
Exercises in Algorithm Design

Roland Backhouse∗

January 25, 2012

Abstract

This is a collection of questions in algorithm design which might be adapted for
use in an examination.

1 Verification Conditions

Exercise 1 The following program has been written to calculate the quotient M÷9

and the remainder Mmod 9 of natural number M by repeatedly dividing by 10 . (Di-

viding by 10 is much easier than dividing by 9 when numbers are given in decimal

form.)

{ 0≤M }

q,r := 0 ,M+1 ;

{ Invariant: M+1 = 9×q+ r }

do 10<r → r,q := (rmod 10)+ (r÷10) , q+ (r÷10)

od ;

r := r−1

{ 0≤ r<9 ∧ M = 9×q+ r } .

a) There is a \bug" in the test for terminating the loop. Construct the veri�cation

condition relating to this test in order to identify the bug. Suggest a correction to the

test.

b) In the process of constructing the veri�cation condition, you will �nd that you need

to add a (fairly obvious) conjunct to the invariant. State clearly what the addition is.

∗School of Computer Science and Information Technology, University of Nottingham, Nottingham NG8
1BB, England

Program Construction c Roland Backhouse. 1 January 25, 2012

2

The remaining parts of this question relate to the corrected version of the program.

c) Test the algorithm on the cases M=1367 and M=25679 . Give details of the suc-

cessive values of q and r .

d) A bound function has not been supplied. Suggest a suitable bound function.

e) Construct veri�cation conditions that demonstrate the correctness of the program.

2

Exercise 2 a) Construct veri�cation conditions for the following program. Assume

that M and m are integers. Variables x , X and y may be integers or reals. The

symbol \÷ " denotes integer division.

{ 0≤M }

m,x ,y := M,X , 0 ;

{ Invariant: 0≤m ∧ m×x+y = M×X

Bound function: m }

do m 6=0 → if even.m → m,x := m÷2 , 2×x

2 odd.m → m,x ,y := (m−1)÷2 , 2×x , y−x

fi

od

{ y=M×X } .

b) There is an error in the program. Use the veri�cation conditions to identify the error

and how to correct it.

2

2 Saddleback Search

The following exercises are all based on saddleback search.

Exercise 3 Given are two functions f and g , both of which map natural numbers

to natural numbers. Suppose both functions are ascending. (That is, for all natu-

ral numbers i and j , i≤ j ⇒ f.i≤ f.j. Similarly for g .) It is known that there are

numbers m and n such that f.m=g.n . Develop a program to �nd one pair of such

numbers.

Program Construction c Roland Backhouse. January 25, 2012

3

2

Exercise 4 Given are two arrays f and g , of lengths M and N , respectively. Both

arrays store ascending sequences of integers. That is, for all indices i and j to the array

f ,

i≤ j ⇒ f[i]≤ f[j] .

Similarly for g .

This question is about developing a program that will calculate

〈⇓ i,j : 0≤ i<M ∧ 0≤ j<N : |f[i]−g[j]|〉 .

(Note: |x| denotes the absolute value of x and ⇓ is the minimum quanti�er.) Parts (a)

and (b) are hints towards identifying an appropriate invariant.

a) Suppose that m and n satisfy 0≤m<M and 0≤n<N , respectively. Suppose

f[m]−g[n] ≥ 0 . Show that

〈⇓ i,j : m≤ i<M ∧ n≤ j<N : |f[i]−g[j]|〉

= (f[m]−g[n]) ↓ 〈⇓ i,j : m≤ i<M ∧ n+1≤ j<N : |f[i]−g[j]|〉 .

(Hint: split o� the case j=n in the quanti�cation.)

b) What is the symmetric property when g[n]− f[m] ≥ 0 ?

c) Use these two properties to develop a program that will calculate

〈⇓ i,j : 0≤ i<M ∧ 0≤ j<N : |f[i]−g[j]|〉 .

Your program should use variables m , n and d satisfying the invariant property:

〈⇓ i,j : 0≤ i<M ∧ 0≤ j<N : |f[i]−g[j]|〉

= d ↓ 〈⇓ i,j : m≤ i<M ∧ n≤ j<N : |f[i]−g[j]|〉 .

Your program should have time complexity proportional to M+N (rather than M×N).

Explain all steps in your design in su�cient detail that it is possible for the reader

to formally verify the correctness of your program. In particular, state explicitly any

properties of minimum that your design exploits. You should assume that M and N are

nonzero. Take care over the initialisation of d .

2

Program Construction c Roland Backhouse. January 25, 2012

4

Exercise 5 Given are two integers M and N satisfying 0≤M and 0≤N. Construct

a program to count the number of integers k and l satisfying

0≤k≤N ∧ 0≤ l≤M ∧ M×k=N×l .

The running time of your program should be linear in M+N . (Hint: the function

mapping k and l to M×k−N×l is strictly increasing in k and strictly decreasing in

l . Develop a suitably modi�ed implementation of saddleback search.)

State precisely the postcondition of your program as well as the invariant property

and bound function on which any loop in your program is based. Justify clearly every

test and assignment in your program.

How would you modify the program so that all multiplications are replaced by addi-

tions?

2

3 Periodic Functions

Exercise 6 A function f from natural numbers to natural numbers is said to be

ultimately periodic if there are numbers i and j such that i< j and fi.0= fj.0 . (fi

denotes i applications of f . So, f0.0=0 and fk+1.0= f.(fk.0) .) The period of f is

the smallest strictly positive number p such that, for some i , fi.0= fi+p.0 . (Random-

number generators are examples of ultimately periodic functions.)

Formally, the period of an ultimately periodic function f is a solution of

p:: 1≤p ∧
〈
∃m ::

〈
∀ i,j : i≤ j : fi.0= fj.0 ≡ m≤ i ∧ p \ j−i

〉〉
.

The notation \m\n " means \m divides n " (or \n is a multiple of m ", speci�cally,

〈∃k :: n=k×m〉). (In mathematical vernacular, the existential quanti�cation over the

variable m would be expressed as \for all su�ciently large i and j ".)

As a consequence, we have (for ultimately periodic f)〈
∀k : 1≤k : fk.0= f2×k.0 ⇒ p\k

〉
(Instantiate i and j to k and 2×k , respectively.)

Use this property to construct a program that, given ultimately periodic f , computes

a multiple of the period of f . Your program should use only simple variables (thus, no

arrays or other complex data structures).

2

Program Construction c Roland Backhouse. January 25, 2012

5

Exercise 7 For any number N greater than 0 , the decimal representation of 1
N

is

ultimately periodic. That is, it consists of an initial sequence d0 , d1 , . . . , dm−1 of digits

followed by a sequence dm , dm+1 , . . . , dn−1 that is repeated over and over. For example,
1
4
=0.25000 . . . is the initial sequence 25 followed by the sequence 0 repeated over and

over (m=2 and n=3), while 1
7
=0.142857142857 . . . is the sequence 142857 repeated

over and over (m=0 and n=6). This question is about constructing a program to

determine the period n−m using only simple variables (thus, no arrays or other complex

data structures).

Consider, for example, the case of �nding the decimal representation of 1
7
. Long-

division can be used to check that 1
7
=0.142857142857 (Check the calculation

yourself.) At each iteration, a new digit is calculated together with a new remainder

value. (For 1
7
the successive values of the remainder are 1 , 3 , 2 , 6 ,) Observe the

value of the remainder at each step; it is a number that is less than 7 , and hence the

sequence of remainders will eventually repeat. In general, using long-division to compute
1
N
, the remainder at each step will eventually repeat.

The calculation of the digits of 1
N

initialises remainder r to 1 and subsequently

iterates execution of the assignment

r,d := (10×r)modN, (10×r)÷N .

Let r.i denotes the value of r after the i th iteration. In addition, let d.i denotes the

value of d after the i th iteration. (So, r.0=1 and r.(i+1)= (10× r.i)modN .). Also,

d.0 is unde�ned, and d.(i+1)= (10× r.i)÷N .)

a) It is a fact that the period of the digits of 1
N

is the same as the period of the remainder

r . Formulate and prove a precise statement of this property.

b) Show that r.N will eventually repeat. That is, show that

〈∃k : 0<k : r.N= r.(N+k)〉 .

c) Making use of parts (a) and (b), construct a program that computes the period of the

decimal representation of 1
N

using only simple variables (thus no arrays or other complex

data structures).

2

4 Euclid’s Algorithm

The oldest known algorithm, Euclid's algorithm for computing greatest common divisors,

is an excellent source of examination questions.

Program Construction c Roland Backhouse. January 25, 2012

6

Throughout, m and n are natural numbers. We use the notation \m\n " to mean

\m divides n " (or \n is a multiple of m ", speci�cally, 〈∃k :: n=k×m〉). Note that
the divides relation is a partial ordering on numbers. (That is, it is reexive, anti-

symmetric and transitive.) The number 0 is the largest number in this ordering. (That

is, m\0 for all m .)

Exercise 8 The greatest common divisor of numbers m and n , denoted m gcdn , is

de�ned by, for all numbers p ,

p\ (m gcdn) ≡ p\m ∧ p\n .(9)

(We use an in�x notation for the gcd operator because it is associative and symmetric;

note that its unit is 0 .)

The following program computes the greatest common divisor of positive natural

numbers M and N using Euclid's algorithm.

{ 0<M ∧ 0<N }

m,n := M,N ;

{ Invariant: 0<m ∧ 0<n ∧ M gcdN = m gcdn }

do m<n → n := n−m

2 n<m → m := m−n

od

{ M gcdN=m } .

a) Suggest a bound function for the program.

b) Construct veri�cation conditions that demonstrate that the loop body maintains the

invariant, and that the postcondition is satis�ed on termination of the loop body.

c) Prove the validity of the veri�cation conditions you have constructed using (9).

d) Show how to prove that multiplication distributes over gcd by identifying a suitable

invariant of the algorithm. State clearly the de�nition of gcd that you assume, and what

properties of subtraction are needed to verify the invariant.

Suppose the program is augmented with assignments to variables p and q , as shown

below.

{ 0<M∧ 0<N }

m,n,p,q := M,N,M,N ;

Program Construction c Roland Backhouse. January 25, 2012

7

{ Invariant: 0<m ∧ 0<n ∧ M gcdN = m gcdn }

do m<n → n,q := n−m,p+q

2 n<m → m,p := m−n ,p+q

od

{ M gcdN=m } .

e) Identify an invariant property relating all of m , n , p and q . The property involves

a linear combination of some, but not all of, m×p , n×p , m×q and n×q .

f) The least common multiple of M and N , denoted m lcmn , has the property that

(m lcmn)× (m gcdn) = m×n .

Using this fact, and your solution to part (e), show how to calculate the least common

multiple of M and N from the �nal values of p and q .

2

5 Quantifiers

These questions are mainly about the use of quanti�ers.

Exercise 10 Suppose a is an array of numbers of length N . For integers i , h and

k , de�ne asc.(i,h,k) by:

asc.(i,h,k) ≡ 0≤ i≤ i+h≤k ∧ 〈∀j : i≤ j< i+h : a[i]≤a[j]〉

(In words, asc.(i,h,k) means that the segment of a of length h beginning at index i is

an ascending subsegment of the k -long initial segment of a .) De�ne the function len

by

len.k = 〈⇑ h,i : asc.(i,h,k) : h〉 .

(In words, len.k is the maximum length of an ascending segment of the k -long initial

segment of a .)

In answering the following questions, state clearly the properties of quanti�ers that

you use at each step of your calculations.

a) Simplify len.0 .

b) Show that

len.(k+1) = len.k ↑ 〈⇑ h : asc.(k+1−h ,h , k+1) : h〉

2

Program Construction c Roland Backhouse. January 25, 2012

8

6 Miscellaneous

Exercise 11 It is required to reverse the elements of a large array. For example, if

the array stores the values

3 6 2 0 1 4 0 9 4 ,

(in that order) after the reversal it should store the values

4 9 0 4 1 0 2 6 3 .

Design a program that performs an in-situ reversal. (That is, the program may use only

a constant amount of additional storage space; it is not allowed to copy the array into

another array.) The program should be designed to work for arrays of arbitrary length

(including zero, of course). You should assume that the procedure swap is such that

swap(i,j) swaps the array values indexed by i and j , provided that i and j are within

the bounds of the array. When i equals j , you may assume that the procedure call is

equivalent to skip.

Your program should be annotated with su�cient assertions that it is possible for

an independent reader to determine its speci�cation and formally verify that the spec-

i�cation is met by the program. In particular, the assertions should guarantee that no

array-bound errors can occur.

2

Exercise 12 Consider the process of repeatedly removing from a bag of values any

two distinct values until it is no longer possible to do so. A bag that results from this

process is called a reduction of the initial bag.

For example, given the bag of values

0 0 2 1 0 5 2 ,

removing 0 and 2 , followed by 1 and 0 , and then 5 and 2 results in a bag with one

element 0 . Alternatively, removing 0 and 2 , followed by 0 and 1 , and then 0 and 5

results in a bag with one element 2 .

Note that these two examples demonstrate that a reduction of a bag is not uniquely

de�ned.

a) What relation holds between the size of a reduction and the size of the original bag?

What can be said about the number of distinct elements in a reduction?

b) Construct a program that calculates a reduction of a given bag. Assume that the

bag of values is represented by an array B of length N . Your program should be linear

Program Construction c Roland Backhouse. January 25, 2012

9

in the size of the initial bag; it should inspect the elements of the array one-by-one,

maintaining the invariant that R is a reduction of the inspected array elements. Choose

a suitable representation of R . (Hint: Exploit your solution to (a).)

c) Suppose an element of the initial bag occurs a majority of times (i.e. more than

N÷2 times, where N is the size of the bag). What can be said about any reduction of

the bag? Justify your claim. Making use of your answer, extend the program so that

it determines whether there is an element of the initial bag that occurs a majority of

times.

2

Exercises 13 (below) and 12(above) are (disguised) variations of the same problem.

Exercise 13 Assume that V is an array of length N . The function count is de�ned

for all k , 0≤k≤N , and all x of the same type as the array elements, by

count(x,k) = 〈Σj : 0≤ j<k ∧ V [j]=x : 1〉 .

(In words, count counts the number of times the value x occurs in the initial segment

of V of length k .)

The skeleton program below maintains three variables k , x and e , where k and x

are as above, and e is a natural number.

{ 0≤N }

k , x , e := 0 ,any , 0 { any value will do for x }

; { Invariant:

0≤k≤N ∧ k−e≤e

∧ count(x,k)≤e

∧ 〈∀y : y 6=x : count(y,k) ≤ k−e〉

Bound function: N−k }

do k<N → body ; k := k+1

od

{ 〈∀y : y 6=x : ¬(count(y,N) > bN/2c)〉 }

a) Complete the program by �lling in the details of the loop body (identi�ed by \ body "

in the program).

b) Check formally the initialisation of the loop (i.e. the assignment \k , x , e := 0 ,any , 0 ").

State clearly the rules of the quanti�er calculus that you use.

c) Check formally that the postcondition is indeed satis�ed when the program terminates,

stating clearly any properties of the oor function that you use.

Program Construction c Roland Backhouse. January 25, 2012

10

2

Mex numbers are used in combinatorial game theory to determine winning strategies.

This question is interesting for students who have been exposed to the theory.

Exercise 14 The mex number of an array of natural numbers is the smallest natural

number that is not an element of the array. For example, the array

5 3 8 1 2 7 0 6 4

has mex number 9 , and the array

0 3 2 1 0 5 2

has mex number 4 . This question is about constructing an algorithm to calculate the

mex number of a given array.

a) Write a formal speci�cation of the mex number mex.k of the initial segment of length

k of array A . Assume that array indices begin with 0 , and the i th element of the array

is denoted by A[i] .

b) Use your speci�cation to derive the value of mex.0 .

One way to compute the mex number of an array is to �rst sort the array into

ascending order..

c) Assuming that the array is sorted, give an algorithm to compute its mex number.

Make explicit the invariant of any loops in your algorithm.

Sorting the array is not a very e�cient way of calculating the mex number of an

array when the length of the array is very large. A more e�cient way would be to sort

the array only to the extent that is necessary. This is the goal of the �nal part of this

question.

d) Consider the following (informally stated) sketch of an algorithm.

Introduce variables a , m , k and s . The variable m records the mex number of

the initial segment of length k of the given array, A . The variable a records a \semi-

sorted" permutation of A ; it is semi-sorted in that the initial segment of length k of a

is a permutation of the initial segment of length k of A , the �rst s elements of a are

all less than m , and the next k−s elements of a are all greater than m . For example,

suppose A is the following:

0 3 1 1 0 5 2

Then, when k=2 , m and s would both be 1 , and the array a would be equal to A .

When k=4 , m would be 2 , s would be 3 , and the array a would be as follows:

0 1 1 3 0 5 2

Program Construction c Roland Backhouse. January 25, 2012

11

Construct an algorithm to calculate the mex number of a given array using the

above as the invariant. Your algorithm should make use of only a swap procedure

to change the array a , once it has been initialised. (Assume that swap(i,j) swaps

the elements A[i] and A[j] , and that swap(i,i) is valid, but has no e�ect.) For

this reason, it is not necessary to include the fact that a is a permutation of A in

your invariant. (Hint: for progress, use a lexicographic ordering on the pair (m,k) ;

that is, progress is made by either increasing m , or not changing m and increasing

k .)

2

Exercise 15 An array a is said to be a permutation if its elements form a permutation

of the �rst N natural numbers, where N is the length of a . (That is, each of the

numbers 0 , 1 , . . . , N−1 occurs exactly once in the array.) For example, the array

5 3 8 1 2 7 0 6 4

of length 9 is a permutation of the numbers 0 , 1 , . . . , 8 .

An inversion is a pair of indices i and j such that 0≤ i< j<N∧a[j]<a[i] . An

example of an inversion is the pair (2, 7) | the array elements a[2] (which equals 8)

and a[7] (which equals 6) satisfy a[7]<a[2] . The array has, in fact, a total of 19

inversions. An array that is sorted in ascending order would have no inversions.

Given a permutation a , the corresponding inversion count is an array b of the same

length as a such that the element b[i] is the number of inversions with �rst component

i . For the array above, the inversion count is the array

5 3 6 1 1 3 0 1 0 .

It is not di�cult to design an algorithm that given a permutation computes its inversion

count. More di�cult is to design an e�cient algorithm that, given an inversion count,

computes the corresponding permutation. This question is about the latter problem. To

help you, part (a) suggests a non-obvious method of computing an inversion count. Part

(b) is then about reversing the steps in the inversion-count algorithm in order to solve

the problem of constructing a permutation from an inversion count.

In order to specify the two problems, we use the notation

〈Ni : r : p〉

to denote the number of values i in the range r that satisfy the property p . For

example,

〈Ni : 0≤ i<M :a[0]<a[i]〉 = a[0]

Program Construction c Roland Backhouse. January 25, 2012

12

is a property of a permutation a of length M .

This example is simultaneously a hint for later! It is illustrated by the permutation

and inversion count given above | the number 5 is the �rst element in both arrays.

The property is true because, for any number k , there are k natural numbers less than

k , and the inversion count of a[0] is the number of natural numbers less than a[0] .

Also, that array a0 is a permutation is speci�ed formally by

〈∀j : 0≤ j<M : 〈Ni : 0≤ i<M :a0[i]= j〉 = 1〉 .

This property of the array a0 should be assumed throughout.

(a) Develop an algorithm to compute the inversion count of the permutation a0 . The

algorithm should use a loop variable k that is initialised to 0 and is incremented by 1

at each iteration of the loop. The loop should update the given array so that its initial

value is a permutation and its �nal value is the inversion count. That is, it should satisfy

the speci�cation

{ 0≤M ∧ 〈∀j : 0≤ j<M : a[j] = a0[j]〉 }

CountInversions

{ 〈∀i : 0≤ i<M : a[i] = 〈Nj : i≤ j<M :a0[j]<a0[i]〉〉 }

It should do so by maintaining the following invariant properties:

� The �nal segment of the array of length M−k is a permutation. (Recall that

this means that every natural number less than M−k occurs exactly once in the

segment.)

� The �nal segment of the array of length M−k has the same inversion count as the

given permutation a0 . That is,

〈∀i :k≤ i<M : 〈Nj : i≤ j<M :a[j]<a[i]〉 = 〈Nj : i≤ j<M :a0[j]<a0[i]〉〉 ,(16)

� The initial segment of the array of length k is the inversion count of the initial

segment of the given permutation a0 . That is,

〈∀i : 0≤ i<k :a[i] = 〈Nj : i≤ j<M :a0[j]<a0[i]〉〉 .(17)

For example, for the permutation above, when k has the value 5 , the array should have

been transformed to

5 3 6 1 1 3 0 2 1

The initial segment of length 5

Program Construction c Roland Backhouse. January 25, 2012

13

5 3 6 1 1

is the inversion count for the corresponding initial segment of the input permutation.

Moreover, the �nal segment,

3 0 2 1 ,

is a permutation (of the numbers 0 , 1 , 2 and 3). It has the same inversion count as

7 0 6 4 ,

which is the corresponding �nal segment of the input permutation.

In your solution, you may �nd it convenient to refer to the invariant properties by the

labels given to them above.

2

Drawing a parabola is a longer exercise than drawing a hyperbola. Nevertheless, it is

very straightforward if the principles are well understood.

Exercise 18 A raster display is a two-dimensional grid of pixels. The pixels are all

squares of equal size. A black-and-white drawing is an assignment of booleans to each

of the pixels.

The equation of a parabola is

x, y :: a×y = b×x2 ,

where a and b are given constants.

Develop a program to construct a drawing of a parabola in the quadrant

m,n :: 0≤m ∧ 0≤n .

You should assume that a and b are positive integers.

Your program should have two phases. In the �rst phase, coordinate m is incre-

mented, whilst coordinate n (the best integer approximation to (b×m2)/a) is com-

puted. In the second phase, n is incremented whilst m (the best integer approximation

to
√

(a×n)/b) is computed. The �rst phase should be terminated when increasing m

by 1 results in an increase in n by more than 1 . There is no need to provide a termina-

tion condition for the second phase.

2

Program Construction c Roland Backhouse. January 25, 2012

14

Solutions to Exercises

1 (\Everywhere" brackets denote universal quanti�cation with bound variables M , r ,

q .)

a) The veri�cation condition for termination is:

[¬(10<r) ∧ M+1 = 9×q+ r ⇒ 0≤ r−1<9 ∧ M = 9×q+ (r−1)] .

The bug is that ¬(10<r) does not imply r−1<9 . The termination test should be

10≤ r .

b) At this point, we note that 0≤ r−1 is not guaranteed. This (or the equivalent 1≤ r)

must be added to the invariant. From now on, the invariant is

1≤ r ∧ M+1 = 9×q+ r .

c)

r q

1368 0

144 136

18 150

9 151

8 151

Table 1: M=1367

r q

25680 0

2568 2568

264 2824

30 2850

3 2853

2 2853

Table 2: M=25679

d) From the test cases, it is clear that the intention is that r decreases at each iteration.

So, the bound function is r .

(An alternative bound is obtained by observing that q always increases. However,

in that case, it is necessary to show, from the invariant, that there is an upper bound on

Program Construction c Roland Backhouse. January 25, 2012

15

q . A suitable upper bound is M . This gives as bound function M−q . Both solutions

are acceptable. The details for the �rst are given below.)

e)

Initialisation:

[0≤M ⇒ M+1 = 9×0+M+1 ∧ 1≤M+1] .

Termination:

[¬(10≤ r) ∧ 1≤ r ∧ M+1 = 9×q+ r ⇒ 0≤ r−1<9 ∧ M = 9×q+ (r−1)] .

Loop body. There are two conditions, corresponding to making progress and maintaining

the invariant. (Solutions that combine the two into one statement are also acceptable.)

Making progress (K is a ghost variable):

[10≤ r ∧ 1≤ r ∧ M+1 = 9×q+ r ∧ r=K ⇒ (rmod 10)+ (r÷10)<K] .

Maintaining the invariant:

[10≤ r ∧ 1≤ r ∧ M+1 = 9×q+ r⇒ 1 ≤ (rmod 10)+ (r÷10)

. ∧ M+1 = 9×(q+ (r÷10))+ (rmod 10)+ (r÷10)

Each of the veri�cation conditions is everywhere true, so the program is correct.

2

2 (\Everywhere" brackets denote universal quanti�cation over the bound variables m ,

M , x , X and z .)

Initialisation:

[0≤M ⇒ 0≤M ∧ M×X+ 0 = M×X] .

Termination (conditional correctness):

[¬(m 6=0) ∧ 0≤m ∧ m×x+y = M×X ⇒ y=M×X] .

Loop body. There are four veri�cation conditions, corresponding to the two branches of

the conditional statement, making progress and maintaining the invariant.

Making progress:

[m 6=0 ∧ m=K ∧ 0≤m ∧ m×x+y = M×X ∧ even.m⇒ m÷2<K] .

Program Construction c Roland Backhouse. January 25, 2012

16

[m 6=0 ∧ m=K ∧ 0≤m ∧ m×x+y = M×X ∧ odd.m⇒ (m−1)÷2<K] .

Maintaining the invariant:

[m 6=0 ∧ 0≤m ∧ m×x+y = M×X ∧ even.m⇒ (m÷2)×2×x+y = M×X] .

[m 6=0 ∧ 0≤m ∧ m×x+y = M×X ∧ odd.m⇒ ((m−1)÷2)×2×x+y−x = M×X] .

Note that the latter veri�cation condition is invalid.

Formally, two additional veri�cation conditions are needed: that the measure of

progress is a natural number is implied by the invariant:

[0≤m ∧ m×x+y = M×X ⇒ 0≤m] ,

and the two cases in the conditional are exhaustive:

[even.m∨ odd.m] .

b) As pointed out above, one veri�cation condition is invalid. This is corrected by

replacing \y−x " in the assignment by \y+x ".

2

3 We introduce variables m and n , with the invariant properties:

〈∀i : 0≤ i<m : 〈∀j : 0≤ j : f.i 6=g.j〉〉

∧ 〈∀j : 0≤ j<n : 〈∀i : 0≤ i : f.i 6=g.j〉〉

We observe that, because g is ascending, if f.m<g.n , m can be incremented by 1.

Conversely, because f is ascending, if g.n<f.m , n can be incremented by 1. We thus

obtain the following algorithm.

{ true }

m,n := 0,0 ;

{ Invariant: as above }

do f.m<g.n → m := m+1

2 g.n<f.m → n := n+1

od .

Program Construction c Roland Backhouse. January 25, 2012

17

The measure of progress in (M−m)+ (N−n) where M and N are the known values

satisfying f.M=g.N .

2

4 a)

〈⇓ i,j : m≤ i<M ∧ n≤ j<N : |f[i]−g[j]|〉

= { range splitting (on j=n) }

〈⇓ i : m≤ i<M : |f[i]−g[n]|〉 ↓ 〈⇓ i,j : m≤ i<M ∧ n+1≤ j<N : |f[i]−g[j]|〉

= { 〈⇓ i : m≤ i<M : |f[i]−g[n]|〉

= { range splitting (on i=m) }

|f[m]−g[n]| ↓ 〈⇓ i : m+1≤ i<M : |f[i]−g[n]|〉

= { f[m]−g[n] ≥ 0 ,

for all i , m+1≤ i<M ⇒ f[m]≤ f[i]

(and hence f[m]−g[n] ≤ f[i]−g[n]) }

f[m]−g[n] }

(f[m]−g[n]) ↓ 〈⇓ i,j : m≤ i<M ∧ n+1≤ j<N : |f[i]−g[j]|〉 .

b)

〈⇓ i,j : m≤ i<M ∧ n≤ j<N : |f[i]−g[j]|〉

= (g[n]− f[m]) ↓ 〈⇓ i,j : m+1≤ i<M ∧ n≤ j<N : |f[i]−g[j]|〉 .

c) (A complete solution would go through the process of introducing variables m and n ,

capturing their function in the invariant, and then analyzing the invariant to determine

when m can be increased and when n can be increased.)

The initialisation of d is to a value that is at least as large as the �nal answer.

The value |f[0]−g[0]| is as good as any. (In�nity is less desirable for implementation

purposes, but must be chosen if M or N is allowed to be zero.).

{ 〈∀i : 0≤ i<M : 〈∀j : i≤ j<M : f[i]≤ f[j]〉〉

∧ 〈∀i : 0≤ i<N : 〈∀j : i≤ j<N : g[i]≤g[j]〉〉 }

m,n,d := 0,0,|f[0]−g[0]| ;

{ Invariant:

d ↓ 〈⇓ i,j : m≤ i<M ∧ n≤ j<N : |f[i]−g[j]|〉

= 〈⇓ i,j : 0≤ i<M ∧ 0≤ j<N : |f[i]−g[j]|〉 }

Program Construction c Roland Backhouse. January 25, 2012

18

do m 6=M ∧ n 6=N → if f.m<g.n → m,d := m+1 , d↓(g[n]− f[m])

2 g.n<f.m → n,d := n+1 , d↓(f[m]−g[n])

2 f.m=g.n → m,n,d := M,N,0

fi

od .

The measure of progress (bound function) is (M−m)+ (N−n) .

2

5 As pointed out, the function mapping k and l to M×k−N×l is strictly increasing

in k and strictly decreasing in l . A saddleback search can be used to determine how

often this function has the value 0. We introduce variables k , l and count , with the

invariant property:

0≤k≤N ∧ 0≤ l≤M ∧ count+S.(k,l) = S.(0,0)

where

S.(k,l) = 〈Σi,j : k≤ i≤N ∧ l≤ j≤M ∧ M×i=N×j : 1〉 .

The initialisation is straightforward: set all of k , l and count to 0 . For the loop body,

we observe that, because M×k−N×l is strictly increasing in k , if M×k<N×l , k can

be incremented by 1. Conversely, because M×k−N×l is strictly decreasing in l , if

N×l<M×k , l can be incremented by 1. When M×k and N×l are equal, the count

is incremented as well as both k and l . The loop is terminated when either k equals

N or l equals M. On termination of the loop,

(k=N ∨ l=M) ∧ count+S.(k,l) = S.(0,0) .

Since M is the unique solution of the equation j:: M×N=N×j , and N is the unique so-

lution of the equation i:: M×i=N×M , we conclude that S.(N,l) = S.(k,M) = 1 (when

l≤M and k≤N). That is, on termination,

count+1 = S.(0,0) .

We thus obtain the following algorithm.

{ 0≤M ∧ 0≤N }

k , l , count := 0 , 0 , 0 ;

{ Invariant: as above }

do k 6=N∧ l 6=M → if M×k<N×l → k := k+1

Program Construction c Roland Backhouse. January 25, 2012

19

2 N×l<M×k → l := l+1

2 M×k=N×l → k , l , count := k+1 , l+1 , count+1

fi

od ;

count := count+1

{ count = S.(0,0) = 〈Σi,j : 0≤ i≤N ∧ 0≤ j≤M ∧ M×i=N×j : 1〉 } .

The measure of progress is (M−l)+ (N−k) . This is bounded below by 0 (because

0≤k≤N ∧ 0≤ l≤M) and is decreased at each iteration (either by 1 or by 2).

In order to avoid the repeated multiplication of M by k and N by l , we maintain

a variable d with the invariant property d = M×k−N×l . The modi�cations are

straightforward:

{ 0≤M ∧ 0≤N }

k , l , count , d := 0 , 0 , 0 , 0 ;

{ Invariant: as above }

do k 6=N∧ l 6=M→ if d<0 → k ,d := k+1 , d+M

2 d>0 → l , d := l+1 , d−N

2 d=0 → k , l , count , d := k+1 , l+1 , count+1 , d+M−N

fi

od ;

count := count+1

{ count = S.(0,0) = 〈Σi,j : 0≤ i≤N ∧ 0≤ j≤M ∧ M×i=N×j : 1〉 } .

2

6 It su�ces to use two variables, one to record fk.0 for successive values of k , and the

other to record f2×k.0 . The program terminates when the two values are equal:

{ f is ultimately periodic }

f1,f2,k := f.0 , f2.0 , 1 ;

{ Invariant: f1= fk.0 ∧ f2= f2×k.0 ∧ 1≤k }

do f1 6= f2 → f1,f2,k := f.f1 , f.(f.f2) , k+1

od

Program Construction c Roland Backhouse. January 25, 2012

20

{ fk.0= f2×k.0 } ;

p := k

{ p is a multiple of the period of f }

2

7 a) The precise statement of the property is: for all m and n ,

〈∀j :: d.(m+j+1) = d.(m+n+j+1)〉 ≡ 〈∀j :: r.(m+j) = r.(m+n+j)〉 .

To prove this property, we �rst calculate as follows:

d.(i+1) = d.(i+j+1)

= { de�nition of d }

(10× r.i)÷N = (10× r.(i+j))÷N

= { Leibniz, 0<N }

(10× r.i)÷N×N = (10× r.(i+j))÷N×N

= { p = p÷N×N + pmodN (applied twice) }

10× r.i − (10× r.i)modN = 10× r.(i+j) − (10× r.(i+j))modN

= { arithmetic }

10×(r.i− r.(i+j)) = (10× r.i)modN− (10× r.(i+j))modN

= { de�nition }

10×(r.i− r.(i+j)) = r.(i+1)− r.(i+j+1) .

So,

〈∀j :: d.(m+j+1) = d.(m+n+j+1)〉

= { above with i,j := m+j , n }

〈∀j :: 10×(r.(m+j)− r.(m+n+j)) = r.(m+j+1)− r.(m+n+j+1)〉

= { An easy inductive proof shows that,

for any sequence of numbers c ,

〈∀j :: 10× c.j = c.(j+1)〉

≡
〈
∀j :: 10j× c.0 = c.j

〉
.

Instantiate c.j to r.(m+j)− r.(m+n+j) . }〈
∀j :: 10j×(r.m− r.(m+n)) = r.(m+j+1)− r.(m+n+j+1)

〉
Program Construction c Roland Backhouse. January 25, 2012

21

= { r.(m+j+1)− r.(m+n+j+1) is bounded

above and below (by −N and N)

10j×(r.m− r.(m+n)) is bounded

exactly when r.m− r.(m+n) = 0 }

〈∀j :: 0 = r.(m+j)− r.(m+n+j)〉

= { arithmetic }

〈∀j :: r.(m+j) = r.(m+n+j)〉 .

b) All N+1 numbers in the sequence r.0 , r.1 , . . . , r.N are at most 0 and less than

N . So, at least two of them must be equal. That is,

〈∃ j,k : 0≤ j<k≤N : r.j= r.k〉 .

From the de�nition of r , it follows that

〈∃ j,k : 0≤ j<k≤N : 〈∀i : 0≤ i : r.(i+j)= r.(i+k)〉〉 .

(Formally, this is proved by induction on i .) Instantiating i to N−j , we get

〈∃ j,k : 0≤ j<k≤N : r.N= r.(N−j+k)〉 .

Thus (with m :=k−j)

〈∃m : 0<m : r.N= r.(N+m)〉 .

c) We �nd the N th remainder, and then determine the smallest positive k for which

r.N= r.(N+k) .

i,r := 0,1 ; do i 6=N → i,r := i+1 , (10×r)modN od

{ r= r.N } ;

k , r ′ := 1 , rmodN ;

do r 6= r ′ → k,r := k+1 , (10×r ′)modN od

The �rst loop has invariant r= r.i ; the second loop has invariant

r= r.N ∧ r ′ = r.(N+k) ∧ 〈∀j : 0< j<k : r.N 6= r.(N+j)〉 .

(These are easily checked.) The second loop terminates as a result of part (b). It

terminates with r= r ′ . So, combining with the invariant, this means that k is set to

the period of r . From part (a), this is the period of the decimal representation of 1
N
.

2

Program Construction c Roland Backhouse. January 25, 2012

22

8 a) m+n .

b) Following the mechanical process for constructing veri�cation conditions, we get:

[m<n ∧ 0<m ∧ 0<n ∧ M gcdN = m gcdn⇒ 0<m ∧ 0<n−m ∧ M gcdN = m gcd (n−m)]

[n<m ∧ 0<m ∧ 0<n ∧ M gcdN = m gcdn⇒ 0<m−n ∧ 0<n ∧ M gcdN = (m−n) gcdn]

and

[0<m ∧ 0<n ∧ M gcdN = m gcdn ∧ ¬(m<n∨n<m)⇒ M gcdN = m]

c) The veri�cation conditions are valid if we can prove that

[m gcdn = m gcd (n−m)]

and

[m gcdm = m] .

(The latter arises because ¬(m<n∨n<m) ≡ m=n .)

The former is established by rule of indirect equality. For all p ,

p\ (m gcd (n−m))

= { (9) }

p\m ∧ p\(n−m)

= { de�nition of division }

〈∃k :: m=k×p〉 ∧ 〈∃k :: n−m=k×p〉

= { distributivity, renaming }

〈∃k :: m=k×p ∧ 〈∃j :: n−m= j×p〉〉

= { Leibniz }

〈∃k :: m=k×p ∧ 〈∃j :: n−k×p = j×p〉〉

= { arithmetic, range translation: j := j−k }

〈∃k :: m=k×p ∧ 〈∃j :: n= j×p〉〉

= { distributivity }

Program Construction c Roland Backhouse. January 25, 2012

23

〈∃k :: m=k×p〉 ∧ 〈∃k :: n=k×p〉

= { de�nition of divides }

p\m ∧ p\n

= { (9) }

p\ (m gcdn) .

Substituing m gcd (n−m) for p , and m gcdn for p , and using the anti-symmetry of

the divides relation, we get

[m gcdn = m gcd (n−m)] .

For the second property, we have, for all p :

p\ (m gcdm)

= { (9) }

p\m ∧ p\m

= { idempotency of conjunction }

p\m .

Substituing m gcdm for p , and m for p , and using the anti-symmetry of the divides

relation, we get

[m gcdm = m] .

d) The invariant is

〈∀ c , k :: k\ (c×M) ∧ k\ (c×N) ≡ k\ (c×m) ∧ k\ (c×n)〉

The de�nition of gcd is

〈∀k :: k\M ∧ k\N ≡ k\ (M gcdN)〉

On termination of the algorithm, m and n are both equal to M gcdN . It follows that

〈∀ c , k :: k\ (c×M) ∧ k\ (c×N) ≡ k\ (c× (M gcdN))〉

Since c×M gcd c×N is the unique number x satisfying

〈∀k :: k\ (c×M) ∧ k\ (c×N) ≡ k\x〉

it follows that c× (M gcdN) and c×M gcd c×N are equal.

In order to verify the invariant, we need to show that

k\ (c×m) ∧ k\ (c×n) ≡ k\ (c× (m−n)) ∧ k\ (c×n)

for all k and c , and all strictly positive m and n such that n<m .

e)

Program Construction c Roland Backhouse. January 25, 2012

24

m×q+n×p = 2×M×N .

(This can be calculated from the hint by assuming that a , b , c and d are such that

a×m×p+b×m×q+ c×n×p+d×n×q

is a constant. Then, using the assignment axiom, we require that

a×m×p+b×m×q+ c×n×p+d×n×q

= a×(m−n)×(p+q)+b×(m−n)×q+ c×n×(p+q)+d×n×q

This is true if a and d are both 0 and b and c are both 1 . Symmetrically, we require

that

a×m×p+b×m×q+ c×n×p+d×n×q

= a×m×p+b×m×(p+q)+ c×(n−m)×p+d×n×(p+q)

This is also true if a and d are both 0 and b and c are both 1 .)

f) On termination, m=n=M gcdN . So,

true

= { (d) and m=n=M gcdN }

(M gcdN)× (p+q) = 2×M×N

= { (m lcmn)× (m gcdn) = m×n }

(M gcdN)× (p+q) = 2× (M lcmN)× (M gcdN)⇒ { arithmetic }

(p+q)÷2 = M lcmN .

That is, on termination, the average of p and q is the least common multiple of M

and N .

2

10 a)

len.0

= { de�nition of len }

〈⇑ h,i :asc.(i,h,0) :h〉

= { de�nition of asc }

〈⇑ h,i : 0≤ i≤ i+h≤0 ∧ 〈∀j : i≤ j< i+h : a[i]≤a[j]〉 : h〉

Program Construction c Roland Backhouse. January 25, 2012

25

= { 0≤ i≤ i+h≤0 ≡ 0= i=h ,

Leibniz }

〈⇑ h,i : 0= i=h∧ 〈∀j : 0≤ j<0 :a[i]≤a[j]〉 : h〉

= { empty range }

〈⇑ h,i : 0= i=h :h〉

= { one-point rule }

0 .

b)

len.(k+1)

= { de�nition of len }

〈⇑ h,i : asc.(i , h , k+1) : h〉

= { de�nition of asc }

〈⇑ h,i : 0≤ i≤ i+h≤k+1 ∧ 〈∀j : i≤ j< i+h : a[i]≤a[j]〉 : h〉

= { range splitting on i+h=k+1 ,

de�nition of len }

len.k ↑ 〈⇑ h,i : 0≤ i≤ i+h=k+1 ∧ 〈∀j : i≤ j< i+h : a[i]≤a[j]〉 : h〉

= { one-point rule }

len.k ↑ 〈⇑ h : 0≤k+1−h≤k+1 ∧ 〈∀j : k+1−h≤ j<k+1 : a[i]≤a[j]〉 : h〉

= { de�nition of asc }

len.k ↑ 〈⇑ h : asc.(k+1−h ,h , k+1) : h〉 .

2

11 The array elements are reversed from the outside inwards. The two indices j and k

delimit that part of the array still to be reversed. N is the length of the array.

{ 0≤N ∧ 〈∀i : 0≤ i<N : a[i]=a0[i]〉 }

j,k := 0 ,N−1

{ Invariant:

0≤ j<N ∧ 0≤k<N ∧ j=N−1−k

∧ 〈∀i : 0≤ i< j ∨ k≤ i<N : a[i]=a0[N−1−i]〉

Program Construction c Roland Backhouse. January 25, 2012

26

∧ 〈∀i : j≤ i≤k : a[i]=a0[i]〉

Bound function: k−j }

; do j<k → swap(j,k) ; j,k := j+1 , k−1

od

{ 〈∀i : 0≤ i<N : a[i]=a0[N−1−i]〉 }

Note the use of two variables j and k . This preserves the symmetry between the top

and bottom halves of the array and helps to avoid error in the calculation of the array

indices.

(This question seems very straightforward. However, a common mistake is to assert

that j≤k , and to terminate the loop when j and k are equal.)

2

12 a) The size of the reduction is even equivales the size of the initial bag is even. There

is at most one distinct element in the reduction. That is, all elements of the reduction

have a common value.

b) We represent R by a pair (c, n) . The number c is the number of elements in the

reduction, and n is the (common) value of all the elements in the reduction. If c is

zero, the value of n is arbitrary.

{ 0<M∧ 0<N }

c,n,k := 0,AnyValue,0 ;

{ Invariant: the pair c , n represents a reduction of B[0..k) }

do k<N → if c 6=0 ∧ n=B[k] → c := c+1

2 c 6=0 ∧ n 6=B[k] → c := c−1

2 c=0 → c,n := 1,B[k]

fi ;

k := k+1

od

{ the pair c , n represents a reduction of B[0..N) }

c) If an element occurs more than N÷2 times, any reduction of the bag contains that

element at least once. This is because each element is removed from the initial bag at

most N÷2 times.

After execution of the above algorithm, if c is non-zero, it su�ces to compute the

number of occurrences of the value n in the array. If c is zero, no value occurs a

majority of times.

Program Construction c Roland Backhouse. January 25, 2012

27

An algorithm for counting the number of occurrences of value n in the array is, of

course, very straightforward to write.

2

13 a) Incrementing k may falsify one or more of the three conjuncts in the invari-

ant other than 0≤k≤N . If V [k]=x , the value of count(x,k) increases by 1 . The

three conjuncts are truthi�ed by the assignment e := e+1 . If V [k] 6=x , the value of

count(x,k) remains unchanged. If k−e<e , the conjunct k−e≤e is not falsi�ed and nor

is the universal quanti�cation. So, in this case nothing needs to be done. In the �nal

case, when V [k] 6=x ∧ k−e=e , the conjunct k−e≤e is falsi�ed. We note, however,

that count(x,k) ≤ k−e (because count(x,k)≤e and k−e equals e). This is the oppor-

tunity to change the value of x . The only reasonable candidate is V [k] . Summarising,

the loop body becomes:

if V [k]=x → e := e+1

2 V [k] 6=x ∧ k−e<e → skip

2 V [k] 6=x ∧ k−e=e → x , e := V [k] , e+1

fi

To save writing inv is an abbreviation for the invariant as stated in the algorithm.

(We write it out in full when substitutions are made for the variables.)

The veri�cation conditions are as follows. (\Everywhere" brackets denote universal

quanti�cation over the bound variables count , N , V , k , e and z .)

Initialisation:

[0≤N ⇒ 0≤0≤N ∧ 0−0≤0 ∧ 〈∀y : y 6=any : count(y,0) ≤ 0−0〉] .

Termination (conditional correctness):

[¬(k<N) ∧ inv ⇒ 〈∀y :y 6=x :¬(count(y,k) > bk/2c)〉] .

Loop body. (Not asked in the question, but supplied here anyway.) There are four

veri�cation conditions, corresponding to the three branches of the conditional statement

and making progress.

Maintaining the invariant:

[k<N ∧ inv ∧ V [k]=x⇒ 0≤k+1≤N ∧ (k+1)−(e+1)≤e+1

∧ 〈∀y : y 6=x : count(y,k) ≤ (k+1)−(e+1)〉] .

Program Construction c Roland Backhouse. January 25, 2012

28

[k<N ∧ inv ∧ V [k] 6=x ∧ k−e<e⇒ 0≤k+1≤N ∧ (k+1)−e≤e

∧ 〈∀y : y 6=x : count(y,k) ≤ (k+1)−e〉] .

[k<N ∧ inv ∧ V [k] 6=x ∧ k−e=e⇒ 0≤k+1≤N ∧ (k+1)−(e+1)≤e+1

∧ 〈∀y : y 6=V [k] : count(y,k) ≤ (k+1)−(e+1)〉] .

Making progress: at each iteration the variable k is increased. Formally,

[N−k=K ⇒ N−(k+1)<K] .

b) After simpli�cation, and unfolding the de�nition of count , the initialisation is veri�ed

by checking that:

[0≤N⇒ 0≤N∧ 〈∀y : y 6=any : 〈Σj : 0≤ j<0 ∧ V [j]=y : 1〉 ≤ 0〉] .

The simpli�cation of the universal quanti�cation proceeds as follows:

〈∀y :y 6=any : 〈Σj : 0≤ j<0 ∧ V [j]=y : 1〉 ≤ 0〉

= { 0≤ j<0≡ false empty range }

〈∀y :y 6=any : 0≤0〉

= { 0≤0≡ true , true is the unit of conjunction }

true

Substituting, we have to check that

[0≤N ⇒ 0≤N∧ true]

which is clearly true .

c)

¬(k<N) ∧ inv⇒ { de�nition of the invariant }

k=N ∧ k−e≤e ∧ 〈∀y : y 6=x : count(y,k) ≤ k−e〉

= { Leibniz, arithmetic, de�nition of ceiling function }

Program Construction c Roland Backhouse. January 25, 2012

29

k=N ∧ dN/2e≤ e ∧ 〈∀y : y 6=x : count(y,N) ≤ N−e〉⇒ { monotonicity }

〈∀y : y 6=x : count(y,N) ≤ N−dN/2e〉

= { N= dN/2e+bN/2c }

〈∀y : y 6=x : count(y,N) ≤ bN/2c〉

= { converse of ≤ is > }

〈∀y : y 6=x : ¬(count(y,N) > bN/2c)〉

2

14 a)

mex.k = 〈⇓ n : 〈∀i : 0≤ i<k :n 6=A[i]〉 : n〉

b)

mex.0

= { de�nition }

〈⇓ n : 〈∀i : 0≤ i<0 :n 6=A[i]〉 : n〉

= { empty range }

〈⇓ n : false : n〉

= { range of n is the natural numbers }

0 .

c)

{ A is sorted }

m,k,done := 0,0,false ;

{ Invariant: 0≤k≤N ∧ m=mex.k ∧ (done ⇒ m=mex.N)

Bound function: k (is bounded above) }

do ¬done∧k<N → if m=A[k] → m := m+1

2 m<A[k] → done := true

2 m>A[k] → skip

fi ;

k := k+1

Program Construction c Roland Backhouse. January 25, 2012

30

od

{ m=mex.N }

d)

{ 0≤N }

m,s,k := 0,0,0 ;

{ Invariant:

0≤m≤ s≤k≤N ∧ m=mex.k

∧ 〈∀i : 0≤ i<s : a[i]<m〉

∧ 〈∀i : s≤ i<k : a[i]>m〉

Bound function: (m,k) ordered lexicographically }

do k<N → if m=A[k] → swap(s,k) ; m,s,k := m+1 , s+1 , s+1

2 m<A[k] → k := k+1

2 m>A[k] → swap(s,k) ; s,k := s+1 , k+1

fi

od

{ m=mex.N }

2

15 a)

For convenience, we use the notation a[m..n) to refer to the segment of the array a

indexed from m up to, but not including, n . We also use count.i and count0.i to

denote the inversion counts of a[i] and of a0[i] , respectively. That is,

count.i = 〈Nj : i≤ j<M :a[i]<a[j]〉 ,(19)

and

count0.i = 〈Nj : i≤ j<M :a0[i]<a0[j]〉 ,(20)

The invariant properties are then:

permutation.a[k..M) ,(21)

〈∀i : k≤ i<M : count.i = count0.i〉 ,(22)

〈∀i : 0≤ i<k : a[i] = count0.i〉 .(23)

Program Construction c Roland Backhouse. January 25, 2012

31

All three are trivially established by the assignment k :=0 . ((21) and (22) are given.)

Now, supposing all three invariant properties hold and k 6=M , the crucial observation

is that

a[k] = count.k .

(This is the hint given in the question. It is a consquence of (21).) So, incrementing

k by 1 maintains (17). It also maintains (16) but it may invalidate (21). To re-

establish (21) and simultaneously maintain (16) after incrementing k , divide the array

indices into three disjoint sets: those indices i for which 0≤ i≤k , those for which

k<i<M∧a[i]<a[k] and those for which k<i<M∧a[i]>a[k] . (Note that k<i<M

and a[i]=a[k] is not possible.) By decrementing a[i] by 1 whenever i is in the third

set (i.e. k<i<M∧a[i]>a[k]), whilst leaving all other array elements unchanged, we

� maintain invariant the inversion count for elements in the �rst set,

� maintain invariant the inversion count for elements in the third set (since all are

uniformly decremented),

� maintain invariant the inversion count between elements in the second set (since

all are unchanged),

� maintain invariant the inversion count between elements in the second set and

elements in the third set (since the di�erence between elements in the two sets is

at least 2 before the decrement and hence at least 1 after the decrement),

� maintain invariant the uniqueness of all array values in the �nal segment of the

array (again because the di�erence between elements in the second and third sets

is at least 2 before the decrement and hence at least 1 after the decrement, and

because elements in the third set are uniformly decremented).

In other words, we reestablish (21) and simultaneously maintain (16) as required. Thus

the program is as follows:

{ 0≤M ∧ 〈∀j : 0≤ j<M :a[j] = a0[j]〉

∧ permutation.a[0..M) }

k :=0

{ Invariant:

0≤k≤M ∧ (1) ∧ (2) ∧ (3)

Bound function: M−k }

Program Construction c Roland Backhouse. January 25, 2012

32

; do k 6=M → k :=k+1

; innerloop

od

{ 〈∀j : 0≤ j<M : a[j] = count0.j〉 }

where innerloop is the program segment

j :=k+1

; do j<M → if a[j]<a[k] → skip

2 a[j]>a[k] → a[j] :=a[j]−1

fi

; j := j+1

od

2

18 In the �rst phase, we approximate the straight line by the function g from integers

to integers given by

g.m =

⌈
bm2

a
−

1

2

⌉
.

Thus, the program must compute g.m successively for m equal to 0 , 1 , 2 , · · · .

Termination of this phase occurs when

g.(m+1) > g.m+ 1 .

More precisely, the �rst phase has the following form.

{ true }

m,n := 0,0 ;

{ Invariant: n=g.m }

do g.(m+1) ≤ g.m+ 1 → plot.(m,n) ;

m,n := m+1 , g.(m+1)

od .

In order to compute g incrementally, we must determine when g.(m+1)≤g.m . We

have:

Program Construction c Roland Backhouse. January 25, 2012

33

g.(m+1)≤g.m

= { n=g.m is an invariant of the algorithm,

so we may replace g.m on the right side by n ,

de�nition of g on the left side }⌈
b×(m+1)2

a
−

1

2

⌉
≤ n

= { de�nition of ceiling }

b×(m+1)2

a
−

1

2
≤ n

= { arithmetic and oor function }

0 ≤ a×n − b×(m+1)2 + ba
2
c

= { assume h = a×n − b×(m+1)2 + ba
2
c }

0 ≤ h .

In order to compute the termination condition incrementally, we must determine when

g.(m+1) ≤ g.m+ 1 . We have:

g.(m+1) ≤ g.m+ 1

= { as above }

b(m+1)2

a
−

1

2
≤ n+1

= { arithmetic }

0 ≤ a×n − b×(m+1)2 + b3×a

2
c

= { h = a×n − b×(m+1)2 + ba
2
c }

0 ≤ h+a .

Introducing the variable h , the algorithm now takes the form:

{ true }

m,n ,h := 0 , 0 , ba
2
c−b ;

{ Invariant:

n=g.m

∧ h = a×n − b×(m+1)2 + ba
2
c

∧ (−a ≤ h < 0 ≡ g.(m+1)−g.m = 1) }

do 0 ≤ h+a → plot.(m,n) ;

Program Construction c Roland Backhouse. January 25, 2012

34

if 0 ≤ h → { g.(m+1) = g.m }

skip

2 ¬(0 ≤ h)→ { g.(m+1) = g.m+ 1 }

n,h := n+1 , p

fi ;

m,h := m+1 , q

od .

The unknowns in this algorithm are p and q . The requirements on p and q are that

they should maintain invariant the property

h = a×n − b×(m+1)2 + ba
2
c .

Now, for arbitrary k ,

{ h = k − b×(m+1)2 }

m,h := m+1 , h − b×(2×m+ 3)

{ h = k − b×(m+1)2 } .

Similarly, for arbitrary k ,

{ h = a×n + k }

n,h := n+1 , h+a

{ h = a×n + k } .

Substituting for p and q completes the derivation of the �rst phase:

{ true }

m,n ,h := 0 , 0 , ba
2
c−b ;

{ Invariant:

n=g.m

∧ h = a×n − b×(m+1)2 + ba
2
c

∧ (−(2×a) ≤ h < 0 ≡ g.(m+1)−g.m = 1) }

do 0 ≤ h+a→ plot.(m,n) ;

if 0 ≤ h → { g.(m+1) = g.m }

skip

Program Construction c Roland Backhouse. January 25, 2012

35

2 ¬(0 ≤ h)→ { g.(m+1) = g.m+ 1 }

n,h := n+1 ,h+a

fi ;

m,h := m+1 , h − b×(2×m+ 3)

od .

For the second phase, n is incremented by one at each iteration and we must determine

whether m is, or is not, incremented as well.

Formally, we consider the function f from integers to integers given by

f.n =

⌈√
a×n

b
−

1

2

⌉
.

The second phase then has the following form.

{ n=g.m }

m := f.n ;

{ Invariant: m= f.n }

do true → plot.(m,n) ;

m,n := f.(n+1) , n+1

od .

We determine whether f.(n+1)≤ f.n as follows.

f.(n+1) ≤ f.n

= { m= f.n is an invariant of the algorithm,

so we may replace the right side by m ,

de�nition of g on the left side }⌈√
a×(n+1)

b
−

1

2

⌉
≤ m

= { de�nition of ceiling }√
a×(n+1)

b
−

1

2
≤ m

= { arithmetic (mainly squaring) }

a×(n+1) ≤ b× (m2 +m+
1

4
)

= { arithmetic and oor function }

0 ≤ b× (m2 +m) − a×(n+1) − bb
4
c .

Program Construction c Roland Backhouse. January 25, 2012

36

As before, we introduce a variable h to compute incrementally the right side of this

expression and, hence, to determine when m should be increased.

{ n=g.m }

m := f.n ;

h := b× (m2 +m) − a×(n+1) − bb
4
c ;

{ Invariant:

m= f.n

∧ h = b× (m2 +m) − a×(n+1) − bb
4
c

∧ (f.(n+1) ≤ f.n ≡ 0 ≤ h) }

do true→ plot.(m,n) ;

if 0 ≤ h → { f.(n+1) = f.n }

skip

2 ¬(0 ≤ h)→ { f.(n+1) = f.n+ 1 }

m,h := m+1 , h + 2×b×(m+1)

fi ;

n,h := n+1 , h−a

od .

An additional optimization (in both phases) is to eliminate the incremental evaluation

of b×m . This is done by introducing an additional variable to record this value; this

variable is then incremented by b every time that m is incremented.

(Note that the assignments to h in the two phases are almost inverses of each other.

This is to be expected, and increases con�dence in the correctness of the calculations.)

2

Program Construction c Roland Backhouse. January 25, 2012

