Raster Display Algorithms

A raster display is a two-dimensional grid of pizels. The pixels are all squares of equal
size. A black-and-white drawing is an assignment of booleans to each of the pixels.

A drawing of a curve on a raster display involves approximating functions from reals
to reals by functions from integers to integers. Bresenham’s algorithms are efficient ways
of drawing straight lines, circles and ellipses on a raster display.

This chapter is about the construction of Bresenham’s algorithms for drawing straight
lines and for drawing circles. The construction provides a good example of calculations
with the ceiling and floor functions (see chapter 6). It is also a good, and relatively simple,
example of the laws of programming summarised in the Appendix. The principles are
made sufficiently clear that additional exercises can easily be set — for example, in rough
order of increasing difficulty, drawing a hyperbola, a parabola or an ellipse.

Drawing Straight Lines

Consider the straight line:
x,y: ax—by =0 .
For a given real value x, the integer “closest to” x is
x - 1]
(When x is n—l—% , for some integer n, this chooses n as the “closest” value. Otherwise,

it is the integer n that minimises [n—x]|.)
We approximate the straight line by the function g from integers to integers given

by
_— am 1
M= Y T2
Thus, the problem we consider is to compute g.m successively for m equal to 0, 1,
2, --- . To this end, we construct a loop. We ignore termination of the loop itself.

(The loop body must, however, be guaranteed to terminate.) Under these conditions,
the following is a valid implementation:

Program Construction (©) Roland Backhouse. 363 November 1, 2007



364 Solutions to Exercises

{ true }
mmn = 0,0 ;
{ Invariant: n=gm }
do true — plot.(m,n) ;
mmn = m+1,g.(m+1)
od

A major inefficiency is, however, the recomputation of g at each iteration.
Suppose that a and b are integers. If 0<a<b, g increases by at most one when
m is increased by one. Formally,

(5) 0<g(mt+l)—gm<1 & 0<a<b .

(We recommend that the reader verify this property before continuing.)

From now on, we assume that 0<a<b. (This is without loss of generality. If
0<b<a, simply interchange a and b, and interchange m and n. If one of a or b
is negative, use the derived algorithm to compute —(g.m).)

From (5), we have:

g.(m+1)=gm V g.(m+1)=gm+]1

This means that it is valid to replace the assignment mmn := m+1,g.(m+1), in the
body of the loop, by the sequential composition:

if g.(m+1)=gm+1 —=n = n+tl

O g.(m+1)=g.m — skip

fi ;

{ n=g.(m+1) }

m = m+l
We now investigate the circumstances in which g.(m+1) =g.m+1. Since g is de-
fined in terms of the ceiling function, it is easiest to calculate with the equivalent:
gm<g.(m+1).

gm<g.(m+1)
= { n=g.m is an invariant of the algorithm,
so we may replace the left side by n,

definition of g on the right side }

Program Construction (©) Roland Backhouse. November 1, 2007



Solutions to Exercises 365

a(m+1) 1
-
= { properties of ceiling }
a(m+1) 1
ST T2
= { arithmetic }

% < a(m+1) —bn

= { floor function, arithmetic }
0 < a(m+1) —bn — EJ
b
= { assume h = a(m+1) —bn — {EJ }
0O<h .

This calculation suggests that we introduce the integer variable h with the invariant
property

(6) h = a(m+1) —bn — |b/2]

The decision whether or not to increment n is determined by the test O <h:

{ Global Invariants: integer.a A integer.b A 0<a<b
1
(Vm = gm = [%1 — EW AN 0<gmt+l)—gm < 1) }

mmnh = 0,0,a— |b/2] ;
{ Invariant:
n=g.m
A h = am+l)—bn—- [b/2] N (0<h=g.(m+l)—gm=1) }

do true — plot.(mn);

if 0O<h — { g.(m+1)=gm+1 }

n,h = n+l,p
O —(0<h)— { g.(m+1)=gm }

skip
fi ;
{ n=g.(m+1) A h = alm+1) —bn— |b/2] }
m,h = m+1,q

od

Program Construction (©) Roland Backhouse. November 1, 2007



366 Solutions to Exercises

The unknowns in the algorithm are p and q. The requirements on p and g are that
they should maintain property (6) invariant. That is, p is required to satisfy

{ h=am+l)—bn— [b/2] }
n,h = n+l,p
{ h =am+l)—bn-— [b/2] } ,

whilst q must satisfy

{ h = am+l)—bn— |b/2] }
m,h = m+1, ¢
{ h=am+l)—bn— |b/2] }

Applying the assignment axiom, we calculate p to satisfy
p = a(m+1) —b(n+1) — [b/2] ,

under the assumption
h = a(m+1) —bn — |b/2]

Clearly,
p = h—b .

Also, applying the assignment axiom, we calculate q to satisfy
q = a((m+1)+1) —bn — |b/2] |

under the assumption
h = a(m+1) —bn + |b/2]

Clearly,
q = h+a .

Substituting these values for p and q completes the derivation of the algorithm:

{ Global Invariants: integer.a /A integer.b A 0<a<b
1
(Vm = gm = [%1 — E-‘ A0 < g(mtl)—gm < 1) }

mnh = 0,0,a— |b/2] ;

{ Invariant:

Program Construction (©) Roland Backhouse. November 1, 2007



Solutions to Exercises 367

n=g.m
A h = am+l)—bn—- [b/2] A (0<h=g.(m+l)—gm=1) }
do true — plot.(m,n);
if O<h — { g.(m+1)=gm+1 }
n,h = n+l,h-b
O —(0<h)— { g.(m+l)=gm }

skip
fi ;
{ n=g.(m+1) A h = a(m+1)—bn— [b/2] }
m,h = m+1, ht+a

od

Drawing Circles
The equation of a circle of radius r is
X,y xz—i—yz =T

We assume that r is an integer, and consider the computation of the approximating
function g, where

gn = { (r?—m?) — H
It is convenient to divide the (x,y) plane into 8 sectors. In the sector given by
X,y 0<y<x

it is the case that the gradient of a circle centred at the origin is at least —1. That is,
an increase of y by 1 decreases x by at most 1. Similar properties hold in the other
seven sectors. We consider this one sector only, leaving the reader to fill in the details
for the other sectors.

Formally, the corresponding property of g is that:

0<gn—g.mn+1)<1 & 0<n<gn .

This suggests an algorithm of the following structure.

Program Construction (©) Roland Backhouse. November 1, 2007



368 Solutions to Exercises

{ integerm A integern }

mn = 1,0 ;
{ Imvariant: m=gn A (0<gn—g.n+1) <1V m=n)
Bound function: m-n }
don<m — plot.(m,n) ;
if gn—g.(n+1) =0 — skip
Ogn—g.(n+1) =1 — m:=m—1
fi s
n:=n+1l
od

Note that it is now n that is continually incremented, whilst m decreases or remains
constant at each iteration.

As for drawing a straight line, we aim to replace the tests in the conditional statement
by a test on the sign of a variable h, which is incrementally updated. The calculation
of the invariant property of h goes as follows.

g.(m+1)<gmn
= { m=g.n is an invariant of the algorithm,
so we may replace the right side by m,
definition of g on the left side }
1
[ (12— (n+1)?) — ZW <m
= { in order to apply the definition of the ceiling
function, we need “at most”, not “less than”. }
1
[ (2= (m+1)2) — ﬂ < m—1
= { definition of ceiling }

(rZ—(n+1)2) — 1 < m—1

= { arithmetic (mainly squaring) }
r-n?-2n-1 < m’—m+3

= { arithmetic }
r-n-2n-m4+m < 2

= { r, m and n are all integers, [5/4|=1 }

Program Construction (©) Roland Backhouse. November 1, 2007



Solutions to Exercises 369

- —-2n—-m+m-1 < 0.
This calculation suggests that we introduce the integer variable h with the invariant
property
() h=1r"-—m-2n-m?+m-—1
The decision whether or not to decrement m is determined by the test h <O0:
{ Global Invariant: (Wnugn = {\/m — H) }
mnh = r,0,r—1 ;
{ Invariant:
m=gn A (0<gn—g.m+1) <1V m=n)
A h=r-n?-2n-m?’+m—-1 A (h<0 =gn—g.(n+1)=1)
Bound function: m-n }
don<m — plot.(mn) ;
if h<0 — { g(n+1)=gn—-1 }
mh = m—1,u
O0-(h<0)— { g.(n+l)=gn }
skip
fi ;
nh = n+4l,v
od

Note the decision to change h in two steps, the first as a consequence of decreasing m,
and the second as a consequence of increasing m.

The unknowns in this algorithm are u and v. The requirements on u and v are
that they should maintain property (7) invariant. That is, u is required to satisfy

{ h=r—n?-2n—-m?+m—-1 )

mh = m—1,u

[ h=r-"n-2Mm—-m’+m—-1 } |
whilst v must satisfy

[ h=r-n*-2m—-m?’+m—-1 }

nh = n+l,v

[ h=7rP-n"-2m—-m?’+m—-1 }

Program Construction (©) Roland Backhouse. November 1, 2007



370 Solutions to Exercises

In order to calculate the appropriate value of 1, we note that only the subterm “—m?+m?”
is changed by an assignment to m. Accordingly, we calculate that, for any k,

k—(m—1)24+(m-1) = (k—m?+m)+2(m-1) .
Thus, applying the assignment axiom,

{ h=k-m?4+m }
mh = m—1,h+2(m-1)
{ h=k-m?’4+m }

A similar argument is used to calculate v. We have, for all k,
k—(M+1)2=2(n+1) = (k—n?—2n)—(2n+3) .
So,

[ h=%k—mn?’-2n }
nh = n+l,h—(2n+3)
[ h=k—mn?—2n }

Substituting these values for u and v completes the derivation of the algorithm:

{ Global Invariant: (Vn:mgn = { (r2—n2) — H) )
mnh = r,0,r—1 ;
{ Invariant:
m=gn A (0<gn—g.m+1) <1V m=n)
A h=r"-—n-2n-m+m—-1 A (h<0=gn—g.(n+1)=1) }
don<m — plot.(mn) ;
if h<0 — { g(n+1)=gn—-1 }
mh = m—1,h+2(m-1)
0—(h<0) — { g.n+1)=gn }
skip
fi
nh = n+l,h—(2n+3)
od

Program Construction (©) Roland Backhouse. November 1, 2007



Solutions to Exercises 371

Bibliographic Remarks

The development is based on “Drawing Lines, Circles and Ellipses in a Raster” by
N.Wirth. In “Beauty Is Our Business”, W.H.J.Feijen, A.J.M.van Gasteren, D.Gries,
J.Misra (Eds.), Springer-Verlag, 1990, pp.427-434.

Program Construction (©) Roland Backhouse. November 1, 2007



