
1

Abstract Syntax Trees

and Contextual Analysis

Roland Backhouse

March 8, 2001



2

Phases of a Compiler

?sequence of characters

?sequence of tokens

Lexical analysis

?AST representation of program structure

Syntax Analysis

?Decorated AST

Contextual analysis

?target code for program

Code generation



3

Phases of a Compiler

scanner :: char∗→ token∗

parseProgram :: token∗→AST

checker :: AST→AST

codeGenerator :: AST → instruction∗



4

Phrase Structure Recognition

Specification For each nonterminal A the method parseA has the
following functions:

• To determine whether a prefix u of the input string from the
current input position onwards is in the language generated by
A.

• To maintain the invariant property that a syntax error is
flagged iff the input string up to the current input position is
not a prefix of any sentence of the language being recognized.

• If no error is flagged, to return an object of (abstract syntax
tree) class A representing the longest such prefix u and to
advance the input pointer to the first position beyond u.

• If an error is flagged, to return a null object.



5

Contextual Analysis

Requirement

• Associate uses of identifiers with declarations (Identification)

• Check type correctness.

Specification Contextual analysis is a function from AST’s to
AST’s with error reporting as a side effect.

Formally, we construct a function checker of type

Program Identifier Operator Literal → Program IdEntry Operator Literal

that preserves the shape of the AST.

In other words, contextual analysis replaces identifiers and literals in
the AST by their entries in the Identification Table.

Implementation Use visitor pattern to localise code for different
traversals of the AST’s.



6

Abstract Syntax Trees

public abstract class AST {

public AST (SourcePosition thePosition) {

position = thePosition;

}

public SourcePosition getPosition() {

return position;

}

}



7

Command

public abstract class Command extends AST {

public Command (SourcePosition thePosition) {

super (thePosition);

}

}



8

AssignCommand

public class AssignCommand extends Command {

public AssignCommand (Identifier iAST,

Expression eAST, SourcePosition thePosition) {

super (thePosition);

I = iAST;

E = eAST;

}

public Identifier I;

public Expression E;

}



9

IfCommand

public class IfCommand extends Command {

public IfCommand (Expression eAST, Command c1AST, Command c2AST,

SourcePosition thePosition) {

super (thePosition);

E = eAST;

C1 = c1AST;

C2 = c2AST;

}

public Expression E;

public Command C1, C2;

}



10

Creating an IfCommand

Command parseSingleCommand() throws SyntaxError {

Command commandAST = null; // in case there’s a syntactic error

SourcePosition commandPos = new SourcePosition();

start(commandPos);

switch (currentToken.kind) {

...

case Token.IF:

{

acceptIt();

Expression eAST = parseExpression();

accept(Token.THEN);

Command c1AST = parseSingleCommand();

accept(Token.ELSE);

Command c2AST = parseSingleCommand();

finish(commandPos);

commandAST = new IfCommand(eAST, c1AST, c2AST, commandPos);

}

break;



11

Identifiers

public class Identifier extends Terminal {

public Identifier (String theSpelling, SourcePosition thePosition) {

super (theSpelling, thePosition);

decl = null;

type = null;

}

public String spelling;

public AST decl;

public TypeDenoter type;

}



12

Terminals

abstract public class Terminal extends AST {

public Terminal (String theSpelling, SourcePosition thePosition) {

super (thePosition);

spelling = theSpelling;

}

public String spelling;

}



13

Parsing Identifiers

Identifier parseIdentifier() throws SyntaxError {

Identifier I = null;

if (currentToken.kind == Token.IDENTIFIER) {

previousTokenPosition = currentToken.position;

String spelling = currentToken.spelling;

I = new Identifier(spelling, previousTokenPosition);

currentToken = lexicalAnalyser.scan();

} else {

I = null;

syntacticError("identifier expected here", "");

}

return I;

}



14

Identification

Relate applied occurrences of identifiers to the corresponding binding
occurrences (i.e. uses of identifiers to their declarations).

Class IdentificationTable associates identifiers with their
attributes.

Terminology

Scope: Portion of program over which declaration takes effect.

Block: Program phrase delimiting scope of declarations.

Block structure: Monolithic (Basic, Cobol)

Flat (FORTRAN)

Nested Pascal, C, Java)


