
Raster Display AlgorithmsA raster display is a two-dimensional grid of pixels. The pixels are all squares of equalsize. A blak-and-white drawing is an assignment of booleans to eah of the pixels.A drawing of a urve on a raster display involves approximating funtions from realsto reals by funtions from integers to integers. Bresenham's algorithms are eÆient waysof drawing straight lines, irles and ellipses on a raster display.This hapter is about the onstrution of Bresenham's algorithms for drawing straightlines and for drawing irles. The onstrution provides a good example of alulationswith the eiling and oor funtions (see hapter 6). It is also a good, and relatively simple,example of the laws of programming summarised in the Appendix. The priniples aremade suÆiently lear that additional exerises an easily be set | for example, in roughorder of inreasing diÆulty, drawing a hyperbola, a parabola or an ellipse.
Drawing Straight LinesConsider the straight line:

x, y:: ax − by = 0 .For a given real value x , the integer \losest to" x is
⌈

x −
1

2

⌉

.(When x is n+
1

2
, for some integer n , this hooses n as the \losest" value. Otherwise,it is the integer n that minimises |n−x| .)We approximate the straight line by the funtion g from integers to integers givenby

g.m =

⌈

am

b
−

1

2

⌉

.Thus, the problem we onsider is to ompute g.m suessively for m equal to 0 , 1 ,
2 , · · · . To this end, we onstrut a loop. We ignore termination of the loop itself.(The loop body must, however, be guaranteed to terminate.) Under these onditions,the following is a valid implementation:Program Constrution  Roland Bakhouse. 363 November 1, 2007



364 Solutions to Exerises
{ true }

m,n := 0,0 ;

{ Invariant: n=g.m }

do true → plot.(m,n) ;

m,n := m+1 , g.(m+1)

od .A major ineÆieny is, however, the reomputation of g at eah iteration.Suppose that a and b are integers. If 0≤a≤b , g inreases by at most one when
m is inreased by one. Formally,

0 ≤ g.(m+1)−g.m ≤ 1 ⇐ 0≤a≤b .(5)(We reommend that the reader verify this property before ontinuing.)From now on, we assume that 0≤a≤b . (This is without loss of generality. If
0≤b≤a , simply interhange a and b , and interhange m and n . If one of a or bis negative, use the derived algorithm to ompute −(g.m) .)From (5), we have:

g.(m+1)=g.m ∨ g.(m+1) = g.m+1 .This means that it is valid to replae the assignment m,n := m+1 , g.(m+1) , in thebody of the loop, by the sequential omposition:
if g.(m+1) = g.m+1 → n := n+1

2 g.(m+1)=g.m → skip

fi ;

{ n=g.(m+1) }

m := m+1 .We now investigate the irumstanes in whih g.(m+1) = g.m+1 . Sine g is de-�ned in terms of the eiling funtion, it is easiest to alulate with the equivalent:
g.m<g.(m+1) .

g.m<g.(m+1)

= { n=g.m is an invariant of the algorithm,so we may replae the left side by n ,de�nition of g on the right side }Program Constrution  Roland Bakhouse. November 1, 2007
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n <

⌈

a(m+1)

b
−

1

2

⌉

= { properties of eiling }

n <
a(m+1)

b
−

1

2
= { arithmeti }

b

2
< a(m+1) − bn

= { oor funtion, arithmeti }

0 < a(m+1) − bn −

⌊

b

2

⌋

= { assume h = a(m+1) − bn −

⌊

b

2

⌋

}

0 < h .This alulation suggests that we introdue the integer variable h with the invariantproperty
h = a(m+1) − bn − ⌊b/2⌋ .(6)The deision whether or not to inrement n is determined by the test 0<h :

{ Global Invariants: integer.a ∧ integer.b ∧ 0≤a≤b

〈∀m :: g.m =

⌈

am

b
−

1

2

⌉

∧ 0 ≤ g.(m+1)−g.m ≤ 1〉 }

m,n,h := 0 , 0 , a− ⌊b/2⌋ ;

{ Invariant:

n=g.m

∧ h = a(m+1) − bn − ⌊b/2⌋ ∧ (0<h ≡ g.(m+1)−g.m = 1) }

do true → plot.(m,n) ;

if 0<h → { g.(m+1) = g.m+1 }

n ,h := n+1 , p

2 ¬(0<h) → { g.(m+1)=g.m }

skip

fi ;

{ n = g.(m+1) ∧ h = a(m+1) − bn − ⌊b/2⌋ }

m,h := m+1 , q

od .Program Constrution  Roland Bakhouse. November 1, 2007



366 Solutions to ExerisesThe unknowns in the algorithm are p and q . The requirements on p and q are thatthey should maintain property (6) invariant. That is, p is required to satisfy
{ h = a(m+1) − bn − ⌊b/2⌋ }

n ,h := n+1 , p

{ h = a(m+1) − bn − ⌊b/2⌋ } ,whilst q must satisfy
{ h = a(m+1) − bn − ⌊b/2⌋ }

m,h := m+1 , q

{ h = a(m+1) − bn − ⌊b/2⌋ } .Applying the assignment axiom, we alulate p to satisfy
p = a(m+1) − b(n+1) − ⌊b/2⌋ ,under the assumption
h = a(m+1) − bn − ⌊b/2⌋ .Clearly,
p = h−b .Also, applying the assignment axiom, we alulate q to satisfy
q = a((m+1)+1) − bn − ⌊b/2⌋ ,under the assumption
h = a(m+1) − bn + ⌊b/2⌋ .Clearly,
q = h+a .Substituting these values for p and q ompletes the derivation of the algorithm:
{ Global Invariants: integer.a ∧ integer.b ∧ 0≤a≤b

〈∀m :: g.m =

⌈

am

b
−

1

2

⌉

∧ 0 ≤ g.(m+1)−g.m ≤ 1〉 }

m,n,h := 0 , 0 , a− ⌊b/2⌋ ;

{ Invariant:Program Constrution  Roland Bakhouse. November 1, 2007
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n=g.m

∧ h = a(m+1) − bn − ⌊b/2⌋ ∧ (0<h ≡ g.(m+1)−g.m = 1) }

do true → plot.(m,n) ;

if 0<h → { g.(m+1) = g.m+1 }

n ,h := n+1 , h−b

2 ¬(0<h) → { g.(m+1)=g.m }

skip

fi ;

{ n=g.(m+1) ∧ h = a(m+1) − bn − ⌊b/2⌋ }

m,h := m+1 , h+a

od .

Drawing CirclesThe equation of a irle of radius r is
x, y:: x2

+y2 = r2 .We assume that r is an integer, and onsider the omputation of the approximatingfuntion g , where
g.n =

⌈

√

(r2−n2) −
1

2

⌉

.It is onvenient to divide the (x, y) plane into 8 setors. In the setor given by
x, y:: 0≤y≤xit is the ase that the gradient of a irle entred at the origin is at least −1 . That is,an inrease of y by 1 dereases x by at most 1 . Similar properties hold in the otherseven setors. We onsider this one setor only, leaving the reader to �ll in the detailsfor the other setors.Formally, the orresponding property of g is that:

0 ≤ g.n−g.(n+1) ≤ 1 ⇐ 0≤n<g.n .This suggests an algorithm of the following struture.Program Constrution  Roland Bakhouse. November 1, 2007



368 Solutions to Exerises
{ integer.m ∧ integer.n }

m,n := r,0 ;

{ Invariant: m=g.n ∧ (0 ≤ g.n−g.(n+1) ≤ 1 ∨ m=n)

Bound function: m−n }

do n≤m → plot.(m,n) ;

if g.n−g.(n+1) = 0 → skip

2 g.n−g.(n+1) = 1 → m :=m−1

fi ;

n :=n+1

od .Note that it is now n that is ontinually inremented, whilst m dereases or remainsonstant at eah iteration.As for drawing a straight line, we aim to replae the tests in the onditional statementby a test on the sign of a variable h , whih is inrementally updated. The alulationof the invariant property of h goes as follows.
g.(n+1)<g.n

= { m=g.n is an invariant of the algorithm,so we may replae the right side by m ,de�nition of g on the left side }
⌈

√

(r2− (n+1)2) −
1

2

⌉

< m

= { in order to apply the de�nition of the eilingfuntion, we need \at most", not \less than". }
⌈

√

(r2− (n+1)2) −
1

2

⌉

≤ m−1

= { de�nition of eiling }
√

(r2− (n+1)2) −
1

2
≤ m−1

= { arithmeti (mainly squaring) }

r2 − n2 − 2n − 1 ≤ m2 −m+
1

4

= { arithmeti }

r2 − n2 − 2n − m2 + m ≤ 5

4

= { r , m and n are all integers, ⌊5/4⌋= 1 }Program Constrution  Roland Bakhouse. November 1, 2007
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r2 − n2 − 2n − m2 + m − 1 ≤ 0 .This alulation suggests that we introdue the integer variable h with the invariantproperty

h = r2
−n2

− 2n−m2
+m− 1 .(7)The deision whether or not to derement m is determined by the test h≤0 :

{ Global Invariant: 〈∀n :: g.n =
⌈

√

(r2−n2) −
1

2

⌉

〉 }

m,n,h := r , 0 , r−1 ;

{ Invariant:

m=g.n ∧ (0 ≤ g.n−g.(n+1) ≤ 1 ∨ m=n)

∧ h = r2−n2−2n−m2 +m−1 ∧ (h≤0 ≡ g.n−g.(n+1) = 1)

Bound function: m−n }

do n≤m → plot.(m,n) ;

if h≤0 → { g.(n+1) = g.n−1 }

m,h := m−1 ,u

2 ¬(h≤0) → { g.(n+1)=g.n }

skip

fi ;

n,h := n+1 , v

od .Note the deision to hange h in two steps, the �rst as a onsequene of dereasing m ,and the seond as a onsequene of inreasing n .The unknowns in this algorithm are u and v . The requirements on u and v arethat they should maintain property (7) invariant. That is, u is required to satisfy
{ h = r2−n2− 2n−m2+m− 1 }

m,h := m−1 ,u

{ h = r2−n2− 2n−m2+m− 1 } ,whilst v must satisfy
{ h = r2−n2− 2n−m2+m− 1 }

n,h := n+1 , v

{ h = r2−n2− 2n−m2+m− 1 } .Program Constrution  Roland Bakhouse. November 1, 2007



370 Solutions to ExerisesIn order to alulate the appropriate value of u , we note that only the subterm \−m2+m "is hanged by an assignment to m . Aordingly, we alulate that, for any k ,
k− (m−1)2+ (m−1) = (k−m2 +m)+2(m−1) .Thus, applying the assignment axiom,
{ h = k−m2+m }

m,h := m−1 , h+2(m−1)

{ h = k−m2+m }A similar argument is used to alulate v . We have, for all k ,
k− (n+1)2−2(n+1) = (k−n2−2n)− (2n+3) .So,
{ h = k−n2−2n }

n,h := n+1 , h− (2n+3)

{ h = k−n2−2n }Substituting these values for u and v ompletes the derivation of the algorithm:
{ Global Invariant: 〈∀n :: g.n =

⌈

√

(r2−n2) −
1

2

⌉

〉 }

m,n,h := r , 0 , r−1 ;

{ Invariant:

m=g.n ∧ (0 ≤ g.n−g.(n+1) ≤ 1 ∨ m=n)

∧ h = r2−n2−2n−m2 +m−1 ∧ (h≤0 ≡ g.n−g.(n+1) = 1) }

do n≤m → plot.(m,n) ;

if h≤0 → { g.(n+1) = g.n−1 }

m,h := m−1 , h+2(m−1)

2 ¬(h≤0) → { g.(n+1)=g.n }

skip

fi ;

n,h := n+1 , h− (2n+3)
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