Fixed Point Calculus

Roland Backhouse
December 10, 2002

Overview

- Why a calculus?
- Equational Laws
- Application

Specification \neq Implementation

Suppose Prolog is being used to model family relations. Suppose parent (X, Y) represents the relationship X is a parent of Y and suppose ancestor (X, Y) is the transitive closure of the parent relation. Then

$$
\operatorname{ancestor}(X, Y) \Leftarrow \operatorname{parent}(X, Y)
$$

and

$$
\text { ancestor }(X, Y) \Leftarrow \exists\langle Z:: \text { ancestor }(X, Z) \wedge \text { ancestor }(Z, Y)\rangle
$$

However,

$$
\begin{array}{ll}
\text { ancestor }(X, Y) & :-\operatorname{parent}(X, Y) . \\
\text { ancestor }(X, Y) & :-\operatorname{ancestor}(X, Z), \quad \operatorname{ancestor}(Z, Y) .
\end{array}
$$

is not a correct Prolog implementation.

$$
\begin{array}{ll}
\operatorname{ancestor}(X, Y) & :-\operatorname{parent}(X, Y) \\
\operatorname{ancestor}(X, Y) & :-\operatorname{parent}(X, Z), \quad \operatorname{ancestor}(Z, Y) .
\end{array}
$$

is a correct implementation.

Specification \neq Implementation

The grammar
\langle StatSeq $\rangle::=\langle$ Statement $\rangle \quad$ 〈StatSeq $\rangle ;\langle$ StatSeq \rangle
describes a sequence of statements separated by semicolons．But it is ambiguous and not amenable to top－down or bottom－up parsing．

The grammar

```
\langleStatSeq\rangle ::= 〈Statement\rangle\langleRest\rangle
\langleRest\rangle ::= \varepsilon | ; <Statement\rangle\langleRest\rangle
```

is equivalent and amenable to parsing by recursive descent．

The grammar
〈StatSeq〉 ：：＝〈Statement〉｜〈StatSeq〉；〈Statement〉
is also equivalent and preferable for bottom－up parsing．

Specification \neq Implementation

Testing whether the empty word is generated by a grammar is easy. For example, given the grammar

$$
S \quad::=\varepsilon \mid a S
$$

we construct and solve the equation

$$
\varepsilon \in S=\varepsilon \in\{\varepsilon\} \vee(\varepsilon \in\{a\} \wedge \varepsilon \in S)
$$

But it is not the case that (eg)

$$
a \in S=a \in\{\varepsilon\} \vee(a \in\{a\} \wedge a \in S)
$$

(The least solution is $a \in S=$ false.)

The general membership test is a non-trivial problem!

Least Fixed Points

Recall the characterising properties of least fixed points:
computation rule

$$
\mu f=f . \mu f
$$

induction rule: for all $x \in \mathcal{A}$,

$$
\mu f \leq x \Leftarrow f . x \leq x .
$$

The induction rule is undesirable because it leads to proofs by mutual inclusion (i.e. the consideration of two separate cases).

Closure Rules

In any Kleene algebra

$$
\begin{aligned}
& a^{*}=\langle\mu x:: 1+x \cdot a\rangle=\langle\mu x:: 1+a \cdot x\rangle=\langle\mu x:: 1+a+x \cdot x\rangle \\
& a^{+}=\langle\mu x:: a+x \cdot a\rangle=\langle\mu x:: a+a \cdot x\rangle=\langle\mu x:: a+x \cdot x\rangle
\end{aligned}
$$

Basic Rules

The rolling rule:

$$
\begin{equation*}
\mu(f \circ g)=f . \mu(g \circ f) . \tag{1}
\end{equation*}
$$

The square rule:

$$
\begin{equation*}
\mu f=\mu\left(f^{2}\right) . \tag{2}
\end{equation*}
$$

The diagonal rule:

$$
\begin{equation*}
\langle\mu x:: x \oplus x\rangle=\langle\mu x::\langle\mu y:: x \oplus y\rangle\rangle . \tag{3}
\end{equation*}
$$

Examples

$$
\left\langle\mu X:: a \cdot X^{*}\right\rangle=a^{+} .
$$

$$
\langle\mu X:: a+X \cdot b \cdot X\rangle=a \cdot(b \cdot a)^{*}
$$

Fusion

Many problems are expressed in the form

$$
\text { evaluate } \circ \text { generate }
$$

where generate generates a (possibly infinite) candidate set of solutions, and evaluate selects a best solution.

Examples:

$$
\begin{aligned}
& \text { shortest } \circ \text { path, } \\
& (x \in) \circ \mathrm{L} .
\end{aligned}
$$

Solution method is to fuse the generation and evaluation processes, eliminating the need to generate all candidate solutions.

Language Problems

$$
S::=a S S \mid \varepsilon
$$

Is-empty

$$
S=\phi \equiv(\{a\}=\phi \vee S=\phi \vee S=\phi) \wedge\{\varepsilon\}=\phi
$$

Nullable

$$
\varepsilon \in S \equiv(\varepsilon \in\{a\} \wedge \varepsilon \in S \wedge \varepsilon \in S) \vee \varepsilon \in\{\varepsilon\}
$$

Shortest word length

$$
\# S=(\# a+\# S+\# S) \downarrow \# \varepsilon
$$

Non-Example

$$
a a \in S \quad \not \equiv \quad(a a \in\{a\} \wedge a a \in S \wedge a a \in S) \vee a a \in\{\varepsilon\}
$$

Conditions for Fusion

Fusion is made possible when

- evaluate is an adjoint in a Galois connection,
- generate is expressed as a fixed point.

Fusion Theorem

$$
\text { F. }\left(\mu_{\preceq} \mathrm{g}\right)=\mu_{\sqsubseteq} h
$$

provided that

- F is a lower adjoint in a Galois connection of \sqsubseteq and \preceq (see brief summary of definition below)
- $\mathrm{F} \circ \mathrm{g}=\mathrm{h} \circ \mathrm{F}$.

Galois Connection

$$
\text { F. } x \sqsubseteq y \equiv x \preceq G . y
$$

F is called the lower adjoint and G the upper adjoint.

Shortest Word Problem

Given a language L defined by a context-free grammar, determine the length of the shortest word in the language.

For concreteness, use the grammar

$$
S \quad:=a S|S S| \varepsilon .
$$

The language defined by this grammar is

$$
\langle\mu X::\{a\} \cdot X \cup X \cdot X \cup\{\varepsilon\}\rangle .
$$

Now, for arbitrary language L,

$$
\# \mathrm{~L}=\langle\Downarrow w: w \in \mathrm{~L}: \text { length. } w\rangle
$$

and we are required to determine

$$
\#\langle\mu X::\{a\} \cdot X \cup X \cdot X \cup\{\varepsilon\}\rangle .
$$

Shortest Word Problem (Continued)

For arbitrary language L,

$$
\# \mathrm{~L}=\langle\Downarrow w: w \in \mathrm{~L}: \text { length.w }\rangle
$$

and we are required to determine

$$
\#\langle\mu X::\{a\} \cdot X \cup X \cdot X \cup\{\varepsilon\}\rangle
$$

Because \# is the infimum of the length function it is the lower adjoint in a Galois connection. Indeed,

$$
\# \mathrm{~L} \geq \mathrm{k} \equiv \mathrm{~L} \subseteq \Sigma^{\geq \mathrm{k}}
$$

where $\Sigma \geq k$ is the set of all words (in the alphabet Σ) whose length is at least k.

So, by fusion, for all functions f and g,

$$
\#\left(\mu_{\subseteq} \subseteq\right)=\mu_{\geq g} \Leftarrow \# \circ f=g \circ \#
$$

Applying this to our example grammar, we fill in f and calculate g so that:

$$
\# \circ\langle X::\{a\} \cdot X \cup X \cdot X \cup\{\varepsilon\}\rangle=g \circ \# .
$$

Shortest Word Problem (Continued)

$$
\begin{aligned}
& \# \circ\langle X::\{a\} \cdot X \cup X \cdot X \cup\{\varepsilon\}\rangle=g \circ \# \\
& =\quad\{\quad \text { definition of composition }\} \\
& \langle\forall X:: \#(\{a\} \cdot X \cup X \cdot X \cup\{\varepsilon\})=g \cdot(\# X)\rangle \\
& =\quad\{\quad \# \text { is a lower adjoint and so distributes over } \cup \text {, } \\
& \text { definition of } \#\} \\
& \langle\forall X:: \#(\{a\} \cdot X) \downarrow \#(X \cdot X) \downarrow \#\{\varepsilon\}=g \cdot(\# X)\rangle \\
& =\quad\{\quad \#(Y \cdot Z)=\# Y+\# Z, \#\{a\}=1, \#\{\varepsilon\}=0 \quad\} \\
& (1+\# X) \downarrow(\# X+\# X) \downarrow 0=g \cdot(\# X) \\
& \Leftarrow \quad\{\quad \text { instantiation }\} \\
& \langle\forall k::(1+k) \downarrow(k+k) \downarrow 0=\text { g.k } .
\end{aligned}
$$

We conclude that

$$
\#\langle\mu X::\{a\} \cdot X \cup X \cdot X \cup\{\varepsilon\}\rangle=\langle\mu k::(1+k) \downarrow(k+k) \downarrow 0\rangle .
$$

Language Recognition

Problem: For given word x and grammar G, determine $x \in L(G)$. That is, implement

$$
(x \in) \quad \text { L . }
$$

Language $L(G)$ is the least fixed point (with respect to the subset relation) of a monotonic function.
$(x \in)$ is the lower adjoint in a Galois connection of languages (ordered by the subset relation) and booleans (ordered by implication).
(Recall,

$$
x \in S \Rightarrow b \equiv S \subseteq \text { if } b \rightarrow \Sigma^{*} \square \neg b \rightarrow \Sigma^{*}-\{x\} \text { fi .) }
$$

Nullable Languages

Problem: For given grammar G, determine $\varepsilon \in L(G)$.

$$
(\varepsilon \in) \quad \circ \mathrm{L}
$$

Solution: Easily expressed as a fixed point computation.

Works because:

- The function $(x \in)$ is a lower adjoint in a Galois connection (for all x, but in particular for $x=\varepsilon$).
- For all languages S and T,

$$
\varepsilon \in S \cdot T \quad \equiv \quad \varepsilon \in S \wedge \varepsilon \in T \text {. }
$$

Problem Generalisation

Problem: For given grammar G, determine whether all words in L(G) have even length. I.e. implement

$$
\text { alleven } \circ \mathrm{L} .
$$

The function alleven is a lower adjoint in a Galois connection. Specifically, for all languages S and T,

$$
\operatorname{alleven}(\mathrm{S}) \Leftarrow \mathrm{b} \equiv \mathrm{~S} \subseteq \text { if } \neg \mathrm{b} \rightarrow \Sigma^{*} \square \mathrm{~b} \rightarrow(\Sigma \cdot \Sigma)^{*} \text { fi }
$$

Nevertheless, fusion doesn't work (directly) because

- there is no \otimes such that, for all languages S and T,

$$
\operatorname{alleven}(S \cdot T) \quad \equiv \quad \operatorname{alleven}(S) \otimes \operatorname{alleven}(T)
$$

Solution: Generalise by tupling: compute simultaneously alleven and allodd.

General Context-Free Parsing

Problem: For given grammar G, determine $x \in L(G)$.

$$
(x \in) \quad \circ L
$$

Not (in general) expressible as a fixed point computation.
Fusion fails because: for all $x, x \neq \varepsilon$, there is no \otimes such that, for all languages S and T,

$$
x \in S \cdot T \quad \equiv \quad(x \in S) \otimes(x \in T)
$$

$C Y K:$ Let $F(S)$ denote the relation $\langle i, j:: \quad x[i . . j) \in S\rangle$.
Works because:

- The function F is a lower adjoint.
- For all languages S and T,

$$
F(S \cdot T)=F(S) \cdot F(T)
$$

where $B \cdot C$ denotes the composition of relations B and C.

