Iteration (Kleene Star)

Roland Backhouse
October 15, 2002

Outline

- Axioms
- Calculational Properties
- Graphs and Matrices

Iteration ("Kleene star")

$a^{*} \cdot b$ is a prefix point of the function mapping x to $b+a \cdot x:$

$$
b+a \cdot\left(a^{*} \cdot b\right) \leq a^{*} \cdot b
$$

and is the least among all such prefix points:

$$
\mathrm{a}^{*} \cdot \mathrm{~b} \leq \mathrm{x} \Leftarrow \mathrm{~b}+\mathrm{a} \cdot \mathrm{x} \leq \mathrm{x}
$$

$b \cdot a^{*}$ is a prefix point of the function mapping x to $b+x \cdot a$:

$$
\begin{equation*}
b+\left(b \cdot a^{*}\right) \cdot a \leq b \cdot a^{*}, \tag{1}
\end{equation*}
$$

and is the least among all such prefix points:

$$
\begin{equation*}
\mathrm{b} \cdot \mathrm{a}^{*} \leq \mathrm{x} \Leftarrow \mathrm{~b}+\mathrm{x} \cdot \mathrm{a} \leq \mathrm{x} \tag{2}
\end{equation*}
$$

Interpretations

Languages $\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots \mathrm{x}, \mathrm{y}$ and z are sets of words.
a^{*} is the set of all words formed by repeated concatenation of words in the language a.

Relations $\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots \mathrm{x}, \mathrm{y}$ and z are binary relations on some set \mathcal{A}. (That is, a set of pairs of elements of A.)
a^{*} is the reflexive, transitive closure of a. That is, a^{*} is the smallest relation that contains a and is reflexive and transitive. (Thus a^{*} is the smallest preorder containing a.)

Booleans (The interpretation of + is disjunction, the interpretation of - is conjunction.)
a^{*} is true for all booleans a.
Costs (The interpretation of + is minimum, the interpretation of \cdot is (real) addition.)
a^{*} is 0 for all nonnegative $a . a^{*}$ is $-\infty$ for negative a.

Extremal Path Problems

Edge labels are used to "weight" paths, and the problem is to find the "extreme" weight of paths between given pairs of nodes.

Interpretations - Matrices

Suppose A is a square matrix representing the edges in a labelled graph. Suppose the edge labels are elements of a Kleene algebra.

A* represents paths through the graph \mathbf{A} of arbitrary (finite) edge length.

The (\mathbf{i}, \mathfrak{j})th element of \mathbf{A}^{*} is the Kleene sum over all finite-length paths p from node i to node j of the weight of path p (the Kleene product of the path's edge labels).

Interpretations

- Boolean matrices. (Kleene addition is "or", multiplication is "and".
Assume that the (i, j) th element of \mathbf{A} is true exactly when there is an edge in the graph represented by \mathbf{A} from node i to node j. The ($i, j)$ th element of \mathbf{A}^{*} is true exactly when there is a path of arbitrary edge-length from node i to node j.
- Cost matrices. (Kleene addition is "minimum", Kleene multiplication is (real) addition.)
Assume that the (i, j) th element of \mathbf{A} is the cost of the edge from node i to node j.
The (i, j) th element of \mathbf{A}^{*} is the least cost of going from node i to node j.
- Height matrices. (Kleene addition is "maximum", Kleene multiplication is "minimum".)
Assume that the (i, j) th element of \mathbf{A} is the height of an underpass on the road from node i to node j.
The (i, j) th element of \mathbf{A}^{*} is the height of the lowest underpass on the best route from node i to node j.

Properties

reflexivity

$$
1 \leq a^{*}
$$

transitivity

$$
a^{*}=a^{*} \cdot a^{*}
$$

closure operator

$$
\mathrm{a} \leq \mathrm{b}^{*} \equiv \mathrm{a}^{*} \leq \mathrm{b}^{*}
$$

Further Properties

leapfrog

$$
\begin{aligned}
a \cdot b^{*} \leq c^{*} \cdot a & \Leftrightarrow a \cdot b \leq c \cdot a \\
c^{*} \cdot a \leq a \cdot b^{*} & \Leftarrow c \cdot a \leq a \cdot b \\
a \cdot b^{*}=c^{*} \cdot a & \Leftrightarrow a \cdot b=c \cdot a
\end{aligned}
$$

mirror

$$
a \cdot(b \cdot a)^{*}=(a \cdot b)^{*} \cdot a
$$

decomposition

$$
(a+b)^{*}=b^{*} \cdot\left(a \cdot b^{*}\right)^{*}=\left(b^{*} \cdot a\right)^{*} \cdot b^{*}
$$

idempotency

$$
\left(a^{*}\right)^{*}=a^{*}
$$

Exercise: Prove the properties not proved in the lectures.

