig. 1.  
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Fig. 1. Interpreting the classification process as a Markov chain [3, 4], y is the object class ran-
dom variable, x are the observations generated by the conditional probability density function 
P(x | y). The observations are subjected to a transform G, which produces a new feature f from 
input x. The classifier C then estimates the class identity of input x as y’ based on the trans-
formed feature f.  

The probability of misclassification error in the setting of Fig. 1, Pe = P(y ≠ y’), 
has the following bound [2] 

( )
)log(

1),()(
'

m

FYIYH
yyP

−−≥≠  
(4) 

where F is the ensemble of random variable f, and m is the number of outputs of y 
(number of object classes). The form of the classifier, C, has not been specified. Eq. 
(4) quantifies at best how well we can classify the objects using the features f. How-
ever, an upper bound of the probability of misclassification error cannot be expressed 
in terms of Shannon’s entropy. The best one can do is to minimizes the lower bound to 
ensure an appropriately designed classification algorithm does well. Since both m and 
H(Y) are constants in (4), we can maximize the mutual information I(Y, F) to minimize 
the lower bound of the probability of misclassification error. The task now becomes 
that of finding the transform function G that minimizes this lower bound. In the next 
section, we propose a three-stage solution. 

3. Learning a Linear Informative Transform 

Our objective is to find a dimension reduction linear transform G that minimizes the 
lower bound in (4). Because the observations x and the transformed feature f and class 
variable y are all normally multidimensional vectors, directly estimating an optimal G 
that maximizes I(Y, F) is computationally extremely difficult. Assume x is an l-d col-
umn vector and f is a k-d column vector, (k<< l), then f = Gx, G is a k (rows) by l (col-
umns) transform matrix. In this section, we present an engineering solution to estimate 
G, which we will demonstrate in the next section it works satisfactorily. 

The developed 3-stage process is as follows: 
 
Stage 1: Use a support vector machine (SVM) [7] to select the training samples 

that are near the class boundaries  

Stage 2: Use a maximum mutual information criterion to select an initial set of 
transform base vectors. 



Stage 3: Use a hill-climbing algorithm to refine the transform base vectors one at a 
time. 

Starting from labeled training samples, we use the raw data to train a support vector 
machine to classify the samples directly. After training, the “support vectors” of this 
SVM are those samples near the decision surfaces. Conceptually, this set of training 
samples (support vectors) are the most difficult to classify. We reason this set of sam-
ples is potentially the most “informative” because there is more uncertainty in relation 
to the class identity. We will therefore only use this set of samples to find the trans-
form G. The rationale is that by reducing the number of samples, we can reduce the 
training time; also, if we can separate those samples near the decision boundaries, the 
rest of the samples can be separated easily. It is to be noted that the only use of the 
SVM at this stage is to select samples near the class boundaries.  

Once the training samples have been selected, we use a constructive procedure to 
build an initial set of transform base vectors based on the maximum mutual informa-
tion criterion. Let X = {x1, x2, …xN} be the N labeled training samples that constitute 
the support vectors of the SVM, Y = {y1, y2, …yN} their corresponding class labels, G 
= [g1, g2, …, gk]

T, and gi be the ith transform base. We use the following procedure to 
find the initial value of G 

 
Proc. InitializeG(X,Y)  

for i = 1 to k do  
    for m = 1 to N do 
        for n =1 to N do  
            F (m, n) = <xm, xn> //inner product 
        End for 
        Proc. Estimate joint probability P(Y, F(m, •)) 
        Proc. Compute I(m) = I(Y, F(m, •)) 

                      //Compute mutual information (3) 
    End for 

If I(j) > I(m), ∀m  Then gi = xj /||xj|| 
Remove xj and yj from X and Y respectively 
N = N –1 

    for m = 1 to N do 
        xm = xm – < xm, gi >gi 
    End for 
End for 

End Proc. 
 
To find the first transform base, we select one sample at a time, and project all 

other training samples onto that selected sample. The projection (a scalar) and the 
sample identity can be used to estimate the joint probability, which in turn can be used 
to estimate the mutual information of the projection and the class distribution. The 
sample with projection output that maximizes the mutual information is selected as the 
first transform base. This base is then removed from the training sample set. All re-
maining samples are then made orthogonal to the first base and used as training sam-



ples to find the second transform base. The process continues until all required k bases 
are found. From the procedure it is not difficult to see that all k initial bases are or-
thonormal.  

It is clear that the bases are selected individually based on a maximum mutual in-
formation criterion. Ideally, these bases should be optimized jointly. However, esti-
mating the joint probability of high dimensional vectors is computationally prohibi-
tive. The mutual information function with respect to the transform G is non-
differentiable. This makes a closed form optimization algorithm difficult to derive (if 
not impossible). Therefore some form of heuristic techniques have to be employed to 
refine the initial transform bases. We decided to use hill-climbing [10] to accomplish 
the task. 

This is an iterative process. We refine the bases, gi, one at a time. For each hill-
climbing step, the criterion is the maximization of the mutual information between the 
projection of the training samples onto that base and the samples class distribution. 
Starting from the 1st base, hill climbing is used to refine the base such that the mutual 
information between the projections of the original data sample onto this base and the 
sample’s class distribution reaches the highest possible value. Once a local maximum 
is reached, this base is normalized and fixed. All training samples are made orthogo-
nal to the new base to form the new training samples to be used to refine the next base. 
The final transform bases all will have been made to have a unit length but are not 
necessarily orthogonal to each other. 

The process first finds a single base, onto which the projection of the original sig-
nal will produce a scalar, whose distribution and the object class has maximum mutual 
information. We then make the signal orthogonal to the first base to form the residue 
signal. From this residue signal, we attempt to find another transform base that will 
maximize the mutual information between the projection of this residue signal onto 
the second base and the class distribution. This process repeats until a fixed number of 
bases are created. 

An intuitive understanding of the method can be thought of as follows: from the 
original sample, we find a direction that conveys the maximum information about the 
object class distribution. We then remove what is already known by making the signal 
orthogonal to this base to form the residue signal. We then find a direction in the resi-
due signal space that conveys the maximum information about the object classes. 
What is already known about this base is again removed by making the signal or-
thogonal to this base and the process continues. 

Because each base (except the 1st one) is trained on the residue signals from the 
transform of the previous base, the transform should reflect this and the new maximum 
mutual information linear dimension reduction transform is illustrated in Fig. 2 as a 
neural network style diagram. 

4. Experiments 

In this section, we use human face detection [5] as an application example of the ap-
proach developed in section 3. We first collected 9390 face and nonface samples from 



various sources (the numbers of face/nonface samples are roughly 1 : 2). The original 
samples are of various sizes and we normalize them to a uniform size of 32 x 32 pix-
els. We first use these 1024d vectors to train a support vector machine [1], when it is 
converged, there are 2217 support vectors, of which 986 are face and 1231 are non 
face samples. Using these support vector samples, we then follow the procedure in 
section 3 to develop the transform bases. Fig. 3 shows examples of 16 such bases.  

In the following experiments, 64 transform bases are used, that is the input vector 
of 1024d is reduced to 64d for detection (16 : 1 compression). To search for faces in 
images, we use detection windows of 30 different sizes ranging from the smallest of 
20 x 24 pixels to the largest of  426 x 520 pixels. For each of these windows, it is first 
resized to 32 x 32, then the 32 x 32 window is passed to the transform to reduce its 
dimension to 64. The 64 dimensional vector is then passed to a support vector ma-
chine, which has been trained to determine whether the current window is a face [1]. 
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Fig. 2. (left) Schematic of the maximum mutual information dimension reduction linear trans-
form. See eq. (5). Fig. 3. (right) Examples of maximum mutual information linear dimension 
reduction transform bases for face/nonface objects 

The transform output is defined as (5). In the next section, we use human face de-
tection as an application example to evaluate the validity of the approach.  
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In the first experiment, we tested all 500 upright frontal view face images under the 
"/inp" directory in the FERET data set [9]. The detector correctly detected 495 faces 
from the data set achieving a detect rate of 99%. There were 22 false positives with a 
universal threshold. The testing result is comparable to recent work using this data, 
e.g. [11]. Fig. 4 shows some examples of detection results. 

In a second experiment, we use 130 photographs from the CMU website [6]. This 
is the set of images used extensively by researchers in face detection. The 130 images 
contain 507 faces. For the 130 images, our experiment evaluated a total of 52,129,308 
patterns. The receiver operating characteristic (ROC) curve of the detection is shown 
in Fig. 5. Detection examples are shown in Fig. 6. These results are quite good and are 
comparable to state of the art. This demonstrates that the new method is effective and 
its potential is very encouraging.  
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Fig. 4 (left). Examples of experimental results on the FERET database. Fig. 5 (right). Receiver 
operating characteristics of face detection using maximum mutual information dimension re-
duction linear transform (data representation) and support vector machine (decision making). 
130 testing images with 507 faces and 52,129,308 evaluated patterns. 

We have also performed some initial comparisons to other transform techniques, in 
particular principal component analysis (PCA). We found that at lower dimension 
(high compression), the new informative transform clearly outperforms PCA, the ad-
vantage of the new method is less pronounced when very high dimensions are used. 
Fig. 7 shows 3D plots of 1500 face samples and 1500 nonface samples in the first 3 
dimensions of  PCA and the new transform space. It is seen that the face/nonface pat-
terns are better separated in the new maximum mutual information transform space. It 
is also seen that samples belonging to the same class are closer to each other in the 
new transform space. 

 

 

 
Fig. 6. Examples of face detection result performed on the CMU database 

5. Concluding remarks 

In this paper, we have presented a learning procedure to create a linear dimension re-
duction transform based on an information theoretic criterion. We have successfully 
applied the transform to face detection. Our initial results indicate that the new tech-
nique is very effective. Information theoretic approaches have many advantages com-



pared to other conventional methods. Our work here and recent work by others, e.g. 
[12], have clearly demonstrated the potential of information theoretic approaches to 
computer vision and pattern recognition problems. 

 

 

Fig. 7. 3D plots of 1500 face (green o) and 1500 nonface (red +) patterns in the first 3 dimen-
sions of the PCA space (left) and the new maximum mutual information transform space 
(right). 
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