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Fixed Points

〈Expression〉 ::= 〈Expression〉 + 〈Expression〉 | ( 〈Expression〉 )

| 〈Variable〉

fac.0 = 1

fac.n = n ∗ fac.(n−1), for n>0.

List a = Nil | Cons a (List a)

List([ ]) .

List([X|Ys]) : − List(Ys) .
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Tarski’s Theorem

A fixed point of an endofunction f is a value x such that

x= f.x .

A prefix point of f is a value x∈A such that

f.x ≤ x .

If f is a monotonic endofunction on the partially ordered set (A , ≤),
the least fixed point of f equals the least prefix point of f.

The least prefix point of f is denoted by µf. It is characterized by the
rules:

computation rule
µf = f.µf

induction rule: for all x∈A,

µf ≤ x ⇐ f.x ≤ x .
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Kleene Algebra

Algebra of choice (+) , sequencing (·) and iteration (∗).

carrier + · 0 1 ≤

Languages sets of ∪ · φ {ε} ⊆
words

Programming binary ∪ ◦ φ id ⊆
relations

Reachability booleans ∨ ∧ false true ⇒
Shortest paths nonnegative min + ∞ 0 ≥

reals

Bottlenecks nonnegative max min 0 ∞ ≤
reals
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Iteration (“Kleene star”)

a∗ ·b is a fixed point of the function mapping x to b+a·x:

b+a·(a∗·b) = a∗·b ,

and is the least among all prefix points of the function:

a∗·b ≤ x ⇐ b+a·x ≤ x .

b ·a∗ is a fixed point of the function mapping x to b+x·a:

b+(b·a∗)·a = b·a∗ ,

and is the least among all prefix points of the function:

b·a∗ ≤ x ⇐ b+x·a ≤ x .
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Graph Problems

Suppose A is a square matrix representing the edges in a labelled
graph. Suppose the edge labels are elements of a Kleene algebra.

A∗ represents paths through the graph A of arbitrary (finite) edge
length.

The (i,j)th element of A∗ is the Kleene sum over all finite-length
paths p from node i to node j of the weight of path p (the Kleene
product of the path’s edge labels).

Applications: reachability, shortest paths, bottleneck problems.

Kleene algebra is used in derivation of path-finding algorithms (eg
the Warshall-Roy-Floyd algorithm).
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Games

Used to illustrate least and greatest fixed points.

A two-person, impartial game is given by a set of positions and a
move relation on the positions.

Let W.G mean that G is a position from which a perfect player is
guaranteed to win.

Let L.G mean that G is a position from which losing is inevitable
(against a perfect player).

The predicates W and L satisfy the fixed point equations:

W = 〈G :: 〈∃H :G 7→ H :L.H〉〉

L = 〈G :: 〈∀H :G 7→ H :W.H〉〉
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Winning, Losing and Stalemate

Consider the predicate transformers

f = 〈X :: 〈G :: 〈∃H :G 7→ H :X.H〉〉〉

and

g = 〈X :: 〈G :: 〈∀H :G 7→ H :X.H〉〉〉

defined by an impartial game.

f and g are conjugates. That is, for all predicates X,

¬(f.X) = g.(¬X) ∧ ¬(g.X) = f.(¬X)

The predicates µ(f•g), µ(g•f) and ν(f•g)∧ν(g•f) are mutually
distinct and together cover all positions.

µ(f•g) characterises the positions from which a win is guaranteed.

µ(g•f) characterises the positions from which losing is inevitable.

ν(f•g)∧ν(g•f) characterises stalemate positions.

(All these assume perfect players.)



10

Galois Connections

Many problems are expressed in the form

evaluate ◦ generate

where generate generates a (possibly infinite) candidate set of
solutions, and evaluate selects a best solution.

Function evaluate is often a Galois connection, and generate is
often a fixed point.

Suppose A=(A,v) and B=(B,�) are partially ordered sets and
suppose F∈A←B and G∈B←A . Then (F ,G) is a Galois connection
of A and B iff, for all x∈B and y∈A,

F.x v y ≡ x � G.y .
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Universal Property

(F ,G) is a Galois connection between the posets (A,v) and (B ,�) iff
the following conditions hold.

(a) G is monotonic.

(b) For all x∈B, x�G.(F.x) .

(c) For all x∈B and y∈A, x�G.y⇒ F.xvy.

Example. Read

dxe ≤n ≡ x≤n

as “the ceiling of x is the least (integer) n such that x is at most n”.
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Fixed Point Calculus

(Need a calculus because specifications are not implementations.)
computation rule

µf = f.µf

induction rule: for all x∈A,

µf ≤ x ⇐ f.x ≤ x .

closure rules

a∗ = 〈µx :: 1+x·a〉 = 〈µx :: 1+a·x〉 = 〈µx :: 1+a+x·x〉

a+ = 〈µx :: a+x·a〉 = 〈µx :: a+a·x〉 = 〈µx :: a+x·x〉

rolling rule:
µ(f ◦g) = f.µ(g ◦ f) .

square rule:
µf = µ(f2) .

diagonal rule:

〈µx ::x⊕x〉 = 〈µx :: 〈µy ::x⊕y〉〉 .
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Fusion

F.(µ�g) = µvh

provided that

• F is a lower adjoint in a Galois connection of v and � (see brief
summary of definition below)

• F ◦g = h ◦ F .
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Example

For arbitrary language L,

#L = 〈⇓w :w∈L : length.w〉

Because # is the infimum of the length function it is the lower
adjoint in a Galois connection. Indeed,

#L≥k ≡ L⊆Σ≥ k

where Σ≥ k is the set of all words (in the alphabet Σ) whose length is
at least k.

# 〈µX :: {a}·X∪X·X∪ {ε}〉 = 〈µk :: (1+k)↓(k+k)↓0〉 .

(Crucial step: #(Y·Z) = #Y+#Z.)
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Problem Generalisation

Problem: For given grammar G, determine whether all words in L(G)

have even length. I.e. implement

alleven ◦ L .

The function alleven is a lower adjoint in a Galois connection.
Specifically, for all languages S and T ,

alleven(S)⇐b ≡ S ⊆ if ¬b → Σ∗ 2 b→ (Σ·Σ)∗ fi

Nevertheless, fusion doesn’t work (directly) because

• there is no ⊗ such that, for all languages S and T ,

alleven(S·T) ≡ alleven(S) ⊗ alleven(T) .

Solution: Generalise by tupling: compute simultaneously alleven and
allodd.
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Summary

• Algebraic properties key to efficient algorithms

• Calculation key to correct-by-construction

• Creativity still necessary.


