(Impartial two-person) Games

Roland Backhouse November 5, 2002 1

Outline

We use impartial, two-person games to illustrate the notions of *least* and *greatest* fixed points of a monotonic function.

The winning and losing positions in a game satisfy fixed point equations.

If the equations do not have unique solutions, stalemate is possible.

The positions from which a win is guaranteed are characterised by the least fixed point of a certain equation. The positions from which losing is inevitable (against a perfect player) are also characterised by the least fixed point of a certain equation. The stalemate positions are characterised by greatest fixed points.

Two-person, Impartial Games

A two-person, impartial game is given by a set of positions and a move relation on the positions.

We use G, H, K, etc. to denote positions. The move relation is denoted by the symbol " \mapsto ". So, $G \mapsto H$ means there is a move from position G to position H.

The players take it in turns to move. The game is lost when no move can be made.

Such games are called *impartial* because the same moves are available to both players. (Games like chess are *partisan*. Players can only move their own pieces.)

Winning and Losing

Let W.G mean that G is a position from which a perfect player is guaranteed to win.

Let L.G mean that G is a position from which losing is inevitable (against a perfect player).

The predicates W and L satisfy the fixed point equations:

 $W = \langle G :: \langle \exists H : G \mapsto H : L.H \rangle \rangle$ $L = \langle G :: \langle \forall H : G \mapsto H : W.H \rangle \rangle$

In words, a winning position is one from which it is always possible to move to a losing position, and a losing position is one from which every move is to a winning position.

These equations need not have unique solutions.

Examples

Matchsticks.

Lollipop.

Conjugate Predicate Transformers

Consider the *predicate transformers* f and g given by

$$f.X = \langle G :: \langle \exists H : G \mapsto H : X.H \rangle \rangle$$
$$g.X = \langle G :: \langle \forall H : G \mapsto H : X.H \rangle \rangle$$

Note that

$$W = (f \circ g).W$$

and

 $L = (g \circ f).L$

Predicates are ordered by implication, and f and g are monotonic with respect to this ordering, as are $(f \circ g)$ and $(g \circ f)$.

f and g are *conjugates*. That is, for all predicates X,

 $\neg(f.X) = g.(\neg X) \land \neg(g.X) = f.(\neg X)$

As a consequence, so are $(f \circ g)$ and $(g \circ f)$: for all predicates X,

 $\neg((f \circ g).X) = (g \circ f).(\neg X) \land \neg((g \circ f).X) = (f \circ g).(\neg X)$

Fixed Points of Conjugates

Suppose f and g are monotonic, conjugate predicate transformers.

Let μf denote the least fixed point of f. Let νf denote the greatest fixed point of f. Similarly, for g.

Then,

$$\neg(\mu f) = \nu g$$

This has corollary

 $\mu f \wedge \mu g = false$ $\mu f \wedge (\nu f \wedge \nu g) = false$ $\mu g \wedge (\nu f \wedge \nu g) = false$ $\mu f \vee \mu g \vee (\nu f \wedge \nu g) = true$

The set of states is thus divided into three disjoint sets, μf , μg and $\nu f \wedge \nu g$.

Winning, Losing and Stalemate

We can apply the theory above to the predicate transformers

```
f = \langle X :: \langle G :: \langle \exists H : G \mapsto H : X.H \rangle \rangle \rangle
```

and

$$g \; = \; \langle X :: \; \langle G :: \; \langle \forall H \colon G \mapsto H \colon X.H \rangle \rangle \rangle$$

defined by an impartial game.

The predicates $\mu(f \bullet g)$, $\mu(g \bullet f)$ and $\nu(f \bullet g) \wedge \nu(g \bullet f)$ are mutually distinct and together cover all positions.

 $\mu(f \cdot g)$ characterises the positions from which a win is guaranteed. $\mu(g \cdot f)$ characterises the positions from which losing is inevitable. $\nu(f \cdot g) \wedge \nu(g \cdot f)$ characterises stalemate positions. (All these assume perfect players.)