Revision

Roland Backhouse
January 7, 2003

Outline

- Fixed Points
- Kleene Algebra
- Games
- Galois Connections
- Fixed Point Calculus
- Fusion

Fixed Points

$$
\begin{aligned}
\text { fac. } 0 & =1 \\
\text { fac. } n & =n * \text { fac. }(n-1), \text { for } n>0 .
\end{aligned}
$$

$$
\text { List } a=\text { Nil } \mid \text { Cons } a(\text { List } a)
$$

$$
\operatorname{List}([]) .
$$

$$
\operatorname{List}([X \mid Y s]) \quad:-\quad \operatorname{List}(Y s) .
$$

Tarski's Theorem

A fixed point of an endofunction f is a value x such that

$$
x=f . x
$$

A prefix point of f is a value $x \in \mathcal{A}$ such that

$$
\text { f. } x \leq x \text {. }
$$

If f is a monotonic endofunction on the partially ordered $\operatorname{set}(\mathcal{A}, \leq)$, the least fixed point of f equals the least prefix point of f.
The least prefix point of f is denoted by $\mu \mathrm{f}$. It is characterized by the rules:
computation rule

$$
\mu f=f . \mu f
$$

induction rule: for all $x \in \mathcal{A}$,

$$
\mu \mathrm{f} \leq \mathrm{x} \Leftarrow \mathrm{f} . \mathrm{x} \leq \mathrm{x} .
$$

Kleene Algebra

Algebra of choice (+), sequencing (\cdot) and iteration (*).

	carrier	+	\cdot	0	1	\leq
Languages	sets of words	\cup	\cdot	ϕ	$\{\varepsilon\}$	\subseteq
Programming	binary relations	\cup	\circ	ϕ	id	\subseteq
Reachability	booleans Shortest paths	\vee	\wedge	false	true	\Rightarrow
Bottlenecks	neals nonnegative reals	\max	\min	0	∞	\leq

Iteration ("Kleene star")

$a^{*} \cdot b$ is a fixed point of the function mapping x to $b+a \cdot x:$

$$
b+a \cdot\left(a^{*} \cdot b\right)=a^{*} \cdot b
$$

and is the least among all prefix points of the function:

$$
\mathrm{a}^{*} \cdot \mathrm{~b} \leq \mathrm{x} \Leftarrow \mathrm{~b}+\mathrm{a} \cdot \mathrm{x} \leq \mathrm{x}
$$

$b \cdot a^{*}$ is a fixed point of the function mapping x to $b+x \cdot a$:

$$
b+\left(b \cdot a^{*}\right) \cdot a=b \cdot a^{*}
$$

and is the least among all prefix points of the function:

$$
\mathrm{b} \cdot \mathrm{a}^{*} \leq \mathrm{x} \Leftarrow \mathrm{~b}+\mathrm{x} \cdot \mathrm{a} \leq \mathrm{x}
$$

Graph Problems

Suppose A is a square matrix representing the edges in a labelled graph. Suppose the edge labels are elements of a Kleene algebra.

A* represents paths through the graph \mathbf{A} of arbitrary (finite) edge length.

The (i, j)th element of \mathbf{A}^{*} is the Kleene sum over all finite-length paths p from node i to node j of the weight of path p (the Kleene product of the path's edge labels).

Applications: reachability, shortest paths, bottleneck problems.

Kleene algebra is used in derivation of path-finding algorithms (eg the Warshall-Roy-Floyd algorithm).

Games

Used to illustrate least and greatest fixed points.
A two-person, impartial game is given by a set of positions and a move relation on the positions.

Let W.G mean that G is a position from which a perfect player is guaranteed to win.

Let L.G mean that G is a position from which losing is inevitable (against a perfect player).

The predicates W and L satisfy the fixed point equations:

$$
\begin{aligned}
& W=\langle\mathrm{G}::\langle\exists \mathrm{H}: \mathrm{G} \mapsto \mathrm{H}: \mathrm{L} \cdot \mathrm{H}\rangle\rangle \\
& \mathrm{L}=\langle\mathrm{G}::\langle\forall \mathrm{H}: \mathrm{G} \mapsto \mathrm{H}: W \cdot \mathrm{H}\rangle\rangle
\end{aligned}
$$

Winning, Losing and Stalemate

Consider the predicate transformers

$$
\mathrm{f}=\langle\mathrm{X}::\langle\mathrm{G}::\langle\exists \mathrm{H}: \mathrm{G} \mapsto \mathrm{H}: \mathrm{X} . \mathrm{H}\rangle\rangle\rangle
$$

and

$$
\mathrm{g}=\langle\mathrm{X}::\langle\mathrm{G}::\langle\forall \mathrm{H}: \mathrm{G} \mapsto \mathrm{H}: \mathrm{X} . \mathrm{H}\rangle\rangle\rangle
$$

defined by an impartial game.
f and g are conjugates. That is, for all predicates X,

$$
\neg(f . X)=g .(\neg X) \quad \wedge \quad \neg(g . X)=f .(\neg X)
$$

The predicates $\mu(f \bullet g), \mu(g \bullet f)$ and $\nu(f \bullet g) \wedge \nu(g \bullet f)$ are mutually distinct and together cover all positions.
$\mu(f \bullet g)$ characterises the positions from which a win is guaranteed.
$\mu(g \bullet f)$ characterises the positions from which losing is inevitable. $\nu(f \bullet g) \wedge v(g \bullet f)$ characterises stalemate positions.
(All these assume perfect players.)

Galois Connections

Many problems are expressed in the form
evaluate o generate
where generate generates a (possibly infinite) candidate set of solutions, and evaluate selects a best solution.

Function evaluate is often a Galois connection, and generate is often a fixed point.

Suppose $\mathcal{A}=(\mathcal{A}, \sqsubseteq)$ and $\mathcal{B}=(B, \preceq)$ are partially ordered sets and suppose $\mathrm{F} \in \mathcal{A} \leftarrow \mathrm{B}$ and $\mathrm{G} \in \mathrm{B} \leftarrow \mathcal{A}$. Then (F, G) is a Galois connection of \mathcal{A} and \mathcal{B} iff, for all $x \in B$ and $y \in \mathcal{A}$,

$$
\text { F. } x \sqsubseteq y \equiv x \preceq G . y
$$

Universal Property

(F, G) is a Galois connection between the posets (A, \sqsubseteq) and (B, \preceq) iff the following conditions hold.
(a) G is monotonic.
(b) For all $x \in B, x \preceq G$. (F.x) .
(c) For all $x \in B$ and $y \in A, x \preceq G . y \Rightarrow F . x \sqsubseteq y$.

Example. Read

$$
\lceil x\rceil \leq n \equiv x \leq n
$$

as "the ceiling of x is the least (integer) n such that x is at most n ".

Fixed Point Calculus

(Need a calculus because specifications are not implementations.) computation rule

$$
\mu f=f . \mu f
$$

induction rule: for all $x \in \mathcal{A}$,

$$
\mu f \leq x \Leftarrow f . x \leq x
$$

closure rules

$$
\begin{aligned}
& a^{*}=\langle\mu x:: 1+x \cdot a\rangle=\langle\mu x:: 1+a \cdot x\rangle=\langle\mu x:: 1+a+x \cdot x\rangle \\
& a^{+}=\langle\mu x:: a+x \cdot a\rangle=\langle\mu x:: a+a \cdot x\rangle=\langle\mu x:: a+x \cdot x\rangle
\end{aligned}
$$

rolling rule:

$$
\mu(f \circ g)=f . \mu(g \circ f)
$$

square rule:

$$
\mu f=\mu\left(f^{2}\right)
$$

diagonal rule:

$$
\langle\mu x:: x \oplus x\rangle=\langle\mu x::\langle\mu y:: x \oplus y\rangle\rangle .
$$

Fusion

$$
\text { F. }\left(\mu_{\preceq g}\right)=\mu_{\sqsubseteq} h
$$

provided that

- F is a lower adjoint in a Galois connection of \sqsubseteq and \preceq (see brief summary of definition below)
- $\mathrm{F} \circ \mathrm{g}=\mathrm{h} \circ \mathrm{F}$.

Example

For arbitrary language L,

$$
\# \mathrm{~L}=\langle\Downarrow w: w \in \mathrm{~L}: \text { length. } w\rangle
$$

Because \# is the infimum of the length function it is the lower adjoint in a Galois connection. Indeed,

$$
\# \mathrm{~L} \geq \mathrm{k} \equiv \mathrm{~L} \subseteq \Sigma \geq \mathrm{k}
$$

where $\Sigma \geq k$ is the set of all words (in the alphabet Σ) whose length is at least k.

$$
\#\langle\mu X::\{a\} \cdot X \cup X \cdot X \cup\{\varepsilon\}\rangle=\langle\mu k::(1+k) \downarrow(k+k) \downarrow 0\rangle
$$

(Crucial step: $\#(Y \cdot Z)=\# Y+\# Z$.

Problem Generalisation

Problem: For given grammar G, determine whether all words in L(G) have even length. I.e. implement

$$
\text { alleven } \circ \text { L . }
$$

The function alleven is a lower adjoint in a Galois connection. Specifically, for all languages S and T,

$$
\operatorname{alleven}(\mathrm{S}) \Leftarrow \mathrm{b} \equiv \mathrm{~S} \subseteq \text { if } \neg \mathrm{b} \rightarrow \Sigma^{*} \square \mathrm{~b} \rightarrow(\Sigma \cdot \Sigma)^{*} \text { fi }
$$

Nevertheless, fusion doesn't work (directly) because

- there is no \otimes such that, for all languages S and T,

$$
\operatorname{alleven}(\mathrm{S} \cdot \mathrm{~T}) \equiv \operatorname{alleven}(\mathrm{S}) \otimes \operatorname{alleven}(\mathrm{T}) .
$$

Solution: Generalise by tupling: compute simultaneously alleven and allodd.

Summary

- Algebraic properties key to efficient algorithms
- Calculation key to correct-by-construction
- Creativity still necessary.

