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1 Consider the following program.

{ M<N ∧ f(M)≤ 0≤ f(N) }

i,j := M,N

{ Invariant: M ≤ i< j ≤N ∧ f(i)≤ 0≤ f(j)

Measure of progress: j−i } ;

do i+1 6= j → { i+1 6= j ∧ i<j ∧ f(i)≤ 0≤ f(j) }

k := (i+j)÷2

{ i<k<j ∧ f(i)≤ 0≤ f(j) } ;

if f(k)≤ 0 → i := k

� 0≤ f(k) → j := k

fi

{ i<j ∧ f(i)≤ 0≤ f(j) }

od

{ M ≤ i<N ∧ f(i)≤ 0≤ f(i+1) }

Construct a verification condition for each of the four assignment statements in the program and a
verification condition for the test for termination of the loop. (5 marks will be awarded for each.) You
do NOT have to verify the validity of the verification conditions. (25)

2 Design a program that performs an in-situ reversal of the elements of an array. (That is, the program
may use only a constant amount of additional storage space; it is not allowed to copy the array into
another array.) The program should be designed to work for arrays of arbitrary length (including zero,
of course). You should assume that the procedure swap is such that swap(i,j) swaps the array values
indexed by i and j , provided that i and j are within the bounds of the array. When i equals j ,
you may assume that the procedure call is equivalent to skip.

Assume as precondition of your program the property:

0≤N ∧ 〈∀j : 0≤ j <N : a[j]=a0[j]〉

That is, assume that the input array is a and a0 is a ghost variable used to relate the array a at any
stage in the algorithm to its initial value.

Your program should be annotated with sufficient assertions that it is possible for an independent
reader to determine its specification and formally verify that the specification is met by the program.
In particular, the assertions should guarantee that no array-bound errors can occur. (10)

Augment your program so as to count the number of times that two unequal array values are swapped.
Annotate your augmented program with assertions that express clearly the function of any new vari-
able(s) that you introduce. (The annotation is the most important part of your solution; a mark of 0
will be awarded if no assertions are added.) (15)
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3 Given are two integers M and N satisfying 0≤M and 0≤N. Construct a program to count the
number of integers k and l satisfying

0≤k≤N ∧ 0≤ l≤M ∧ M×k =N×l .

The running time of your program should be linear in M+N . (Hint: the function mapping k and l

to M×k−N×l is strictly increasing in k and strictly decreasing in l . Develop a suitably modified
implementation of saddleback search.)

State precisely the postcondition of your program as well as the invariant property and bound function
on which any loop in your program is based. Justify clearly every test and assignment in your program.

(15)

(b) Modify the program so that all multiplications (eg. when evaluating M×k ) are replaced by addi-
tions. Make clear how any assertions in your program are modified as well. (10)

4 The simple graph-searching algorithm below was developed in the lectures. N is the set of nodes and
directlyreachable maps a node u into the set of nodes reachable by a single edge from u . The
algorithm computes reachable.{s} where reachable.M is the set of nodes reachable by a path in the
graph (of edge-count 0 or more) that starts in a node in the set M .

{ s∈N }

black , grey ,white := ∅ , {s} , N−{s} ;

{ Invariant: reachable.{s} = black∪ reachable.grey ∧ {black,grey,white} partitions N

Bound function: |black| }

while grey 6=∅ do

begin

choose u∈grey ; add u to black and remove it from grey ;

for v∈ directlyreachable.u

do if v∈white

then add v to grey and remove it from white

end

{ reachable.{s}= black }

a) Explain in words how the invariant makes precise the function of the three sets black , grey and
white . (5)

b) Discuss data structures that might be used to implement the sets black , grey and white . Make
clear what the basis is for your choice of data structures. (10)

c) Consider a modification of the algorithm whereby a finish node f is specified. The task is to find
a path of smallest edge count from s to f . (You may assume that such a path exists.) Make the
appropriate changes to the algorithm, making sure you specify clearly the invariant property maintained
by your algorithm. Discuss the effect this has on the choice of data structures. (10)
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5 Given is a one-dimensional array A of (real) numbers of length N (a natural number at least 0 ).
The array is indexed by numbers i where 0≤ i<N . Using dummy S to range over sets of indices,
consider the problem of calculating

〈⇑ S :S nc N : sum.S〉

where

[ S nc N ≡ S ⊆{i | 0≤ i<N} ∧ 〈∀i :: i6∈S ∨ i+1 6∈S〉 ]

and

[ sum.S = 〈Σi : i∈S :A[i]〉 ] .

A first step in the solution of such a problem is to express the constraint nc inductively. As discussed
in the lectures, its inductive definition is given by:

[ S nc (−1) ≡ S = ∅ ](5.1)

[ S nc 0 ≡ S =∅ ](5.2)

and

[ S nc k+1 ≡ S nc k ∨ 〈∃T : S =T∪{k} : T nc k−1〉 ] .(5.3)

Explain how to construct a graph that represents all sets S such that S nc k (for a given k ) as a set
of paths. Show your construction for the case that k is 5 . Explain how the edge labels in the graph
correspond to the terms in (5.3). (10)

Suppose the function opt is defined by

[ opt.k = 〈⇑ S : S nc k : sum.S〉 ] .

Using (5.3), prove that

[ opt.(k+1) = opt.k ↑ (opt.(k−1)+A[k]) ] .(5.4)

Make clear all steps in your calculation by providing suitable hints. (10)

Derive formulae for opt.0 and opt.(−1) . Explain how the solution of the equations you have derived
together with (5.4) is represented as finding a longest path in a graph. (5)


