
Compilers

G52CMP

January 2002

Contact details:

• Roland Backhouse,
room B30, rcb@cs.nott.ac.uk, x 14212.

Please keep email traffic to a minimum. Come to see
me if you have a query. I will always be available imme-
diately after each lecture. You can speak to me then
or make an appointment to see me later.



Aims of Course

Aims:

To capture the interplay of theoretical ideas
with practical programming problems.

Setting:

Compilers: how do they work, how are they
constructed?

Specifics:

• Understanding of compiler development.

• Experience of studying a large program.

CMP-1–1



Assessment

• 25% coursework.

• 75% 2-hour examination.

Coursework: Obtainable from

http://www.cs.nott.ac.uk/∼rcb/G51CMP

Examination: 3 questions out of 5.

NB. If you are in the unfortunate situation of resitting
the examination then any coursework you have done
does not count and you will be required to answer 4
out of 5 questions.

CMP-1–2



Books

• Programming Language Processors in Java. Com-
pilers and Interpreters. David A. Watt and Deryck
F. Brown Pearson Education Limited 2000.

This is the main reference for the course and is a com-
pulsory purchase.

The book’s main advantage is that it uses Java and is
clearly written. It is weak on linking the theory with
practice and I will be supplementing the material in the
textbook with lectures on the theoretical basis. There
are several errors in the book. Consult the authors’
web pages for corrections.

• Compilers: Principles, Techniques, and Tools. Al-
fred Aho, Ravi Sethi, and Jeffrey Ullman. Addison
Wesley, 1986. (The ‘Dragon book’ – a classic.)

This is a well-written textbook that is well worth buy-
ing. It is very thorough and does a good job of demon-
strating the relevance of the theory to the practice of
constructing compilers. A disadvantage of this book is
that uses C. However, reading C should not be a prob-
lem since the syntax of Java is based on C. The book
includes a lot of material that I will not have time to
cover. If you want a book that will last you many years
rather than just for one semester then buy this one.

CMP-1–3



Handouts

• There will be no handouts during lectures. You
should come prepared to take notes during the
lecture.

• Lecture material: Photocopies of diagrams and
other material from Watt and Brown’s book (re-
produced with the permission of the authors) can
be purchased from the secretaries’ office (room
B33).

CMP-1–4



Coursework – MiniTriangle Type Checker

• Medium-scale programming.

• Visitor Pattern (OO “design pattern”)

• Abstract Syntax Trees

Part 1 Familiarization.

Part 2 Implementation.

CMP-1–5



Lecture 1

Basic Overview

CMP-1–6



What is a compiler?

Compilers are program translators:

source
program

- compiler -
target
program

?

error diagnostics

Source programs: Many possible source languages,
from traditional, to application specific languages.

Target programs: Another programming language,
often the machine language of a particular computer
system.

Error diagnostics: Essential for program development.

CMP1–1



Where are compilers used?

• implementation of programming languages
C, C++, Java, Lisp, Prolog, SML, Haskell, Ada,
Fortran, . . .

• document processing
LaTeX → DVI/HTML/PDF, DVI → PostScript,
Word documents → . . .

• natural language processing
nl → database query language → database com-
mands

• hardware design
silicon compilers, CAD data→ machine operations

• report generation
CAD data → list of parts, web-server access logs
→ access statistics, . . .

• all kinds of input/output translations
various UNIX text filters, . . .

• . . .

Not every program is a compiler, but many applications
make use of compiler technology.

CMP1–2



Compilation can be a complex process

A simple C (?) program:

main(){int i,tot,N=10;for/* This is a comment. I love
comments */(i=0;i<N;i++) tot=tot+ i; printf("Total =
%d\n", tot);}

SPARC assembler code generated for it by gcc:

.file "for.c" .LL5:
gcc2_compiled.: ld [%fp-24],%o0
.section ".rodata" ld [%fp-20],%o1

.align 8 add %o0,%o1,%o0
.LLC0: st %o0,[%fp-24]

.asciz "Total = \n%d\n" .LL4:
.section ".text" ld [%fp-20],%o1

.align 4 add %o1,1,%o0

.global main mov %o0,%o1

.type main,#function st %o1,[%fp-20]

.proc 04 b .LL2
main: nop

!#PROLOGUE# 0 .LL3:
save %sp,-128,%sp sethi %hi(.LLC0),%o1
!#PROLOGUE# 1 or %o1,%lo(.LLC0),%o0
mov 10,%o0 ld [%fp-24],%o1
st %o0,[%fp-28] call printf,0
st %g0,[%fp-20] nop

.LL2: .LL1:
ld [%fp-20],%o0 ret
ld [%fp-28],%o1 restore
cmp %o0,%o1 .LLfe1:
bl .LL5 .size main,.LLfe1-main
nop .ident "GCC: (GNU) 2.7.2"
b .LL3
nop

CMP1–3



Inside the compiler

Traditionally, compilation is broken down into several
steps or passes:

• Lexical analysis: Translate the input program,
entered as a sequence of characters, into a se-
quence of words or symbols (tokens). For exam-
ple, the keyword for should be treated as a single
entity, not as a 3 character string.

• Syntax analysis/parsing: Determine the struc-
ture of the program, for example, identify the com-
ponents of each statement and expression and check
for syntax errors.

• Static/Semantic analysis: Check that the pro-
gram is reasonable, for example, that it does not
include references to undefined variables.

• Code generation: Output the appropriate sequence
of target language instructions.

This leads to a compilation pipeline with various inter-
mediate data formats. Parts closer to the front-end
of this pipeline depend more heavily on the source lan-
guage whereas parts closer to the back-end depend
more heavily on the target language.

CMP1–4



Inside the compiler, continued

?
sequence of characters

?
sequence of tokens

Lexical analysis

?
representation of program structure

Syntax analysis/parsing

?
verified representation of program structure

Semantic/static analysis

?
intermediate form of program

Intermediate code generation

?
optimized intermediate form of program

Optimization

?
target code for program

Code generation

CMP1–5



Inside the compiler, A Simple Example

See Aho, Sethi and Ullman, p13.

CMP1–6



Summary and Homework

Summary: This lecture has been about:

• Aims of the course.

• What a compiler is.

• Applications of compiler technology.

• Overall structure of compilers.

Homework:

• Read chapter 1 of Watt and Brown.

CMP1–7


