## Fixed Points and Prefix Points

Roland Backhouse
October 22, 2002

## Examples

$\langle$ Expression $\rangle:=\langle$ Expression $\rangle+\langle$ Expression $\rangle \quad(\langle$ Expression $\rangle)$
$\mid\langle$ Variable $\rangle$

```
fac.0 = 1
fac.n = n*fac.(n-1), for n>0.
```

List $a=$ Nil $\mid$ Cons $a($ List $a)$
List([]) .
$\operatorname{List}([X \mid Y s]):-\quad \operatorname{List}(Y s)$.

## Fixed Points

A fixed point of an endofunction $f$ is a value $x$ such that

$$
x=f . x
$$

(An endofunction is a function whose domain and range are the same.)

## Examples

$$
\begin{aligned}
\langle\text { Expression }\rangle::= & \langle\text { Expression }\rangle+\langle\text { Expression }\rangle \quad(\quad \text { (Expression }\rangle) \\
& \mid\langle\text { Variable }\rangle
\end{aligned}
$$

$\langle$ Expression〉 is a fixed point of the function f mapping languages to languages defined by

$$
\text { f. } x=x \cdot\{+\} \cdot x \cup\{( \} \cdot x \cdot\{ )\} \cup\langle\text { Variable }\rangle .
$$

## Examples (Continued)

$$
\begin{aligned}
\text { fac. } 0 & =1 \\
\text { fac. } n & =n * \text { fac. }(n-1), \text { for } n>0 .
\end{aligned}
$$

Using the notation $\langle x: x \in$ Type: Exp $\rangle$ for a function that maps a value $x$ of type Type to the value given by expression Exp, we have:

$$
\text { fac }=\langle n: n \in \mathbb{N}: \text { if } n=0 \text { then } 1 \text { else } n * f a c .(n-1)\rangle
$$

Now, abstracting from fac on the right side of this equation, define the function $\mathcal{F}$ by

$$
\mathcal{F}=\langle f: f \in \mathbb{N} \leftarrow \mathbb{N}:\langle n: n \in \mathbb{N}: \text { if } n=0 \text { then } 1 \text { else } n * f .(n-1)\rangle\rangle .
$$

Then

$$
\mathrm{fac}=\mathcal{F} . \mathrm{fac}
$$

## Prefix Points

$$
\begin{aligned}
& \operatorname{List}([]) . \\
& \operatorname{List}([X \mid Y s]):-\quad \operatorname{List}(Y s) .
\end{aligned}
$$

means, for all Xs ,

$$
\text { List. } X s \Leftarrow X s=[] \vee\left\langle\exists X, Y_{s}:: X s=[X \mid Y s] \wedge \text { List. } Y s\right\rangle .
$$

This is an "if" not an "is". I.e. not an equality.

Let f be an endofunction on a partially ordered $\operatorname{set}(\mathcal{A}, \leq)$.
A prefix point of $f$ is a value $x \in \mathcal{A}$ such that

$$
f . x \leq x .
$$

## Prefix Points - Example

$$
\text { List. } X_{s} \Leftarrow X_{s}=[] \vee\left\langle\exists X, Y_{s}:: X_{s}=\left[X \mid Y_{s}\right] \wedge \text { List. } Y_{s}\right\rangle
$$

List is a prefix point of the function $f$ mapping predicates to predicates and defined by

$$
(f . p) . X s=(X s=[] \vee\langle\exists X, Y s:: X s=[X \mid Y s] \wedge p . Y s\rangle)
$$

The ordering relation on predicates is $\Rightarrow$ where

$$
p \Rightarrow q=\forall\langle x:: p \cdot x \Rightarrow q \cdot x\rangle .
$$

Note: this is a so-called pointwise lifting of the $\Rightarrow$ ordering on booleans. It is common to omit the dot and write $p \Rightarrow q$. The other boolean operators are lifted to predicates in the same way. In each case, it is common to "overload" the operator symbol by omitting the dot.

## Ordering Relations

A binary relation R on a set $\mathcal{A}$ is a partial ordering if it is reflexive: for all $x \in \mathcal{A}$,

$$
x R x \text {, }
$$

transitive: for all $x, y, z \in \mathcal{A}$,

$$
x R y \wedge y R z \Rightarrow x R z,
$$

anti-symmetric: for all $x, y \in \mathcal{A}$,

$$
x R y \wedge y R x \Rightarrow x=x .
$$

A preordering is a reflexive and transitive binary relation.

Symbols like $\preceq, \leq$ and $\sqsubseteq$ will be used to denote partial orderings.

## Least Fixed Points

Assume f is an endofunction on the partially ordered set $(\mathcal{A}, \leq)$.
A least fixed point of $f$, denoted lfp.f, is a value $x$ that is a fixed point of $f$ and is least among all fixed points of $f$. Formally, lfp.f is characterised by:

$$
\text { lfp.f }=\text { f.(lfp.f) }
$$

(lfp.f is a fixed point of $f$ ) and, for all $x \in \mathcal{A}$,

$$
\text { lfp.f } \leq x \Leftarrow x=\mathrm{f} . \mathrm{x}
$$

(lfp.f is at most any fixed point of f).

## Least Prefix Points

Assume f is an endofunction on the partially ordered set $(\mathcal{A}, \leq)$.
A least prefix point of $f$, denoted lpp.f, is a value $x$ that is a prefix point of $f$ and is least among all prefix points of $f$. Formally, lpp.f is characterised by:

$$
\mathrm{f} .(\text { lpp.f }) \leq \text { lpp.f }
$$

(lfp.f is a prefix point of $f$ ) and, for all $x \in \mathcal{A}$,

$$
\operatorname{lpp.f} \leq x \Leftarrow \mathrm{f} . \mathrm{x} \leq \mathrm{x}
$$

(lfp.f is at most any prefix point of $f$ ).

## Tarski's Theorem

Assume f is a monotonic endofunction on the partially ordered set $(\mathcal{A}, \leq)$.
Then

$$
\operatorname{lpp.f}=\operatorname{lfp.f} .
$$

It is customary to denote the least fixed point of monotonic function f by $\mu \mathrm{f}$ (or $\mu_{\leq} \mathrm{f}$ if we want to be explicit about the ordering).
$\mu f$ is characterized by the rules:
computation rule

$$
\mu f=f . \mu f
$$

induction rule: for all $x \in \mathcal{A}$,

$$
\mu f \leq x \Leftarrow f . x \leq x
$$

## Using (Fixed Point) Induction

Let L be the least solution of the equation

$$
X::\{a\} \cup\{b\} \cdot X \cdot X \subseteq X .
$$

Let $M$ be the set of all words $w$ such that the number of $a$ 's in $w$ is one more than the number of $b$ 's in $w$. Let $\#_{a} w$ denote the number of a 's in $w$, and $\#_{\mathrm{b}} w$ denote the number of b's in $w$.

Then

$$
\mathrm{L} \subseteq M .
$$

## Proof

$$
\begin{aligned}
& \mathrm{L} \subseteq \mathrm{M} \\
& \Leftarrow \\
& \text { by definition } L=\mu f \text { where } f=\langle X::\{a\} \cup\{b\} \cdot X \cdot X\rangle \text {, } \\
& \text { induction \} } \\
& \{a\} \cup\{b\} \cdot M \cdot M \subseteq M \\
& =\quad\{\quad \text { set theory, definition of concatenation }\} \\
& a \in M \wedge\langle\forall x, y: x \in M \wedge y \in M: b x y \in M\rangle
\end{aligned}
$$

## Proof (Continued)

$$
\begin{aligned}
& a \in M \wedge\langle\forall x, y: x \in M \wedge y \in M: b x y \in M\rangle \\
& =\quad\{\quad \text { definition of } M \quad\} \\
& \#{ }_{a} a=\#_{b} a+1 \\
& \wedge\langle\forall x, y \\
& \#_{a} x=\#_{b} x+1 \wedge \quad \#_{a} y=\#_{b} y+1 \\
& : \quad \#_{a}(b x y)=\#_{b}(b x y)+1 \\
& =\quad\left\{\quad \text { definition of } \#_{a} \text { and } \#_{b} \quad\right\} \\
& \text { true } \\
& \wedge\langle\forall x, y \\
& : \quad \#_{a} x=\#_{b} x+1 \wedge \quad \#_{a} y=\#_{b} y+1 \\
& : \quad \#{ }_{\mathrm{a}} \mathrm{x}+\#_{\mathrm{a}} \mathrm{y}=1+\#_{\mathrm{b}} \mathrm{x}+\#_{\mathrm{b}} \mathrm{y}+1
\end{aligned}
$$

```
= { arithmetic }
true
```

