## University of Nottingham

## SCHOOL OF COMPUTER SCIENCE <br> AND INFORMATION TECHNOLOGY

## A LEVEL 1 MODULE, SPRING SEMESTER 2000-2001

PROGRAMMING ALGEBRA
(Course G53PAL)
Solutions)

## Question 1:

a)

$$
L=\mu\langle X::\{a\} X X X \cup\{b\}\rangle
$$

b)

$$
\#_{\mathrm{b}} w=2 \times \#_{\mathrm{a}} w+1
$$

c) Let $M$ be the set of all words $w$ such that $\#_{b} w=2 \times \#_{a} w+1$. We have to show that $L \subseteq M$. We use fixed point induction:

$$
\begin{aligned}
& \mathrm{L} \subseteq M \\
& \Leftarrow \quad\{\quad \text { by definition } L=\mu f \text { where } f=\langle X::\{a\} X X X \cup\{b\}\rangle, \\
& \text { induction: (??) \} } \\
& \{\mathbf{a}\} M M M \cup\{b\} \subseteq M \\
& \equiv \quad\{\quad \text { set theory, definition of concatenation }\} \\
& \forall\langle x, y, z: x \in M \wedge y \in M \wedge z \in M: a x y z \in M\rangle \wedge b \in M \\
& \equiv \quad\{\quad \text { definition of } M \quad\} \\
& \forall<\quad x, y, z \\
& : \quad \#_{\mathrm{b}} \mathrm{x}=2 \times \#_{\mathrm{a}} \mathrm{x}+1 \wedge \#_{\mathrm{b}} \mathrm{y}=2 \times \#_{\mathrm{a}} \mathrm{y}+1 \wedge \#_{\mathrm{b}} z=2 \times \#_{\mathrm{a}} z+1 \\
& : \quad \#_{\mathrm{b}}(\mathrm{axyz})=2 \times \#_{\mathrm{a}}(\mathrm{axyz})+1 \\
& \rangle \\
& \wedge \#{ }_{b} b=2 \times \#_{a} b+1 \\
& \equiv \quad\left\{\quad \text { definition of } \#_{\mathrm{a}} \text { and } \#_{\mathrm{b}} \quad\right\}
\end{aligned}
$$

## true .

d) Generalise the problem to $w \in \mathrm{~L}^{k}$. Then,

$$
w \in \mathrm{~L}^{0} \equiv w=\varepsilon .
$$

Also,

$$
w \in \mathrm{~L}^{\mathrm{k}+1} \equiv\left(\text { fst. } w=\mathrm{b} \wedge \text { rest. } w \in \mathrm{~L}^{\mathrm{k}}\right) \vee\left(\text { fst. } w=\mathrm{a} \wedge \text { rest. } w \in \mathrm{~L}^{\mathrm{k}+3}\right)
$$

So we get the program

$$
w, k:=W, 1
$$

\{ Invariant: $W \in \mathrm{~L} \equiv w \in \mathrm{~L}^{\mathrm{k}}$.
Bound function: length of $w$ \}

$$
\begin{aligned}
; \quad \text { do } \neg(w=\varepsilon \vee \mathrm{k}=0) \rightarrow \quad & \text { if fst. } w=\mathrm{b} \rightarrow w, \mathrm{k}: \\
& =\text { rest. } w, \mathrm{k}-1 \\
\square \text { fst. } w & =\mathrm{a} \rightarrow w, \mathrm{k}:=\text { rest. } w, \mathrm{k}+2
\end{aligned}
$$

fi
od
$\left\{\quad(w=\varepsilon \vee k=0) \wedge\left(W \in L \equiv w \in L^{k}\right)\right\}$
$\{W \in L \equiv w=\varepsilon \wedge k=0\}$

## Question 2:

a)

$$
\text { root. } n \geq \mathfrak{m} \equiv \mathfrak{m}^{2} \leq \mathfrak{n}
$$

b) We have, for all $m$,

$$
\begin{aligned}
& \text { root. }\lfloor x\rfloor \geq m \\
& \equiv \quad\{\quad \text { definition of root } \quad\} \\
& m^{2} \leq\lfloor x\rfloor \\
& \equiv \quad\{\quad \text { definition of }\lfloor x\rfloor \quad\} \\
& m^{2} \leq x \\
& \equiv \quad\{\quad \text { property of } \sqrt{x} \quad\} \\
& m \leq \sqrt{x} \\
& \equiv \quad\{\quad \text { definition of }\lfloor x\rfloor \quad\} \\
& m \leq\lfloor\sqrt{x}\rfloor
\end{aligned}
$$

The property follows by indirect equality.
c) The property is immediate from $\lfloor n\rfloor=n$ for all natural numbers $n$.
d) We have, for all $m$,

$$
\begin{aligned}
& \text { root. }\left(n^{2}\right) \geq m \\
& \equiv \quad\{\quad \text { definition of root } \quad\} \\
& \equiv \quad\{\quad \text { property of squaring } \quad\} \\
& m \leq n \\
& \equiv \quad\{\quad \text { converse of } \leq \quad\} \\
& n \geq m
\end{aligned}
$$

The property follows by indirect equality.
The property root. $(\mathfrak{m} \times \mathfrak{n})=$ root. $\mathfrak{m} \times$ root. $\mathfrak{n}$ is not true. Take $\mathfrak{m}=n=2$. We have, for all $k$,

$$
\begin{array}{lc} 
& \text { root. }(m \downarrow n) \geq k \\
\equiv & \{\quad \text { definition of root }\} \\
& k^{2} \leq m \downarrow n \\
& \{\quad \text { property of minimum } \quad\} \\
& k^{2} \leq m \wedge k^{2} \leq n \\
\equiv & \{\quad \text { first two steps reversed } \quad\} \\
& \text { root. } \mathfrak{m} \downarrow \text { root. } n \geq k
\end{array}
$$

The property follows by indirect equality.
We have, for all $k$,

$$
\begin{array}{lc} 
& \begin{array}{c}
\text { root. }(\mathfrak{m} \uparrow n) \geq k \\
\equiv
\end{array} \\
& \{\quad \text { definition of root } \quad\} \\
\equiv & k^{2} \leq \mathfrak{m} \uparrow n
\end{array} \quad \begin{array}{cc}
\{\quad \text { property of maximum } \quad\} \\
\equiv & k^{2} \leq m \vee k^{2} \leq n \\
& \text { root. } \mathfrak{m} \uparrow \text { root. } n \geq k
\end{array}
$$

The property follows by indirect equality.
(Note difference in these two proofs is in the second step - conjunction replaced by disjunction.)

## Question 3:

a) The generalisation is from a regular grammar to a context-free grammar. The invariant property is that, for nodes x in $\mathrm{D}, \mu \mathrm{x}$ is the shortest distance to $x$. (Algorithm omitted here.)
b) Each superior function $g$ must satisfy

$$
g\left(x_{1}, \ldots, x_{k}\right) \leq x_{1} \downarrow \ldots \downarrow x_{k} .
$$

Also each must be monotonic in each of its arguments. ("Turning around" the ordering in Knuth's requirement doesn't change the requirement.)

The productions take the form

$$
\mathrm{C}_{i} \rightarrow w_{i j} \downarrow \mathrm{C}_{\mathrm{j}}
$$

(Algorithm omitted again.)
c) The superior functions map a (distance,width) pair to a pair, pairs being ordered lexicographically. The productions thus take the form

$$
\mathrm{C}_{\mathrm{i}} \rightarrow \mathrm{~g}\left(\mathrm{C}_{\mathrm{j}}\right)
$$

where

$$
\mathrm{g}(\mathrm{~d}, w)=\mathrm{d}_{\mathrm{ij}}+\mathrm{d}, w_{\mathrm{ij}} \downarrow w
$$

d) The monotonicity requirement is not satisfied. Optimal routes are not necessarily composed of optimal subroutes. Once a road of width $w$ has been traversed, a suboptimal route can be followed so long as the minimum road width is no more than $w$.

