All-Paths Algorithm

Roland Backhouse
October 22, 2002

Overview

- Goal: derive a single generic path-finding algorithm.
- Exploit algebraic properties common to a variety of path-finding problems.
- Key idea: property of being a Kleene algebra extends to graphs/matrices.
- Develop algorithm in two steps.
skeleton using operations on graphs, detailed implementation using operations on edge labels.

Reachability Problem

Given is an $n \times n$ matrix G where $g_{i j}$ is true if there is an edge from node numbered i to the node numbered j, and false otherwise. Determine, for each i and \mathfrak{j}, whether there is a path from i to j.

```
for k := 0 to n-1
do for i := 0 to n-1
    do for j := 0 to n-1
        do gij}:=\mp@subsup{g}{ij}{}\vee(\mp@subsup{g}{ik}{}\wedge\mp@subsup{g}{kj}{}
        end_for
    end_for
end_for
```


Least-Cost Paths

$g_{i j}$ represents the least cost of traversing an edge from node i to node \mathfrak{j}. Determine, for each i and j, the least cost of a path from i to j.

```
for k := 0 to n-1
do for i := 0 to n-1
    do for j := 0 to n-1
        do gij := gij }\downarrow(\mp@subsup{g}{ik}{}+\mp@subsup{g}{kj}{}
            end_for
        end_for
end_for
```


Bottleneck Problem

$g_{i j}$ represents the height of the lowest underpass on the road connecting i and j. Determine, for each i and j, the height of the lowest underpass on the best route from from i to j.

```
for k := 0 to n-1
do for i := 0 to n-1
    do for j := 0 to n-1
        do gij := gij }\uparrow(\mp@subsup{g}{ik}{}\downarrow\mp@subsup{g}{kj}{}
        end_for
    end_for
end_for
```


All Paths

Edge labels are letters of some alphabet and a path spells out a word. Determine, for each i and j, a regular expression representing all words spelt out by a path from i to j.

```
for k := 0 to n-1
do for i := 0 to n-1
    do for j := 0 to n-1
        do gij := gij + gik (gkk )
        end_for
    end_for
end_for
```


Selectors

N is the set of nodes of the graph.
i, j and k denote individual nodes of the graph.
L, M and P denote sets of nodes (i.e. subsets of N).
$1 \times|\mathrm{N}|$ and $|\mathrm{N}| \times 1$ matrices are called vectors, 1×1 matrices will be called scalars and $|\mathrm{N}| \times|\mathrm{N}|$ matrices will be called matrices.
$\langle\mathrm{k}|$ is the $1 \times|\mathrm{N}|$ vector that differs from 0 only in its k th component which is 1 . Such a vector is called a primitive selector vector. The transpose of $\langle k|$ (thus an $|N| \times 1$ vector) is denoted by $|k\rangle$.
We define the $|\mathrm{N}| \times|\mathrm{N}|$ primitive selector matrix \underline{k} by the equation

$$
\begin{equation*}
\underline{\mathrm{k}}=|\mathrm{k}\rangle \cdot\langle\mathrm{k}| . \tag{1}
\end{equation*}
$$

Properties of Selectors

$$
\begin{gather*}
\underline{M}=\langle\Sigma k: k \in M: \underline{k}\rangle \tag{2}\\
\underline{\{k\}}=\underline{k} \tag{3}\\
X \cdot \underline{\phi}=\underline{\phi} \cdot X=\underline{\phi} \tag{4}\\
X \cdot \underline{\phi}=\underline{\phi} \cdot X=\underline{\phi} \tag{5}\\
\underline{\phi^{*}}=1 \tag{6}\\
\underline{L \cup M}=\underline{L}+\underline{M} \tag{7}\\
X \cdot \underline{N}=X=\underline{N} \cdot X \tag{8}
\end{gather*}
$$

Identifying an Invariant

Assume $\mathrm{N}=\mathrm{L} \cup M$. Then,
$\mathrm{G}^{*}=(\underline{\mathrm{N}} \cdot \mathrm{G})^{*}=(\underline{\mathrm{L} \cup M} \cdot \mathrm{G})^{*}=(\underline{\mathrm{L}} \cdot \mathrm{G}+\underline{\mathrm{M}} \cdot \underline{\mathrm{G}})^{*}=(\underline{\mathrm{L}} \cdot \mathrm{G})^{*} \cdot\left(\underline{\mathrm{M}} \cdot \mathrm{G} \cdot(\underline{\mathrm{L}} \cdot \mathrm{G})^{*}\right)^{*}$.
Thus,

$$
\mathrm{G} \cdot \mathrm{G}^{*}=\mathrm{G} \cdot(\underline{\mathrm{~L}} \cdot \mathrm{G})^{*} \cdot\left(\underline{\mathrm{M}} \cdot \mathrm{G} \cdot(\underline{\mathrm{~L}} \cdot \mathrm{G})^{*}\right)^{*} .
$$

Define $f(X, P)$ by

$$
\begin{equation*}
f(X, P)=X \cdot(\underline{P} \cdot X)^{*} \tag{9}
\end{equation*}
$$

Then the above calculation establishes first that

$$
\begin{equation*}
\mathrm{G} \cdot \mathrm{G}^{*}=\mathrm{f}(\mathrm{G}, \mathrm{~N}) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
f(X, L \cup M)=f\left(X \cdot(\underline{L} \cdot X)^{*}, M\right) \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
f(X, \phi)=X \tag{12}
\end{equation*}
$$

Skeleton Algorithm (Continued)

Assume nodes are numbered from 0 through $n-1$. Thus, $N=[0 . . n)$.

$$
\begin{aligned}
& X, k:=G, 0 \\
& \left\{\text { Invariant: } G^{+}=X \cdot(\underline{P} \cdot X)^{*} \text { where } P=[k . . n)\right\} \\
& \text { do } \mathrm{k} \neq \mathrm{n} \rightarrow X, k:=X \cdot(\underline{k} \cdot X)^{*}, k+1 \\
& \text { od } \\
& \left\{\mathrm{G}^{+}=\mathrm{X}\right\} .
\end{aligned}
$$

Reducing to Primitive Operations

$$
\begin{aligned}
& X \cdot(\underline{k} \cdot X)^{*} \\
& =\quad\left\{\quad \text { unfolding }(\underline{k} \cdot \mathbf{X})^{*} \quad\right\} \\
& X \cdot\left(\mathbf{1}+(\underline{k} \cdot X)^{*} \cdot \underline{k} \cdot X\right) \\
& =\quad\{\quad \text { distributivity, unit }\} \\
& X+X \cdot(\underline{k} \cdot X)^{*} \cdot \underline{k} \cdot X \\
& =\quad\{\quad \underline{\mathrm{k}}=|\mathrm{k}\rangle \cdot\langle\mathrm{k}| \quad\} \\
& X+X \cdot(|k\rangle \cdot\langle k| \cdot X)^{*} \cdot|k\rangle \cdot\langle k| \cdot X \\
& =\quad\{\quad \text { mirror rule for }|\mathrm{k}\rangle \quad\} \\
& X+X \cdot|k\rangle \cdot\langle k| X|k\rangle^{*} \cdot\langle k| \cdot X .
\end{aligned}
$$

Reducing to Primitive Operations

$$
\begin{aligned}
& X, k:=G, 0 \\
& \left\{\text { Invariant: } \mathrm{G}^{+}=X \cdot(\underline{P} \cdot X)^{*} \text { where } P=[k . . n)\right\} \\
& \text { do } \mathrm{k} \neq \mathrm{n} \rightarrow X, k:=X+X \cdot|\mathrm{k}\rangle \cdot\langle\mathrm{k}| X|\mathrm{k}\rangle^{*} \cdot\langle\mathrm{k}| \cdot X, \mathrm{k}+1 \\
& \text { od } \\
& \left\{\mathrm{G}^{+}=\mathrm{X}\right\}
\end{aligned}
$$

Reducing to Primitive Operations

$$
X:=X+X \cdot|k\rangle \cdot\langle k| X|k\rangle^{*} \cdot\langle k| \cdot X
$$

is directly implemented as the simultaneous assignment

$$
\begin{aligned}
& \text { simultaneously_for }(i:=0 \text { to } n-1) \text { and }(j:=0 \text { to } n-1) \\
& \text { do }\langle i| X|j\rangle:=\langle i| X|j\rangle+\langle i| X|k\rangle \cdot\langle k| X|k\rangle^{*} \cdot\langle k| X|j\rangle \\
& \text { end_for }
\end{aligned}
$$

Writing $\langle i| X|j\rangle$ conventionally as $\chi_{i j}$

$$
\begin{aligned}
& \text { simultaneously_for }(i:=0 \text { to } n-1) \text { and }(j:=0 \text { to } n-1) \\
& \text { do } x_{i j}:=x_{i j}+x_{i k} \cdot\left(x_{k k}\right)^{*} \cdot x_{k j} \\
& \text { end_for }
\end{aligned}
$$

Exploiting Idempotence

Mapping

$$
X:=X+X \cdot|k\rangle \cdot\langle k| X|k\rangle^{*} \cdot\langle k| \cdot X
$$

is a closure operator. Hence, it can be implemented using a destructive assignment:

$$
\begin{aligned}
& X, k:=G, 0 \\
& \left\{\text { Invariant: } \mathrm{G}^{+}=\mathrm{X} \cdot(\underline{\mathrm{P}} \cdot \mathbf{X})^{*} \text { where } \mathrm{P}=[\mathrm{k} . . n)\right. \text { \} } \\
& \text { do } k \neq n \rightarrow \text { for each pair }(i, j), 0 \leq i, j<n \\
& \text { do } x_{i j}:=x_{i j}+x_{i k} \cdot\left(x_{k k}\right)^{*} \cdot x_{k j} \\
& \text { end_for } \\
& ; \quad k:=k+1 \\
& \text { od } \\
& \left\{\mathrm{G}^{+}=\mathrm{X}\right\} .
\end{aligned}
$$

