
Why the Science of Computing is Important

Roland Backhouse

University of Nottingham



The hallmark of a science is the avoidance of error.



Perth to Kuala Lumpur, August, 2005



I Malaysian Airline pilots fought to counter false information

I Auto-throttles remained armed

I [When landing] low airspeed warning . . . auto-throttle

increased thrust

I After landing the autobrakes were not able to be cancelled



I Malaysian Airline pilots fought to counter false information

I Auto-throttles remained armed

I [When landing] low airspeed warning . . . auto-throttle

increased thrust

I After landing the autobrakes were not able to be cancelled



I Malaysian Airline pilots fought to counter false information

I Auto-throttles remained armed

I [When landing] low airspeed warning . . . auto-throttle

increased thrust

I After landing the autobrakes were not able to be cancelled



I Malaysian Airline pilots fought to counter false information

I Auto-throttles remained armed

I [When landing] low airspeed warning . . . auto-throttle

increased thrust

I After landing the autobrakes were not able to be cancelled



The ADIRU OPS versions up to and including version -07
contained a latent software error in the algorithm to manage
the sensor set used for computing flight control outputs which,
after the unit went through a power cycle, did not recognise
that accelerometer number-5 was unserviceable. The status of
the failed unit was recorded in the on-board maintenance
computer memory, but that memory was not checked by the
ADIRU software during the start-up initialisation sequence.
The software error had not been detected during the original
certification of the ADIRU and was present in all versions of
the software. The effect of the error was suppressed by other
software functions in OPS version -03. When the OPS version
- 04 was released in December 1998, the software functions
that suppressed the error were further revised to improve shop
repair capability, re-exposing the undiscovered latent problem.



Therac-25 Disaster

I Radiation Therapy machine

I Coding error

I At least 6 accidents and 3 deaths attributed (1985-1987)

I More suspected



Therac-25 Disaster

I Radiation Therapy machine

I Coding error

I At least 6 accidents and 3 deaths attributed (1985-1987)

I More suspected



Therac-25 Disaster

I Radiation Therapy machine

I Coding error

I At least 6 accidents and 3 deaths attributed (1985-1987)

I More suspected



Therac-25 Disaster Root Causes

I Overflow error in non-initialised flag variable

I Two modes: low and high power

I (Physical) Beam spreader used for high-power mode

I Switching between modes

I Improbable sequence of keystrokes within 8 seconds



Therac-25 Disaster Root Causes

I Overflow error in non-initialised flag variable

I Two modes: low and high power

I (Physical) Beam spreader used for high-power mode

I Switching between modes

I Improbable sequence of keystrokes within 8 seconds



Therac-25 Disaster Root Causes

I Overflow error in non-initialised flag variable

I Two modes: low and high power

I (Physical) Beam spreader used for high-power mode

I Switching between modes

I Improbable sequence of keystrokes within 8 seconds



Therac-25 Disaster Root Causes

I Overflow error in non-initialised flag variable

I Two modes: low and high power

I (Physical) Beam spreader used for high-power mode

I Switching between modes

I Improbable sequence of keystrokes within 8 seconds



2010



Binary Search

”While the first binary search was published in 1946, the first
binary search that works correctly for all values of n did not

appear until 1962.”

J.Bentley, Programming Pearls



Binary Search

”While the first binary search was published in 1946, the first
binary search that works correctly for all values of n did not

appear until 1962.”

J.Bentley, Programming Pearls



Extract from a 2003 textbook on programming in Java

{ int hi = v.length ;

int lo = 0 ;

while (true)

{

int centre = (hi + lo) / 2 ;

if (centre == lo)

{ //

// Only two items left to test so it is either centre

// or centre+1 or it is not in. This is an exit

// point of the infinite loop.

//

if (v[centre] == o)

{ return centre; }

else if (v[centre+1] == o)

{ return centre+1; }

else

{ return -1; }

}

if (v[centre] < o)

{ lo = centre ; }

else if (o < v[centre])

{ hi = centre ; }

else

{ return centre ; }

}

}



v.length = 2, v[0] = 10, v[1] = 20, o = 30

{ int hi = 2 ;

int lo = 0 ;

while (true)

{

int centre = (hi + lo) / 2 ;

if (centre == lo)

{ //

// Only two items left to test so it is either centre

// or centre+1 or it is not in. This is an exit

// point of the infinite loop.

//

if (<10,20>[centre] == 30)

{ return centre; }

else if (<10,20>[centre+1] == 30)

{ return centre+1; }

else

{ return -1; }

}

if (<10,20>[centre] < 30)

{ lo = centre ; }

else if (30 < <10,20>[centre])

{ hi = centre ; }

else

{ return centre ; }

}

}



1st execution of loop body. Assignment to centre

{ int hi = 2 ;

int lo = 0 ;

while (true)

{

int centre = (2 + 0) / 2 ;

if (centre == 0)

{ //

// Only two items left to test so it is either centre

// or centre+1 or it is not in. This is an exit

// point of the infinite loop.

//

if (<10,20>[centre] == 30)

{ return centre; }

else if (<10,20>[centre+1] == 30)

{ return centre+1; }

else

{ return -1; }

}

if (<10,20>[centre] < 30)

{ lo = centre ; }

else if (30 < <10,20>[centre])

{ hi = centre ; }

else

{ return centre ; }

}

}



”two items left” but test fails!

{ int hi = 2 ;

int lo = 0 ;

while (true)

{

int centre = (2 + 0) / 2 ;

if (1 == 0)

{ //

// Only two items left to test so it is either centre

// or centre+1 or it is not in. This is an exit

// point of the infinite loop.

//

if (<10,20>[centre] == 30)

{ return centre; }

else if (<10,20>[centre+1] == 30)

{ return centre+1; }

else

{ return -1; }

}

if (<10,20>[centre] < 30)

{ lo = centre ; }

else if (30 < <10,20>[centre])

{ hi = centre ; }

else

{ return centre ; }

}

}



Comparing centre element with o

{ int hi = 2 ;

int lo = 0 ;

while (true)

{

int centre = (2 + 0) / 2 ;

if (1 == 0)

{ //

// Only two items left to test so it is either centre

// or centre+1 or it is not in. This is an exit

// point of the infinite loop.

//

if (<10,20>[centre] == 30)

{ return centre; }

else if (<10,20>[centre+1] == 30)

{ return centre+1; }

else

{ return -1; }

}

if (<10,20>[1] < 30)

{ lo = 1 ; }

else if (30 < <10,20>[1])

{ hi = 1 ; }

else

{ return 1 ; }

}

}



2nd execution of loop body. hi = 2, lo = 1

{ int hi = 2 ;

int lo = 0 ;

while (true)

{

int centre = (2 + 1) / 2 ;

if (centre == 1)

{ //

// Only two items left to test so it is either centre

// or centre+1 or it is not in. This is an exit

// point of the infinite loop.

//

if (<10,20>[centre] == 30)

{ return centre; }

else if (<10,20>[centre+1] == 30)

{ return centre+1; }

else

{ return -1; }

}

if (<10,20>[centre] < 30)

{ lo = centre ; }

else if (30 < <10,20>[centre])

{ hi = centre ; }

else

{ return centre ; }

}

}



2nd test for termination. hi = 2, lo = 1, centre = 1

{ int hi = 2 ;

int lo = 0 ;

while (true)

{

int centre = (2 + 1) / 2 ;

if (1 == 1)

{ //

// Only two items left to test so it is either centre

// or centre+1 or it is not in. This is an exit

// point of the infinite loop.

//

if (<10,20>[1] == 30)

{ return 1; }

else if (<10,20>[1+1] == 30)

{ return 1+1; }

else

{ return -1; }

}

if (<10,20>[centre] < 30)

{ lo = centre ; }

else if (30 < <10,20>[centre])

{ hi = centre ; }

else

{ return centre ; }

}

}



”it is either centre”

{ int hi = 2 ;

int lo = 0 ;

while (true)

{

int centre = (2 + 1) / 2 ;

if (1 == 1)

{ //

// Only two items left to test so it is either centre

// or centre+1 or it is not in. This is an exit

// point of the infinite loop.

//

if (<10,20>[1] == 30)

{ return 1; }

else if (<10,20>[1+1] == 30)

{ return 1+1; }

else

{ return -1; }

}

if (<10,20>[centre] < 30)

{ lo = centre ; }

else if (30 < <10,20>[centre])

{ hi = centre ; }

else

{ return centre ; }

}

}



”or centre+1”

{ int hi = 2 ;

int lo = 0 ;

while (true)

{

int centre = (2 + 1) / 2 ;

if (1 == 1)

{ //

// Only two items left to test so it is either centre

// or centre+1 or it is not in. This is an exit

// point of the infinite loop.

//

if (<10,20>[1] == 30)

{ return 1; }

else if (<10,20>[1+1] == 30)

{ return 1+1; }

else

{ return -1; }

}

if (<10,20>[centre] < 30)

{ lo = centre ; }

else if (30 < <10,20>[centre])

{ hi = centre ; }

else

{ return centre ; }

}

}



”or centre+1”

{ int hi = 2 ;

int lo = 0 ;

while (true)

{

int centre = (2 + 1) / 2 ;

if (1 == 1)

{ //

// Only two items left to test so it is either centre

// or centre+1 or it is not in. This is an exit

// point of the infinite loop.

//

if (<10,20>[1] == 30)

{ return 1; }

else if (<10,20>[1+1] == 30)

{ return 1+1; }

else

{ return -1; }

}

if (<10,20>[centre] < 30)

{ lo = centre ; }

else if (30 < <10,20>[centre])

{ hi = centre ; }

else

{ return centre ; }

}

}



Designing Algorithms to Meet Specifications

Given an array V and array indices M and N such that

M < N ∧ V[M] 6 0 < V[N]

design an algorithm that will return an index i such that

M 6 i < N ∧ V[i] 6 0 < V[i+ 1]



Designing Algorithms to Meet Specifications

Given an array V and array indices M and N such that

M < N ∧ V[M] 6 0 < V[N]

design an algorithm that will return an index i such that

M 6 i < N ∧ V[i] 6 0 < V[i+ 1]



Pre- and Post-conditions

M < N ∧ V[M] 6 0 < V[N]
{ int i;

int j;
i, j := M,N;
Invariant: M 6 i < j 6 N ∧ V[i] 6 0 < V[j]
Measure of progress: j− i

while i+ 1 6= j

{ i < j ∧ i+ 1 6= j

int k := (i+ j)/2;
i < k < j

if V[k] 6 0 → i := k

� 0 < V[k] → j := k

fi
}

M 6 i < N ∧ V[i] 6 0 < V[i+ 1]
}



Invariant

M < N ∧ V[M] 6 0 < V[N]
{ int i;

int j;

i, j := M,N;

Invariant: M 6 i < j 6 N ∧ V[i] 6 0 < V[j]

Measure of progress: j− i

while i+ 1 6= j

{ i < j ∧ i+ 1 6= j

int k := (i+ j)/2;
i < k < j

if V[k] 6 0 → i := k

� 0 < V[k] → j := k

fi
}

M 6 i < N ∧ V[i] 6 0 < V[i+ 1]
}



Termination Condition

M < N ∧ V[M] 6 0 < V[N]
{ int i;

int j;

i, j := M,N;

Invariant: M 6 i < j 6 N ∧ V[i] 6 0 < V[j]

Measure of progress: j− i

while i+ 1 6= j

{

i < j ∧ i+ 1 6= j

int k := (i+ j)/2;
i < k < j

if V[k] 6 0 → i := k

� 0 < V[k] → j := k

fi

}
M 6 i < N ∧ V[i] 6 0 < V[i+ 1]
}



Establishing the Invariant

M < N ∧ V[M] 6 0 < V[N]
{ int i;

int j;
i, j := M,N;
Invariant: M 6 i < j 6 N ∧ V[i] 6 0 < V[j]

Measure of progress: j− i

while i+ 1 6= j

{

i < j ∧ i+ 1 6= j

int k := (i+ j)/2;
i < k < j

if V[k] 6 0 → i := k

� 0 < V[k] → j := k

fi

}
M 6 i < N ∧ V[i] 6 0 < V[i+ 1]
}



Measure of Progress

M < N ∧ V[M] 6 0 < V[N]
{ int i;

int j;
i, j := M,N;
Invariant: M 6 i < j 6 N ∧ V[i] 6 0 < V[j]
Measure of progress: j− i

while i+ 1 6= j

{

i < j ∧ i+ 1 6= j

int k := (i+ j)/2;
i < k < j

if V[k] 6 0 → i := k

� 0 < V[k] → j := k

fi

}
M 6 i < N ∧ V[i] 6 0 < V[i+ 1]
}



Maintaining the Invariant whilst Making Progress. Step 1

M < N ∧ V[M] 6 0 < V[N]
{ int i;

int j;
i, j := M,N;
Invariant: M 6 i < j 6 N ∧ V[i] 6 0 < V[j]
Measure of progress: j− i

while i+ 1 6= j

{ i < j ∧ i+ 1 6= j

int k := (i+ j)/2;
i < k < j

if V[k] 6 0 → i := k

� 0 < V[k] → j := k

fi

}
M 6 i < N ∧ V[i] 6 0 < V[i+ 1]
}



Maintaining the Invariant whilst Making Progress. Step 2

M < N ∧ V[M] 6 0 < V[N]
{ int i;

int j;
i, j := M,N;
Invariant: M 6 i < j 6 N ∧ V[i] 6 0 < V[j]
Measure of progress: j− i

while i+ 1 6= j

{ i < j ∧ i+ 1 6= j

int k := (i+ j)/2;
i < k < j

if V[k] 6 0 → i := k

� 0 < V[k] → j := k

fi
}

M 6 i < N ∧ V[i] 6 0 < V[i+ 1]
}



Conclusions

I Our livelihoods and sometimes our lives depend on the
correct functioning of computer software

I The 90/10 rule is particularly important

I The science of computing is not easy to learn

I That’s no excuse for not teaching it!



Conclusions

I Our livelihoods and sometimes our lives depend on the
correct functioning of computer software

I The 90/10 rule is particularly important

I The science of computing is not easy to learn

I That’s no excuse for not teaching it!



Conclusions

I Our livelihoods and sometimes our lives depend on the
correct functioning of computer software

I The 90/10 rule is particularly important

I The science of computing is not easy to learn

I That’s no excuse for not teaching it!



Conclusions

I Our livelihoods and sometimes our lives depend on the
correct functioning of computer software

I The 90/10 rule is particularly important

I The science of computing is not easy to learn

I That’s no excuse for not teaching it!



Conclusions

I Our livelihoods and sometimes our lives depend on the
correct functioning of computer software

I The 90/10 rule is particularly important

I The science of computing is not easy to learn

I That’s no excuse for not teaching it!


