
1

All-Paths Algorithm

Roland Backhouse

October 22, 2002

2

Overview

• Goal: derive a single generic path-finding algorithm.

• Exploit algebraic properties common to a variety of
path-finding problems.

• Key idea: property of being a Kleene algebra extends to
graphs/matrices.

• Develop algorithm in two steps.

skeleton using operations on graphs,

detailed implementation using operations on edge labels.

3

Reachability Problem

Given is an n×n matrix G where gij is true if there is an edge from
node numbered i to the node numbered j, and false otherwise.
Determine, for each i and j, whether there is a path from i to j.

for k := 0 to n−1

do for i := 0 to n−1

do for j := 0 to n−1

do gij := gij ∨ (gik∧gkj)

end for

end for

end for

4

Least-Cost Paths

gij represents the least cost of traversing an edge from node i to node
j. Determine, for each i and j, the least cost of a path from i to j.

for k := 0 to n−1

do for i := 0 to n−1

do for j := 0 to n−1

do gij := gij ↓ (gik+gkj)

end for

end for

end for

5

Bottleneck Problem

gij represents the height of the lowest underpass on the road
connecting i and j. Determine, for each i and j, the height of the
lowest underpass on the best route from from i to j.

for k := 0 to n−1

do for i := 0 to n−1

do for j := 0 to n−1

do gij := gij ↑ (gik ↓gkj)
end for

end for

end for

.

6

All Paths

Edge labels are letters of some alphabet and a path spells out a word.
Determine, for each i and j, a regular expression representing all
words spelt out by a path from i to j.

for k := 0 to n−1

do for i := 0 to n−1

do for j := 0 to n−1

do gij := gij + gik(gkk)
∗gkj

end for

end for

end for

7

Selectors

N is the set of nodes of the graph.

i, j and k denote individual nodes of the graph.

L, M and P denote sets of nodes (i.e. subsets of N).

1×|N| and |N|×1 matrices are called vectors, 1×1 matrices will be
called scalars and |N|×|N| matrices will be called matrices.

〈k| is the 1×|N| vector that differs from 0 only in its kth component
which is 1. Such a vector is called a primitive selector vector . The
transpose of 〈k| (thus an |N|×1 vector) is denoted by |k〉.

We define the |N|×|N| primitive selector matrix k by the equation

k= |k〉·〈k| . (1)

8

Properties of Selectors

M = 〈Σk :k∈M :k〉 (2)

{k} = k (3)

X·φ = φ·X = φ (4)

X·φ = φ·X = φ (5)

φ∗ = 1 (6)

L∪M = L+M (7)

X·N = X = N·X (8)

9

Identifying an Invariant

Assume N=L∪M. Then,

G∗ = (N ·G)∗ = (L∪M ·G)∗ = (L ·G+M ·G)∗ = (L ·G)∗ · (M ·G · (L ·G)∗)∗ .

Thus,
G ·G∗ = G · (L ·G)∗ · (M ·G · (L ·G)∗)∗ .

Define f(X, P) by
f(X, P) = X · (P·X)∗ . (9)

Then the above calculation establishes first that

G ·G∗ = f(G,N) (10)

and
f(X , L∪M) = f(X · (L·X)∗ , M) . (11)

Moreover, since φ·X=φ and φ∗=1,

f(X,φ) = X . (12)

10

Skeleton Algorithm (Continued)

Assume nodes are numbered from 0 through n−1. Thus, N=[0..n).

X,k := G,0

{ Invariant: G+ = X · (P·X)∗ where P=[k..n) }

; do k 6=n → X,k := X · (k·X)∗ , k+1

od

{ G+ =X } .

11

Reducing to Primitive Operations

X · (k·X)∗

= { unfolding (k·X)∗ }

X · (1 + (k·X)∗ ·k ·X)

= { distributivity, unit }

X + X · (k·X)∗ ·k ·X

= { k= |k〉·〈k| }

X + X · (|k〉 · 〈k| ·X)∗ · |k〉 · 〈k| ·X

= { mirror rule for |k〉 }

X + X · |k〉 · 〈k|X|k〉∗ · 〈k| ·X .

12

Reducing to Primitive Operations

X,k := G,0

{ Invariant: G+ = X · (P·X)∗ where P=[k..n) }

; do k 6=n → X,k := X + X · |k〉 · 〈k|X|k〉∗ · 〈k| ·X , k+1

od

{ G+ =X } .

13

Reducing to Primitive Operations

X := X + X · |k〉 · 〈k|X|k〉∗ · 〈k| ·X

is directly implemented as the simultaneous assignment

simultaneously for (i := 0 to n−1) and (j := 0 to n−1)

do 〈i|X|j〉 := 〈i|X|j〉 + 〈i|X|k〉 · 〈k|X|k〉∗ · 〈k|X|j〉

end for

Writing 〈i|X|j〉 conventionally as xij

simultaneously for (i := 0 to n−1) and (j := 0 to n−1)

do xij := xij + xik · (xkk)∗ ·xkj

end for

14

Exploiting Idempotence

Mapping

X := X + X · |k〉 · 〈k|X|k〉∗ · 〈k| ·X

is a closure operator. Hence, it can be implemented using a
destructive assignment:

X,k := G,0

{ Invariant: G+ = X · (P·X)∗ where P=[k..n) }

; do k 6=n→ for each pair (i,j), 0≤ i,j<n

do xij := xij + xik · (xkk)∗ ·xkj

end for

; k := k+1

od

{ G+ =X } .

