Kleene Algebra "Arithmetic" Operators

Roland Backhouse 1st October 2002 1

Outline

- Algebra of choice (+) , sequencing (\cdot) and iteration $(^*)$
- Name "Kleene algebra" is a tribute to S. C. Kleene
- "Algebra of regular events"
- Lots of other interpretations.
- First example of "fixed points" and "fixed point induction".

"Arithmetic" Axioms

 $(\mathbf{x}+\mathbf{y})+\mathbf{z}=\mathbf{x}+(\mathbf{y}+\mathbf{z}) \quad ,$ x+y = y+x, x + 0 = x = 0 + x, $\mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{z}) = (\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z} \quad ,$ $\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = (\mathbf{x} \cdot \mathbf{y}) + (\mathbf{x} \cdot \mathbf{z}) \quad ,$ $(\mathbf{y}+\mathbf{z})\cdot\mathbf{x} = (\mathbf{y}\cdot\mathbf{x}) + (\mathbf{z}\cdot\mathbf{x}) \quad ,$ $x \cdot 0 = 0 = 0 \cdot x$, $1 \cdot x = x = x \cdot 1$.

Overloading of "+" and " \cdot " is intended to suggest an analogy with arithmetic. But, be careful!!

Axioms — Ordering

Idempotency

$$x + x = x$$

Ordering

$$x \leq y \equiv x + y = y$$
.

Informal Coursework

Suppose R is a binary relation and \oplus is a binary operator such that

 $x R y \equiv x \oplus y = y$.

Prove the following:

R is reflexive $\equiv \oplus$ is idempotent ,

R is transitive \equiv \oplus is associative .

R is antisymmetric $\ \leftarrow \ \oplus \ {\rm is \ symmetric}$.

Informal Coursework (Continued)

Show that multiplication and addition in a Kleene algebra are both monotonic.

Interpretations

	carrier	+	•	0	1	\leq
Languages	sets of words	U		ф	$\{ \varepsilon \}$	\subseteq
Programming	binary relations	\bigcup	0	φ	id	\subseteq
Reachability	booleans	\lor	\wedge	false	true	\Rightarrow
Shortest paths	nonnegative reals	min	+	∞	0	\geq
Bottlenecks	nonnegative reals	max	min	0	∞	\leq