Why the Science of Computing is Important

Roland Backhouse

University of Nottingham

The hallmark of a science is the avoidance of error.

Perth to Kuala Lumpur, August, 2005

ACTE, si’?\"@m\ﬂw 2005

Global alert
after jet out
of control

Steve Creedy
Aviation writer”

PILOTS on a Boeing 777 from Perth to
Kuala Lumpur battled to gain control of
the plane last month after an unknown
computer error caused the aircraft to pitch
violently and brought it close to stalling.

A flight attendant dropped a tray of
drinks and another began praying as the
Malaysian Airlines pilots fought to coun-
ter false information being fed into the
aircraft’s autopilot system and primary
flight display. The glitch prompted plane
manufacturer Boeing to issue a global
notice to all 777 operators alerting them to
the problem.

Flight MHI24 was about an hour out of
Perth when the aircraft began behaving
erratically. The incorrect data from a

SR L e e B

o -

rately tested the aircraft’s two autopilot
systems. But he was forced to keep flying
manually when the plane banked to the
right and the nose pitched down during
both tests.

The pilot reported no difficulties flying
the plane but noted that the automatic
throttles remained armed.

As the aircraft was positioned to
approach Perth, however, the flight display
again gave a low:airspeed warning and the
auto-throttle responded by increasing
thrust. The aircraft’s warning system also
indicated a dangerous windshear but the
crew continued the approach and landed
safely.

Shaken passengers remained in Perth
overnight and were offered alternative
flights the next day.

Investigations are focusing on faulty
L eE s st e LB Bad vt devies

» Malaysian Airline pilots fought to counter false information

» Malaysian Airline pilots fought to counter false information

» Auto-throttles remained armed

» Malaysian Airline pilots fought to counter false information

» Auto-throttles remained armed

» [When landing] low airspeed warning ... auto-throttle
increased thrust

v

Malaysian Airline pilots fought to counter false information

» Auto-throttles remained armed

» [When landing] low airspeed warning ... auto-throttle
increased thrust
» After landing the autobrakes were not able to be cancelled

The ADIRU OPS versions up to and including version -07
contained a latent software error in the algorithm to manage
the sensor set used for computing flight control outputs which,
after the unit went through a power cycle, did not recognise
that accelerometer number-5 was unserviceable. The status of
the failed unit was recorded in the on-board maintenance
computer memory, but that memory was not checked by the
ADIRU software during the start-up initialisation sequence.
The software error had not been detected during the original
certification of the ADIRU and was present in all versions of
the software. The effect of the error was suppressed by other
software functions in OPS version -03. When the OPS version
- 04 was released in December 1998, the software functions
that suppressed the error were further revised to improve shop
repair capability, re-exposing the undiscovered latent problem.

Therac-25 Disaster

Therac-25 Disaster

» Radiation Therapy machine

» Coding error

v

\{

v

Therac-25 Disaster

Radiation Therapy machine

Coding error

At least 6 accidents and 3 deaths attributed (1985-1987)

More suspected

Therac-25 Disaster Root Causes

Therac-25 Disaster Root Causes

» Overflow error in non-initialised flag variable

Therac-25 Disaster Root Causes

» Overflow error in non-initialised flag variable

» Two modes: low and high power

» (Physical) Beam spreader used for high-power mode

v

v

v

v

v

Therac-25 Disaster Root Causes

Overflow error in non-initialised flag variable

Two modes: low and high power

(Physical) Beam spreader used for high-power mode

Switching between modes

Improbable sequence of keystrokes within 8 seconds

2010

THEDAILY TELEGRAPH | SATURDAY, AUGUST 28,2010

We’re about to
crash... oops
my mistake

By Dally Tlegraph Reporter

BRITISH Airways passengers
thought they were going to die
after an emergency message
warning them that their plane
may have to ditch into the sea
was played in error.

Travellers flying from Hea-

w to Hong Kong were told:
“This is an emergency. We
may shortly need to make an
emergency landing on water.”

But cabin crew on the Boe-
ing 747 reassured them that the
message was a mistake.

Michelle Lord, 32, of Preston,
Lancs, said: “People were ter-
rified. We all thought we were
going to die.” Another traveller
said: “I can’t think of anything
worse than being told your
plane’s about to crash.”

BA said that the message
'was an automatic one that was
m’gﬁered by a computer. A
spokesman said: “We would

ike to apologise to passengers
on board the flight for causing
them undue distress.”

B — |

Binary Search

Binary Search

"While the first binary search was published in 1946, the first
binary search that works correctly for all values of n did not
appear until 1962."

J.Bentley, Programming Pearls

Extract from a 2003 textbook on programming in Java

int hi = v.length ;

int lo = 0 ;

while (true)

{
int centre = (hi + lo) / 2 ;
if (centre == lo)
{ 7/

// Only two items left to test so it is either centre
// or centre+l or it is not in. This is an exit
// point of the infinite loop.
//
if (v[centre] == o)
{ return centre; }
else if (v[centre+l] == o)
{ return centre+1; }
else
{ return -1; }
}
if (v[centre] < o)
{ 1o = centre ; }
else if (o < v[centre])
{ hi = centre ; }
else
{ return centre ; }

v.length = 2, v[0] =10, v[1] =20, 0 =30

int hi = 2 ;
int lo = 0 ;
while (true)
{
int centre = (hi + 1lo) / 2 ;
if (centre == lo)
{ 7/
// Only two items left to test so it is either centre
// or centre+l or it is not in. This is an exit
// point of the infinite loop.
//
if (<10,20>[centre] == 30)
{ return centre; }
else if (<10,20>[centre+l1] == 30)
{ return centre+1; }
else
{ return -1; }
}
if (<10,20>[centre] < 30)
{ 1o = centre ; }
else if (30 < <10,20>[centre])
{ hi = centre ; }
else
{ return centre ; }

Ist execution of loop body. Assignment to centre

int hi = 2 ;
int lo = 0 ;
while (true)
{

int centre = (2 + 0) / 2 ;
if (centre == 0)
{ 7/
// Only two items left to test so it is either centre
// or centre+l or it is not in. This is an exit
// point of the infinite loop.
//
if (<10,20>[centre] == 30)
{ return centre; }
else if (<10,20>[centre+1] == 30)
{ return centre+1; }
else
{ return -1; }
}
if (<10,20>[centre] < 30)
{ 1o = centre ; }
else if (30 < <10,20>[centre])
{ hi = centre ; }
else
{ return centre ; }

"two items left” but test fails!

int hi = 2 ;
int lo = 0 ;
while (true)
{
int centre = (2 + 0) / 2 ;
if (1 == 0)
{ 7/
// Only two items left to test so it is either centre
// or centre+l or it is not in. This is an exit
// point of the infinite loop.
//
if (<10,20>[centre] == 30)
{ return centre; }
else if (<10,20>[centre+1] == 30)
{ return centre+1; }
else
{ return -1; }
¥
if (<10,20>[centre] < 30)
{ lo = centre ; }
else if (30 < <10,20>[centre])
{ hi = centre ; }
else
{ return centre ; }

Comparing centre element with o

int hi = 2 ;
int lo = 0 ;
while (true)
{
int centre = (2 + 0) / 2 ;
if (1 == 0)
{ 7/
// Only two items left to test so it is either centre
// or centre+l or it is not in. This is an exit
// point of the infinite loop.
//
if (<10,20>[centre] == 30)
{ return centre; }
else if (<10,20>[centre+1] == 30)
{ return centre+1; }
else
{ return -1; }

}

if (<10,20>[1] < 30)
{lo=1;1%}

else if (30 < <10,20>[1])
{hi=1;1}

else

{ return 1 ; }

2nd execution of loop body. hi =2, lo =1

int hi = 2 ;
int lo = 0 ;
while (true)
{
int centre = (2 + 1) / 2 ;
if (centre == 1)
{ 7/
// Only two items left to test so it is either centre
// or centre+l or it is not in. This is an exit
// point of the infinite loop.
//
if (<10,20>[centre] == 30)
{ return centre; }
else if (<10,20>[centre+1] == 30)
{ return centre+1; }
else
{ return -1; }
}
if (<10,20>[centre] < 30)
{ 1o = centre ; }
else if (30 < <10,20>[centre])
{ hi = centre ; }
else
{ return centre ; }

2nd test for termination. hi =2, lo =1, centre =1

int hi = 2 ;
int lo = 0 ;
while (true)
{
int centre = (2 + 1) / 2 ;
if (1 == 1)
{ 7/
// Only two items left to test so it is either centre
// or centre+l or it is not in. This is an exit
// point of the infinite loop.
//
if (<10,20>[1] == 30)
{ return 1; }
else if (<10,20>[1+1] == 30)
{ return 1+1; }
else
{ return -1; }
¥
if (<10,20>[centre] < 30)
{ lo = centre ; }
else if (30 < <10,20>[centre])
{ hi = centre ; }
else
{ return centre ; }

"it is either centre”

int hi = 2 ;
int lo = 0 ;
while (true)
{
int centre = (2 + 1) / 2 ;
if (1 == 1)
{ 7/
// Only two items left to test so it is either centre
// or centre+l or it is not in. This is an exit
// point of the infinite loop.
//
if (<10,20>[1] == 30)
{ return 1; }
else if (<10,20>[1+1] == 30)
{ return 1+1; }
else
{ return -1; }
}
if (<10,20>[centre] < 30)
{ 1o = centre ; }
else if (30 < <10,20>[centre])
{ hi = centre ; }
else
{ return centre ; }

"or centre+1”

int hi = 2 ;
int lo = 0 ;
while (true)
{
int centre = (2 + 1) / 2 ;
if (1 == 1)
{ 7/
// Only two items left to test so it is either centre
// or centre+l or it is not in. This is an exit
// point of the infinite loop.
//
if (<10,20>[1] == 30)
{ return 1; }
else if (<10,20>[1+1] == 30)
{ return 1+1; }
else
{ return -1; }
}
if (<10,20>[centre] < 30)
{ 1o = centre ; }
else if (30 < <10,20>[centre])
{ hi = centre ; }
else
{ return centre ; }

"or centre+1”

int hi = 2 ;
int lo = 0 ;
while (true)
{
int centre = (2 + 1) / 2 ;
if (1 == 1)
{ 7/
// Only two items left to test so it is either centre
// or centre+l or it is not in. This is an exit
// point of the infinite loop.
//
if (<10,20>[1] == 30)
{ return 1; }
else if (<10,20>[1+1] == 30)
{ return 1+1; }
else
{ return -1; }
}
if (<10,20>[centre] < 30)
{ 1o = centre ; }
else if (30 < <10,20>[centre])
{ hi = centre ; }
else
{ return centre ; }

Designing Algorithms to Meet Specifications

Designing Algorithms to Meet Specifications

Given an array V and array indices M and N such that
M<N A V[M]<0<V[N]
design an algorithm that will return an index i such that

M<i<N A VA <0< V[i+1]

Pre- and Post-conditions

M<N A VM]<0<VIN]
{ int 1

M<i<N A VA <0< V[i+1]
}

Invariant

M<N A VM]<0<VIN]
{ int 1
int j;

Invariant: M <i<j<N A V[<0< V][]

M<i<N A VA <0< V[i+1]
}

Termination Condition

M<N A VM]<0<VIN]
{ int 1
int j;

Invariant: M <i<j<N A V[<0< V][]

while 141 # j
{

}
M<i<N A VA <0< V[i+1]
}

Establishing the Invariant

M<N A VM] <0< V[N]
{ int 1
int j;
1,5 = M,N;
Invariant: M <i<j<N A V[<0< V][]

while 141 # j
{

}
M<i<N A VA <0< V[i+1]
}

Measure of Progress

M<N A V[M] <0< VIN]
{ int 1
int j;
1,5 = M,N;
Invariant: M <i<j<N A V[<0< V][]
Measure of progress: j—1i
while 1+ 1 #j
{

}
M<i<N A VA <0< V[i+1]
}

Maintaining the Invariant whilst Making Progress. Step 1

M<N A V[M] <0< VIN]
{ int 1
int j;
1,5 = M,N;
Invariant: M <i<j<N A V[<0< V][]
Measure of progress: j—1i
while 1+ 1 #j
{i<j AN i+1#j
int k:={+j)/2;
1<k<j

}
M<i<N A VA <0< V[i+1]
}

Maintaining the Invariant whilst Making Progress. Step 2

M<N A V[M] <0< V[N]
{ int 1
int j;
1,5 = M,N;
Invariant: M <i<j<N A V[<0< V][]
Measure of progress: j—1i
while 1+ 1 #j
{i<j AN i+1#j
int k:={+j)/2;
1<k<j
if VIkl<0 — 1 :=
O 0<Vkl — j
fi
¥
M<i<N A VA <0< V[i+1]
ki

~ &

Conclusions

Conclusions

» Our livelihoods and sometimes our lives depend on the
correct functioning of computer software

Conclusions

» Our livelihoods and sometimes our lives depend on the
correct functioning of computer software

» The 90/10 rule is particularly important

Conclusions

» Our livelihoods and sometimes our lives depend on the
correct functioning of computer software

» The 90/10 rule is particularly important

» The science of computing is not easy to learn

>

>

>

Conclusions

Our livelihoods and sometimes our lives depend on the
correct functioning of computer software

The 90/10 rule is particularly important

The science of computing is not easy to learn

That's no excuse for not teaching it!

