
1

Fixed Point Calculus

Roland Backhouse

December 10, 2002

2

Overview

• Why a calculus?

• Equational Laws

• Application

3

Specification 6= Implementation

Suppose Prolog is being used to model family relations. Suppose
parent(X,Y) represents the relationship X is a parent of Y and
suppose ancestor(X,Y) is the transitive closure of the parent
relation. Then

ancestor(X,Y) ⇐ parent(X,Y)

and

ancestor(X,Y) ⇐ ∃〈Z::ancestor(X,Z)∧ancestor(Z,Y)〉 .

However,

ancestor(X,Y) : − parent(X,Y) .

ancestor(X,Y) : − ancestor(X,Z) , ancestor(Z,Y) .

is not a correct Prolog implementation.

ancestor(X,Y) : − parent(X,Y) .

ancestor(X,Y) : − parent(X,Z) , ancestor(Z,Y) .

is a correct implementation.

4

Specification 6= Implementation

The grammar

〈StatSeq〉 ::= 〈Statement〉 | 〈StatSeq〉 ; 〈StatSeq〉

describes a sequence of statements separated by semicolons. But it is
ambiguous and not amenable to top-down or bottom-up parsing.

The grammar

〈StatSeq〉 ::= 〈Statement〉〈Rest〉
〈Rest〉 ::= ε | ; 〈Statement〉 〈Rest〉

is equivalent and amenable to parsing by recursive descent.

The grammar

〈StatSeq〉 ::= 〈Statement〉 | 〈StatSeq〉 ; 〈Statement〉

is also equivalent and preferable for bottom-up parsing.

5

Specification 6= Implementation

Testing whether the empty word is generated by a grammar is easy.
For example, given the grammar

S ::= ε | aS

we construct and solve the equation

ε∈S = ε∈{ε} ∨ (ε∈{a}∧ ε∈S)

But it is not the case that (eg)

a∈S = a∈{ε} ∨ (a∈{a}∧a∈S)

(The least solution is a∈S = false.)

The general membership test is a non-trivial problem!

6

Least Fixed Points

Recall the characterising properties of least fixed points:

computation rule
µf = f.µf

induction rule: for all x∈A,

µf ≤ x ⇐ f.x ≤ x .

The induction rule is undesirable because it leads to proofs by
mutual inclusion (i.e. the consideration of two separate cases).

7

Closure Rules

In any Kleene algebra

a∗ = 〈µx :: 1+x·a〉 = 〈µx :: 1+a·x〉 = 〈µx :: 1+a+x·x〉

a+ = 〈µx :: a+x·a〉 = 〈µx :: a+a·x〉 = 〈µx :: a+x·x〉

8

Basic Rules

The rolling rule:
µ(f ◦ g) = f.µ(g ◦ f) . (1)

The square rule:
µf = µ(f2) . (2)

The diagonal rule:

〈µx :: x⊕x〉 = 〈µx :: 〈µy :: x⊕y〉〉 . (3)

9

Examples

〈µX :: a·X∗〉 = a+ .

〈µX :: a+X·b·X〉 = a·(b·a)∗ .

10

Fusion

Many problems are expressed in the form

evaluate ◦ generate

where generate generates a (possibly infinite) candidate set of
solutions, and evaluate selects a best solution.

Examples:
shortest ◦ path ,

(x∈) ◦ L .

Solution method is to fuse the generation and evaluation processes,
eliminating the need to generate all candidate solutions.

11

Language Problems

S ::= aSS | ε .

Is-empty

S=φ ≡ ({a}=φ ∨ S=φ ∨ S=φ) ∧ {ε}=φ .

Nullable

ε∈S ≡ (ε∈ {a} ∧ ε∈S ∧ ε∈S) ∨ ε∈ {ε} .

Shortest word length

#S = (#a + #S + #S) ↓ #ε .

Non-Example

aa ∈ S 6≡ (aa∈ {a} ∧ aa∈S ∧ aa∈S) ∨ aa ∈ {ε} .

12

Conditions for Fusion

Fusion is made possible when

• evaluate is an adjoint in a Galois connection,

• generate is expressed as a fixed point.

13

Fusion Theorem

F.(µ�g) = µvh

provided that

• F is a lower adjoint in a Galois connection of v and � (see brief
summary of definition below)

• F ◦ g = h ◦ F .

Galois Connection

F.x v y ≡ x � G.y .

F is called the lower adjoint and G the upper adjoint.

14

Shortest Word Problem

Given a language L defined by a context-free grammar, determine the
length of the shortest word in the language.

For concreteness, use the grammar

S ::= aS | SS | ε .

The language defined by this grammar is

〈µX :: {a}·X∪X·X∪ {ε}〉 .

Now, for arbitrary language L,

#L = 〈⇓w :w∈L : length.w〉

and we are required to determine

〈µX :: {a}·X∪X·X∪ {ε}〉 .

15

Shortest Word Problem (Continued)

For arbitrary language L,

#L = 〈⇓w :w∈L : length.w〉

and we are required to determine

〈µX :: {a}·X∪X·X∪ {ε}〉 .

Because # is the infimum of the length function it is the lower
adjoint in a Galois connection. Indeed,

#L ≥ k ≡ L ⊆ Σ≥ k

where Σ≥ k is the set of all words (in the alphabet Σ) whose length is
at least k.

So, by fusion, for all functions f and g,

#(µ⊆f) = µ≥g ⇐ # ◦ f = g ◦# .

Applying this to our example grammar, we fill in f and calculate g so
that:

◦ 〈X:: {a}·X∪X·X∪ {ε}〉 = g ◦# .

16

Shortest Word Problem (Continued)

◦ 〈X:: {a}·X∪X·X∪ {ε}〉 = g ◦#

= { definition of composition }

〈∀X :: #({a}·X∪X·X∪ {ε}) = g.(#X)〉

= { # is a lower adjoint and so distributes over ∪,

definition of # }

〈∀X :: #({a}·X)↓#(X·X)↓#{ε} = g.(#X)〉

= { #(Y·Z) = #Y+#Z, #{a}= 1, #{ε}= 0 }

(1+#X)↓(#X+#X)↓0 = g.(#X)⇐ { instantiation }

〈∀k :: (1+k)↓(k+k)↓0 = g.k〉 .

We conclude that

〈µX :: {a}·X∪X·X∪ {ε}〉 = 〈µk :: (1+k)↓(k+k)↓0〉 .

17

Language Recognition

Problem: For given word x and grammar G, determine x ∈ L(G).
That is, implement

(x∈) ◦ L .

Language L(G) is the least fixed point (with respect to the subset
relation) of a monotonic function.

(x∈) is the lower adjoint in a Galois connection of languages (ordered
by the subset relation) and booleans (ordered by implication).
(Recall,

x∈S⇒b ≡ S ⊆ if b → Σ∗ 2 ¬b → Σ∗− {x} fi .)

18

Nullable Languages

Problem: For given grammar G, determine ε ∈ L(G).

(ε ∈) ◦ L

Solution: Easily expressed as a fixed point computation.

Works because:

• The function (x∈) is a lower adjoint in a Galois connection (for
all x, but in particular for x = ε).

• For all languages S and T ,

ε ∈ S·T ≡ ε ∈ S ∧ ε ∈ T .

19

Problem Generalisation

Problem: For given grammar G, determine whether all words in L(G)

have even length. I.e. implement

alleven ◦ L .

The function alleven is a lower adjoint in a Galois connection.
Specifically, for all languages S and T ,

alleven(S)⇐b ≡ S ⊆ if ¬b → Σ∗ 2 b→ (Σ·Σ)∗ fi

Nevertheless, fusion doesn’t work (directly) because

• there is no ⊗ such that, for all languages S and T ,

alleven(S·T) ≡ alleven(S) ⊗ alleven(T) .

Solution: Generalise by tupling: compute simultaneously alleven and
allodd.

20

General Context-Free Parsing

Problem: For given grammar G, determine x ∈ L(G).

(x ∈) ◦ L

Not (in general) expressible as a fixed point computation.

Fusion fails because: for all x, x 6= ε, there is no ⊗ such that, for all
languages S and T ,

x ∈ S·T ≡ (x ∈ S) ⊗ (x ∈ T) .

CYK: Let F(S) denote the relation 〈i, j:: x[i..j) ∈ S〉.

Works because:

• The function F is a lower adjoint.

• For all languages S and T ,

F(S·T) = F(S) • F(T)

where B•C denotes the composition of relations B and C.

