
Elements of Algorithmi Graph Theory

An Exerise in Combining Preision with

Conision

Working Doument

Roland Bakhouse

1

with ontributions by Henk Doornbos

2

,

Roland Gl�uk

3

and Jaap van der Woude

4

April 8, 2022

1

Shool of Computer Siene, University of Nottingham, UK

2

Questane, Groningen, The Netherlands

3

Deutshes Zentrum f�ur Luft- und Raumfahrt, Augsburg, Germany

4

Vakgroep Informatia, Tehnishe Universiteit Eindhoven, The Netherlands

2

Algorithmi Graph Theory April 8, 2022

Contents

1 Introduction 1

I Mathematical Foundations 3

2 Elements of Lattice Theory 5

2.1 Partial Orderings . 5

2.2 Pseudo-Complements . 7

2.3 Complements . 12

2.4 Galois Connetions and Fixed-Point Calulus 15

2.5 Closure Operators . 19

2.6 Atoms, Saturation and Powersets . 21

2.7 The Lattie of Fixed Points . 31

3 Regular Algebra 39

3.1 The Axioms . 39

3.2 Reexive, Transitive Closure . 40

3.3 The Unique Extension Property . 42

3.4 Reexive-Transitive Redution . 44

4 Relation Algebra 51

4.1 The Axioms . 52

4.1.1 Operator Preedene . 55

4.1.2 Modularity Rule and Cone Rule 55

4.2 Summary . 60

5 Coreflexives, Heterogeneous Relations and Functions 61

5.1 The Domain Operators . 64

5.2 Points and Extensionality . 68

5.2.1 Properties of Points . 73

5.2.2 Uniity . 77

Algorithmi Graph Theory 3 April 8, 2022

4

5.3 Funtionality and Totality . 81

5.4 Heterogeneous Relations . 85

5.5 The Interfae Between Formal and Informal 87

5.6 Bibliographi Remarks . 91

II Semantics of Imperative Programs 93

6 Imperative Programming 95

6.1 Spei�ations . 96

6.2 Strutures . 98

6.3 Assertions . 100

6.4 Veri�ation Conditions . 102

6.5 Assignment Statements . 103

6.6 Sequential Composition . 105

6.7 Choie Statements . 105

6.8 Loops . 107

6.8.1 Invariant Relations . 107

6.8.2 Conditional Corretness . 108

6.8.3 Totality and Termination . 109

6.8.4 Invariant Properties and Invariant Values 111

6.8.5 Truthifying and Maintaining Invariant Properties 112

6.8.6 Bound Funtions . 116

6.9 Calulating a Least Fixed Point . 116

III Components and Acyclicity 119

7 Equivalence Relations and Partitions 121

7.1 Partitions . 121

7.2 Properties of the Partition Funtion . 124

8 Acyclic Graphs 129

8.1 De�niteness and Ayliity . 130

8.2 Starth Root and Reexive-Transitive Redution 140

8.3 Minimal Nodes and Reahability . 142

8.4 Topologial Searh . 145

Algorithmi Graph Theory April 8, 2022

5

9 Components 159

9.1 Transitive Relations . 161

9.2 Transitive and Symmetri Relations . 164

9.3 Strongly Conneted Components . 167

9.4 Absolute Connetivity . 168

9.5 Saturation . 172

9.6 Starth Roots of the Equivalene Relation 174

9.7 A Pathwise Homomorphism . 178

IV Graph Searching 185

10 Generic Algorithms 187

10.1 A Generi Graph-Searhing Algorithm . 188

10.2 Repeated Searh and Delegates . 192

10.2.1 Delegate Funtion . 192

10.2.2 Assigning Delegates . 194

10.2.3 Inremental Computation . 207

10.2.4 Injetive Choie . 211

10.2.5 Summary and Disussion . 217

11 Depth-First Search 221

11.1 Properties of Depth-First Searh . 224

11.2 Semantis of the Basi Proedure . 229

11.3 The Funtion of a Depth-First Searh . 231

11.4 Properties of the Inner Loop . 237

11.5 Properties of the Outer Loop . 239

11.6 Strongly Conneted Components . 240

12 An Induction Theorem for Depth-First Search 243

12.1 Formal Statement and Proof . 244

12.2 Veri�ation Conditions . 249

12.3 \Grey" Paths and Impossible Edges . 252

12.3.1 Truthifying the Intermediate Assertion 257

12.3.2 The Preondition in the Inner Loop 257

12.3.3 Maintaining the Intermediate Assertion 258

12.3.4 Invariant Relations . 258

12.3.5 Invariant Value . 259

12.3.6 Invariant Properties . 259

12.3.7 Invariants of the Outer Loop . 261

Algorithmi Graph Theory April 8, 2022

6

13 Calculating Strongly Connected Components 263

13.1 Timestamps . 263

13.1.1 Spei�ation . 265

13.1.2 The Relation Invrel . 272

13.1.3 Assigning Start Times . 276

13.1.4 The Preondition . 283

13.1.5 Maintaining the Invariant of the Inner Loop 284

13.1.6 Postondition of Inner Loop . 289

13.1.7 Assigning Finish Times . 290

13.2 Calulating a Representative . 294

14 A Short Comparison 299

14.1 Classifying Edges . 299

14.2 The White-Path Theorem . 301

14.3 Anestor Paths . 304

14.4 Common Anestors . 316

V Concluding Remarks 319

Algorithmi Graph Theory April 8, 2022

List of Figures

3.1 Distint minimal starth roots of the universal relation 49

3.2 Subgraph of word order and its transitive redution 50

10.1 Repeated Searh. Outer Loop . 195

10.2 Repeated Searh. Inner Loop. 208

11.1 Timestamps . 223

11.2 Invariants of the Outer Loop . 227

11.3 Invariants of the Proedure dfs . 228

12.1 Doumenting Depth-First Searh Indution 244

12.2 Summary of the Indution Theorem . 250

12.3 Grey Paths and Impossible Edges. Outer Loop 253

12.4 Grey Paths and Impossible Edges. The Proedure dfs(a) 255

13.1 Timestamps: Outer Loop . 266

13.2 Timestamps: The Proedure dfs(a) . 271

Algorithmi Graph Theory 7 April 8, 2022

8

Algorithmi Graph Theory April 8, 2022

i

Abstract

Algorithmi graph theory |as taught in many university ourses| fouses on the

notions of ayliity and strongly onneted omponents of a graph, and the related

searh algorithms. This doument is about ombining mathematial preision and on-

ision in the ontext of algorithmi graph theory. Spei�ally, we use point-free reasoning

about paths in graphs (as opposed to pointwise reasoning about paths between nodes

in graphs), resorting to pointwise reasoning only where this is unavoidable. Our aim is

to use the alulations as the basis of a mahine-supported formal veri�ation of graph

algorithms in order to assess the urrent state of automated veri�ation systems.

This doument extends joint work with Henk Doornbos, Roland Gl�uk and Jaap van

der Woude published in [BDGv22℄.

Algorithmi Graph Theory April 8, 2022

ii

Algorithmi Graph Theory April 8, 2022

Chapter 1

Introduction

This doument is about formal alulations in an axiom system representing proper-

ties of graphs. Algorithmi graph theory is a subjet that is extremely well known and

there is little novelty in the ontent of the theorems that are presented. (That is, when

appropriately interpreted, almost all the theorems an be found in undergraduate-level

textbooks.) We use the alulations to illustrate the ombination of onision and pre-

ision that is e�eted by the use of point-free reasoning. Our thesis is that this is a vital

step towards making mahine-veri�ed proofs a pratial reality.

The presentation is divided into four parts. The �rst part, omprising hapters 2 to

5 presents the axiomati framework that we use in later hapters, and the �nal part,

omprising hapters 10 to hapter 13, presents a detailed analysis of graph-searhing

algorithms, inluding topologial searh of an ayli graph and depth-�rst searh.

Formal analysis of the algorithms we present is based on point-free relation algebra

rather than the ommonly used pointwise reasoning about relations. In other words,

we reason diretly about relations rather than about whether or not a relation holds

of a pair of points. Of ourse, pointwise reasoning is sometimes neessary. Chapter 6

gives a relational semantis to a simple imperative language as well as formulating an

interfae between pointwise and point-free alulations. Chapters 7 to 9 present well-

known properties of relations almost exlusively in point-free form.

Theorems and lemmas are typially stated without proof in the initial hapters (in

partiular, hapters 2 to 5). Proofs are given, however, of properties that do not already

appear in extant literature. (The reason for not inluding proofs is to maintain a balane

between the lengths of the initial hapters and the hapters on graph algorithms. To

make the paper self-ontained we may inlude all proofs at a later date.)

This work is part of an ongoing endeavour to make the mathematis of program

onstrution muh more alulational than is ustomary in traditional mathematial

douments. In order to ahieve our goals, we often deviate from traditional mathemat-

ial pratie, in partiular with respet to notational onventions. For example, we use

Algorithmi Graph Theory 1 April 8, 2022

2

a uniform syntax for denoting all quanti�ations rather than the many di�erent nota-

tions frequently seen in mathematis texts. The notational onventions we do adopt

are strongly inuened by the work of Edsger W. Dijkstra. We refer the reader to

[Ba03, Ba11℄ for spei� details and raison d'être.

An Apology It is ommon to inlude up-to-date itations in sienti� publiations.

With a small number of exeptions, we do not do so here for a number of reasons.

First, the graph algorithms and properties of graphs disussed in the paper are now

ommon knowledge having found their way into undergraduate urriula at least forty

years ago | so long ago that we have forgotten where we ourselves learned about them.

(We make no laim to novelty on this sore.) Seond, the foundations for the point-free

alulations presented in the paper were �rst laid more than forty years ago [Ba75, BC75℄

and ompleted more than twenty years ago (eg. [ABH

+
92, Mat95, Doo96, DBvdW97℄).

That writing the paper would make a worthwhile ontribution to urrent researh, in

partiular our onvition that point-free alulations are vital to overoming some of

the hallenges faed by modern theorem-proving systems, was inspired by Gl�uk's work

[Gl�u17℄ to whih we refer the reader for more reent literature.

End of Apology

Algorithmi Graph Theory April 8, 2022

Part I

Mathematical Foundations

Algorithmi Graph Theory 3 April 8, 2022

Chapter 2

Elements of Lattice Theory

This is the �rst of several hapters in whih we provide an introdution to relation

algebra, the axiomati alulus of relations due to (among others) De Morgan, Shr�oder

and Tarski. Full aounts appear in several monographs (see, for example, [SS93, TG87℄);

we will make do with just a summary of preisely those properties we need in our

alulations.

Relation algebra is very rih, so muh so that, for the novie, it an be daunting.

Our approah is to separate out di�erent substrutures and the interfaes between these

substrutures. Briey, we present relation algebra as a hierarhy of three substrutures:

a omplete lattie, a regular algebra and �nally relation algebra. This hapter is about

omplete latties.

2.1 Partial Orderings

A (heterogeneous) binary relation between two sets A and B is a subset of the artesian

produt A×B . In other words, a relation is an element of the powerset 2A×B
.

In general, a powerset (the set of subsets of a set) is partially ordered by the sub-

set relation; it is also \omplete" and \ompletely distributive", it has \omplements"

and its elements (sets) themselves have elements. This setion is about axiomatising

suh properties of partial orderings. Setion 2.6 is about axiomatising properties of the

element-of relation.

A omplete lattie is a partially ordered set equipped with unrestrited supremum

and in�mum operators. Let us assume the set is denoted by A and the ordering is

denoted by ⊑ . (Later, when we speialise the disussion to power sets, we swith to

using the onventional subset symbol ⊆ but, for the moment, we don't do so in order

to emphasise the greater generality of the disussion.) Of ourse, we assume that the

ordering is reexive, transitive and anti-symmetri.

Algorithmi Graph Theory 5 April 8, 2022

6

That the ordering is omplete means that every funtion f with target A has a

supremum, denoted by ⊔f , satisfying the property

〈∀x :: ⊔f ⊑ x ≡ 〈∀u :: f.u ⊑ x〉〉(2.1)

and an in�mum, denoted by ⊓f , satisfying the property

〈∀x :: x ⊑ ⊓f ≡ 〈∀u :: x ⊑ f.u〉〉 .(2.2)

Properties (2.1) and (2.2) speialise to binary suprema and in�ma, whih we denote in

the usual way by in�x operators. That is,

〈∀x,y,z :: y⊔z ⊑ x ≡ y⊑x ∧ z⊑x〉(2.3)

and

〈∀x,y,z :: x ⊑ y⊓z ≡ x⊑y ∧ x⊑ z〉 .(2.4)

We often use the de�nitions of supremum and in�mum in our alulations without ex-

pliity iting the rules.

Aside In many ases, we want to use a funtion without giving it a spei� name. In

suh ases, we use the notation 〈x :: E〉 rather than the more onventional x7→E or

λx.E . We also write 〈⊔x :: E〉 rather than the stritly orret ⊔〈x ::E〉 . (The motivation

for this is to avoid additional parentheses.) The expression 〈∀u :: f.u ⊑ x〉 used in (2.1)

is an example: the universal quanti�er, denoted by ∀ , is the in�mum operator in the

omplete lattie of booleans ordered by impliation. The \ x " in 〈x :: E〉 is a bound

variable, and the sope of the binding is delimited by the angle brakets. The \E " is

any well-de�ned expression of appropriate type. An expression of the form 〈⊕x :: E〉 is

alled a quanti�ed expression, the funtion denoted by ⊕ being alled the quanti�er.

Typially, we omit type information in quanti�ed expressions relying on the ontext to

make the types lear. (For example, the dummy u in 〈∀u :: f.u ⊑ x〉 is assumed to

range over the soure type of the funtion f ; the information is not provided beause it

is not relevant.) Oasionally we do inlude type information in expressions of the form

〈⊔x : R : E〉 , where R is some expression. The expression R is alled the range and the

expression E is alled the term of the quanti�ation.

The advantage of using a onsistent notation for quanti�ation is that it is possible

to formulate alulational rules based on assumed properties of the quanti�er. We only

use the quanti�er notation when the binary form of ⊕ is assoiative and symmetri. We

assume that the reader is familiar with the alulational rules.

As the reader may already have surmised, we use an in�x dot to denote funtion

appliation | as in \ f.u ". The dot is omitted when the argument is parenthesised;

funtion appliation is then denoted by juxtaposition.) End of Aside

Algorithmi Graph Theory April 8, 2022

7

A omplete lattie has a top (a greatest element, the in�mum of the unique funtion

with soure the empty set), whih we denote by ⊤⊤ , and a bottom (a least element, the

supremum of the unique funtion with soure the empty set), whih we denote by ⊥⊥ .

That is,

〈∀x :: ⊥⊥⊑x⊑⊤⊤〉 .(2.5)

(We use the notation ⊤⊤ and ⊥⊥ rather than the more ommon ⊤ and ⊥ beause ⊤ is

easily onfused with T .) More generally, we say that a partially ordered set is bounded

if it has both a top, ⊤⊤ , and a bottom, ⊥⊥ , satisfying (2.5).

A omplete lattie is said to be ompletely distributive i� for all sets J and K and

all funtions f of type A←J×K , the following equality and its dual hold:

〈⊓j : j∈J : 〈⊔k : k∈K : f(j,k)〉〉 = 〈⊔g : g∈K←J : 〈⊓j : j∈J : f(j , g.j)〉〉 .

(The dual equality is obtained by swapping the in�mum and supremum operators.)

The reader may want to instantiate the above formula with ∀ as the in�mum operator

and ∃ as the supremum operator; the resulting formula is a statement of the axiom of

hoie in prediate alulus.

A powerset ordered by set inlusion is a omplete, ompletely distributive lattie

but the full power of the distributivity property is rarely used; so-alled \universal

distributivity" most often suÆes. Formally, a omplete lattie is said to be universally

distributive if

〈∀x,f :: x⊔ (⊓f) = 〈⊓j :: x⊔ f.j〉 ∧ x⊓ (⊔f) = 〈⊔j :: x⊓ f.j〉〉 .

We frequently apply universal distributivity without spei� referene to the rule. Par-

tiular examples that we use frequently are x⊓⊥⊥=⊥⊥ and x⊔⊤⊤=⊤⊤ .

2.2 Pseudo-Complements

Suppose x is an element of a partially ordered set with top element ⊤⊤ and bottom

element ⊥⊥ . A omplement of x is an element y suh that x⊔y=⊤⊤ and x⊓y=⊥⊥ .

A partially ordered set is said to be omplemented if it is bounded and every element

of the set has a omplement.

In our earlier work (see, for example, [ABH

+
92, DBvdW97℄) we expliitly avoided

the use of omplementation. This was beause our goal was to develop a (point-free)

relational theory of datatypes in whih omplementation has no role. In the urrent

appliation |a theory of �nite graphs| omplementation does play a signi�ant role.

An example is ayliity of graphs: de�ned as not having yles.

Algorithmi Graph Theory April 8, 2022

8

A powerset ordered by set inlusion is omplemented but, as for omplete distribu-

tivity, the existene of omplements is sometimes unneessary. The weaker notion of

\pseudo-omplementation" is a onsequene of universal distributivity. This setion ex-

plores its properties. Throughout the setion, we assume that (A ,⊑) is a partially

ordered set. We assume the existene of a bottom element ⊥⊥ and top element ⊤⊤ , and

binary suprema and in�ma. We also assume �nite distributivity of in�ma over suprema

and suprema over in�ma.

Definition 2.6 (Pseudo-Complement) Suppose (A ,⊑) is a partially ordered set

with bottom element ⊥⊥ and �nite in�ma. A pseudo-omplement of an element p of

A is a solution of the equation

x :: 〈∀q :: q⊑x ≡ q⊓p=⊥⊥〉 .(2.7)

✷

A simple alulation shows that an element p has at most one pseudo-omplement:

Suppose x and y both satisfy (2.7). Then

1

x⊑y

= { assumption: y is a pseudo-omplement of p ,

(2.7) with q,x :=x,y }

x⊓p=⊥⊥

⇐ { assumption: x is a pseudo-omplement of p ,

(2.7) with q,x :=x,x }

x⊑x

= { reexivity of ⊑ }

true .

Interhanging x and y , we get y⊑x ; ombining the two inequalities, we get x=y .

Pseudo-omplements may not exist | even when the poset is bounded and omplete.

However, in the ase that the poset is bounded, the pseudo-omplements of the top and

bottom elements are guaranteed to exist. Indeed,

∼⊥⊥=⊤⊤ ∧ ∼⊤⊤=⊥⊥(2.8)

1

See, for example, [DS90, Ba03, Ba11℄ for explanation of our notational hoies and style of alu-

lation. Briey, the equality of booleans is denoted both by the symbol \≡ " and the symbol \= ". The

use of two symbols is helpful to disambiguate the overloading of the \= " symbol, whilst also emphasising

its most fundamental property. We do not use the symbol \⇔ ′′
for boolean equality beause it empha-

sises its anti-symmetry instead. So-alled \ontinued" relations |three or more expressions onneted by

relations, as in this alulation| should always be read onjuntionally.

Algorithmi Graph Theory April 8, 2022

9

sine (as is easily veri�ed)

〈∀q :: q⊑⊤⊤ ≡ q⊓⊥⊥=⊥⊥〉 ∧ 〈∀q :: q⊑⊥⊥ ≡ q⊓⊤⊤=⊥⊥〉 .

(The �rst onjunt is (2.7) instantiated with p :=⊥⊥ and the seond is (2.7) instantiated

with p :=⊤⊤ .)

If p has a pseudo-omplement, we denote it by ∼p . Instantiating (2.7), the axiom

de�ning ∼p is thus

〈∀q :: q ⊑ ∼p ≡ q⊓p = ⊥⊥〉 .(2.9)

Several properties are immediate from (2.9). By instantiating (2.9) with q :=∼p , we

get:

∼p⊓p = ⊥⊥ .(2.10)

(This instantiation was used in the alulation above.) An immediate onsequene is the

\anti-monotoniity" property

2

∼p⊑∼q ⇐ q⊑p(2.11)

sine

∼p ⊑ ∼q

= { (2.9) with p,q := q ,∼p }

∼p⊓q = ⊥⊥

= { (2.10), ⊥⊥ is the least element of the ordering }

∼p⊓q ⊑ ∼p⊓p

⇐ { monotoniity of ((∼p)⊓) }

q⊑p .

Instantiating (2.9) with p,q := ∼p ,p and applying (2.10), we also get:

p ⊑ ∼∼p .(2.12)

The ombination of (2.11) and (2.12) then gives ∼∼∼p ⊑ ∼p . But, for the onverse,

we have:

2

An endofuntion f on the partially ordered set (A ,⊑) is \anti-monotoni" if it is a monotoni

funtion from (A ,⊒) to (A ,⊑).

Algorithmi Graph Theory April 8, 2022

10

∼p ⊑ ∼∼∼p

= { (2.9) with p,q := ∼∼p ,∼p }

∼p⊓∼∼p = ⊥⊥

= { symmetry of ⊓ }

∼∼p⊓∼p = ⊥⊥

= { (2.9) with p,q := ∼p ,∼∼p }

∼∼p ⊑ ∼∼p

= { reexivity }

true .

By anti-symmetry of the ⊑ relation, we onlude that

∼∼∼p = ∼p .(2.13)

The existene of pseudo-omplements is guaranteed by the assumption that the partially

ordered set (A ,⊑) is a omplete, universally distributive lattie. (This is an appliation

of the theory of Galois onnetions disussed later in setion 2.4: see orollary 2.32.)

Assuming distributivity of �nite in�mum over �nite supremum, we an show that

∼(p⊔q) = ∼p⊓∼q .(2.14)

Spei�ally, for all r ,

r ⊑ ∼(p⊔q)

= { (2.9) with p,q := p⊔q , r }

r⊓(p⊔q) = ⊥⊥

= { assumption: �nite distributivity }

r⊓p = ⊥⊥ ∧ r⊓q = ⊥⊥

= { (2.9) with p,q :=p,r and p,q :=q,r }

r⊑∼p ∧ r⊑∼q

= { de�nition of binary in�mum }

r ⊑ ∼p⊓∼q .

Property (2.14) follows by the rule of indiret equality. A similar alulation establishes

that:

∼(p⊔∼p) = ⊥⊥ .(2.15)

Spei�ally, for all r ,

Algorithmi Graph Theory April 8, 2022

11

r ⊑ ∼(p⊔∼p)

= { (2.9) with p,q := p⊔∼p , r }

r⊓ (p⊔∼p) = ⊥⊥

= { distributivity and (2.9) with p,q :=p,r and p,q := ∼p , r }

r⊑∼p ∧ r⊑∼∼p

= { de�nition of in�mum and (2.10) with p :=∼p }

r⊑⊥⊥ .

Thus (2.16) follows by the rule of indiret equality.

Combining (2.15) and (2.8) we get:

∼∼(p⊔∼p) = ⊤⊤ .(2.16)

Dual to the notion of pseudo-omplement is the notion of pseudo-oomplement |

the pseudo-oomplement of element p in the partially ordered set (A ,⊑) is the

pseudo-omplement of p in the partially ordered set (A ,⊒). Formally, the pseudo-

oomplement of p , denoted by ∽p , has the property

〈∀q :: q ⊒ ∽p ≡ q⊔p = ⊤⊤〉 .(2.17)

We leave it to the reader to dualise the above properties of pseudo-omplement. For our

purposes, it suÆes to note that (assuming universal distributivity), for all p ,

∼p ⊑ ∽p(2.18)

sine

∼p

= { ⊤⊤ is greatest element }

∼p⊓⊤⊤

= { dual of (2.10) }

∼p⊓ (p⊔∽p)

⊑ { assumption: distributivity,

and q⊓r⊑ r with q,r := ∼p ,∽p }

(∼p⊓p)⊔∽p

= { (2.10) }

⊥⊥⊔∽p

Algorithmi Graph Theory April 8, 2022

12

= { ⊥⊥ is the least element }

∽p .

In general, the pseudo-omplement and pseudo-oomplement may be di�erent (even

when both exist). A simple example is the 3-element set {⊥⊥,0,⊤⊤} ordered by ⊥⊥⊑0⊑⊤⊤ .

The pseudo-omplement of 0 is ⊥⊥ and its pseudo-oomplement is ⊤⊤ .

2.3 Complements

In this setion we de�ne omplements in terms of pseudo-omplements and pseudo-

oomplements and then show that this is equivalent to a simpler (and possibly more

familiar) diret de�nition. (The reason for beginning with the more ompliated def-

inition is that we want to isolate properties that rely only on the weaker notion of

pseudo-omplement.) The setion is onluded by a list of properties that are exploited

frequently later.

Definition 2.19 (Complement) Suppose (A ,⊑) is a partially ordered set. A om-

plement of an element p of A is an element of A that is simultaneously the pseudo-

omplement and pseudo-oomplement of p . The poset is omplemented if all of its

elements have a omplement. Formally, the poset is omplemented i� it is pseudo-

omplemented and pseudo-oomplemented and

〈∀p :: ∼p = ∽p〉 .

(where ∼p and ∽p denote, respetively, the pseudo-omplement and pseudo-oomplement

of the element p).

✷

Lemma 2.20 Suppose (A ,⊑) is both pseudo-omplemented and pseudo-oomplemented.

Then that it is omplemented equivales

〈∀p :: p⊔∼p = ⊤⊤〉(2.21)

(where ∼p denotes the pseudo-omplement of p).

Proof

(A ,⊑) is omplemented

= { de�nition 2.19 }

〈∀p :: ∼p = ∽p〉

Algorithmi Graph Theory April 8, 2022

13

= { (2.18) and anti-symmetry }

〈∀p :: ∼p ⊒ ∽p〉

= { (2.17) with p,q := p ,∼p }

〈∀p :: ∼p⊔p = ⊤⊤〉 .
✷

Aside It is perhaps worth briey mentioning that the di�erene between so-alled \las-

sial" and \onstrutive logi" is that negation in lassial logi is a omplement whereas

in onstrutive logi it is a pseudo-omplement operator. (In both logis, the ordering

relation is everywhere-impliation, ⊥⊥ is the Boolean prediate false and ⊤⊤ is the

Boolean prediate true .) In the ontext of lassial versus onstrutive logi, property

(2.21) is alled the law of the exluded middle . So, in words, a omplemented lattie is

a lattie that is both pseudo-omplemented and pseudo-oomplemented and in whih

the law of the exluded middle is universally valid.

Those familiar with onstrutive logi will reognise (2.16) as a weak form of the law

of the exluded middle: property (2.16) (with supremum replaed by disjuntion and the

top element replaed by true) is valid in both onstrutive and lassial logi whereas

the law of the exluded middle is not generally valid in onstrutive logi.

Property (2.16) is an example of a meta-law relating lassial and onstrutive logi:

the double negation of any valid property in lassial logi is a valid property of on-

strutive logi. In onstrutive logi, the basi assumption is the so-alled \Curry-

Howard isomorphism" whih is stronger than the assumption of the existene of pseudo-

omplements. In our formalism, the Curry-Howard isomorphism is the assumption that,

for all p , the endofuntion (⊓p) has an upper adjoint. The assumption is thus that

there is a (binary) funtion ⇛ suh that, for all p , q and r ,

q⊓p ⊑ r ≡ q ⊑ (p⇛r) .

The de�nition of pseudo-omplement is the instane of this property when r=⊥⊥ . In

general, it is not possible to express p⇛r as ∼p⊘ r for some (binary) funtion ⊘ .

For example, take the 4-element set {⊥⊥,0,1,⊤⊤} ordered by ⊥⊥⊑0⊑1⊑⊤⊤ . Then

∼0=∼1=⊥⊥ , but it is required that 1⇛0 = 0 and 0⇛0 = ⊤⊤ . That is, if, for all p

and r , p⇛r = ∼p⊘ r , we must have ∼0⊘ 0 = ⊥⊥⊘0 = 0 and ∼1⊘0 = ⊥⊥⊘0 = ⊤⊤ ,

whih is impossible.

End of Aside

An alternative, more diret (and possibly more familiar) de�nition of omplements

is given by the following lemma.

Lemma 2.22 Assuming �nite distributivity, a omplement of p is a solution of the

equation

x :: x⊓p=⊥⊥ ∧ x⊔p=⊤⊤ .(2.23)

Algorithmi Graph Theory April 8, 2022

14

Proof By de�nition, a omplement of p is a pseudo-omplement of p and a pseudo-

oomplement of p ; so a omplement of p satis�es the equation (2.23).

Conversely, suppose x satis�es (2.23). Then

〈∀q :: q⊑x ≡ q⊓p=⊥⊥〉

= { mutual impliation }

〈∀q :: q⊑x⇒ q⊓p=⊥⊥〉 ∧ 〈∀q :: q⊑x⇐ q⊓p=⊥⊥〉

= { x satis�es (2.23) (in partiular x⊓p=⊥⊥)

and monotoniity }

〈∀q :: q⊑x⇐ q⊓p=⊥⊥〉

= { q

= { q⊑⊤⊤ for all q }

q⊓⊤⊤

= { x satis�es (2.23) (in partiular x⊔p=⊤⊤) }

q⊓(x⊔p)

= { distributivity }

(q⊓x)⊔ (q⊓p)

Leibniz and ⊥⊥ is zero of supremum }

〈∀q :: q⊓x⊑x ⇐ q⊓p=⊥⊥〉

= { de�nition of in�mum }

true .

(The penultimate step in the above alulation uses Leibniz's rule: the rule sometimes

alled \substitution of equals for equals" identi�ed by Gottfried Wilhelm Leibniz as the

�rst rule of logi. Often |in ommon with onventional mathematial pratie| we use

Leibniz's rule without spei� mention; often however, we do mention the rule expliitly,

giving \Leibniz" as hint. Here it is mentioned beause the anteedent of the impliation

is the equality between q⊓p and ⊥⊥ , and this equality has been used in ombination

with the subalulation to simplify the onsequent.)

That is, x satis�es de�nition 2.6 of the pseudo-omplement of p . Dualising the

alulation, x also satis�es the de�nition of the pseudo-oomplement of p . Sine

pseudo-omplements and pseudo-oomplements are the unique solutions of their de�n-

ing equations, it follows that every element p has a pseudo-omplement and a pseudo-

oomplement and both are equal.

Algorithmi Graph Theory April 8, 2022

15

✷

We assume various properties of omplements in a omplete, universally distributive,

omplemented lattie. First, omplements are unique. We denote the unique omple-

ment of element x by −x . (This notation is temporary: we want to retain the distintion

between pseudo-omplement and omplement until the end of this hapter. After then,

we blur the distintion.) Seond, omplementation is an order isomorphism of (A ,⊑)

and (A ,⊒). Spei�ally, for all x and y in A ,

−(−x)=x and(2.24)

−x ⊑ y ≡ x ⊒ −y .(2.25)

(Property (2.24) is a onsequene of the fat that −x=∼x=∽x and (2.12) and the dual

property of ∽x . Property (2.25) then follows from (2.24) and the anti-monotoniity

of pseudo-omplements: property (2.11).) It follows that omplementation distributes

through in�ma and suprema: for all f ,

−〈⊓x :: f.x〉 = 〈⊔x ::−(f.x)〉 ∧ −〈⊔x :: f.x〉 = 〈⊓x ::−(f.x)〉 .(2.26)

Finally, we have the shunting rule : for all x , y and z ,

x⊓y ⊑ z ≡ x ⊑ −y⊔ z .(2.27)

We leave the veri�ation of the shunting rule to the reader: use exluded middle |see

lemma 2.20| and its dual (2.10) (and, of ourse, that −y is both the pseudo-omplement

and pseudo-oomplement of y).

No doubt the rules we have mentioned in this setion are familiar to the reader (even

more so were we to replae \⊑ " by \⊆ ", \⊔ " by \∪ " and \⊓ " by \∩ "). It would

take too muh spae to enumerate all the properties we assume. Where a property is

assumed that we have not expliitly stated, the reader should be able to derive it from

this short summary.

2.4 Galois Connections and Fixed-Point Calculus

We assume familiarity with Galois onnetions and �xed-point alulus. See [Ba02,

DB02℄ for an introdution and [Ba00℄ for a detailed aount of their properties. For

ease of referene we summarise the most fundamental properties below.

A Galois onnetion involves two partially ordered sets (A , ≤) and (B ,�) and two

funtions, F∈A←B and G∈B←A . These four omponents together form a Galois

onnetion i� for all x∈B and y∈A the following holds

F.x≤y ≡ x�G.y .(2.28)

Algorithmi Graph Theory April 8, 2022

16

We refer to F as the lower adjoint and to G as the upper adjoint.

Examples of Galois onnetions are the de�nitions of supremum and in�mum (2.1)

and (2.2), the speial ases (2.3) and (2.4), the order isomorphism (2.25) and the shunting

rule (2.27). It is straightforward to see that (2.25) and (2.27) are Galois onnetions (in

the ase of (2.27), the lower and upper adjoints are (⊓y) and ((∼y)⊔), respetively)

but, as is ommonly the ase, it is not immediately obvious that (2.1) and (2.2) �t the

de�nition of a Galois onnetion. Some pratie is needed to be able to readily spot that

a funtion is an adjoint in a Galois onnetion. The skill is, however, well worthwhile

aquiring. See, for example, the disussion of irreduibility in setion 2.6.

Perhaps the most frequently used property is that a (left or right) adjoint is mono-

toni. That is, the lower adjoint F in (2.28) has the property that

F.x≤F.z⇐ x� z ,(2.29)

and similarly for the upper adjoint G . Of ourse, it is not the ase that all monotoni

funtions are left or right adjoints.

Perhaps the most signi�ant property (of whih monotoniity is a orollary) is that

lower adjoints preserve suprema and upper adjoints preserve in�ma. The theorem in the

form that we use it here (thus not in its most general form) is the following.

Theorem 2.30 Suppose F∈A←B and G∈B←A are the lower and upper adjoints

in a Galois onnetion of omplete latties (A , ≤) and (B ,�). Then, for all funtions

h and k of appropriate type,

F.(⊔Bh) = ⊔A(F◦h) ∧ G.(⊓Ak) = ⊓B(G◦k) .
✷

The theorem predits, for example, that the distributivity law (2.26) follows from the

order isomorphism (2.25). Subsripts have been added to the supremum and in�mum

operators beause the types of F and G may be signi�ant. (See, for example, lemma

2.64.)

In fat, theorem 2.30 an be strengthened to an equivalene: the onverse is that

universal distributivity implies the existene of an upper adjoint.

Theorem 2.31 (Fundamental Existence Theorem) Suppose that A is a poset and

B is a omplete poset. A funtion F∈A←B is a lower adjoint in a Galois onnetion

equivales F is supremum-preserving (i.e. for all funtions h of appropriate type, F.(⊔Bh)

satis�es the de�nition of the supremum in A of the funtion F◦h).

Dually, suppose that B is a poset and A is a omplete poset. A funtion G∈B←A

is an upper adjoint in a Galois onnetion equivales G is in�mum-preserving (i.e. for all

funtions k of appropriate type, G.(⊓Ak) satis�es the de�nition of the in�mum in B

of the funtion G◦k).

✷

Algorithmi Graph Theory April 8, 2022

17

We mentioned earlier that the existene of pseudo-omplements is guaranteed by

universal distributivity. This is a orollary of the above fundamental existene theorem:

Corollary 2.32 A omplete, universally distributive lattie is pseudo-omplemented

and pseudo-oomplemented (but not neessarily omplemented).

Proof Suppose (A , ⊑) is omplete and universally distributive. Then by de�nition of

universal distributivity, for eah element p of A , the endofuntion (p⊓) is supremum

preserving. By the fundamental existene theorem, theorem 2.31, it has an upper adjoint.

Denoting the upper adjoint by (p⊓)♯ , de�ne ∼p to be (p⊓)♯⊥⊥ . Then, for all q ,

q ⊑ ∼p

= { de�nition of ∼p }

q ⊑ (p⊓)♯⊥⊥

= { de�nition of upper adjoint }

p⊓q ⊑ ⊥⊥

= { ⊥⊥ is the least element }

p⊓q = ⊥⊥ .

That is, ∼p satis�es de�nition 2.6 of the pseudo-omplement of p . Similarly, the

lower adjoint (p⊔)♭⊤⊤ of the endofuntion (p⊔) satis�es the de�nition of the pseudo-

oomplement of p .

The 3-element set {⊥⊥,0,⊤⊤} ordered by ⊥⊥⊑ 0⊑⊤⊤ is an example of a omplete,

universally distributive lattie that is not omplemented.

✷

Finally, the theorem that is sometimes desribed as the most interesting property is

the theorem that we all the \unity of opposites". The theorem in the form that we use

it here is as follows.

Theorem 2.33 (Unity of Opposites) Suppose F∈A←B and G∈B←A are the

lower and upper adjoints in a Galois onnetion of posets (A , ≤) and (B ,�). Then

F.B and G.A are isomorphi posets. Moreover, if one of A or B is omplete, F.B and

G.A are also omplete. Assuming B is omplete, the in�mum and supremum operators

are given by

⊓G.Ah = ⊓Bh

⊔G.Ah = G.(F.⊔Bh)

⊓F.Bk = F.⊓B(G◦k)

⊔F.Bk = F.⊔B(G◦k) .
✷

Algorithmi Graph Theory April 8, 2022

18

We now turn to �xed points. Suppose A=(A,⊑) is a partially ordered set and

suppose f is a monotoni endofuntion on A . Then a pre�x point of f is an element

x of the arrier set A suh that f.x⊑x . A least pre�x point of f is a solution of the

equation

x:: f.x⊑x ∧ 〈∀y : f.y⊑y : x⊑y〉 .

A least pre�x point of f is thus a pre�x point of f that is smaller than all other pre�x

points of f. A least �xed point of f is a solution of the equation

x:: f.x=x ∧ 〈∀y : f.y=y : x⊑y〉 .(2.34)

We use the notation Pre.f to denote the set of pre�x points of f and Fix.f to denote

the set of �xed points of f .

Theorem 2.35 (Least Prefix Point) Suppose (A,⊑) is an ordered set and the

funtion f of type (A,⊑)← (A,⊑) is monotoni. Then f has at most one least pre�x

point, µf , haraterised by the two properties:

f.µf ⊑ µf(2.36)

and, for all x∈A ,

µf⊑x ⇐ f.x⊑x .(2.37)

Moreover, a least pre�x point of f is a �xed point of f :

f.µf = µf .(2.38)

✷

Theorem 2.39 (Greatest Postfix Point) Suppose (A,⊑) is an ordered set. Sup-

pose, also, that the funtion f of type (A,⊑)← (A,⊑) is monotoni. Then f has at

most one greatest post�x point, νf , haraterised by the two properties:

νf ⊑ f.νf(2.40)

and, for all x∈A ,

x⊑νf ⇐ x⊑ f.x .(2.41)

Moreover, the greatest post�x point of f is a �xed point of f :

f.νf = νf .(2.42)

✷

Algorithmi Graph Theory April 8, 2022

19

Theorems 2.35 and 2.39 do not assert the existene of least or greatest �xed points.

Indeed, a simple example suÆes to show that �xed points need not exist: Suppose

A is the set {0,1} and suppose the ordering ⊑ is the equality relation. De�ne the

endofuntion f by f.0=1 and f.1=0 . Then f is monotoni but does not have any

�xed points.

Theorems that do guarantee the existene of least and greatest funtions are well

known | and are appliable to the algebras disussed later in this doument. For

brevity, we omit the details and generally assume their existene.

A least �xed point of a monotoni funtion is, as we have seen in theorem 2.35,

haraterised by two properties. It is a �xed point, and it is least among all pre�x points

of the funtions. This gives us two alulational rules for reasoning about a least �xed

point µf of monotoni funtion f : the omputation rule

µf = f.µf

and the indution rule : for all x ,

µf⊑x ⇐ f.x⊑x .

Theorem 2.43 (µ -fusion) Suppose f∈A←B is the lower adjoint in a Galois on-

netion between the posets (A, ⊑) and (B , �) . Suppose also that g∈ (B , �)← (B , �)

and h∈ (A, ⊑)← (A, ⊑) are monotoni funtions. Suppose g and h both have least

�xed points, µg and µh , respetively. Then

(a) f.µg ⊑ µh ⇐ 〈∀x :: f.(g.x)⊑h.(f.x)〉 , and

(b) f.µg = µh ⇐ 〈∀x :: f.(g.x)=h.(f.x)〉 .

Indeed, if the ondition f◦g=h◦f , i.e.

〈∀x :: f.(g.x)=h.(f.x)〉 ,

holds, f is the lower adjoint in a Galois onnetion between the posets (Pre.h , ⊑) and

(Pre.g , �) .

✷

2.5 Closure Operators

Definition 2.44 An endofuntion f on a partially ordered set A is a losure operator

if

〈∀x,y :: x⊑ f.y ≡ f.x⊑ f.y〉 .

Algorithmi Graph Theory April 8, 2022

20

In words, f is a losure operator if, for all y , the set of elements at most f.y is \losed"

under appliation of the funtion f .

✷

Closure operators frequently arise from Galois onnetions. If F and G are lower

and upper adjoints in a Galois onnetion then G◦F is a losure operator.

It is easy to show that a losure operator is extensive

〈∀x :: x⊑ f.x〉

monotoni

〈∀x,y :: f.x⊑ f.y⇐ x⊑y〉

and idempotent

〈∀x :: f.x = f.(f.x)〉 .

Examples of losure operators that will be disussed later are the reexive losure, sym-

metri losure and the transitive losure of a relation.

Definition 2.45 Suppose f and g are both endofuntions of the same type. Then

we say that the �xed points of f are losed under g i�

〈∀x :: f.(g.x)=g.x ⇐ f.x=x〉 .

The funtion f is said to be g -idempotent i� f◦g◦f=g◦f .

✷

Lemma 2.46 Suppose f and g are both endofuntions of the same type and f is

a losure operator. Then the �xed points of f are losed under g if and only if

3 f is

g -idempotent.

Proof First, assume f is g -idempotent. Then, for all x ,

f.x = x

⇒ { Leibniz }

g.(f.x)=g.x

= { assumption: f is g -idempotent }

g.(f.x)=g.x ∧ f.(g.(f.x)) = g.(f.x)

⇒ { Leibniz (apply leftmost equality to rightmost term) }

f.(g.x) = g.x .

3

We use \if and only if" and \equivales" interhangeably, but most often the latter. We use \if and

only if" when the proof is by mutual impliation | as here. The abbreviation \i�" |pronouned \if"|

is sometimes used in de�nitions.

Algorithmi Graph Theory April 8, 2022

21

That is, the �xed points of f are losed under g .

Now to establish the onverse, assume the �xed points of f are losed under g .

Then, for all x ,

f.(g.(f.x)) = g.(f.x)

⇐ { assumption: 〈∀x :: f.(g.x)=g.x ⇐ f.x=x〉 with x := f.x }

f.(f.x) = f.x

= { f is a losure operator, idempotene property }

true .

That is (by extensionality) f◦g◦f=g◦f .

✷

The only use we have for de�nition 2.45 and lemma 2.46 is when the funtion g

is pseudo-omplementation. For ease of referene, we instantiate de�nition 2.45 and

lemma 2.46 for this ase below. In de�nition 2.47 and lemma 2.48, we assume that A is

a pseudo-omplemented, partially ordered set and f is an endofuntion on A .

Definition 2.47 The funtion f is said to be pseudo-omplementation �xed i�

〈∀x :: f.(∼x)=∼x ⇐ f.x=x〉 .

The funtion f is said to be pseudo-omplementation idempotent i�

〈∀x :: f.(∼(f.x)) = ∼(f.x)〉 .

✷

Lemma 2.48 Suppose f is a losure operator. Then f is pseudo-omplementation

�xed equivales f is pseudo-omplementation idempotent.

Proof Instantiate the funtion g in lemma 2.46 in the obvious way.

✷

2.6 Atoms, Saturation and Powersets

A powerset forms a omplete, universally distributive, omplemented lattie under the

subset ordering. However, these properties do not haraterise the properties of the

elements of the sets in the powerset. For this, we need the notion of a \saturated",

\atomi" lattie: elements of a set are modelled by so-alled \atoms". We avoid the use

of saturated atomiity wherever possible. However, there are some irumstanes where

its use is unavoidable.

Algorithmi Graph Theory April 8, 2022

22

Throughout this setion, we assume that A is a omplete lattie. (This means that

we an use the supremum and in�mum operators without aveats on their existene.)

For brevity, we sometimes omit to say that A is omplete. Variables p and q range

over arbitrary elements of A . For the moment, we ontinue to use ⊑ for the ordering

relation on elements of A . A proper element is an element di�erent from ⊥⊥ .

Definition 2.49 (Atom and Atomicity) The element p is an atom i�

〈∀q :: q⊑p ≡ q=p ∨ q=⊥⊥〉 .

Note that ⊥⊥ is an atom aording to this de�nition. If p is an atom that is di�erent

from ⊥⊥ we say that it is a proper atom. A lattie is said to be atomi if

〈∀q :: q 6=⊥⊥ ≡ 〈∃a : atom.a∧a 6=⊥⊥ : a⊑q〉〉 .

In words, a lattie is atomi if every proper element inludes a proper atom.

✷

Definition 2.50 (Saturated) A omplete lattie is saturated i�

〈∀p :: p = 〈⊔a : atom.a ∧ a⊑p : a〉〉 .

✷

Elsewhere the word \full" is sometimes used instead of our \saturated". Other au-

thors also sometimes use \atomi" to mean both atomi (aording to de�nition 2.49)

and saturated.

The following theorem [ABH

+
92, theorem 6.43℄ is entral to the use of saturated

latties as a model of powersets.

Theorem 2.51 Suppose A is a omplete, universally distributive lattie. Then the

following statements are equivalent.

(a) A is saturated,

(b) A is atomi and omplemented,

(c) A is isomorphi to the powerset of its atoms.

✷

We don't use theorem 2.51 diretly. We use it indiretly in the sense that our ax-

iomatisation of relation algebra postulates a omplete, universally distributive, saturated

lattie. In this setion, we onsider onsequenes of the de�nitions that allow point-

wise reasoning akin to onventional reasoning about sets and, in partiular, membership

properties. Spei�ally, for lattie element p and proper atom a , the assertion a⊑p

Algorithmi Graph Theory April 8, 2022

23

e�etively means a∈p . For example, the booleans ¬(a⊑p) and a⊑∼p are equal

4

;

this models the ommonly used property of set membership: the boolean ¬(a∈p) is

equal to a∈∼p . See lemma 2.52. Other lemmas, suh as lemmas 2.60 and 2.63, have

a similar role. The setion is onluded by a proof of theorem 2.51; hopefully, the proof

lari�es how the notion of saturation models the notion of powerset in a way that avoids

the use of the membership relation.

We begin by exploring the notion of saturation. First, the above-mentioned lemma

expressing how we mimi the de�ning property of the omplement of a set:

Lemma 2.52 Suppose A is a omplete, pseudo-omplemented lattie. Then for all

elements p of A and all proper atoms a of A ,

¬(a⊑p) ≡ a⊑∼p .(2.53)

Proof Suppose a is an atom. Then, for all p ,

true

= { a is an atom and a⊓p⊑a ,

de�nition 2.49 with p,q := a ,a⊓p }

a⊓p=⊥⊥ ∨ a⊓p=a

⇒ { A is a pseudo-omplemented lattie, (2.9) withp,q :=p,a ;

de�nition of in�mum }

a⊑∼p ∨ a⊑p .

That is, for all p , ¬(a⊑p) ⇒ a⊑∼p . For the onverse, we have:

a⊑∼p ⇒ ¬(a⊑p)

= { prediate alulus }

¬(a⊑∼p ∧ a⊑p)

= { de�nition of in�mum }

¬(a ⊑ ∼p⊓p)

= { (2.15): ∼p⊓p = ⊥⊥ ; for all a , ⊥⊥⊑a }

a 6=⊥⊥ .

4

In this informal introdution, ∼p an be read as the omplement of p. Later we prove the rule with

∼p de�ned to be the pseudo-omplement of p . The existene of omplements is not required although,

of ourse, for set membership omplements do indeed exist.

Algorithmi Graph Theory April 8, 2022

24

Combining the two alulations, we get the lemma.

✷

The universal quanti�ation in the de�nition of saturated an be eliminated:

Lemma 2.54 A omplete, universally distributive lattie is saturated i� its greatest

element is saturated, i.e. i�

⊤⊤ = 〈⊔a : atom.a :a〉 .

Proof The proof is by mutual impliation. One impliation is a straightforward

onsequene of the de�nition of saturation. (Just instantiate p to ⊤⊤ in de�nition

2.50.) For the other, �rst note that a omplete, universally distributive lattie is pseudo-

omplemented. (See orollary 2.32.) This means that lemma 2.52 is appliable. So, for

all p ,

⊤⊤ = 〈⊔a : atom.a :a〉

= { ase analysis and range disjuntion }

⊤⊤ = 〈⊔a : atom.a∧a⊑p : a〉 ⊔ 〈⊔a : atom.a∧¬(a⊑p) : a〉

= { lemma 2.52 }

⊤⊤ = 〈⊔a : atom.a∧a⊑p : a〉 ⊔ 〈⊔a : atom.a ∧ a⊑∼p : a〉

⇒ { p=⊤⊤⊓p , universal distributivity }

p = 〈⊔a : atom.a∧a⊑p : a⊓p〉 ⊔ 〈⊔a : atom.a ∧ a⊑∼p : a⊓p〉

= { 〈⊔a : atom.a ∧ a⊑∼p : a⊓p〉

⊑ { monotoniity }

〈⊔a : atom.a ∧ a⊑∼p : ∼p⊓p〉

= { pseudo-omplements: (2.10) }

〈⊔a : atom.a ∧ a⊑∼p : ⊥⊥〉

= { ⊔(K.⊥⊥) = ⊥⊥ (where K is the onstant ombinator) }

⊥⊥ }

p = 〈⊔a : atom.a∧a⊑p : a⊓p〉 .

That is, ⊤⊤ is saturated implies p is saturated, for all p .

✷

Another onsequene of ⊤⊤ being saturated is the existene of omplements:

Lemma 2.55 Suppose A is a omplete lattie, and both pseudo-omplemented and

pseudo-oomplemented. Then it is omplemented if its greatest element, ⊤⊤ , is satu-

rated.

Algorithmi Graph Theory April 8, 2022

25

Proof We apply lemma 2.20.

A is omplemented

= { assumption: A is omplete, pseudo-omplemented

and pseudo-oomplemented, lemma 2.20 }

〈∀p :: p⊔∼p = ⊤⊤〉

= { assumption: ⊤⊤ is saturated; ⊤⊤ is the greatest element }

〈∀p :: 〈⊔a : atom.a ∧ a 6=⊥⊥ : a〉 ⊑ p⊔∼p〉

= { de�nition of supremum }

〈∀p,a : atom.a ∧ a 6=⊥⊥ : a ⊑ p⊔∼p〉 .

But, for all p and proper atoms a ,

a ⊑ p⊔∼p

= { double negation }

¬¬(a ⊑ p⊔∼p)

= { lemma 2.52, spei�ally (2.53) with p,a := p⊔∼p , a }

¬(a ⊑ ∼(p⊔∼p))

= { pseudo-omplement: (2.15) }

¬(a⊑⊥⊥)

= { assumption: a 6=⊥⊥ }

true .
✷

Now we turn to the notion of atomiity. The assumption of universal distributivity

gives an alternative de�nition:

Lemma 2.56 Suppose A is universally distributive. Then A is atomi equivales

〈∀q :: q=⊥⊥ ≡ 〈⊔a : atom.a :a〉⊓q = ⊥⊥〉 .

Proof Comparing the lemma with the de�nition of atomiity (see de�nition 2.49), we

have to prove that

〈∀q :: ¬〈∃a : atom.a∧a 6=⊥⊥ : a⊑q〉 ≡ 〈⊔a : atom.a :a〉⊓q = ⊥⊥〉 .

That is, we must show that

〈∀q :: 〈∀a : atom.a∧a 6=⊥⊥ : ¬(a⊑q)〉 ≡ 〈⊔a : atom.a :a〉⊓q = ⊥⊥〉 .

We have, for all q ,

Algorithmi Graph Theory April 8, 2022

26

〈∀a : atom.a∧a 6=⊥⊥ : ¬(a⊑q)〉

= { trading }

〈∀a : atom.a∧a⊑q : a=⊥⊥〉

= { a=⊥⊥≡a⊑⊥⊥ , de�nition of supremum }

〈⊔a : atom.a∧a⊑q : a〉 = ⊥⊥

= { a⊑q ≡ a=a⊓q , Leibniz }

〈⊔a : atom.a ∧ a=a⊓q : a⊓q〉 = ⊥⊥

= { ⊔(K.⊥⊥) = ⊥⊥ (where K is the onstant ombinator) }

〈⊔a : atom.a ∧ a=a⊓q : a⊓q〉 = ⊥⊥

∧ 〈⊔a : atom.a ∧ ⊥⊥=a⊓q : a⊓q〉 = ⊥⊥

= { a⊓q⊑a ; so, by de�nition 2.49, a=a⊓q ∨ ⊥⊥=a⊓q

(⇒) range disjuntion and idempotene of supremum

(⇐) range disjuntion and ⊥⊥ is the least element }

〈⊔a : atom.a : a⊓q〉 = ⊥⊥

= { assumption: A is universally distributive }

〈⊔a : atom.a : a〉⊓q = ⊥⊥ .

✷

We are now part way to establishing theorem 2.51:

Corollary 2.57 Suppose A is omplete and universally distributive. Then A is

atomi if A is saturated.

Proof

A is atomi

= { lemma 2.56 }

〈∀p :: p=⊥⊥ ≡ 〈⊔a : atom.a :a〉⊓p = ⊥⊥〉

⇐ { Leibniz }

〈∀p :: 〈⊔a : atom.a :a〉⊓p = p〉

= { assumption: A is omplete, universally distributive and

saturated, lemma 2.54 }

〈∀p :: ⊤⊤⊓p = p〉

Algorithmi Graph Theory April 8, 2022

27

= { ⊤⊤ is the greatest element }

true .

✷

We ontinue with some more tehnial lemmas. The following lemma gives a useful

haraterisation of proper atoms.

Lemma 2.58

atom.a ≡ 〈∀q : a⊓q 6=⊥⊥ : a⊑q〉 .

atom.a ∧ a 6=⊥⊥ ≡ 〈∀q :: a⊓q 6=⊥⊥ ≡ a⊑q〉 .

Proof First,

atom.a

= { de�nition 2.49 with p :=a }

〈∀q :: q⊑a ≡ q=a ∨ q=⊥⊥〉

= { ⇐ is trivial }

〈∀q : q⊑a : q=a ∨ q=⊥⊥〉

= { q⊑a ≡ 〈∃r :: q=a⊓r〉 }

〈∀q : 〈∃r :: q=a⊓r〉 : q=a ∨ q=⊥⊥〉

= { range disjuntion }

〈∀q,r : q=a⊓r : q=a ∨ q=⊥⊥〉

= { one-point rule }

〈∀r :: a⊓r=a ∨ a⊓r=⊥⊥〉

= { trading rule and a⊓r=a ≡ a⊑ r }

〈∀r : a⊓r 6=⊥⊥ : a⊑ r〉 .

The lemma follows by renaming the bound variable r . Seond,

atom.a ∧ a 6=⊥⊥

= { above and a⊑q ≡ a⊓q=a }

〈∀q : a⊓q 6=⊥⊥ : a⊑q〉 ∧ 〈∀q : a⊑q : a⊓q 6=⊥⊥〉

= { trading and mutual impliation }

〈∀q :: a⊓q 6=⊥⊥ ≡ a⊑q〉 .

Algorithmi Graph Theory April 8, 2022

28

✷

Lemma 2.59 For all atoms a and all elements p , p⊓a is an atom.

Proof We apply the de�nition: for all q ,

q⊑p⊓a

= { in�ma }

q⊑p ∧ q⊑a

= { a is an atom, de�nition 2.49 with p :=a }

q⊑p ∧ (q⊑⊥⊥ ∨ q=a)

= { distributivity, q⊑⊥⊥ ≡ q=⊥⊥ , ⊥⊥⊑p }

q=⊥⊥ ∨ (q⊑p ∧ q=a)

⇒ { by Leibniz's rule, q=a ⇒ (q⊑p ≡ a=p⊓a) }

q=⊥⊥ ∨ q=p⊓a

⇒ { ase analysis, ⊥⊥⊑p⊓a and p⊓a⊑p⊓a }

q⊑p⊓a .

It follows by mutual impliation that, for all q , q⊑p⊓a ≡ q=⊥⊥ ∨ q=p⊓a . The

lemma follows by de�nition of an atom.

✷

Lemma 2.60 If p 6=⊥⊥ and b is an atom, then p=b≡p⊑b . Also, if a and b are

both proper atoms, a=b ≡ a⊓b 6=⊥⊥ .

Proof First,

p=b

= { assumption: p 6=⊥⊥ , prediate alulus }

(p=b ∨ p=⊥⊥) ∧ p 6=⊥⊥

= { assumption: b is an atom, de�nition 2.49 with p,q :=p,b }

p⊑b ∧ p 6=⊥⊥

= { assumption: p 6=⊥⊥ }

p⊑b .

Algorithmi Graph Theory April 8, 2022

29

Seond,

a⊓b 6=⊥⊥

⇒ { assumption: atom.a ∧ a 6=⊥⊥

lemma 2.58 with a,q :=a,b }

a⊑b .

Similarly, applying lemma 2.58 with a,q :=b,a , we get the symmetri property

a⊓b 6=⊥⊥ ⇒ b⊑a .

Combining the two using anti-symmetry of the partial ordering

a⊓b 6=⊥⊥ ⇒ a=b .

The onverse impliation is learly true given the assumption that a and b are both

proper atoms. So the lemma follows by mutual impliation.

✷

We are now well on the way to establishing theorem 2.51:

Corollary 2.61 Suppose A is omplete and universally distributive. Then A is

saturated if and only if A is atomi and omplemented.

Proof Suppose A is omplete and universally distributive.

First, by orollary 2.32, A is pseudo-omplemented and pseudo-oomplemented.

So, by orollary 2.57 and lemma 2.55, it is atomi and omplemented if it is saturated.

Conversely, suppose A is atomi and omplemented. Then

A is saturated

⇐ { lemma 2.54 }

⊤⊤ = 〈⊔a : atom.a :a〉

⇐ { assumption: A is omplemented,

double negation: (2.24) and −⊥⊥=⊤⊤ }

⊥⊥ = −〈⊔a : atom.a :a〉

= { assumption: A is atomi, lemma 2.56 with q :=⊥⊥ }

〈⊔a : atom.a :a〉 ⊓ −〈⊔a : atom.a :a〉 = ⊥⊥

= { omplements are pseudo-omplements, (2.10) }

true .

Algorithmi Graph Theory April 8, 2022

30

✷

Lemma 2.52 establishes the existene of a Galois onnetion, albeit slightly disguised.

Spei�ally, suppose A is a omplete, omplemented lattie. Then we have, for all

elements p of A , all proper atoms a of A and all booleans b ,

(a⊑p)⇒ b ≡ p ⊑ if b→⊤⊤✷¬b→∼a fi .(2.62)

(The simple proof that this is equivalent to (2.53) is left to the reader; of ourse, (2.25)

must be invoked as well.) Applying theorem 2.30, we dedue that atoms are irreduible

in the following sense.

Lemma 2.63 Suppose A is a omplete, universally distributive, saturated lattie and

a is a proper atom of A . Then, for all subsets S of the proper atoms of A ,

a ⊑ 〈⊔b : b∈S : b〉 ≡ 〈∃b : b∈S : a=b〉 .

Proof

a ⊑ 〈⊔b : b∈S : b〉

= { (2.62) and theorem 2.30 with F :=(a⊑) and A :=(Bool,⇒) }

〈∃b : b∈S : a⊑b〉

= { a is a proper atom, dummy b ranges over proper atoms,

lemma 2.60 }

〈∃b : b∈S : a=b ∨ a=⊥⊥〉 .

✷

Let us now return to theorem 2.51. Corollary 2.61 establishes that 2.51(a) and 2.51(b)

are equivalent. So it remains to establish that, if A is a omplete and universally

distributive, A is isomorphi to a powerset if and only if it is atomi, omplemented

and saturated.

If S is a set, the powerset 2S is the set of all subsets of S . Set theory postulates that

2S is a omplete, universally distributive lattie under the usual subset ordering. The

proper atoms of 2S are the singleton sets {a} where dummy a ranges over the elements

of S ; its top and bottom elements are S and the empty set ∅ , and the supremum

operator is set union. Set theory postulates that, for any subset p of S ,

a∈p ≡ {a}⊆p

and

p = 〈∪a :a∈p : {a}〉 .

Algorithmi Graph Theory April 8, 2022

31

That is, set theory postulates that 2S is saturated. By orollary 2.61 it is thus atomi

and omplemented: the omplement ¬p of the set p is, of ourse,

¬p = 〈∪a : ¬(a∈p) : {a}〉 .

Thus, if A is isomorphi to a powerset, it is atomi, omplemented and saturated.

Conversely, if A is a omplete, universally distributive, saturated lattie, de�ne S

to be the arrier set of A . De�ne the mapping set from A to 2S by, for all elements p

of A ,

set.p = 〈∪a : atom.a ∧ a 6=⊥⊥ ∧ a⊑p : {a}〉

(where a ranges over elements of A). A straightforward onsequene of the de�nition

of atoms, de�nition 2.49, is that proper atoms a of A are then mapped to {a} , whih

is a proper atom of 2S ; the bottom element ⊥⊥ is mapped to ∅ and the top element

⊤⊤ is mapped to S . Then, assuming A is saturated, for all p in the arrier set of A ,

we have

〈∪a : atom.a ∧ a 6=⊥⊥ ∧ a⊑p : set.a〉

= { by the de�nition of set and de�nition 2.49,

a 6=⊥⊥ ∧ a⊑p ⇒ set.a= {a} }

〈∪a : atom.a ∧ a 6=⊥⊥ ∧ a⊑p : {a}〉

= { de�nition of set }

set.p

= { assumption: A is saturated }

set.〈⊔a : atom.a ∧ a 6=⊥⊥ ∧ a⊑p : a〉 .

That is, assuming A is omplete, universally distributive and saturated, the funtion

set is an isomorphism of the lattie A and the powerset 2S (ordered by set inlusion).

As mentioned at the beginning of this setion, the exploitation of properties of atoms

is a mehanism for mimiking pointwise reasoning within an axiomati formulation of

powersets. Beause we want to avoid pointwise reasoning, we avoid the use of atoms

exept where this is absolutely essential (for example to show that every node in a graph

is ontained in a strongly onneted omponent of the graph).

2.7 The Lattice of Fixed Points

Throughout this setion, f is a monotoni endofuntion on a partially ordered set A .

Reall that we use Fix.f to denote the �xed points of f . This setion is about showing

the extent to whih Fix.f inherits algebrai properties of A .

Algorithmi Graph Theory April 8, 2022

32

The set Fix.f is a subset of the set A and thus inherits its partial ordering. The

following well-known lemma is often attributed to Alfred Tarski.

Lemma 2.64 Suppose the partially ordered set A is a omplete lattie. Suppose f

is a losure operator on the lattie A . Then Fix.f is omplete. Spei�ally, if h is a

funtion with range Fix.f then

⊓Fix.fh = ⊓Ah ∧ ⊔Fix.fh = f.⊔Ah .

In partiular,

⊤⊤Fix.f = ⊤⊤A ∧ ⊥⊥Fix.f = f.⊥⊥A .

Proof This is an appliation of the unity-of-opposites theorem (theorem 2.33). We note

that a losure operator is the lower adjoint in a Galois onnetion: letting ι denote the

\forgetful" funtion of type A←Fix.f (so alled beause it \forgets" that its argument

is a �xed point), the de�nition 2.44 an be written as, for all x∈A and all y∈Fix.f ,

x⊑ ι.y ≡ f.x⊑y .

The lemma follows by applying theorem 2.33 with the instantiations

A,B,F,G := Fix.f ,A , f , ι .

✷

E�etively, lemma 2.64 states that the in�mum in A of a funtion h with range

Fix.f is a �xed point of f . On the other hand, the supremum ⊔Ah of a funtion h with

range Fix.f is not neessarily a �xed point of f . Instantiating the unity-of-opposites

theorem is ompliated by the type information: the formulae given in the lemma for

the in�mum and the supremum \forget" the \forgetful" funtion. The lemma an easily

be veri�ed independently without referene to the unity-of-opposites theorem.

Our goal now is to show that if A is saturated then Fix.f is also saturated. Great

are needs to be taken in doing so. The diÆulty is that, although the partial ordering

is the same for both sets, the supremum of a funtion with range Fix.f in A is not the

same as the supremum of the funtion in Fix.f . In partiular, the least element of A is

not the same as the least element of Fix.f . Overloading the symbol \⊥⊥ " is therefore

ambiguous! Similarly, distributivity properties an also be ambiguous, or inorret, if

are is not taken to make lear whih suprema are intended.

To avoid the lutter and the ambiguity, we use the unsubsripted symbol \⊥⊥ "

exlusively for ⊥⊥A ; similarly, ourrenes of ⊔ denote supremum in A . Beause the

greatest elements of A and Fix.f oinide, subsripts are unneessary for ⊤⊤ ; similarly

subsripts are unneessary on ourrenes of ⊓ . Oasionally it is neessary to reall

that f.⊥⊥ denotes ⊥⊥Fix.f but sometimes we re-introdue subsripts for greater larity.

Algorithmi Graph Theory April 8, 2022

33

Lemma 2.65 Suppose A is a omplete, universally distributive lattie. Suppose f

is a losure operator on the lattie A and suppose f is pseudo-omplementation �xed.

Then f.a is an atom of Fix.f if a is an atom of A .

Proof First, orollary 2.32 establishes that A is pseudo-omplemented. Suppose that

a is an atom of A . By the idempoteny property of losure operators, f.a is a �xed

point of f . Now, suppose p is an element of Fix.f . That is, p is an element of A and

p= f.p . Then,

p⊑ f.a

= { prediate alulus }

a⊑p⊑ f.a ∨ (¬(a⊑p) ∧ p⊑ f.a) .

We now onsider eah disjunt in turn. First,

a⊑p⊑ f.a

= { f is a losure operator and so is monotoni }

a⊑p ∧ f.a⊑ f.p ∧ p⊑ f.a

= { p= f.p , Leibniz and anti-symmetry of ⊑ }

a⊑p ∧ p= f.a

= { f is a losure operator, extensivity }

p= f.a .

(Note that no use has yet been made of the assumption that a is an atom of A .) The

seond disjunt is split into two ases: a=⊥⊥ and a 6=⊥⊥ . In the �rst ase,

¬(⊥⊥⊑p) ∧ p⊑ f.⊥⊥ ≡ false

(sine ⊥⊥⊑p≡ true). In the seond ase, a is, by de�nition, a proper atom of A . So

¬(a⊑p) ∧ p⊑ f.a

= { assumption: A is omplete, universally distributive and saturated;

a is a proper atom of A , lemma 2.52 }

a⊑∼p ∧ p⊑ f.a

⇒ { f is a losure operator and so is monotoni }

f.a⊑ f.(∼p) ∧ p⊑ f.a

Algorithmi Graph Theory April 8, 2022

34

= { p= f.p and f is pseudo-omplementation �xed, so ∼p= f.(∼p) }

f.a⊑∼p ∧ p⊑ f.a

⇒ { anti-monotoniity: (2.11) }

∼∼p ⊑ ∼(f.a) ∧ p⊑ f.a

⇒ { double negation: (2.12), transitivity and in�mum }

p ⊑ ∼(f.a)⊓ f.a

= { pseudo-omplement: (2.10) }

p⊑⊥⊥

⇒ { ⊥⊥ is least element, a 6=⊥⊥ }

¬(a⊑p) ∧ p⊑ f.a .

We onlude that, when a 6=⊥⊥ ,

¬(a⊑p) ∧ p⊑ f.a ≡ p⊑⊥⊥ .

Substituting the results of the three ases in the initial alulation, we have established

that

p⊑ f.a ≡ p= f.a ∨ p⊑⊥⊥ .

Sine, as already mentioned, f.a is a �xed point of f , it is, by de�nition 2.49, an atom

of Fix.f .

✷

Lemma 2.66 Suppose A is a omplete, universally distributive lattie. Suppose f

is a losure operator on the lattie A and suppose f is pseudo-omplementation �xed.

Then

⊤⊤Fix.f = f.⊤⊤A = ⊤⊤A ∧ ⊥⊥Fix.f = f.⊥⊥A = ⊥⊥A .

Proof The �rst onjunt is immediate from lemma 2.64 and the extensivity of a losure

operator. For the seond onjunt, we have:

f.⊥⊥A = ⊥⊥A

= { ⊥⊥=∼⊤⊤ (see (2.8)) }

f.(∼⊤⊤A) = ∼⊤⊤A

⇐ { assumption: f is pseudo-omplementation idempotent

lemma 2.48 and de�nition 2.47 }

Algorithmi Graph Theory April 8, 2022

35

f.⊤⊤A = ⊤⊤A

= { ⊤⊤ is the greatest element of A , so f.⊤⊤⊑⊤⊤ , anti-symmetry }

⊤⊤A ⊑ f.⊤⊤A

= { assumption: f is a losure operator and hene extensive }

true .

✷

Lemma 2.67 Suppose f is a pseudo-omplementation idempotent losure operator.

Then Fix.f is pseudo-omplemented. Spei�ally, the pseudo-omplement of �xed point

x of f in Fix.f is its pseudo-omplement in A .

Proof Suppose y is a �xed point of f (i.e. y= f.y) and suppose ∼y is the pseudo-

omplement of y in A . We show that ∼y is the pseudo-omplement of y in Fix.f .

Instantiating de�nition 2.6 with A,p := Fix.f , y , we must show that

〈∀q : q∈Fix.f : q⊑∼y ≡ q⊓y=⊥⊥Fix.f〉 .

But this is immediate from (2.9) (with p :=y) and lemma 2.66 (spei�ally, the seond

onjunt). Note that impliit use is made of the fat that the ordering relation and

in�ma are the same in A and Fix.f .

✷

Lemma 2.65 identi�es a subset of the atoms of Fix.f . We now strengthen the lemma

to an equality.

Lemma 2.68 Suppose A is a omplete, universally distributive, saturated lattie.

Suppose f is a losure operator on the lattie A and suppose f is pseudo-omplementation

�xed. Then, for all a ,

atomFix.f.a ≡ 〈∃b : atomA.b : a= f.b〉 .

Moreover, Fix.f is saturated.

Proof Under the given assumptions, A is pseudo-omplemented by orollary 2.32.

Lemma 2.65 then establishes the impliation

atomFix.f.a ⇐ 〈∃b : atomA.b : a= f.b〉 .

For the onverse, we �rst observe that

〈⊔A b : atomA.b : f.b〉 = ⊤⊤Fix.f .(2.69)

The proof is straightforward:

Algorithmi Graph Theory April 8, 2022

36

⊤⊤A

⊒ { de�nition of top element }

〈⊔A b : atomA.b : f.b〉

⊒ { f is a losure operator, so b⊑ f.b }

〈⊔A b : atomA.b : b〉

= { assumption: A is saturated }

⊤⊤A .

Thus, by anti-symmetry, ⊤⊤A = 〈⊔A b : atomA.b : f.b〉 . Property (2.69) follows immedi-

ately from the fat that ⊤⊤A=⊤⊤Fix.f (see lemma 2.64).

Now we an establish the onverse impliation. Suppose a is an atom in Fix.f .

There are two ases. If a=⊥⊥Fix.f , then a= f.⊥⊥A by lemma 2.64. In the seond ase,

a 6=⊥⊥Fix.f . Then

a

= { de�nition of top, assumption: a∈Fix.f }

a⊓⊤⊤Fix.f

= { (2.69) }

a ⊓ 〈⊔A b : atomA.b : f.b〉

= { assumed universal distributivity property of A }

〈⊔A b : atomA.b : a⊓ f.b〉

= { ⊥⊥A is zero of suprema }

〈⊔A b : atomA.b ∧ f.b 6=⊥⊥A : a⊓ f.b〉

= { assumption: a is a proper atom of Fix.f ,

by lemma 2.65, f.b is an atom of Fix.f ,

lemma 2.60 (applied to atoms of Fix.f) }

〈⊔A b : atomA.b ∧ a= f.b : a⊓ f.b〉

= { Leibniz and idempotene of in�mum }

〈⊔A b : atomA.b ∧ a= f.b : a〉 .

Summarising,

a 6=⊥⊥Fix.f ∧ a = 〈⊔A b : atomA.b ∧ a= f.b : a〉 .

Algorithmi Graph Theory April 8, 2022

37

Now assume ¬〈∃b : atomA.b : a= f.b〉 . Then, by the de�nition of supremum,

a 6=⊥⊥Fix.f ∧ a=⊥⊥A .

But ⊥⊥Fix.f=⊥⊥A (lemma 2.66). So we have a ontradition, and we onlude that

〈∃b : atomA.b : a= f.b〉 as required.

Finally, in order to show that Fix.f is saturated, it suÆes to prove that ⊤⊤Fix.f is

saturated. (See lemma 2.54.) That is, we have to prove that ⊤⊤Fix.f is the supremum of

the atoms of Fix.f . Spei�ally, we have to prove that

〈⊔Fix.f a : atomFix.f.a :a〉 = ⊤⊤Fix.f .(2.70)

We have:

⊤⊤Fix.f

⊒ { de�nition of top and supremum }

〈⊔Fix.f a : atomFix.f.a : a〉

= { lemma 2.64 }

f.〈⊔A a : atomFix.f.a : a〉

⊒ { properties of suprema, f is monotoni }

〈⊔A a : atomFix.f.a : f.a〉

= { atomFix.f.a⇒ f.a=a }

〈⊔A a : atomFix.f.a : a〉

⊒ { assumptions on A and f :

so, by lemma 2.65, 〈∀b : atomA.b :atomFix.f.(f.b)〉 }

〈⊔A b : atomA.b : f.b〉

= { (2.69) }

⊤⊤Fix.f .

The required property (2.70) now follows by anti-symmetry of the ordering relation.

✷

We onlude this setion with a summary of the properties we have established.

Theorem 2.71 Suppose A is a omplete, universally distributive, saturated lat-

tie. Suppose f is a losure operator on the lattie A and suppose f is pseudo-

omplementation �xed. Then Fix.f is a omplete, saturated lattie. The atoms in

Fix.f are given by {b: atomA.b: f.b} .

Algorithmi Graph Theory April 8, 2022

38

Proof This is a ombination of lemmas 2.68 and 2.64.

✷

Note that we haven't proved that Fix.f is universally distributive. (Currently we do

not know whether or not this is always the ase.) So we annot apply theorem 2.51 in

order to laim that Fix.f is isomorphi to the powerset of its atoms.

Algorithmi Graph Theory April 8, 2022

Chapter 3

Regular Algebra

Regular algebra (sometimes also known as \Kleene algebra") is the algebra of three

operators entral to programming: omposition, hoie and iteration. As suh, it is

perhaps the most fundamental algebrai struture in omputing siene.

This hapter summarises fundamental properties of a regular algebra. Sine the

properties are typially well known, proofs are omitted. Some of the most important

properties are given names for future referene

3.1 The Axioms

Algebraially, program omposition is modelled by a monoid and hoie by binary

suprema in a lattie. Iteration is modelled by a partiular form of �xed point.

Definition 3.1 A monoid is a triple (A,·,1), where A is a set, · is a binary operator

and 1 is an element of A , satisfying the properties:

1·x = x = x·1 for all x∈A,(3.2)

and

x·(y·z) = (x·y)·z for all x,y,z∈A.(3.3)

The element 1 is alled the unit of the monoid, and the operator · is alled the produt

operator.

✷

(The raised dot used to denote a produt operator throughout this hapter should not

be onfused with the non-raised dot used to denote funtion appliation. The only use

of the non-raised dot in this hapter is in the expression \ red.A " introdued in (3.19).)

A monoid is suh a simple algebrai struture that little an be said at this stage.

(Perhaps one thing that an be said is that monoids are truly ubiquitous | but then

Algorithmi Graph Theory 39 April 8, 2022

40

a theory of everything is a theory of nothing!) Monoids only beome interesting when

ombined with other algebrai strutures.

Definition 3.4 (Regular Algebra) A regular algebra is a tuple (A , · , + ,≤ , 0 , 1)

where

(a) (A , · , 1) is a monoid,

(b) (A ,≤ ,+ , 0) is a omplete lattie with least element 0 and binary supremum

operator + ,

() for all a∈A , the endofuntions (a·) and (·a) are both lower adjoints in Galois

onnetions between (A ,≤) and itself.

A regular algebra is said to be universally distributive if the underlying lattie (see

(b)) is universally distributive.

✷

Aside The assumption of a omplete lattie means that all in�ma exist (as well as all

suprema). However, disussions of regular algebra often ignore the existene of in�ma,

and there is no standard notation for the in�mum operator in a regular algebra or even

the greatest element. In ases where in�ma are relevant, the hoie of the \+ " symbol

for the binary supremum operator is unfortunate. Shortly, therefore, we swith to using

set notation. End of Aside

Our de�nition of a regular algebra does not postulate the existene of a star operator.

A universally distributive regular algebra is what Conway [Con71℄ alls a \standard

Kleene algebra". (Instead of (), Conway postulates a universal distributivity rule whih,

together with other axioms, is equivalent to ().)

The upper adjoints of (a·) and (·a) are alled the fatorisation operators. Although

these operators are important, we seldom use them diretly; more often, we use only the

fat that they exist.

Following Conway, we sometimes refer to the elements of the arrier set of a regular

algebra as events.

3.2 Reflexive, Transitive Closure

In this setion, properties of the \star" operator are briey summarised. For more details

on this setion, see [Mat95℄. The star operator models iteration.

There are several di�erent de�nitions of the star operator in a regular algebra. Pos-

sibly the best known de�nition is

a∗ =
〈

Σi :0≤ i :ai
〉

.(3.5)

Algorithmi Graph Theory April 8, 2022

41

Another de�nition is

a∗ = 〈µx :: 1+a+x·x〉 .(3.6)

This de�nition states that a∗
is the reexive, transitive losure of a : spei�ally, the

indution rule for least pre�x points establishes that it is reexive:

1 ≤ 〈µx :: 1+a+x·x〉 ,

it inludes a :

a ≤ 〈µx :: 1+a+x·x〉 ,

and it is transitive:

〈µx :: 1+a+x·x〉 · 〈µx :: 1+a+x·x〉 ≤ 〈µx :: 1+a+x·x〉 .

It then follows that the star operator is a losure operator.

Two other ommonly used de�nitions are in terms of left and right iteration. Speif-

ially, left iteration is de�ned by

a∗ = 〈µx :: 1+a·x〉(3.7)

and right iteration by

a∗ = 〈µx :: 1+x·a〉 .(3.8)

It is easily shown that all of these de�nitions are equivalent. Choosing one or other

de�nition gives di�erent indution rules; deiding whih to use in spei� irumstanes

requires some pratie. We use all four di�erent de�nitions at some stage below.

Note that the equivalene of (3.5) with, for example, (3.7) is proved using the universal

distributivity of (a·) over supremum (property () in de�nition 3.4). Othe axiomatisa-

tions of so-alled \Kleene algebra" (for example, ones studied by Conway [Con71℄) are

oriented towards one partiular appliation: the equality of regular expressions when in-

terpreted as languages. To this end, they typially postulate properties of omposition,

hoie and iteration but the properties of omposition are not as strong as 3.4(). It is

not possible to prove this property with weaker axiom systems making them inadequate

for reasoning about path problems in graphs.

Consequenes of the above de�nitions are that

a∗·b = 〈µx :: b+a·x〉(3.9)

(whih is most easily proved using (3.7), and

b·a∗ = 〈µx :: b+x·a〉(3.10)

Algorithmi Graph Theory April 8, 2022

42

(whih is most easily proved using (3.8)). An immediate orollary is that a∗·b and b·a∗

are �xed points of the relevant funtions:

b+a·(a∗·b) = a∗·b ,(3.11)

b+ (b·a∗)·a = b·a∗ .(3.12)

The transitive losure of a is denoted by a+
. Like the reexive, transitive losure it

has several equivalent de�nitions, the most ommonly used being:

a+ =
〈

Σi : 1≤ i :ai
〉

(3.13)

and

a+ = 〈µx :: a+x·x〉 = 〈µx :: a+x·a〉 = 〈µx :: a+a·x〉 .(3.14)

Also like the reexive, transitive losure, these di�erent de�nitions give rise to di�erent

indution rules.

Other properties of the star operator are as follows:

(a) a ·b∗ ≤ c∗ ·a ⇐ a·b≤ c·a

(b) c∗ ·a ≤ a ·b∗ ⇐ c·a≤a·b

() a · (b·a)∗ = (a·b)∗ ·a

(d) (a+b)∗ = b∗ · (a ·b∗)∗ = (b∗ ·a)∗ ·b∗

Properties (a) and (b) are alled leapfrog rules (beause a \leapfrogs" from one side

of a star term to the other). Both have the immediate orollary that

∗
is monotoni

(by taking a to be 1). Properties () and (d) are alled the mirror rule and star-

deomposition rule, respetively.

There are many other properties of the star operator that we use without further ado.

3.3 The Unique Extension Property

In the previous setion we saw that a·b∗ is the least solution of the equation

x:: x = a+x·b .

Here we onsider its largest solution 〈νx :: a+x·b〉 . In partiular, we do so for a lattie

that is universally distributive, so that among other things (y+) and (+y) distribute

over all in�ma and, hene, are upper adjoints. Then ν -fusion (the dual of µ -fusion)

yields a simple proof of the following theorem.

Algorithmi Graph Theory April 8, 2022

43

Theorem 3.15 If (y+) is an upper adjoint, then we have, for all a and b ,

〈νx :: a+x·b〉 = y+ 〈νx ::x·b〉 ⇐ y = a+y·b .

✷

As a onsequene, in a universally distributive regular algebra, the largest solution

of the equation x:: x = a+x·b is the sum (i.e. supremum) of an arbitrary solution

and the largest solution of the equation x:: x=x·b . Note that a speial hoie for y in

theorem 3.15 is y = a ·b∗ .

An immediate orollary of theorem 3.15 is that if 〈νx ::x·b〉= 0 , funtion 〈x :: a+x·b〉

has a unique �xed point. The ombination of this property and its onverse is the rule

we all the unique extension property (uep) of regular algebra.

Theorem 3.16 (The unique extension property (uep)) Suppose b is an element

of a universally distributive regular algebra. Then

〈νx ::x·b〉= 0 ≡ 〈∀x,a :: x = a ·b∗ ≡ x = a+x·b〉 .

Proof Only-if is an immediate onsequene of theorem 3.15. Spei�ally,

〈νx ::x·b〉 = 0

⇒ { theorem 3.15 }

〈∀y,a :: 〈νx :: a+x·b〉 = y ⇐ y = a+y·b〉

= { y := a ·b∗ ; (3.12) with a,b :=b,a }

〈∀y,a :: 〈νx :: a+x·b〉 = y ⇐ y = a+y·b〉

∧ 〈νx :: a+x·b〉 = a ·b∗

⇒ { Leibniz (and dummy renaming) }

〈∀x,a :: a ·b∗ = x ⇐ x = a+x·b〉

= { (3.12) with a,b :=b,a }

〈∀x,a :: x = a ·b∗ ≡ x = a+x·b〉 .

The onverse is straightforward:

〈∀x,a :: x = a ·b∗ ≡ x = a+x·b〉

⇒ { a :=0 , properties of 0 }

〈∀x :: x= 0 ≡ x=x·b〉

⇒ { by de�nition of ν , 〈νx ::x·b〉= 〈νx ::x·b〉·b

x := 〈νx ::x·b〉 }

〈νx ::x·b〉 = 0 .

Algorithmi Graph Theory April 8, 2022

44

✷

Theorem 3.16 was postulated as an axiom of regular algebra in [Ba75, BC75℄. Here,

a proof is needed beause the star operator is not a primitive but de�ned in terms of

least �xed points.

The uep draws attention to the importane of property 〈νx ::x·b〉= 0 . In language

theory, it is equivalent to ε6∈b sine if, on the ontrary, x is a non-empty set suh that

x=x·b , the length of the shortest word in x must be equal to the length of the shortest

word in x plus the length of the shortest word in b . That is, the length of the shortest

word in b is zero. The terminology that is often used is \b does not possess the empty-

word property". In relation algebra, we say \b is well-founded": the property expresses

that there are no in�nite sequenes of b -related elements (thus, if relation b represents

a �nite direted graph, 〈νx ::x·b〉= 0 means that the graph is ayli).

(We remarked earlier that other axiomatisations of regular algebra do not demand

the existene of fatorisation operators, making them inadequate for reasoning about

path-�nding problems. The requirement of universal distributivity is also ommonly not

made. However, the uep is a vital tool in the ontext of ayli graphs and the omission

of universal distributivity would render the theory inadequate for our purposes.)

In the ontext of relation algebra, there are several equivalent ways of de�ning well-

foundedness, the one referred to above being perhaps less well known. This is disussed

further in setion 8.1.

3.4 Reflexive-Transitive Reduction

The reexive-transitive redution of a relation is an important onept. For example, it

underlies the display of (small, �nite) posets by means of a so-alled Hasse diagram: the

relation displayed in suh a diagram is not the partial ordering but its reexive-transitive

redution. The onept is important in other appliations. For example, the basis of

the Knuth-Morris-Pratt pattern mathing algorithm (and its generalisations [KMP77,

Wei73, AC75℄) is the \fator graph" of a regular language de�ned by the pattern, and

the \fator graph" is the reexive-transitive redution of Conway's \fator matrix" of

the language [BL77, Ba16℄. This setion introdues the onept in this broader ontext;

alulations update and expand on previously published work.

We assume that the algebra under onsideration is omplemented; we denote the

omplement operator by the pre�x operator \¬ ". (See theorem 2.51.)

Beause the primary appliation is relation algebra, and beause we want to make

extensive use of the in�mum operator, we now swith to using set notation: that is we

use the symbol \⊆ " to denote the ordering, \∪ " for the supremum operator and \∩ "

Algorithmi Graph Theory April 8, 2022

45

for the in�mum operator. Also, beause it �ts in with relation algebra, we use \ I " for

the unit.

It should not be supposed that relation algebra is the sole appliation of the results

of this setion. An important appliation is to a \matrix" (powerset) algebra. Suh an

algebra has arrier set the set of funtions with soure A×A , for some A , and range a

powerset algebra; the produt operator is de�ned as is usual for matries and the other

operators are de�ned by a pointwise \lifting" of the operators of the powerset algebra.

For more details see [Ba06℄.

Definition 3.17 (Starth Root) Suppose U is an event of a regular algebra. A starth

root of U is any event V that satis�es V∗=U∗
; it is minimal if no smaller event has

this property. It is least if it is at most all starth roots. Formally, V is a minimal

starth root of U if

V∗=U∗ ∧ 〈∀W : W⊆V ∧ W∗=U∗ : W=V〉

and V is the least starth root of U if

V∗=U∗ ∧ 〈∀W : W∗=U∗ : V ⊆W〉 .
✷

De�nition 3.18 and the lemmas and theorems that follow assume a omplemented

regular algebra. We use the notation ¬U to denote the omplement of event U . This

should, of ourse, not be onfused with the notation for the omplement of a prediate:

the ontext should make lear whih is intended.

Definition 3.18 (Reflexive and Transitive Reduction) Let A and B be events

in a omplemented regular algebra with unit I . Then A∩¬I is alled the reexive

redution of A and B∩¬(B ·B+) is alled the transitive redution of B . The transitive

redution of the reexive redution of A is alled the reexive-transitive redution of

A .

✷

(De�nitions 3.17 and 3.18 abstrat from Brzozowski's theorem asserting the existene

of a \unique irreduible generating set" of a \monoid with length" [Brz67, Theorem 2℄.)

We denote the reexive-transitive redution of A by red.A . That is,

red.A = A ∩ ¬I ∩ ¬((A∩¬I) · (A∩¬I)+) .(3.19)

If G represents the edges of a graph, the reexive-transitive redution red.G \redues"

G by eliminating self-loops and edges onneting distint nodes that are subsumed by

paths of edge-length two or more and not involving self-loops. (Self-loops are edges from

a node to itself. The multiple ourrenes of \∩¬I " in (3.19) serve to eliminate suh

edges, leaving only edges onneting distint nodes.)

A ouple of lemmas on reexive redution prove useful later:

Algorithmi Graph Theory April 8, 2022

46

Lemma 3.20 Let X be an event in a omplemented regular algebra with unit I .

Then

X∗ = (X∩¬I)∗ .

(In words, the reexive redution of X is a starth root of X .)

Proof

X∗ = (X∩¬I)∗

⇐ { X ⊇ X∩¬I , monotoniity of star }

X∗ ⊆ (X∩¬I)∗

= { ∗
is a losure operator }

X ⊆ (X∩¬I)∗

⇐ { I∪Y⊆Y∗
with Y := X∩¬I }

X ⊆ I∪ (X∩¬I)

= { absorption rule }

X ⊆ I∪X

= { set alulus }

true .

✷

Lemma 3.21 Let X and Y be events in a omplemented regular algebra with unit

I . Then

X∗⊆Y∗ ≡ (X∩¬I)+ ⊆ (Y∩¬I)+ ,

X∗=Y∗ ≡ (X∩¬I)+ = (Y ∩¬I)+ .

Proof First,

(X∩¬I)+ ⊆ (Y ∩¬I)+

= { +
is a losure operator }

X∩¬I ⊆ (Y ∩¬I)+

= { omplements }

X ⊆ (Y ∩¬I)+ ∪ I

= { for all Z , Z+∪ I = Z∗
with Z := Y ∩¬I ,

Algorithmi Graph Theory April 8, 2022

47

lemma 3.20 with X :=Y }

X ⊆ Y∗

= { ∗
is a losure operator }

X∗⊆Y∗ .

The seond property follows immediately from the anti-symmetry of set inlusion.

✷

Theorem 3.22 (Least Starth Root) Let A be an event in a omplemented regular

algebra with unit I . Then

A∗ = (red.A)∗ ⇒ 〈∀X : X∗=A∗ : red.A⊆X〉 .

That is, if the reexive-transitive redution of A is a starth root of A , it is the least

starth root of A .

Proof Assume that A∗ = (red.A)∗ and X∗=A∗
. Let B = A∩¬I , C = B∩¬(B ·B+)

and Y = X∩¬I . By applying lemma 3.20 and inluding the two assumptions, we have

A∗=B∗=C∗=X∗=Y∗ .

Next we note that

C

= { de�nition of C and B }

A∩¬I∩¬(B ·B+)

= { idempoteny and symmetry of in�mum }

(A∩¬I∩¬(B ·B+)) ∩ ¬I

= { de�nition of C and B }

C ∩ ¬I .

It follows that we an apply lemma 3.21 with X,Y :=A,C and X,Y :=C,X to dedue that

B+=C+=Y+ .

We an now proeed with the alulation.

B∩¬(B ·B+) ⊆ X

= { B∩¬(B ·B+) = C = C∩C+ = C∩Y+ }

B∩¬(B ·B+)∩Y+ ⊆ X

Algorithmi Graph Theory April 8, 2022

48

= { shunting rule (2.27) }

B∩Y+ ⊆ X ∪ B ·B+

⇐ { B∩Y+ ⊆ Y+ }

Y+ ⊆ X ∪ B ·B+

⇐ { Y+ = Y ∪ Y ·Y+ }

Y⊆X ∧ Y ·Y+ ⊆ B ·B+

= { Y = X∩¬I }

Y ·Y+ ⊆ B ·B+

= { [X ·X+ = X+ ·X+] with X :=B

(well-known property, simple proof left to reader) }

Y+ ·Y+ ⊆ B+ ·B+

= { B+=Y+
: see above }

true .

✷

Theorem 3.22 postulates a andidate for a least starth root. In some ases, the

andidate is indeed a least starth root, as illustrated by example 3.23 below, but this is

not always the ase, as illustrated by example 3.24. (In the ase of example 3.23, the

\graph" is not in�nite.) Fortunately, the andidate is indeed a starth root in the ase

relevant to the urrent disussion: when A is a �nite ayli graph.

Example 3.23 Consider the at-most relation on integers. This is normally denoted by

the symbol \≤ " but it is more onvenient here to use the symbol atmost . The at-most

relation is, of ourse, reexive and transitive. That is, atmost= atmost∗ . Instantiating

the variable A in theorem 3.22 with atmost , the relation B is the less-than relation.

This is normally denoted by the symbol \< " but let us write less instead. The reader

may easily verify that the relation less∩¬(less ◦ less+) is the predeessor relation, pred ,

given by, for all integers i and j ,

i[[pred]]j ≡ i+1= j .

The theorem states that, if the predeessor relation is a starth root of the at-most relation,

then it is the least starth root of that relation. And, indeed, pred∗= atmost . So, we

onlude that

〈∀R : R∗= atmost : pred⊆R〉 .

✷

Algorithmi Graph Theory April 8, 2022

49

Example 3.24 Suppose we onsider the universal relation on the set {1,2,3} . Fig.

3.1(a) depits the relation as a graph. Figs. 3.1(b) and () depit starth roots of the

relation; they are both minimal but are distint.

1

2 3

1

2 3

1

2 3

(a) Universal relation

(b) Minimal starth root (c) Minimal starth root

Figure 3.1: Distint minimal starth roots of the universal relation

Denoting the universal relation on {1,2,3} by ⊤⊤ and the identity relation on {1,2,3}

by I , the relation ⊤⊤∩¬I∩¬((⊤⊤∩¬I) ◦ (⊤⊤∩¬I)+) is the empty relation and the

reexive-transitive losure of the empty relation is the identity relation. Thus, it is

not a starth root of the universal relation.

✷

Example 3.25 The onverse of theorem 3.22 is not valid sine a relation may have a

least starth root that is not its reexive-transitive redution. This is demonstrated by

the following example.

Suppose R is the relation {(1, 2),(2, 1)} . Then R∗
is the universal relation on {1,2}

and red.R is the empty relation. Thus, for all X , red.R⊆X ; however, R∗ 6=(red.R)∗ .

Indeed, the least starth root of R is R itself.

✷

Example 3.26 The lexiographi ordering on words over a �nite alphabet is well-

founded. However, if the alphabet has at least two elements, it has no least starth root.

We an gain insight into why this is the ase by onsidering a simpler ase. Suppose

we onsider the alphabet {a,b} and the set of words

{
k : 1≤k : ak

}
∪
{
k : 1≤k :bk

}
.

Algorithmi Graph Theory April 8, 2022

50

That is, eah word is either a string of a s or a string of b s. Fig. 3.2(a) depits the

(reexive redution of the) lexiographi ordering on words in this set of length at most

three. The transitive redution of the latter relation is depited in �g. 3.2(b). Note, in

partiular the diagonal edge from aaa to b .

a aaaaa

b bb bbb

a aaaaa

b bb bbb

(a) Lexicographic ordering (b) Transitive reduction

Figure 3.2: Subgraph of word order and its transitive redution

Now imagine what happens when \three" is generalised to an arbitrary number and

then onsider what happens in the limit. The (reexive-)transitive redution of the

lexiographi ordering on the in�nite set of words relates ak to ak+1 and bk to bk+1 for

eah k but does not relate ak to bj for any values of j and k . It is thus not a starth

root of the lexiographi ordering. Indeed, any starth root of the lexiographi ordering

must relate ak to b for an in�nite number of values of k . But, given suh a starth root,

the removal of any one value of k is also a starth root. There is thus no least starth

root.

✷

Algorithmi Graph Theory April 8, 2022

Chapter 4

Relation Algebra

This hapter disusses the algebra of binary relations: relation algebra for short. Our

axiomatisation is point-free as opposed to pointwise . A pointwise axiomatisation de�nes

the operators of a relation algebra in terms of Boolean values xRy ; the variables of the

axiomatisation are thus relations, R , and points, x and y . This is the more onventional

means of de�ning operators on relations. A point-free axiomatisation omits the points;

the variables in the axiomatisation are exlusively relations.

The advantage of a point-free axiomatisation is inreased onision. This is invaluable

to the goal of establishing general properties of relations. A disadvantage is that when one

omes to apply suh general properties to partiular relations, like the at-most relation,

it is partiular Boolean values, like m≤n , that are of interest. In addition to the

point-free axioms we therefore need to give a pointwise interpretation of eah of the

operators. That is, we need to say, for eah operator that we introdue, how the operator

de�nes a set of pairs. Suh an interpretation is often alled a (set-theoreti) model of

the axiom system. In giving the interpretation we use the notation [[E]] to mean \the

interpretation of E ". Thus we write x[[R]]y instead of xRy ; this enhanes readability

and also emphasises the di�erene between the objets of an abstrat relation algebra

and the interpretation of suh objets as binary relations. Note that the expression E is

most often a relation, but is sometimes an ordering between relations.

A possible soure of error is the interfae between interpretation and the abstrat

algebra. That is, errors may be introdued either when formulating informal statements

in the abstrat algebra or, vie-versa, when interpreting expressions in the abstrat

algebra. It is impossible to avoid all suh errors but, in order to minimise the risk, we

formalise the proess of interpreting point-free formulae in a way that narrows the gap

between the formal and informal.

Algorithmi Graph Theory 51 April 8, 2022

52

4.1 The Axioms

Relation algebra is a rih algebrai struture involving a large number of operators.

There is a down-side as well as an up-side to its rihness. On the one hand it is very

expressive, on the other hand alulations within the algebra an be diÆult beause of

the sheer abundane of alulational rules. In order to make the algebra more tratable

we present it as a number of units with interfaes between the units. Eah unit is a

well-understood and well-doumented mathematial struture of suÆiently small size

to be easily omprehended.

The �rst unit in relation algebra is a lattie struture. Spei�ally, let (A ,⊆) be a

partially-ordered set. We postulate that A forms a omplete, universally distributive

lattie. The in�mum and supremum operators will be denoted by ∩ and ∪ , respetively.

The top and bottom elements of the lattie will be denoted by ⊤⊤ and ⊥⊥ , respetively.

We will all elements of A relations and denote them by variables R , S and T .

As suggested by the hoie of notation, the interpretation of ⊆ is the subset ordering,

the interpretation of ∩ is set intersetion, and the interpretation of ∪ is set union.

Formally,

[[R⊆S]] ≡ 〈∀x,y :x[[R]]y : x[[S]]y〉 ,

x [[R∩S]]y ≡ x[[R]]y∧ x[[S]]y ,

and

x [[R∪S]]y ≡ x[[R]]y∨ x[[S]]y .

This is the most ompliated unit in the framework but one whih should be familiar to

the reader.

Every binary relation has a onverse. At the point level the onverse operator, denoted

by a post�x \

∪
" symbol, is de�ned by

x [[R
∪

]]y ≡ y[[R]]x

for all x and y . At the point-free level we postulate the existene of a (total) unary

funtion from relations to relations suh that, for all relations R and S

R
∪

⊆S ≡ R⊆S
∪

.(4.1)

The Galois onnetion (4.1) is all that is neessary to de�ne the onverse operator and its

interfae with the lattie struture. Its being a Galois onnetion makes it so attrative.

Beause the onverse operator is its own upper and lower adjoint we an immediately

infer that it is universally ∩ -juntive (sine it is its own upper adjoint) and universally

Algorithmi Graph Theory April 8, 2022

53

∪ -juntive (sine it is its own lower adjoint). We most often use suh distributivity

properties in the ase of �nite suprema and in�ma. Spei�ally,

⊤⊤
∪

= ⊤⊤ ,

and

⊥⊥
∪

= ⊥⊥ ,

and, for all relations R and S ,

(R∩S)
∪

= R
∪

∩S
∪

, and

(R∪S)
∪

= R
∪

∪S
∪

.

The fat that onverse is its own upper and lower adjoint yields yet more. The two

standard anellation properties of Galois onnetions yield the inlusions R⊆ (R∪)∪

and (R∪)∪⊆R whene by anti-symmetry of the ordering relation we onlude

R=(R
∪

)
∪

.

Converse is thus a bijetion from relations to relations that is its own inverse. Further-

more, it is a poset isomorphism; substituting S
∪

for S in (4.1) and simplifying using

S=(S∪)∪ we have

R
∪

⊆S
∪

≡ R⊆S .

Finally, a property that often omes in handy is:

R=R
∪

≡ R⊆R
∪

.

The property is a trivial onsequene of the de�ning Galois onnetion.

The set of binary relations over some universe inludes the identity relation, I , de�ned

at the point level by

x[[I]]y ≡ x=y

for all x and y . Relations may also be omposed via the binary omposition operator,

◦
, de�ned at the point level by

x [[R◦S]] z ≡ 〈∃y ::x[[R]]y∧y[[S]]z〉 .

We apture these two notions in our algebrai framework by demanding the existene of

a relation I and a binary operator,

◦
, mapping a pair of relations to a relation, suh

that (A , ◦ , I) is a monoid. That is, omposition is assoiative

(R◦S)◦T =R◦(S◦T) ,(4.2)

Algorithmi Graph Theory April 8, 2022

54

for all relations R , S and T , and I is a left and right unit of omposition

R◦I=R= I◦R ,(4.3)

for all relations R .

There are two interfaes to be spei�ed: that with the lattie struture and that

with the onverse operator. The interfae with the onverse operator is soon dealt with.

Bearing in mind the intended relational interpretations of onverse and omposition we

postulate

(R◦S)
∪

= S
∪

◦R
∪

,(4.4)

for all relations R and S .

From (4.4), it is easy to dedue that

I
∪

= I .(4.5)

For the interfae with the lattie struture we postulate that a relation algebra is a

regular algebra. In partiular, we postulate that for all relations R the funtions (R◦
)

and (

◦R) distribute universally over suprema.

By the fundamental theorem of Galois onnetions, this is equivalent to postulating

the existene of two binary operators \ and / satisfying the properties

R◦S⊆T ≡ S⊆R\T ,(4.6)

and

R◦S⊆T ≡ R⊆T/S .(4.7)

These two operators are alled the fatoring, or division, operators. We suggest that

they be pronouned \under" and \over", respetively.

The meaning of R\T expressed in terms of points an be reovered from (4.6) by

instantiating S to the relation {(x, y)} . Formally, we have:

x [[R\T]]y

= { de�nition }

{(x, y)}⊆R\T

= { (4.6) }

R ◦ {(x, y)} ⊆ T

= { interpretation of ⊆ }

〈∀u,v : u [[R ◦ {(x, y)}]] v : u[[T]]v〉

Algorithmi Graph Theory April 8, 2022

55

= { interpretation of omposition and the relation {(x, y)} }

〈∀u,v : 〈∃w :: u[[R]]w ∧ w=x ∧ v=y〉 : u[[T]]v〉

= { one-point rule }

〈∀u : u[[R]]x : u[[T]]y〉 .

That is,

x [[R\T]]y ≡ 〈∀u :u[[R]]x :u[[T]]y〉 .

Similarly,

x [[T/S]]y ≡ 〈∀u :y[[S]]u :x[[T]]u〉 .

Just as the use of the omposition operator avoids the use of existential quanti�ations,

the use of the division operators avoids the use of universal quanti�ations in point-free

reasoning.

4.1.1 Operator Precedence

We have now introdued quite a large number of operators. In order to redue the

number of parentheses in formulae we should agree on a preedene between the di�erent

operators.

A general rule we use throughout is that all pre�x and post�x operators as well as

subsripting and supersripting take preedene over in�x operators and in�x operators

in turn take preedene over multi�x operators. When both pre�x and post�x operators

are applied to an expression, we use parentheses to larify the order of evaluation. Thus

we only need to disuss the relative preedene of the in�x operators.

For in�x operators, the general rule is that metaoperators (operators like ≡ and

∧) have the lowest preedene. Next ome relations like ≤ and ⊆ . The operators

of relation algebra have the next highest preedene, and funtion appliation |when

expliitly written as an in�x operator| has the highest preedene of all.

Among the in�x operators of relation algebra the preedene is: intersetion and

union have the same, lowest preedene, next is omposition and the highest preedene

is given to the division operators. Thus the expression R ◦S\T ∩ U is parenthesised as

(R◦(S\T))∩U . (Note how white spae is added in order to suggest the orret parsing.)

4.1.2 Modularity Rule and Cone Rule

We have postulated that omposition distributes through suprema. We have not pos-

tulated that omposition distributes through in�ma. Were we to do so then the binary

Algorithmi Graph Theory April 8, 2022

56

relations would not form a model of our algebrai framework. The lak of suh a law,

however, poses severe problems. We know that, for eah R , the funtion (R◦
) is mono-

toni (sine it is universally ∪ -juntive) and hene

R◦(S∩T) ⊆ R◦S ∩ R◦T .

Thus we are in a position to reason with in�ma of ompositions so long as they appear

on the bigger side of an inlusion. But we have no means of working with suh a term

when it appears on the smaller side of an inlusion. Something more is needed to a�ord

the manipulative freedom we need.

The rule we now introdue to overome this diÆulty ats as an interfae between

all three units of the framework. J. Riguet [Rig48℄ named the rule after the famous

mathematiian J.W.R. Dedekind (he alled it \la relation de Dedekind") beause of

its resemblane to the modular identity, a property of normal subgroups disovered by

Dedekind. Shmidt and Str�ohlein [SS88, SS93℄ have adopted Riguet's terminology (they

refer to \die Dedekind Formel", the Dedekind formula) whereas Freyd and

�

S�edrov [Fv90℄

all it the law of modularity (possibly for the same reason as Riguet). We all it the

modularity rule .

The modularity rule is that, for all relations R , S and T ,

R◦S∩T ⊆ R ◦ (S ∩ R
∪

◦T) .(4.8)

At �rst sight, this is a diÆult rule to appreiate and to use. A little analysis of its

struture helps. Note that the term on the smaller side of the inlusion is an in�mum

of two terms and the term on the larger side is a omposition of two terms. None of

the rules given so far ater for either of these situations. Note also that R is the only

repeated variable on the larger side. Viewing omposition as a multipliation operator

and in�mum as addition, it is as if R
∪

is the inverse of R , it being anelled when R is

multiplied through on the righthand side in order to obtain the lefthand side.

These hints may help the reader to understand and remember the rule. However, the

best way to get to grips with it is to use it. Let's work through a few simple examples.

The easiest way to begin is to look for some obvious simpli�ations. Not all are

interesting but some may prove to be.

One simpli�ation is to eliminate the intersetion operator on the right side. This we

an do by the assignment S:=⊤⊤ . We obtain

R◦⊤⊤∩ T ⊆ R ◦R
∪

◦ T .(4.9)

This property has two interesting onsequenes. The right side an be simpli�ed by

instantiating T to I . We get

R◦⊤⊤∩ I ⊆ R ◦R
∪

.

Algorithmi Graph Theory April 8, 2022

57

Hene

R◦⊤⊤∩ I ⊆ R ◦R
∪

∩ I .

But, by monotoniity, sine ⊤⊤⊇R∪

we have

R◦⊤⊤∩ I ⊇ R ◦R
∪

∩ I .

We onlude

R◦⊤⊤∩ I = R ◦R
∪

∩ I .(4.10)

Property (4.10) was obtained by hoosing T so as to simplify the right side of (4.9). The

seond interesting onsequene is obtained by hoosing T =R thus simplifying its left

side. We obtain (sine R◦⊤⊤ ∩ R = R)

R ⊆ R ◦R
∪

◦R .(4.11)

As a �nal, preliminary, example of the use of the modularity rule let us see what it

predits about the distribution of omposition of ap. We have

(R◦S)∩ (R◦T) = R◦(S∩T)

= { (R◦S)∩ (R◦T) ⊇ R◦(S∩T) }

(R◦S)∩ (R◦T) ⊆ R◦(S∩T)

⇐ { modularity rule: (4.8)

with R,S,T := R ,S ,R◦T }

R ◦ (S ∩ R∪

◦R◦T) ⊆ R◦(S∩T)

⇐ { monotoniity of omposition }

S ∩ R∪

◦R◦T ⊆ S∩T

⇐ { monotoniity of (S∩) }

R
∪

◦R◦T ⊆ T .

By symmetry, S and T may be interhanged everywhere. So we onlude:

(R◦S)∩ (R◦T) = R◦(S∩T) ⇐ R
∪

◦R ◦T ⊆ T ∨ R
∪

◦R ◦S ⊆ S .(4.12)

Beause onverse is a lattie isomorphism, all rules we obtain have a dual onstruted

by turning ompositions around. The modularity rule itself has the dual form

S◦R∩T ⊆ (S ∩ T ◦R
∪

)◦R .(4.13)

Algorithmi Graph Theory April 8, 2022

58

and the rules (4.10) and (4.12) have the duals

⊤⊤◦R∩ I = R
∪

◦R ∩ I .(4.14)

and

(S◦R)∩ (T ◦R) = (S∩T)◦R ⇐ T ◦R ◦R
∪

⊆ T ∨ S ◦R ◦R
∪

⊆ S .(4.15)

(Property (4.11) is self-dual.) The reader is invited hek these laims for themself. In

the future, we sometimes make laims of the form \the onverse-dual of x is y ".

The rule sometimes alled \Tarski's rule" is alled the \one rule" below: for all

relations R ,

⊤⊤◦R◦⊤⊤=⊤⊤ ∨ R=⊥⊥ .(4.16)

The one rule expresses the universality of the relation ⊤⊤ . Its signi�ane beomes

evident in setion 5.2 where it is used in ombination with the \all or nothing" rule to

model reasoning about relations as sets of pairs.

The set of homogeneous binary relations on the empty set is, of ourse, the arrier set

of a relation algebra. The empty relation, the identity relation and the universal relation

are all equal and so the algebra is ompletely trivial. In order to exlude this model,

the one rule is sometimes reformulated as an exlusive-or rather than an inlusive-or (a

disjuntion). The rule is then, for all R :

R=⊥⊥ 6≡ ⊤⊤◦R◦⊤⊤ = ⊤⊤ .

(Equivalently,

R 6=⊥⊥ ≡ ⊤⊤◦R◦⊤⊤ = ⊤⊤ .)

The reader an easily hek that this is equivalent to the onjuntion of the standard

one rule and ⊥⊥ 6= ⊤⊤ . Not exluding the trivial model beomes vital when the rule is

extended to heterogeneous relations. See setion 5.4.

Axiom systems for relation algebra often inlude a omplementation (negation) oper-

ator and, instead of the modularity rule, the so-alled Shr�oder rule is postulated. Our

formulation of Shr�oder's rule is slightly di�erent from standard aounts, as we now

explain.

Suppose we onsider an algebra that obeys all the axioms of relation algebra exept

for the modular identity. Suppose that the algebra is omplemented (i.e. every relation

has a omplement). Consider the rule:

R
∪

= ¬I /¬R ,(4.17)

Algorithmi Graph Theory April 8, 2022

59

and the middle-exhange rule :

R ◦¬X ◦S ⊆ ¬Y ≡ R
∪

◦Y ◦S
∪

⊆ X .(4.18)

The rules (4.17) and (4.18) are both equivalent to the modularity rule.

One way of proving the equivalene |left to the reader| is to show that (4.17)

implies (4.18), that (4.18) implies the modularity rule and that the modularity rule

implies (4.17). A step on the way is to prove the divergene rule ,

R◦S ⊆ ¬I ≡ S◦R ⊆ ¬I ,(4.19)

and the not -R -verse rule:

¬(R
∪

) = (¬R)
∪

.(4.20)

The middle-exhange rule gets its name from the fat that the middle term in a ompo-

sition is exhanged with the right side of an inlusion. It has an attrative, symmetri

form, making it easy to remember in spite of having four free variables. The divergene

rule gets its name from the interpretation of ¬I : the relation that holds between two

values if and only if they \diverge" from eah other, i.e. are unequal. The name \not-

R -verse" rule is borrowed from the way the famous mathematiian Augustus de Morgan

denoted the ombination of omplementation and onverse. He literally wrote \not-R -

verse" pointing out that it didn't matter whether one read this as (not R) onverse or

not (R onverse). In our notation we would write ¬R
∪

and (deliberately) omit spei-

fying a preedene of one operator over the other. This justi�es the ombination of a

pre�x operator for negation and a post�x operator for onverse. In general, ombining

pre�x operators with post�x operators is not to be reommended sine, if the operand

(R above) is any other than a variable or onstant, it is extremely diÆult to parse the

formulae. Even so, we don't follow this reommendation and stik to standard notation

| with the onsequene that we have just warned about!

Instead of the middle-exhange rule, many publiations state two rules, eah with

three variables, due to Shr�oder. The rules are equivalent to the onjuntion of the two

equivalenes: for all R , S and T ,

R◦S ⊆ ¬T
∪

≡ S◦T ⊆ ¬R
∪

(4.21)

and

R◦S ⊆ T ≡ T ◦R ⊆ ¬S
∪

.(4.22)

We all these rules the rotation rules (beause of the way the variables are rotated).

Algorithmi Graph Theory April 8, 2022

60

4.2 Summary

This onludes our disussion of the algebrai framework. In a few sentenes, a rela-

tion algebra is a omplete, universally distributive lattie on whih is de�ned a monoid

struture and a unary onverse operator. Composition on the left and on the right

both have upper adjoints, the division operators. Converse is a lattie isomorphism that

preserves the unit of omposition and distributes ontravariantly through omposition.

Finally, the lattie struture, onverse and the monoid struture are all interrelated via

the modularity and one rules.

Algorithmi Graph Theory April 8, 2022

Chapter 5

Coreflexives, Heterogeneous
Relations and Functions

When one writes a omputer program there are many important details, mostly to do

with eÆieny, that play a major rôle. Ignoring all these details, the most primitive

desription that we an give of a sequential program is that it is a binary relation on the

so-alled \state spae". (The state spae of a program is the set of all values that an be

assumed by the program variables.)

Aording to this view of programs, a programming language is a mehanism for

desribing and struturing binary relations that an be implemented: that is, desriptions

of binary relations to whih an \operational semantis" an be given detailing how the

desription an be interpreted as instrutions ontrolling the exeution of a mahine.

Programming languages are normally so onstrained that they only desribe the

relations that are implementable but, in order to support program onstrution, it is vital

that an algebra be able to express relations that are not neessarily implementable or

diretly implementable. The notion of a \guard" on a guarded statement is an example.

A guard ats as a �lter on the domain of exeution of a statement. Operationally it an

be viewed as a partial skip. Mathematially, a guard is just a devie that enables sets

|subsets of the state spae| to be inorporated into program statements.

In the relation alulus there are several mehanisms for viewing sets as relations,

and thus modelling guards, eah of whih has its own merits. One is via \onditions"

and another is via \oreexives"

1

. Axiomatially these have the following de�nitions.

First, we say that relation R is a oreexive if and only if R⊆ I . Seond, we say that

relation R is a right ondition if and only if R=⊤⊤◦R . Finally, we say that R is a left

ondition if and only if R=R◦⊤⊤ .

1

\Coreexives" are also alled \monotypes" [ABH

+
92, BW93, DBvdW97℄ or \tests" [Gl�u17℄, depend-

ing on the intended interpretation; the name \partial identity" is also used (eg. [Voe99℄). We now prefer

the appliation-neutral terminology used by Freyd and

�

S�edrov [Fv90℄.

Algorithmi Graph Theory 61 April 8, 2022

62

In the relational model, we assume, for example, that the universe U ontains two

unequal values true and false . The oreexive representation of the set boolean is then

de�ned to be the relation

{(true, true) , (false, false)} .

The right ondition representation of the set boolean is the relation

{x:x∈U : (x, true)} ∪ {x:x∈U : (x, false)}

It is lear that for any given universe U there is a one-to-one orrespondene between

the subsets of U and the oreexives. Spei�ally, the set A is represented by the

oreexive p where x[[p]]y ≡ x=y∧y∈A . Equally lear is the existene of a one-to-one

orrespondene between the subsets of U and the right onditions on U . That is, if A

is some set then the right ondition de�ned by A is that relation Ar suh that for all x

and y , x[[Ar]]y≡y∈A . Similarly, the left ondition orresponding to A is that relation

Al suh that for all x and y , x[[Al]]y≡x∈A .

Using oreexives to represent subsets of U as relations, a guard on a relation is

modelled by omposition of the relation, either on the left or on the right, with suh a

oreexive. Thus, if R and S are relations and p is a oreexive then p◦R and S◦p

are both relations, the �rst being relation R after restriting elements in its left domain

to those in p and the seond being the relation S after restriting elements in its right

domain to those in p . Using onditions, a guard on the left domain of relation R is

modelled by the intersetion of R with a left ondition, and a guard on the right domain

of R by its intersetion with a right ondition. In priniple, this poses a dilemma on the

hoie of representation of sets in the relation alulus. Should one hoose oreexives

or onditions?

We hoose oreexives, there being several reasons for doing so. One is the simple

fat that guarding both on the left and on the right of a relation is aomplished in

one go with oreexives. Moreover, oreexives have simple and onvenient properties.

Spei�ally, for all oreexives p and q

p = I∩p = p
∪

= p◦p

and

p◦q = q◦p = p∩q .

The most ompelling reason, however, for hoosing to represent sets by oreexives is the

dominant position oupied by omposition among programming primitives. Introduing

a guard in the middle of a sequential omposition of relations is a frequent ativity that

is easy to express in terms of oreexives but lumsy to express with onditions.

Algorithmi Graph Theory April 8, 2022

63

Nevertheless, onditions do have their plae from time to time. They too have at-

trative alulational properties. In partiular, they form a sublattie of the lattie

of relations (that is they are losed under union and intersetion) and |unlike the

oreexives| they are losed under negation. However, from the above it is lear that

there is a one-to-one orrespondene between oreexives and both types of onditions

whih we doument formally below. Exploitation of this orrespondene is entral to

many alulations in the relation alulus. See [DBvdW97℄ for detailed examples.

Distributivity properties are used extensively in our alulations. In relation algebra,

omposition does not distribute through intersetion | in general. In spei� ases it

does. One suh ase is omposition with a oreexive. Spei�ally, for all oreexives p

and all relations R and S ,

p◦(R∩S) = p◦R∩S = p◦R∩p◦S .(5.1)

The �rst equality is proved as follows.

p◦(R∩S) = p◦R∩S

= { anti-symmetry }

p◦(R∩S) ⊆ p◦R∩S ∧ p◦(R∩S) ⊇ p◦R∩S

= { 1st onjunt: distributivity, p⊆ I and monotoniity }

p◦(R∩S) ⊇ p◦R∩S

⇐ { modularity rule: (4.8) }

p◦(R∩S) ⊇ p◦(R ∩ p∪

◦S)

= { p⊆ I , monotoniity }

true .

Now, for the seond equality, we apply the �rst equality:

p◦R∩S

= { p=p◦p }

p◦p◦R∩S

= { [p◦(R∩S) = p◦R∩S] with R :=p◦R }

p◦(p◦R∩S)

= { symmetry of intersetion }

p◦(S∩p◦R)

= { [p◦(R∩S) = p◦R∩S] with R,S := S ,p◦R

Algorithmi Graph Theory April 8, 2022

64

symmetry of intersetion }

p◦R∩p◦S .

5.1 The Domain Operators

In this setion, we introdue two operators mapping relations to oreexives, the so-alled

domain operators. They play an extremely important rôle in the theory to follow.

We all the two operators the left-domain operator and the right-domain operator .

We might have hosen to all one of them the \domain operator" and the other the \range

operator", but this would have introdued an unwelome diretion in the interpretation

of relations. (One of the elements in a pair satisfying a given relation would have to

be designated the input and the other the output.) We prefer to make no ommitment

about the \diretion" of a relation for as long as possible. The left- and right-domain

operators are denoted by the post�x symbols \

<
" and \

>
", respetively.

Definition 5.2 (Right Domain) The right domain of a relation R is the oreexive

denoted by R>
and de�ned by

R> = I∩⊤⊤◦R .

Dually, the left domain of a relation R is the oreexive denoted by R<
and de�ned by

R< = I∩R◦⊤⊤ .

✷

We restrit our attention here to the right-domain operator. The reader is requested

to dualise the results to the left-domain operator.

The intended interpretation of R>
(read R \right") for relation R is {x | 〈∃y ::y[[R]]x〉} .

Two ways we an reformulate this requirement without reourse to points are formulated

in the following theorem.

Theorem 5.3 (Right Domain) For all relations R and oreexives p ,

R>⊆p ≡ R⊆⊤⊤◦p and(5.4)

R>⊆p ≡ R=R◦p .(5.5)

✷

Algorithmi Graph Theory April 8, 2022

65

The haraterisations (5.4) and (5.5) predit a number of useful alulational prop-

erties of the right domain operator. Some are immediate, some involve a little bit of

work for their veri�ation. Immediate from (5.4) |a Galois onnetion| is that the

right domain operator is universally ∪ -juntive, and (⊤⊤◦
) is universally distributive

over in�ma of oreexives. In partiular,

⊤⊤◦(p∩q) = (⊤⊤◦p)∩ (⊤⊤◦q) ,

(R∪S)> = R>∪S> ,

and

⊥⊥>=⊥⊥ .

The last of these an in fat be strengthened to

R>=⊥⊥ ≡ R=⊥⊥ .(5.6)

The proof is straightforward: use (5.4) in ombination with ⊤⊤◦⊥⊥=⊥⊥ .

From (5.4) we may also dedue a number of anellation properties. But, in ombina-

tion with the modularity rule, the anellation properties an be strengthened. We leave

their proofs together with a ouple of other interesting appliations of Galois onnetions

as exerises.

Theorem 5.7 For all relations R , S and T

(a) ⊤⊤ ◦R> = ⊤⊤◦R ,

(b) R ∩ S◦⊤⊤◦T = S< ◦R ◦T> ,

(c) (R∪)> = R< ,

(d) (R∩S◦T)> = (S∪

◦R ∩ T)> ,

(e) (R◦⊤⊤◦S)> = S> ⇐ R 6=⊥⊥ .

✷

We omplete this setion by doumenting the isomorphism between oreexives and

onditions. Reall that the right onditions are, by de�nition, the �xed points of the

funtion (⊤⊤◦
).

Theorem 5.8 The oreexives are the �xed points of the right domain operator. That

is, for all R ,

Algorithmi Graph Theory April 8, 2022

66

(a) R=R> ≡ R⊆ I .

Also, for all oreexives p and all right onditions C ,

(b) (⊤⊤◦p)>=p , and

() ⊤⊤ ◦C> = C .

Moreover, for all relations R and S ,

(d) R>⊆S> ≡ ⊤⊤◦R⊆⊤⊤◦S .

Hene,

(e) R>=S> ≡ ⊤⊤◦R=⊤⊤◦S .

The right-domain operator is thus a poset isomorphism mapping the set of right

onditions to the set of oreexives and its inverse is the funtion (⊤⊤◦
).

✷

Some powerful and far from obvious theorems about oreexives are proved by map-

ping the theorems to statements about onditionals and then exploiting the harateristi

properties of ⊤⊤ | ⊤⊤⊇R for all R , and ⊤⊤=⊤⊤
∪

| to prove these statements. An

illustration of the tehnique is a�orded by the proof of the following lemma.

(R◦S)>=(R> ◦S)> .(5.9)

We begin the proof by invoking theorem 5.8

(R◦S)> = (R> ◦S)>

= { theorem 5.8(e) }

⊤⊤◦R◦S = ⊤⊤ ◦R> ◦S

= { ⊤⊤ ◦R> = ⊤⊤◦R }

⊤⊤◦R◦S = ⊤⊤◦R◦S

= { reexivity }

true .

Another useful property is:

X=⊥⊥ ≡ X>=⊥⊥ .(5.10)

The proof is by mutual impliation. First,

X=⊥⊥ ⇒ {Leibniz } X>=⊥⊥> ⇒ {⊥⊥>=⊥⊥} X>=⊥⊥ .

Algorithmi Graph Theory April 8, 2022

67

Seond,

X>=⊥⊥

= { ⊥⊥ is least relation }

X>⊆⊥⊥

= { theorem 5.3 }

I∩⊤⊤◦X ⊆ ⊥⊥

⇒ { monotoniity of omposition,

preparing for use of the modularity rule }

(I∩X◦⊤⊤)◦⊤⊤⊆⊥⊥

⇒ { modularity rule: (4.8), ⊤⊤=⊤⊤
∪

}

⊤⊤∩X⊆⊥⊥

= { ⊤⊤ is greatest relation, ⊥⊥ is least relation }

X=⊥⊥ .

For modelling programming statements, in partiular onditionals, omplemented

domains are neessary. We assume that the lattie of oreexives is omplemented and

let R>•
denote the omplement of R>

. That is,

R>∪R>• = I and R>∩R>• = ⊥⊥ .

Then, for relations R and oreexives p ,

R>• ⊇ p ≡ R◦p=⊥⊥ .(5.11)

Moreover, for all R ,

(R>)>• = R>• = (R>•)> .(5.12)

Note that (5.11) is a slightly disguised Galois onnetion sine the right side an be

rewritten as R⊆⊥⊥/p . (See (4.7).) The equation de�nes R>•
as the largest oreexive p

suh that restriting the right domain of R to p yields the empty relation. A onsequene

is the distributivity property

(R∪S)>• = R>•∩S>• .

Just as for the non-omplemented domain operator, it is diÆult to simplify (R∩S)>• .

Algorithmi Graph Theory April 8, 2022

68

5.2 Points and Extensionality

In this setion, our goal is to apture the notion that a relation is a set with elements

pairs of points. We begin with the de�nition of a \point"

2

and then postulate an \ex-

tensionality" axiom similar to the notion of saturation disussed in setion 2.6.

Definition 5.13 (Point) A homogeneous relation a of type A is a point i� it has

the following three properties.

(a) a 6=⊥⊥ ,

(b) a⊆ I , and

(c) a=a◦⊤⊤◦a .

In words, a point is a proper, oreexive retangle.

✷

As in de�nition 5.13, we use lower ase letters a , b and c to denote points.

Lemma 5.14 A point is an atom. That is, if a is a point then, for all b ,

b⊆a ≡ b=⊥⊥ ∨ b=a .

Proof Suppose a is a point and b is a relation of the same type as a . The proof that

a is an atom is by mutual impliation. \If" is straightforward. For \only if", assume

that b⊆a and b 6=⊥⊥ . We have to prove that b=a . This we do as follows.

b

= { assumptions: b⊆a⊆ I , property of oreexives }

a◦b◦a

= { assumption: a=a◦⊤⊤◦a }

a◦⊤⊤◦a◦b◦a◦⊤⊤◦a

= { assumptions: b⊆a⊆ I , property of oreexives }

a◦⊤⊤◦b◦⊤⊤◦a

= { assumption: b 6=⊥⊥ ; one rule }

a◦⊤⊤◦a

= { assumption: a=a◦⊤⊤◦a }

a .

2

The de�nitions and lemmas in this setion are due to Ed Voermans.

Algorithmi Graph Theory April 8, 2022

69

✷

The following property was introdued by [Gl�u17℄. Pairs (a, b) in lassial formu-

lations of relations are aptured in our system by events of the form a◦⊤⊤◦b where a

and b are points (proper atomi oreexives). The athy name given to the lemma

expresses the property that membership of a relation is a boolean.

Lemma 5.15 (All or Nothing) Suppose a and b are points. Then

〈∀R :: a◦R◦b=⊥⊥ ∨ a◦R◦b=a◦⊤⊤◦b〉 .

Proof Suppose a◦R◦b 6=⊥⊥ . We have to prove that a◦R◦b=a◦⊤⊤◦b .

a◦R◦b

= { assumptions: a=a◦⊤⊤◦a and b=b◦⊤⊤◦b }

a◦⊤⊤◦a◦R◦b◦⊤⊤◦b

= { assumption: a◦R◦b 6=⊥⊥ , one rule }

a◦⊤⊤◦b .

✷

In general, if a is a point of type A and b is a point of type B , the relation a◦⊤⊤◦b

represents the pair (a, b) ; given a relation R of type A∼B and points a and b of type

A and B , respetively, the statement

a◦⊤⊤◦b ⊆ R

has the interpretation that the pair a and b are related by R . Spei�ally, for all

relations R and points a and b of appropriate type,

(a◦R◦b 6= ⊥⊥) = (a◦⊤⊤◦b ⊆ R) = (a◦⊤⊤◦b = a◦R◦b) .(5.16)

(In onformane with long-standing mathematial pratie, property (5.16) should be

read onjuntionally: that is as the equality of three terms. In this ase, eah term is

boolean. The property is a straightforward orollary of the all-or-nothing rule.)

The following lemma motivates the all-or-nothing rule. That \pairs" a◦⊤⊤◦b are

atoms is equivalent to the all-or-nothing rule.

Lemma 5.17 Suppose a and b are atomi oreexives. Then

〈∀R :: a◦R◦b=⊥⊥ ∨ a◦R◦b=a◦⊤⊤◦b〉 ≡ atomic.(a◦⊤⊤◦b) .

Proof Suppose p and q are oreexives. Then, for all R ,

Algorithmi Graph Theory April 8, 2022

70

R ⊆ p◦⊤⊤◦q

= { set theory }

R = R ∩ p◦⊤⊤◦q

= { domains (spei�ally theorem 5.7(b)),

p and q are oreexives, so p=p<
and q=q> }

R = p◦R◦q .

We onlude that

R ⊆ p◦⊤⊤◦q ≡ R = p◦R◦q .

We shall only need to apply this property in the ase that p and q are atomi oreex-

ives. Now, assume a and b are atomi oreexives and a◦R◦b=⊥⊥ ∨ a◦R◦b=a◦⊤⊤◦b .

Then

R ⊆ a◦⊤⊤◦b

= { above with p,q :=a,b }

R = a◦R◦b

⇒ { assumption and Leibniz }

R=⊥⊥ ∨ R=a◦⊤⊤◦b .

We onlude, by de�nition 2.49 of atomi,

〈∀R :: a◦R◦b=⊥⊥ ∨ a◦R◦b=a◦⊤⊤◦b〉 ⇒ atomic.(a◦⊤⊤◦b) .

In words, if the all-or-nothing rule is universally valid for atomi oreexives a and b ,

then a◦⊤⊤◦b is atomi. Now, suppose a◦⊤⊤◦b is an atom. Then, for all R ,

a◦R◦b ⊆ a◦⊤⊤◦b

= { a◦⊤⊤◦b is an atom, de�nition 2.49 }

a◦R◦b=⊥⊥ ∨ a◦⊤⊤◦b=a◦R◦b .

That is, if a◦⊤⊤◦b is an atom, the all-or-nothing rule applies to a◦R◦b , for all R .

✷

Combining lemmas 5.15 and 5.17, we get:

Lemma 5.18 For all points a and b , a◦⊤⊤◦b is atomi.

✷

Algorithmi Graph Theory April 8, 2022

71

Lemma 5.19 For all proper oreexives p and q ,

p◦⊤⊤◦q ⊆ I ⇒ p=q .

Proof

p◦⊤⊤◦q ⊆ I

⇒ { monotoniity and unit of omposition }

p◦p◦⊤⊤◦q ⊆ p ∧ p◦⊤⊤◦q◦q ⊆ q

⇒ { p is oreexive, so p=p◦p=p>
, similarly for q

monotoniity and domains }

(p◦⊤⊤◦q)> ⊆ p ∧ (p◦⊤⊤◦q)< ⊆ q

= { domains (spei�ally theorem 5.7(e)),

p and q are non-empty oreexives }

q⊆p ∧ p⊆q

= { anti-symmetry }

p=q .

✷

An immediate orollary of lemma 5.19 is that, for all points a and b ,

a◦⊤⊤◦b ⊆ I ≡ a=b .(5.20)

(Folows-from is immediate from the de�nition of a point. Implies is an instane of lemma

5.19.)

Definition 5.21 (Extensional) Suppose A is a type. The lattie of oreexives of

type A is said to be extensional i� for all oreexives p of type A ,

p = 〈∪a : point.a ∧ a⊆p : a〉 .

✷

We onlude with a theorem stating onditions under whih the lattie of relations

(of a given type) is saturated and atomi. The proper atoms are events of the form

a◦⊤⊤◦b where a and b are points; suh an event models the pair (a, b) in onventional

pointwise formulations of relation algebra.

Theorem 5.22 Suppose, for types A and B , the latties of oreexives of types A

and B are both omplete, universally distributive and extensional. Then the lattie of

relations of type A∼B is a saturated, atomi lattie; the atoms are elements of the form

Algorithmi Graph Theory April 8, 2022

72

a◦⊤⊤◦b where a and b are atoms of the lattie of oreexives (of types A and B ,

respetively). It follows that, if the lattie of relations of type A∼B is omplete and

universally distributive, it is isomorphi to the powerset of the set of elements of the

form a◦⊤⊤◦b where a and b are atoms of the latties of oreexives of types A and

B , respetively.

Proof By lemma 5.15, it suÆes to prove that the lattie of relations of type A∼B is

saturated. This is easy: for all R of type A∼B ,

R

= { I is unit of omposition,

latties of oreexives of types A and B are extensional }

〈∪a :point.a :a〉 ◦R ◦ 〈∪b :point.b :b〉

= { distributivity of omposition over ∪ }

〈∪a,b : point.a∧point.b : a◦R◦b〉

= { all-or-nothing rule: lemma 5.15, ⊥⊥ is zero of supremum }

〈∪a,b : point.a ∧ point.b ∧ a◦R◦b 6=⊥⊥ : a◦⊤⊤◦b〉 .

That the lattie of relations is a powerset follows from theorem 2.51.

✷

Heneforth, we assume that, for eah type A , the lattie of oreexives of type A

is omplete, universally distributive and saturated. That is, realling theorem 2.51,

we assume that the oreexives of a given type form a powerset. Theorem 5.22 then

states that, for eah pair of types A and B , the lattie of relations of type A∼B is

a powerset with atoms of the form a◦⊤⊤◦b where a and b are points of type A and

B , respetively. In view of theorem 2.51, we use ⊆ for the ordering relation and ∼

for the omplement operator on oreexives. We use ¬ for the omplement operator

on relations. Thus, for oreexive p , ∼p = I∩¬p . Later, when the relations represent

graphs, we use \node" as a synonym for \point". Standard properties of powersets |the

properties of set union, intersetion and omplementation| will be assumed, sometimes

without spei� mention and sometimes with the hint \set theory".

We use p and q to range over oreexives and a and b to range over points.

Summarising, the saturation property is that

〈∀R :: R = 〈∪a,b : a◦⊤⊤◦b⊆R : a◦⊤⊤◦b〉〉 .(5.23)

The irreduibility property is that, if R is a funtion with range relations of type A∼B

and soure K , then, for all points a and b of appropriate type,

a◦⊤⊤◦b ⊆ ∪R ≡ 〈∃k : k∈K : a◦⊤⊤◦b⊆R.k〉 .(5.24)

Algorithmi Graph Theory April 8, 2022

73

The identity relation IA of type A has the property that, for all points a and a ′
of

type A ,

a◦⊤⊤◦a ′ ⊆ IA ≡ a=a ′ .(5.25)

Other than its de�nition, the ruial property of the omplement operator on oreexives

is that, for all points a and oreexives p ,

¬(a⊆p) ≡ a⊆∼p .

See lemma 2.52.

5.2.1 Properties of Points

This setion douments properties of points with respet to domains and fators.

Lemma 5.26 For all relations R and points a and b (of appropriate type),

a ⊆ R< ≡ (a◦R)> 6= ⊥⊥ , and

b ⊆ R> ≡ (R◦b)< 6= ⊥⊥ .

Proof We prove the seond equation.

(R◦b)< 6= ⊥⊥

= { one rule: (4.16) }

⊤⊤ ◦ (R◦b)< ◦⊤⊤ = ⊤⊤

= { [R< ◦⊤⊤ = R◦⊤⊤] with R :=R◦b }

⊤⊤◦R◦b◦⊤⊤ = ⊤⊤

= { [⊤⊤ ◦R> = ⊤⊤◦R] }

⊤⊤ ◦R> ◦b ◦⊤⊤ = ⊤⊤

= { one rule: (4.16) }

R> ◦b 6= ⊥⊥

= { R> ◦b ⊆ b ;

so, by atomiity of b , R> ◦b = b ∨ R> ◦b = ⊥⊥ ;

also, b 6= ⊥⊥ }

R> ◦b = b

= { R> ◦b = R>∩b }

b ⊆ R> .

Algorithmi Graph Theory April 8, 2022

74

✷

For a point b the square R ◦b ◦R
∪

represents the set of all points a suh that a and

b are related by R . This is made preise in lemma 5.27 and its orollary, lemma 5.28.

Lemma 5.27 For all relations R of type A∼B , all oreexives p of type A∼A and

all points b of type B ,

p ⊆ R ◦b ◦R
∪

≡ p◦⊤⊤◦b ⊆ R .

Symmetrially, for all relations R of type A∼B , all oreexives q of type B∼B and

all points a of type A ,

q ⊆ R
∪

◦a ◦R ≡ a◦⊤⊤◦q ⊆ R .

Proof By mutual impliation:

p ⊆ R ◦b ◦R
∪

⇒ { monotoniity }

p◦⊤⊤◦b ⊆ R ◦b ◦R
∪

◦⊤⊤ ◦b

⇒ { R
∪

◦⊤⊤ ⊆ ⊤⊤ }

p◦⊤⊤◦b ⊆ R◦b◦⊤⊤◦b

⇒ { b is a point: so, by de�nition 5.13, b◦⊤⊤◦b=b and b⊆ I }

p◦⊤⊤◦b ⊆ R

⇒ { onverse and monotoniity }

p ◦⊤⊤ ◦b ◦b ◦⊤⊤ ◦p
∪ ⊆ R ◦b ◦R

∪

⇒ { b is a point: so b◦b=b and ⊤⊤◦b◦⊤⊤=⊤⊤

p is a oreexive, so p
∪ =p ; monotoniity }

p◦⊤⊤◦p ⊆ R ◦b ◦R
∪

⇒ { I⊆⊤⊤ and p◦p=p }

p ⊆ R ◦b ◦R
∪

.

✷

Property (5.16) is the most basi formulation of membership of pairs in a relation. It

an also be formulated in terms of squares and in terms of domains:

Lemma 5.28 For all relations R and points a and b (of appropriate type),

(a ⊆ R ◦b ◦R
∪

) = (a◦⊤⊤◦b ⊆ R) = (b ⊆ R
∪

◦a ◦R) .

Algorithmi Graph Theory April 8, 2022

75

Proof Straightforward instantiation of lemma 5.27:

a ⊆ R ◦b ◦R
∪

= { lemma 5.27 with p :=a }

a◦⊤⊤◦b ⊆ R

= { lemma 5.27 with p :=b }

b ⊆ R
∪

◦b ◦R .

✷

Lemma 5.29 For all relations R and points a and b (of appropriate type),

(a ⊆ (R◦b)<) = (a◦⊤⊤◦b ⊆ R) = (b ⊆ (a◦R)>) .

Proof

a◦⊤⊤◦b ⊆ R

⇒ { monotoniity and a is a oreexive, so a◦a=a }

a◦⊤⊤◦b ⊆ a◦R

⇒ { monotoniity }

(a◦⊤⊤◦b)> ⊆ (a◦R)>

= { domains abd }

b ⊆ (a◦R)>

⇒ { monotoniity }

a◦⊤⊤◦b ⊆ a ◦⊤⊤ ◦ (a◦R)>

= { domains: [⊤⊤ ◦R> = ⊤⊤◦R] with R :=a◦R }

a◦⊤⊤◦b ⊆ a◦⊤⊤◦a◦R

= { a is a point, so a◦⊤⊤◦a=a }

a◦⊤⊤◦b ⊆ a◦R

⇒ { a is a oreexive, monotoniity }

a◦⊤⊤◦b ⊆ R .

That is, we have shown by mutual impliation that

a◦⊤⊤◦b ⊆ R ≡ b ⊆ (a◦R)> .

Algorithmi Graph Theory April 8, 2022

76

A symmetri alulation establishes that

a◦⊤⊤◦b ⊆ R ≡ a ⊆ (R◦b)< .

✷

Combined with property (5.16), lemmas 5.28 and 5.29 give six alternative ways of

formulating the membership relation a◦⊤⊤◦b ⊆ R . All are useful.

Lemma 5.30 For all relations R and points a (of appropriate type),

a⊆R< ≡ 〈∃b : b⊆R> : a◦⊤⊤◦b ⊆ R〉 .

Also, for all relations R and points b (of appropriate type),

b⊆R> ≡ 〈∃a : a⊆R< : a◦⊤⊤◦b ⊆ R〉 .

Proof We prove the �rst equation:

a ⊆ R<

= { lemma 5.26 }

(a◦R)> 6= ⊥⊥

= { lemma 5.32 }

〈∃b :: b ⊆ (a◦R)>〉

= { lemma 5.29 }

〈∃b :: a◦⊤⊤◦b ⊆ R〉

= { domains (spei�ally, a◦⊤⊤◦b ⊆ R⇒ b⊆R>
) }

〈∃b : b⊆R> : a◦⊤⊤◦b ⊆ R〉 .

✷

Lemma 5.31 gives a pointwise interpretations of the fator operators. Although we

typially try to avoid pointwise reasoning, the lemma is sometimes indispensable.

Lemma 5.31 For all relations R of type A∼C and S of type B∼C (for some A , B

and C) and all points a and b ,

a◦⊤⊤◦b ⊆ R/S ≡ (b◦S)> ⊆ (a◦R)> .

Dually, for all relations R of type C∼A and S of type C∼B , and all points a and b ,

a◦⊤⊤◦b ⊆ R\S ≡ (R◦a)< ⊆ (S◦b)< .

Proof By mutual impliation:

Algorithmi Graph Theory April 8, 2022

77

a◦⊤⊤◦b ⊆ R/S

= { de�nition of fator }

a◦⊤⊤◦b◦S ⊆ R

⇒ { a and b are points, monotoniity and domains

(see initial steps in proof of lemma 5.29) }

(b◦S)> ⊆ (a◦R)>

⇒ { monotoniity }

a ◦⊤⊤ ◦ (b◦S)> ⊆ a ◦⊤⊤ ◦ (a◦R)>

= { domains }

a◦⊤⊤◦b◦S ⊆ a◦⊤⊤◦a◦R

= { a is a point (so a◦⊤⊤◦a=a) }

a◦⊤⊤◦b◦S ⊆ a◦R

⇒ { a is a oreexive }

a◦⊤⊤◦b◦S ⊆ R

= { de�nition of fator }

a◦⊤⊤◦b ⊆ R/S .

The seond equivalene is proved similarly.

a◦⊤⊤◦b ⊆ R\S

= { de�nition of fator }

R◦a◦⊤⊤◦b ⊆ S

⇒ { monotoniity and oreexives

(see initial steps in proof of lemma 5.29) }

(R◦a)< ⊆ (S◦b)<

⇒ { (as in above alulation) }

a◦⊤⊤◦b ⊆ R\S .

✷

5.2.2 Unicity

Sometimes we want to de�ne funtions indiretly via a property relating input and output

values. The property is formalised and then it is shown that the formal spei�ation

Algorithmi Graph Theory April 8, 2022

78

relates eah input value to exatly one output value. That is, the formal spei�ation

relates eah input value to at most one and at least one output value. In order to reason

within our axiom system, we then want to onlude that output values are points. See,

for example, setion 5.3, where we de�ne the meaning of funtionality and exhibit an

expression that formulates, in very general terms, the result of applying a funtion to an

argument.

Although the proess seems to be obvious, we want to stik to our goal of validating

every step within our axiom system. For this reason, we now present the tehnial

justi�ation. As just mentioned, we refer the reader to setion 5.3 for a onrete example.

In the following lemmas, p is a oreexive relation and dummies a and a ′
are points

of the same type as p .

We begin with the onsequene of showing that spei�ation p has at least one

solution.

Lemma 5.32

p 6=⊥⊥ ≡ 〈∃a ::a⊆p〉 .

Proof

p 6=⊥⊥

= { one rule: (4.16) }

⊤⊤◦p◦⊤⊤ = ⊤⊤

= { saturation property: (5.23) }

⊤⊤ ◦ 〈∪a :a⊆p :a〉 ◦⊤⊤ = ⊤⊤

= { distributivity }

〈∪a :a⊆p :⊤⊤◦a◦⊤⊤〉 = ⊤⊤

= { a ranges over points, so a 6=⊥⊥ , one rule: (4.16) }

〈∪a :a⊆p :⊤⊤〉 = ⊤⊤

⇒ { 〈∪a : false :⊤⊤〉=⊥⊥ and ⊥⊥ 6=⊤⊤ }

〈∃a ::a⊆p〉

⇒ { a ranges over points: so ⊥⊥ 6=a

prediate alulus, (details left to the reader) }

p 6=⊥⊥ .

✷

Next we formulate the onsequene of showing that spei�ation p has at most one

solution.

Algorithmi Graph Theory April 8, 2022

79

Lemma 5.33

〈∀a : a⊆p : a=p〉 ≡ 〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=a ′〉 .

Proof

〈∀a : a⊆p : a=p〉

= { anti-symmetry }

〈∀a : a⊆p : a⊇p〉

= { extensionality assumption: de�nition 5.21 }

〈∀a : a⊆p : a ⊇ 〈∪a ′ :a ′⊆p :a ′〉〉

= { suprema }

〈∀a : a⊆p : 〈∀a ′ : a ′⊆p : a⊇a ′〉〉

⇐ { reexivity of the subset relation }

〈∀a : a⊆p : 〈∀a ′ : a ′⊆p : a=a ′〉〉

= { nesting of quanti�ations }

〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=a ′〉

⇐ { Leibniz and prediate alulus }

〈∀a : a⊆p : a=p〉 .

✷

Theorem 5.34 Suppose p is a oreexive relation. Then p is a point equivales

〈∃a ::a⊆p〉 ∧ 〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=a ′〉 .

(As above, dummies a and a ′
range over points of the same type as p .)

In words, a spei�ation p de�nes a point i� it has at least one solution and at most

one solution.

Proof In the following dummy q ranges over oreexives of the same type as p and

a ranges over points of the same type as p .

p is atomi

= { de�nition 2.49 }

〈∀q : q⊆p : q=p ∨ q=⊥⊥〉

= { trading }

Algorithmi Graph Theory April 8, 2022

80

〈∀q : q⊆p∧q 6=⊥⊥ : q=p〉

= { lemma 5.32 }

〈∀q : q⊆p∧ 〈∃a ::a⊆q〉 : q=p〉

= { distributivity (of onjuntion over disjuntion),

range disjuntion }

〈∀q,a : a⊆q⊆p : q=p〉

⇐ { anti-symmetry }

〈∀a : a⊆p : a=p〉

= { lemma 5.33 }

〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=a ′〉 .

Also,

p is atomi

= { de�nition 2.49 }

〈∀q : q⊆p : q=p ∨ q=⊥⊥〉

⇒ { points a and a ′
are oreexives, weakening }

〈∀a,a ′ : a⊆p ∧ a ′⊆p : (a=p ∨ a=⊥⊥) ∧ (a ′=p ∨ a ′=⊥⊥)〉

= { points are proper (i.e. a 6=⊥⊥ and a ′ 6=⊥⊥) }

〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=p ∧ a ′=p〉

⇒ { transitivity of equality }

〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=a ′〉 .

Combining the two alulations, we have established by mutual impliation that

p is atomi ≡ 〈∀a,a ′ : a⊆p∧a ′⊆p : a=a ′〉 .(5.35)

It follows that, for all oreexives p ,

p is a point

= { de�nitions 2.49 and 5.13, assumption: p is oreexive }

p 6=⊥⊥ ∧ p is atomi

= { lemma 5.32 and (5.35) }

〈∃a ::a⊆p〉 ∧ 〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=a ′〉 .

✷

Algorithmi Graph Theory April 8, 2022

81

5.3 Functionality and Totality

A subset of the relations is formed by the funtions, whih an be seen as deterministi

relations. There are a number of ways to haraterise them. Beause we want to stress

the importane of Galois onnetions we hoose the following.

Definition 5.36 (Functional Relation) A relation f is said to be funtional if and

only if it has the property that for all relations R and S :

R ◦ f> ⊆ S◦f ≡ R ◦ f
∪

⊆ S .(5.37)

✷

Note: The onverse-dual of (5.37) ould equally have been hosen as the de�nition

of funtional. It is at this point that we are obliged to ommit to a \diretion" when

giving pointwise interpretations to relations. Spei�ally, we interpret the left domain of

a relation as the possible \outputs" of the relation and the right domain as the possible

\inputs". (See also setion 5.4.) This hoie is onsistent with the use of the symbol \

◦
"

to denote both omposition of relations and omposition of funtions.

The de�nition of funtional is almost a Galois onnetion, but not quite: the right

domain on the lefthand side spoils it. However, it is a Galois onnetion if we restrit our

attention to total funtions, that is funtional relations with right domain the identity

relation. Another way of turning the de�nition into a Galois onnetion is by onsidering

the set of relations with right domain ontained in f> . It an be shown that these

relations form a omplete lattie with ⊥⊥ as bottom element, relation ⊤⊤ ◦ f> as top

and the intersetion and union operators as meet and join. It is not diÆult to verify

that the funtions (

◦f) and (

◦(f∪)) form a Galois onnetion between this lattie and the

lattie of the relations. As a onsequene, the funtion (

◦f) distributes over non-empty

intersetions of relations, a property that is expeted from pointwise onsiderations.

In this setion, we deviated from our pratie of starting with a pointwise interpreta-

tion. So, we now have to hek whether the de�nition aptures the idea of funtionality.

The haraterising property of a funtion is that it is single-valued (also known as Leib-

niz's rule), i.e. if y[[f]]x and z[[f]]x then y is equal to z . This is written as:

〈∀y,z : 〈∃x ::y[[f]]x ∧ z[[f]]x〉 : y[[I]]z〉 .

After rewriting the existential quanti�ation using relation omposition and subsequently

the universal quanti�ation using the de�nition of relation inlusion, we obtain (the muh

more onise):

f ◦ f
∪

⊆ I .(5.38)

Algorithmi Graph Theory April 8, 2022

82

Expression (5.38) follows easily from de�nition 5.36 by instantiation of R to f and S to

I . It is also not diÆult to derive ondition (5.37) from (5.38), in other words, expression

(5.38) is an alternative de�nition of the notion of funtionality.

As is often the ase with important onepts, there is a number of equivalent de�ni-

tions of funtionality. We mention a third:

f ◦ f
∪

= f< .(5.39)

This is obtained by rewriting (5.38) as f ◦ f
∪ = I ∩ f ◦ f∪ and noting that the righthand

side of the latter formula is equal to the left domain of f (this uses the dual of (4.14)).

The notion dual to funtionality, viz. injetivity, is now of ourse easy to de�ne as: f

is injetive if and only if f
∪

is funtional. A relation that is both injetive and funtional

is alled a bijetion.

The standard notion of a partial funtion is a relation that de�nes a unique output

value for eah input value in its domain. In our axiom system we have the following

theorem.

Theorem 5.40 Suppose relation R has type A∼B . Then

R ◦R
∪

⊆ IA ≡
〈

∀b : b⊆R> : point.(R ◦b ◦R
∪

)
〉

.(5.41)

Moreover, if f is a relation of type A∼B and f ◦ f
∪ ⊆ IA , the relation f ◦b ◦ f

∪

is a point

of type A and

〈

∀a,b : b⊆ f> : a◦⊤⊤◦b ⊆ f ≡ a = f ◦b ◦ f
∪
〉

.(5.42)

Proof We prove (5.41) by mutual impliation. First,

R ◦R∪ ⊆ IA

= { domains }

R ◦R> ◦R
∪ ⊆ IA

= { extensionality assumption: de�nition 5.21 }

R ◦ 〈∪b : b⊆R> : b〉 ◦R∪ ⊆ IA

= { distributivity }

〈∀b : b⊆R> : R ◦b ◦R
∪ ⊆ IA〉

⇐ { de�nition 5.13 of a point }

〈∀b : b⊆R> : point.(R ◦b ◦R
∪)〉 .

Thus we have established the \if" part of the equivalene. Now, for the \only-if", assume

R ◦R
∪ ⊆ IA .

Algorithmi Graph Theory April 8, 2022

83

We �rst note that, for all b suh that b⊆R>
, the equation

a: point.a: a◦⊤⊤◦b ⊆ R(5.43)

has at most one solution sine, for all points a and a ′
of type A ,

a◦⊤⊤◦b ⊆ R ∧ a ′
◦⊤⊤◦b ⊆ R

⇒ { onverse and monotoniity }

a◦⊤⊤◦b◦b◦⊤⊤◦a ′ ⊆ R ◦R
∪

= { b is a point, so ⊤⊤◦b◦b◦⊤⊤=⊤⊤ }

a◦⊤⊤◦a ′ ⊆ R ◦R
∪

⇒ { assumption: R ◦R
∪ ⊆ IA , transitivity of the subset relation }

a◦⊤⊤◦a ′ ⊆ IA

⇒ { a and a ′
are points: (5.25) }

a=a ′ .

That is,

〈∀b : b⊆R> : 〈∀a,a ′ : a◦⊤⊤◦b ⊆ R ∧ a ′
◦⊤⊤◦b ⊆ R : a=a ′〉〉 .(5.44)

By lemma 5.26, equation (5.43) has at least one solution for all points b suh that

b⊆R>
. That is,

〈∀b : b⊆R> : 〈∃a :: a◦⊤⊤◦b ⊆ R〉〉 .(5.45)

Thus equation (5.43) has exatly one solution for all points b suh that b⊆ f> . So:

〈∀b : b⊆R> : point.(R ◦b ◦R
∪)〉

= { R ◦b ◦R
∪

⊆ { assumption: b⊆R>
, monotoniity }

R ◦R> ◦R
∪

= { domains }

R ◦R
∪

⊆ { assumption: R ◦R
∪ ⊆ IA }

IA ,

theorem 5.34 with p := R ◦b ◦R
∪

}

〈∀b : b⊆R> : 〈∃a :: a ⊆ R ◦b ◦R
∪〉〉

Algorithmi Graph Theory April 8, 2022

84

∧ 〈∀b : b⊆R> : 〈∀a,a ′ : a ⊆ R ◦b ◦R
∪

∧ a ′ ⊆ R ◦b ◦R
∪

: a=a ′〉〉

= { lemma 5.28 }

〈∀b : b⊆R> : 〈∃a :: a◦⊤⊤◦b ⊆ R〉〉

∧ 〈∀b : b⊆R> : 〈∀a,a ′ :a◦⊤⊤◦b ⊆ R ∧ a ′
◦⊤⊤◦b ⊆ R :a=a ′〉〉

= { (5.44) and (5.45) }

true .

This onludes the proof of (5.41).

Now, assuming that f ◦ f
∪ ⊆ I , it follows from (5.41) (with R := f) that f ◦b ◦ f

∪

is a

point. Also, for all points a and b (of types A and B , respetively),

b⊆ f> ∧ a◦⊤⊤◦b ⊆ f

= { lemma 5.29 (aiming to eliminate �rst onjunt) }

b⊆ f> ∧ b⊆ (a◦f)> ∧ a◦⊤⊤◦b ⊆ f

= { monotoniity and lemma 5.29 }

a◦⊤⊤◦b ⊆ f

= { lemma 5.28 }

a ⊆ f ◦b ◦ f
∪

= { f ◦b ◦ f
∪

is a point, de�nitions 5.13 and 2.49 }

a = f ◦b ◦ f
∪

.

✷

In words, theorem 5.40 states that f is funtional i�, for all points b in the right

domain of f , the relation f ◦b ◦ f
∪

de�nes a unique point of type A . This is the point

that we denote by f.b . The de�ning property of f.b is thus

〈∀a,b : b⊆ f> : a◦⊤⊤◦b ⊆ f ≡ a= f.b〉 .(5.46)

A onsequene of the uniity property expressed by (5.46) is the property that, for all

funtional relations f of type C∼A and g of type C∼B , and all points a and b ,

a◦⊤⊤◦b ⊆ f
∪

◦g ≡ a⊆ f> ∧ f.a=g.b ∧ b⊆g> .(5.47)

When introduing the modularity rule in setion 4.1.2, we emphasised the importane

of distributivity properties. A distributivity property that possibly goes unnotied in

pointwise alulations but must be used expliitly in point-free alulations is the dis-

tributivity of funtions over intersetion: for all relations R and S and all funtional

relations f ,

(R∩S)◦f = R◦f∩S◦f .(5.48)

Algorithmi Graph Theory April 8, 2022

85

The property is an appliation of (4.15) ombined with (5.38).

Besides funtionality and injetivity, there are two other dual notions whih relations

may enjoy: totality and surjetivity. We only spell out what it means for a relation to

be total, beause surjetivity an be de�ned in terms of totality: relation R is surjetive

i� its onverse R
∪

is total.

Relation R is total means that it an aept every element of the universe as an

input. Formally, relation R is total i� R>= I . An equivalent formulation is: I ⊆ R
∪

◦R .

From this, it an be seen that surjetivity is, in a sense, also dual to injetivity: relation

R is injetive an be expressed as I ⊇ R
∪

◦R .

We onlude this setion with a useful lemma on establishing the equality of two

funtional relations.

Lemma 5.49 Suppose f and h are funtional relations of the same type. Then

f=h ≡ f⊆h ∧ f>=h>

Proof Clearly, the left side implies the right side and it suÆes to prove follows-from.

h⊆ f

= { domains: (5.5), and assumption: f>=h> }

h ◦ f> ⊆ f

= { assumption: f is a funtion and (5.37) }

h ◦ f
∪ ⊆ I

⇐ { assumption: f⊆h , monotoniity and transitivity }

h ◦h
∪ ⊆ I

= { assumption: h is a funtion and (5.38) }

true .

The required impliation follows from the anti-symmetry of the subset relation.

✷

5.4 Heterogeneous Relations

A heterogeneous relation R has a type given by two sets A and B , whih we all the

target and soure of R . We use the notation A∼B to denote the type of a relation.

Formally, a relation of type A∼B is a subset of A×B . (Equivalently, it is a funtion

Algorithmi Graph Theory April 8, 2022

86

with domain A×B and range Bool .) A homogeneous relation is a relation of type A∼A

for some A .

The target and soure of a relation should not be onfused with its left domain and

right domain. If R has type A∼B then its left domain R<
has type A∼A and its right

domain R>
has type B∼B . As always, R<

and R>
are oreexives, but this property

is expressed formally as R<⊆ IA and R>⊆ IB , where IA denotes the identity relation of

type A∼A (and similarly for IB).

The operators in the algebra of heterogeneous relations are typed. For example, the

omposition of two relations R and S , denoted as always by R◦S , is only de�ned when

the soure of R equals the target of S . Moreover, the target of R◦S is the target of R

and the soure of R◦S is the soure of S . That is, if R has type A∼B and S has type

B∼C then R◦S has type A∼C . We assume the reader is familiar with suh rules.

As mentioned earlier, the rules of the untyped alulus are appliable in the typed

alulus, with some restritions on types. For example, the rule R = R< ◦R remains

valid without restrition. Restritions are neessary on types for the middle-exhange

and rotation rules (see setion 4). For example, the inlusion R◦S⊆¬T
∪

is only de�ned

if R has type A∼B , S has type B∼C and T has type C∼A , for some sets A , B

and C . (The onverse T
∪

of T then has type A∼C , whih equals the type of ¬T
∪

and R◦S .) With these type restritions, S◦T ⊆¬R
∪

is also well-de�ned, and the two

inlusions R◦S⊆¬T
∪

and S◦T ⊆¬R
∪

are equal as per the rotation rule.

It is now possible to see why the hoie of an inlusive-or in the statement of the one

rule (4.16) is vital: the rule, for all R :

R=⊥⊥ 6≡ ⊤⊤◦R◦⊤⊤ = ⊤⊤

is invalid in the ase that the type of R is ∅∼∅ and, as good programmers are very well

aware, suh extreme ases an and do our in pratie.

The are that must be exerised with overloading is exempli�ed by the rule

R◦⊤⊤ = R< ◦⊤⊤ .

Reall that, if R has type A∼B , R<
has type A∼A . Thus the notation \⊤⊤ " on

the left side of the equation denotes the universal relation of type B∼C , for some type

C ; on the other hand, the notation \⊤⊤ " on the right side of the equation denotes the

universal relation of type A∼C . Rather than overload the notation in this way, we ould

deorate every ourrene of ⊤⊤ with its type. For example, we ould rephrase the rule

as

R ◦ B⊤⊤C = R< ◦ A⊤⊤C .

We prefer not to do so beause the type information is usually easy to infer. (An

exeption is that we oasionally deorate the identity relation I with its type: IA

Algorithmi Graph Theory April 8, 2022

87

denotes the identity relation of type A∼A .) Nevertheless, we urge the reader to hek

types, partiularly where notation is overloaded.

Typed relation algebra, as briey summarised above, extends ategory theory to what

has been alled allegory theory . See Freyd and

�

S�edrov [Fv90℄ for more details.

5.5 The Interface Between Formal and Informal

In order to narrow the gap between onventional pointwise reasoning and the formal

axiomati reasoning in this paper, this setion explains how to proeed from one to the

other.

Theorem 5.22 enables more familiar pointwise reasoning. For example, we an derive

the standard pointwise de�nition of the omposition of relations. With dummies a , b ,

c and d ranging over proper atomi oreexives, we have:

R◦S

= { theorem 5.22 }

〈∪a,b : a◦R◦b 6=⊥⊥ : a◦⊤⊤◦b〉 ◦ 〈∪ c,d : c◦S◦d 6=⊥⊥ : c◦⊤⊤◦d〉

= { distributivity and nesting of quanti�ations }

〈∪a,b,c,d : a◦R◦b 6=⊥⊥ ∧ c◦S◦d 6=⊥⊥ : a◦⊤⊤◦b◦c◦⊤⊤◦d〉

= { b◦c=⊥⊥ ⇐ b 6= c , one-point rule and b◦b=b ; }

〈∪a,b,d : a◦R◦b 6=⊥⊥ ∧ b◦S◦d 6=⊥⊥ : a◦⊤⊤◦b◦⊤⊤◦d〉

= { one rule: (4.16), and b 6=⊥⊥ }

〈∪a,b,d : a◦R◦b 6=⊥⊥ ∧ b◦S◦d 6=⊥⊥ : a◦⊤⊤◦d〉

= { disjuntion rule of the quanti�er alulus }

〈∪a,d : 〈∃b :: a◦R◦b 6=⊥⊥ ∧ b◦S◦d 6=⊥⊥〉 : a◦⊤⊤◦d〉 .

That is, with dummies a , b and d ranging over proper atomi oreexives,

R◦S = 〈∪a,d : 〈∃b :: a◦R◦b 6=⊥⊥ ∧ b◦S◦d 6=⊥⊥〉 : a◦⊤⊤◦d〉(5.50)

A similar alulation gives the standard pointwise de�nition of the onverse of a relation.

R
∪

= 〈∪a,b : a◦R◦b 6=⊥⊥ : b◦⊤⊤◦a〉 .(5.51)

In these alulations, the boolean a◦R◦b 6=⊥⊥ plays the role of a[[R]]b in onventional

reasoning. Atomi oreexives a and b thus play the role of points and an event of

the form a◦⊤⊤◦b models the pair (a, b) in onventional pointwise reasoning. In this

Algorithmi Graph Theory April 8, 2022

88

way, pointwise statements in onventional reasoning an be mehanially translated into

statements in our formal axiomati system.

In the opposite diretion, translating point-free statements into pointwise statements

involves exploiting the fat that the lattie of relations is saturated and atomi. This

allows a relation to be rewritten as the supremum of set of atoms a◦⊤⊤◦b in the same

way that in onventional reasoning a relation is expressed as the union of a set of pairs.

Typially (as illustrated above) this involves the introdution of quanti�ers, inluding

universal and/or existential quanti�ers.

As in example, this is how (5.38) is justi�ed within the formal system we have pre-

sented.

f ◦ f
∪

= { theorem 5.22 }

〈∪a,b : a ◦ f ◦ f
∪

◦b 6= ⊥⊥ : a◦⊤⊤◦b〉

= { pointwise de�nitions: (5.50) and (5.51)

and quanti�er alulus (range disjuntion) }

〈∪a,b,c : a◦f◦c 6= ⊥⊥ ∧ b◦f◦c 6= ⊥⊥ : a◦⊤⊤◦b〉 .

So,

〈∀a,b : 〈∃c :: a◦f◦c 6= ⊥⊥ ∧ b◦f◦c 6= ⊥⊥〉 : a=b〉

= { range disjuntion }

〈∀a,b,c : a◦f◦c 6= ⊥⊥ ∧ b◦f◦c 6= ⊥⊥ : a=b〉

= { (5.20) }

〈∀a,b,c : a◦f◦c 6= ⊥⊥ ∧ b◦f◦c 6= ⊥⊥ : a◦⊤⊤◦b⊆ I〉

= { above and property of supremum }

f ◦ f
∪ ⊆ I .

Of ourse, it is impossible to avoid pointwise reasoning. All the meta-reasoning we

do is pointwise |the \points" are the events in our axiom system| and, within our

axiom system, it is sometimes neessary to exploit saturation and atomiity.

When reasoning about algorithms in later setions, muh of the reasoning beomes

pointwise. The \points" are states of the program and properties of the states are

expressed pointwise in terms of the values of the program variables. For this reason, it

is important to onsider the di�erent ways that properties are formulated.

Just as, in onventional reasoning, a[[R]]b and (a, b)∈R have the same meaning

|impliitly exploiting the isomorphism between a subset of a power set and its hara-

teristi (boolean-valued) funtion| the two expressions a◦R◦b 6=⊥⊥ and a◦R◦b=a◦⊤⊤◦b

Algorithmi Graph Theory April 8, 2022

89

have the same meaning. Indeed, there are many di�erent but equivalent expressions in

onventional pointwise reasoning; similarly, there are often di�erent, but equivalent ways

of translating informal expressions into the formal alulus.

When formulating proof rules for reasoning about algorithms, we typially hoose to

represent guards and assertions by oreexives. See, for example, the indution theorem

for reasoning about depth-�rst searh presented in hapter 12. However, guards and

assertions in programs are invariably expressed as boolean funtions of the state spae.

Consequently, when applying the proof rules we need a formal mehanism for translating

between the language of oreexive relations and boolean funtions. Below we formulate

the translation.

The type Bool has two elements true and false . Let us use TRUE and FALSE to

denote points of type Bool∼Bool representing the subsets {true} and {false} , respetively.

Suppose State is a set. The name is hosen on aount of the appliation: State is the

state spae of a program segment. Then the funtion

〈P :: (TRUE ◦P)>〉

maps a funtion P of type Bool←State into a oreexive of type State∼State that

represents the set of states σ for whih P.σ is true . Conversely, the funtion

〈p :: TRUE◦⊤⊤◦p ∪ FALSE ◦⊤⊤ ◦p>•〉

maps a oreexive p of type State∼State into a (total) funtion of type Bool←State .

(Note that p>•=∼(p>)=∼p .)

Lemma 5.52 Suppose P is a total funtion of type Bool←State . Then

(TRUE ◦P)>• = (FALSE ◦P)>

and

(FALSE ◦P)>• = (TRUE ◦P)> .

Proof By mutual inlusion. First,

(TRUE ◦P)>• ⊇ (FALSE ◦P)>

= { de�nition of omplemented domain: (5.11) }

TRUE ◦P ◦ (FALSE ◦P)> = ⊥⊥

= { (5.6) with \

>
" replaed by \

<
" }

(TRUE ◦P ◦ (FALSE ◦P)>)< = ⊥⊥

= { (5.9) and 5.7() }

Algorithmi Graph Theory April 8, 2022

90

(TRUE ◦P ◦P
∪

◦ FALSE)< = ⊥⊥

= { (5.6) with \

>
" replaed by \

<
" }

TRUE ◦P ◦P
∪

◦ FALSE = ⊥⊥

⇐ { assumption: P is a funtion, so P ◦P∪ ⊆ IBool }

TRUE ◦ FALSE = ⊥⊥

= { FALSE=∼TRUE }

true .

Seond,

(TRUE ◦P)>• ⊆ (FALSE ◦P)>

= { omplements }

(TRUE ◦P)>• ◦ (FALSE ◦P)>• ⊆ ⊥⊥

= { omplements, ∼⊥⊥= I }

(TRUE ◦P)>∪ (FALSE ◦P)> ⊇ IState

= { distributivity }

((TRUE∪ FALSE) ◦P)> ⊇ IState

= { TRUE∪FALSE= IBool }

P> ⊇ IState

= { assumption: P is total }

true .

Combining the two alulations, we have proved the �rst equation. The seond is ob-

tained by interhanging TRUE and FALSE .

✷

Theorem 5.53 For all oreexives p of type State∼State ,

p = (TRUE ◦ (TRUE◦⊤⊤◦p ∪ FALSE ◦⊤⊤ ◦p>•))>

and for all total funtions P of type Bool←State

P = TRUE ◦⊤⊤ ◦ (TRUE ◦P)> ∪ FALSE ◦⊤⊤ ◦ (TRUE ◦P)>• .

That is, the funtions

〈P :: (TRUE ◦P)>〉 ,

Algorithmi Graph Theory April 8, 2022

91

whih maps a funtion P of type Bool←State into a oreexive of type State∼State ,

and

〈p :: TRUE◦⊤⊤◦p ∪ FALSE ◦⊤⊤ ◦p>•〉 ,

whih maps a oreexive p of type State∼State into a total funtion of type Bool←State ,

are inverses of eah other.

Proof

(TRUE ◦ (TRUE◦⊤⊤◦p ∪ FALSE ◦⊤⊤ ◦p>•))>

= { distributivity and TRUE◦FALSE=⊥⊥ }

(TRUE ◦TRUE ◦⊤⊤ ◦p)>

= { TRUE is a proper oreexive, so TRUE ◦TRUE=TRUE 6=⊥⊥

5.7(e) }

p>

= { p is a oreexive }

p .

Also,

TRUE ◦⊤⊤ ◦ (TRUE ◦P)> ∪ FALSE ◦⊤⊤ ◦ (TRUE ◦P)>•

= { 5.7(a) and lemma 5.52 }

TRUE ◦⊤⊤ ◦TRUE ◦P ∪ FALSE ◦⊤⊤ ◦FALSE ◦P

= { TRUE and FALSE are points, de�nition 5.13() }

TRUE ◦P ∪ FALSE ◦P

= { distributivity, TRUE∪FALSE= IBool }

P .

✷

Theorem 5.53 is the formal basis for swithing between funtions of type Bool←State

and oreexives of type State∼State to represent assertions and onditions in programs.

See also setion 6.8.5.

5.6 Bibliographic Remarks

Relation algebra was �rst developed in the 19th entury by De Morgan [DM60℄, Peire

[Pei70℄ and Shr�oder [Sh95℄, and further developed in the mid 20th entury by Tarski

Algorithmi Graph Theory April 8, 2022

92

[Tar41℄ and his students. Histories of its development are by Maddux [Mad91℄ and Pratt

[Pra92℄.

Our presentation has its origins in a researh projet aimed at developing a relational

theory of datatypes [ABH

+
92℄. See also [DBvdW97℄, [Hoo97℄ and [Voe99℄. The all-or-

nothing rule and the notions of omplementation-idempotent and omplementation-�xed

losure operator are from [Gl�u17℄.

Algorithmi Graph Theory April 8, 2022

Part II

Semantics of Imperative Programs

Algorithmi Graph Theory 93 April 8, 2022

Chapter 6

Imperative Programming

In later hapters, we derive several graph algorithms. The algorithms are presented as

imperative programs and their orretness is formulated using standard tehniques. We

assume that the reader has already seen several examples. For introdutions, see (for

example) [Gri81, Ba03℄. This hapter is about expressing the semantis of the programs

in relation algebra. In order not to burden the reader with details that are not relevant

later, some simpli�ations have been made, partiularly with respet to the disussion

of program termination and the di�erene between so-alled \angeli" and \demoni"

nondeterminism. See [BW93℄ for more details.

Programs are syntati entities, the hosen syntax depending on the hoie of pro-

gramming language. Here we use a Pasal-like language omprising assignment state-

ments, sequential omposition, while statements, onditional statements and hoie

statements. For us assertions |a mehanism for doumenting a program| also form

an integral part of the syntax of a programming language. We often refer to omponents

of a program as program segments. For example, the omposition of an assignment

statement and a while statement might be referred to as a program segment.

We also admit so-alled \reursive" programs. A reursive program is a program that

is de�ned by an \equation" in whih the left side of the \equation" is the name of the

program and the right side is a program segment that inludes the name of the program.

That is, the name of the program \reurs" in its de�nition.

The basi unit of syntax is an identi�er ; identi�ers are the names given to onstants

and variables. Program segments are parameterised by onstants, whih inlude items

that are normally understood as \onstants", like the number 0 , but also other items like

the type Node , the less-than ordering relation on numbers and the subset ordering on

subsets of Node , and funtions like set union, et. A \onstant" is thus any entity named

impliitly or expliitly in the program segment that is unhanged by exeution of the

program segment. Variables are named entities whose value hanges during exeution.

The variables that are in sope in a program segment determine its state spae. For

Algorithmi Graph Theory 95 April 8, 2022

96

brevity, we omit expliit delarations of variables and their sope. Inspetion of the vari-

ables referred to in a program is usually suÆient to determine the state spae. For ex-

ample, if a program segment refers to variables a of type Node and s of type SetOfNode

then the state spae of the program is the artesian produt Node×SetOfNode . (The

program may also refer to a onstant G of type Graph .)

Choie statements augment the state spae by introduing one or more variables

that satisfy a given spei�ation (the hoie riterion). The sope of these variables is

delimited by begin-end braketing.

Assertions also sometimes extend the state spae by the introdution of ghost vari-

ables. Ghost variables help to doument the relation between input and output values

at ertain points in the exeution of the ode. In order to distinguish ghost variables

from other variables we use subsripting as in, for example, σ0 . Typially, the ghost

variable σ0 would be used to relate the value of program variable σ at some point in

the exeution of the program to its initial value. Ghost variables σ1 , σ2 , et. might be

used to relate the value of σ to its value at ertain intermediate points in the exeution

of the program.

Oasionally it is neessary to introdue additional auxiliary variables. Auxiliary

variables play no role in the omputation itself but, like ghost variables, are an aid to

doumenting a program. Auxiliary variables di�er from ghost variables in that they do

appear on the left side of assignment statements whereas ghost variables do not.

If a program segment P depends on variables xs , we often write P(xs) . This no-

tation does not denote funtion appliation. Instead, it is used to express syntati

substitution . For example, suppose we have an assertion x+y=x2 . In order to rea-

son about the assertion, we might give it the name p(x,y) . Then by (for example)

p(x+1 , y) , we mean the syntati entity (x+1)+y=(x+1)2 obtained by substituting

every ourrene of the symbol \ x " in the assertion by \(x+1)".

6.1 Specifications

Programs are often desribed as de�ning an \input-output" relation. This suggests that

the semantis of a program is a heterogeneous relation of type Out∼In for some types

Out and In . This is not how we de�ne the semantis of a program.

Programs are invariably parameterised by a number of entities whih de�ne the input

of the program. Typially, some of the variables in a program are input parameters.

The use of the word \variable" is then arguably misleading: the input \variables" are

onstants in the sense that their values are unhanged by exeution of the program.

A program may also be parameterised by other entities that are not normally alled

\variables"; these inlude types and relations. The state spae of the program is de�ned

Algorithmi Graph Theory April 8, 2022

97

by the variables that are not onstants and the output of the program is spei�ed as the

�nal values of some subset of the state-spae variables.

For example, we onsider in setion 6.9 an algorithm to alulate the least �xed point

of a funtion of type A←A for some partially ordered set (A,�) . The algorithm

employs two variables, F and x , the value of F being onstant whilst the value of x is

ontinually updated during exeution of the algorithm. Thus F is an input parameter

and x de�nes the state spae. The partially ordered set (A,�) is also a parameter of

the algorithm.

A simple syntati hek enables the distintion between \onstants" and truly vary-

ing \variables" in a program: the onstants are the \variables" that do not our on the

left side of any assignment statement. Sometimes, however, programs are written that do

assign to input variables, ghost variables then being neessitated in order to speify the

program. We avoid this pratie. Indeed, so that the reader an more easily distinguish

onstants from variables, our pratie is to use lower-ase identi�ers (like \ seen ") to

name variables; symbols (like \� ") and identi�ers beginning with an upper-ase letter

are used to name onstants.

When de�ning the semantis of a program, it is desirable to learly separate the

issue of termination from other issues. Whether or not a program terminates for given

input values is governed by its so-alled operational semantis : how the program is

interpreted and exeuted. We do not present an operational semantis of programs but

we do show how to determine whether or not individual program segments terminate.

Termination of omposite programs is de�ned to be demoni: that is, a program is

guaranteed to terminate only if all segments of the program are guaranteed to terminate.

We speify the semantis of programs only for terminating programs, by whih we mean

programs that are guaranteed to terminate for all inputs satisfying a given spei�ation.

Formally, the semantis of a program segment is a funtion with target

State∪ {⊥} ∼ State

where State is the type of the state spae (typially a artesian produt of the types of

the program variables) and ⊥ expresses non-termination; the soure of the funtion is

a (typially quite omplex) olletion of types, operators, relations and values satisfying

ertain properties. A terminating program segment is one that is guaranteed to always

terminate; the semantis of a terminating program segment is thus a funtion that maps

the parameters of the program to a homogeneous relation on the state spae. Less

formally, a (terminating) program segment is a possibly non-deterministi, parameterised

state transformer.

This view of program segments as parameterised state transformers allows us to

restrit attention to homogeneous relations. In this way, we avoid the lutter of type

heking. In what follows, the parameters will be impliit. Whenever we formulate a

Algorithmi Graph Theory April 8, 2022

98

rule, it is to be understood that the rule is universally quanti�ed over all possible values

of the parameters. See setion 6.4 on veri�ation onditions for further disussion.

A spei�ation is a triple (Context,P,R) where Context spei�es properties of the

input parameters |inluding the state spae State| , P is a (parameterised) pred-

iate of type Bool←State , and R is a (parameterised) homogeneous relation of type

State∼State .

Spei�ations are typially non-deterministi |for given input values, di�erent out-

put values may be aeptable| but program segments typially resolve some of the

non-determinay, if not all. (In the extreme ases, funtional programs are determinis-

ti: eah input value yields exatly one output value.) Program segments are relations

that an be expressed in a restrited language. A program segment Prog with meaning

[[Prog]] is said to meet spei�ation (Context,P,R) if, for all possible parameter values

satisfying the prediate Context , it is onditionally orret, i.e. [[Prog]]◦[[P]]⊆R (where

[[P]] is the oreexive orresponding to the prediate P) and it is guaranteed to terminate.

The type of the semantis of a program segment is most often a so-alled \dependent

type". For example, the �xed-point algorithm mentioned above has three inputs: a type

A , and an ordering relation and a funtion both of whose types depend on A . The

preise details form what we have alled the \ontext" of the algorithm. Typially, the

ontext embodies a great amount of detail most of whih is impliit in informal aounts.

When program veri�ation is made formal and/or automated it beomes neessary to be

expliit about the ontext. For example, programs that manipulate variables delared

as \integers" often rely on properties of the less-than relation on natural numbers, these

properties being impliit in the spei�ation but vital to formal proof. The level of detail

that is required is just too muh for human onsumption, and muh of it is well known

in any ase. This is why we hoose to de�ne the semantis of program segments as

parameterised state transformers whereby the parameters are left impliit.

We all P the preondition of the spei�ation. It is ommon to ombine the on-

text and the preondition into one; previously, we have also done so. We now prefer to

distinguish the two in order to emphasise that Context spei�es properties that remain

true throughout exeution of the program segment. \Preonditions" (and \postondi-

tions") are properties that hold only at ertain points during the exeution. Beause the

ontext is a onstant of any implementation, it is most often an impliit parameter of

the disussion that follows.

6.2 Structures

In order to present the semantis of program segments without making the ontext

expliit, we exploit the insights on \strutures" introdued by Dijkstra and Sholten

Algorithmi Graph Theory April 8, 2022

99

[DS90℄. A \struture" is simply an expression that denotes a parameterised value where

the parameters are not made expliit. As observed by Dijkstra and Sholten, reasoning

about \strutures" requires more are than is usual in traditional mathematis with

regard to the overloading of operators, in partiular the equality symbol. Spei�ally,

given two strutures A and B , the expression \A=B " might denote a boolean struture

or a boolean salar.

For example, suppose A and B are vetors of the same (impliit) type and dimen-

sion. Then A=B an be interpreted in two ways. Interpreting it as a struture, A=B

denotes a boolean vetor of the same dimension as A and B , the entries in the vetors

being true or false depending on whether or not the orresponding entries in A and B

are equal. Interpreting it as a salar, A=B is a boolean: it is true or false depending

on whether or not A and B are everywhere equal (i.e. all orresponding entries in A

and B are equal.)

Traditional pratie in mathematis is to assume that A=B denotes a boolean salar.

However, as argued by Dijkstra and Sholten [DS90℄, this pratie is undesirable if the

goal is to ombine preision with onision in alulational reasoning. Their solution is

straightforward as well as aesthetially pleasing. The expression A=B is de�ned to

be a struture (of the same shape as A and B) and [A=B] is the boolean salar.

The square brakets are alled \everywhere" brakets, and [A=B] is read as \A is

everywhere equal to B ", or simply \everywhere A=B ". The same devie is applied

to other operators. For example, if A and B are boolean vetors, A⇐B is a boolean

vetor and [A⇐B] is a boolean salar. Similarly, if A and B are integer vetors,

A<B is a boolean vetor and [A<B] is a boolean salar.

A potential drawbak is that \everywhere" brakets beome ubiquitous, partiularly

in formal alulations. Dijkstra and Sholten [DS90℄ avoid this by introduing onven-

tions in the format of proofs that enable everywhere brakets to be omitted. We use the

same onventions here. Another drawbak is the unfamiliarity of most readers with the

use of \everywhere" brakets. In order to avoid the dangers of misinterpretation that

this may ause |see [BN98℄| , we avoid the use of \everywhere" brakets when reason-

ing about onrete algorithms. This entails the introdution of new \pointed" operator

symbols for eah of the lassial operator symbols in the ontext of the algorithm. For

example, in our disussion of the semantis of depth-�rst searh in setion 11.2, we de�ne

the operators

_⊆ and _

◦
as pointwise extensions of the subset relation and omposition,

respetively. See de�nition 6.6 for an example where the everywhere brakets eliminate

this notational burden.

Dijkstra and Sholten presented a prediate-transformer semantis of imperative pro-

grams. We present a relational semantis. Returning to our earlier disussion, we for-

mulate the de�nition of a program segment meeting a spei�ation below. In doing so,

we arry out our intention of making the spei�ation of the input parameters |the

Algorithmi Graph Theory April 8, 2022

100

Context omponent of a spei�ation| impliit. That is, in the de�nition, the meaning

of a program segment is a funtion of the ontext, and the square \everywhere" brakets

denote universal quanti�ation over all input variables satisfying the Context prediate.

(If P is a prediate on the ontext, many authors would prefer to write Context � P

rather than [P] .)

Definition 6.1 Suppose (Context,P,R) is a spei�ation. Suppose p denotes the

oreexive orresponding to preondition P . The meaning [[S]] of a program segment

S with state spae State in the ontext Context is a homogeneous relation on State .

The program segment S meets the relation R under preondition P i�:

(i) It is onditionally orret . That is,

[[[S]] ◦p ⊆ R] .

(ii) It is total . That is,

[p ⊆ [[S]]>] .

(iii) It is (everywhere) terminating .

✷

\Conditionally orret" is often alled \partially orret". We prefer to use \on-

ditional" beause to say that something is \partially" orret suggests that it is also

partially inorret. Totality beomes an issue primarily when hoie statements are

used. See setion 6.7. Termination beomes an issue when program segments involve

loops and/or reursion. It is often established by introduing a so-alled bound fun-

tion. That is, some �niteness assumption is made about the input parameters and this

is used to predit an upper bound on the number of operations used when exeuting the

algorithm. In the ase of the algorithms we present in this doument, termination is rel-

atively easy to verify and most e�ort is expended on establishing onditional orretness.

For further disussion of the formal basis of bound funtions, see setion 6.8.6.

6.3 Assertions

We use assertions both to doument programs and to doument the struture of the

veri�ation that a program meets its spei�ation.

Assertions are (parameterised) prediates on the state spae. That is, they are fun-

tions of type Bool←State . Given prediates P and Q (the so-alled preondition and

postondition, respetively)

Q
∪

◦ (⇐) ◦P

Algorithmi Graph Theory April 8, 2022

101

is a (parameterised) relation of type State∼State . Spei�ally, it is the relation R de�ned

by

[〈∀σ,σ ′ :: σ ′ R σ ≡ (Q.σ ′ ⇐ P.σ)〉] .

The ombination of two prediates P and Q (in a given ontext) thus determines a

spei�ation where the preondition is P and the relation is R as de�ned above.

Of ourse, not all homogeneous relations an be expressed in this way. So-alled

\ghost variables" are used to irumvent this limitation. See the example below.

Suppose S is a program segment. Suppose prediates P and Q are formulated by

the expressions pre(σ) and post(σ) , respetively. (So the meaning of pre(σ) is the

prediate P , and similarly for post(σ) .) Then the expression

{ pre(σ) }

S

{ post(σ) }

has meaning S meets the relation Q
∪

◦ (⇐) ◦P under preondition P . That is, [[S]] is

onditionally orret, total and terminating. (See de�nition 6.1.) Expressed pointwise,

the onditional orretness of S is the theorem

[〈∀σ,σ ′ : [[pre(σ)]] ∧ σ ′[[S]]σ : [[post(σ ′)]] ⇐ [[pre(σ)]]〉]

whih is equivalent to

[〈∀σ,σ ′ : [[pre(σ)]] ∧ σ ′[[S]]σ : [[post(σ ′)]]〉] .

(Note that σ ′
is on the left in σ ′[[S]]σ and σ is on the right. This is a matter of

onvention. For us, the \output" of a relation is on the left and its \input" is on the

right. The syntax of assertions is that the output is at the bottom and the input is

at the top.) The point-free formulation of S meeting the relation Q
∪

◦ (⇐) ◦P under

preondition P is the theorem

[

[[S]] ◦ (TRUE◦P)> ⊆ Q
∪

◦ (⇐) ◦P
]

.

Just like the pointwise formulation, this has an equivalent form, namely:

[

([[S]] ◦P
∪

◦ TRUE)< ⊆ (TRUE◦Q)>
]

.(6.2)

A program segment may meet several di�erent spei�ations. For example, the assign-

ment i := i+1 meets the greater-than relation on numbers, as well as the at-least relation

and the relation given by the pair (1, 0) (that is, if i has initial value 0 , after the as-

signment it has value 1). Using the ghost variable i0 to apture the initial state, we

an doument the �rst of these by

Algorithmi Graph Theory April 8, 2022

102

{ i= i0 }

i := i+1

{ i> i0 }

and the last by

{ i= 0 }

i := i+1

{ i= 1 } .

The input parameters in this ase are the integers, the addition operator and greater-than

relation on integers, and the onstants 0 and 1 . We regard them as parameters beause

a formal veri�ation of the program segment will neessarily be based on assumptions

about their algebrai properties, thus allowing other interpretations of the parameters.

6.4 Verification Conditions

Suppose that we want to show that a program segment S meets a given spei�ation.

Often this involves establishing one or more veri�ation onditions . Suppose the spe-

i�ation is expressed by the assertions pre(σ) and post(σ) and suppose we doument

the program segment as follows:

{ pre(σ) }

S

{ post(σ) } .

Then, in the simpler ases, it is possible to ompute a so-alled \weakest preondi-

tion" wp(σ) guaranteeing the postondition post after exeution of S . By de�nition

of \weakest preondition" that S meets the spei�ation is equivalent to proving the

theorem

[〈∀σ : [[pre(σ)]] : [[wp(σ)]]〉] .(6.3)

The formula (6.3) is alled a veri�ation ondition. We sometimes doument the on-

strution of veri�ation onditions as follows:

{ pre(σ) }

{ wp(σ) }

S

{ post(σ) } .

Algorithmi Graph Theory April 8, 2022

103

Where two assertions are juxtaposed as here, the meaning is that the upper assertion im-

plies the lower assertion everywhere. That is, the meaning of a juxtaposition of assertions

is the veri�ation ondition (6.3).

6.5 Assignment Statements

An assignment statement is the imperative syntax for a funtion. If xs is a list of

distint variables and Es is a list of expressions of the same length as xs , then a �rst

approximation to the meaning of the assignment xs :=Es is the funtion 〈xs ::Es〉 .

Reall, however, that the state spae of a program segment is typially a artesian

produt, and the individual variables of the segment refer to spei� omponents of the

produt. An assignment statement is a onvenient mehanism for speifying a funtion of

type State←State that a�ets only ertain omponents of the produt. For example, the

assignment i :=E , where i is a variable of type IN may be a segment in a program with

state spae IN×ZZ whereby the seond omponent is referened by an additional variable,

x say. In suh a ontext, the assignment is equivalent to the assignment i,x :=E,x

and its meaning is the funtion 〈i ::E〉× IZZ (equivalently, 〈(i, x) :: (E, x)〉). That is, an

assignment statement xs :=Es is the identity funtion on those omponents that are not

named in the list xs and the funtion 〈xs ::Es〉 on the omponents that are named.

We don't give any guidane on what are allowable expressions on the right side of an

assignment exept to say that the expressions must be implementable in a onventional

programming language, and their evaluation (for partiular input values) must be guar-

anteed to terminate | typially, but not neessarily, in \onstant time". We rely on the

reader's programming experiene to deide whether or not this is the ase.

Most often assignment statements are total funtions. In general, the right domain

is the subset of the state spae on whih the right side of the assignment is de�ned.

For example, the assignment i := i÷j is de�ned on state spaes suh that the value of

variable j is non-zero.

Beause assignments are funtional, it is easy to derive the assignment axiom. (See

below.) Spei�ally, the assignment axiom states that

{ post(E) }

σ :=E

{ post(σ) }

is a theorem (i.e. it is true everywhere for all σ). Here post(E) denotes the expression

obtained by replaing all ourrenes of σ in the expression post(σ) by the expression

\(E)". (We use quotation marks in order to emphasise that this is a syntati sub-

Algorithmi Graph Theory April 8, 2022

104

stitution. The parentheses are neessary to avoid any error that might be aused by

preedene onventions.)

Normally the assignment axiom is used to onstrut a veri�ation ondition. Suppose

the assignment statement is doumented as follows:

{ pre(σ) }

σ :=E

{ post(σ) } .

Then we augment the doumentation with the expression post(E) :

{ pre(σ) }

{ post(E) }

σ :=E

{ post(σ) } .

This then gives the veri�ation ondition:

[〈∀σ : [[pre(σ)]] : [[post(E)]]〉] .(6.4)

(The point-free justi�ation of the assignment axiom proeeds as follows. Suppose f

is a funtion of type State←State and suppose P and Q are prediates on the state,

i.e. funtions of type Bool←State . Then that f meets the relation Q∪
◦ (⇐) ◦P under

preondition P is, by (6.2),

[

(f ◦P
∪

◦TRUE)< ⊆ (TRUE◦Q)>
]

.

But,

(f ◦P∪

◦ TRUE)< ⊆ (TRUE◦Q)>

= { isomorphism of oreexives and onditions }

f ◦P
∪

◦ TRUE ◦⊤⊤ ⊆ Q
∪

◦TRUE ◦⊤⊤

= { f is a funtion }

P
∪

◦ TRUE ◦⊤⊤ ⊆ f
∪

◦Q
∪

◦TRUE ◦⊤⊤

= { onverse and isomorphism of oreexives and onditions }

(TRUE◦P)> ⊆ (TRUE◦Q◦f)> .

The oreexive (TRUE◦P)> orresponds to the set of states for whih P holds, and

(TRUE◦Q◦f)> orresponds to the set of states σ for whih Q holds of f.σ . The property

[(TRUE◦P)> ⊆ (TRUE◦Q◦f)>]

is the point-free formulation of the veri�ation ondition (6.4).)

Algorithmi Graph Theory April 8, 2022

105

6.6 Sequential Composition

The meaning of the sequential omposition S1 ; S2 is the so-alled demoni omposition

of the meanings of S1 and S2 . Formally,

[[S1 ; S2]] = [[S2]] ◦ [[S1]] ◦ [[S1]]\ [[S2]]>

where [[S1]]\ [[S2]]> is a oreexive. How this oreexive is de�ned is not needed here.

Its rôle is to restrit the right domain of S1 to values that guarantee that exeution of

S1 results in values that are elements of the right domain of S2 . (See [BW93℄ for full

details.)

In pratie, the ompliations of the de�nition of demoni omposition are avoided

by establishing that [[S1]]< ⊆ [[S2]]> , in whih ase it equals the so-alled angeli om-

position

[[S2]] ◦ [[S1]] .

The di�erene between demoni and angeli omposition only beomes apparent when

we onsider hoie statements.

Note the swith in the order of S1 and S2 (S1 ; S2 versus [[S2]] ◦ [[S1]]).

6.7 Choice Statements

Program segments in the algorithms we present ommonly inlude hoie statements,

whereby a new variable is introdued and assigned |possibly non-deterministially| a

value that satis�es some riterion.

As for omposition, hoie statements have a demoni (as opposed to angeli) se-

mantis. (Again, see [BW93℄ for full details.) However, we avoid the ompliation by

imposing a restrition on when the meaning of a hoie statement is de�ned. Spei�ally,

the meaning of the hoie statement

begin

hoose x suh that q(x,σ)

; S

end

is a relation with right domain restrited to states that allow the riterion q to be

satis�ed; in this ase, it is de�ned to be a supremum:

〈∪x : [[q(x,σ)]] : [[S]]〉 .

Algorithmi Graph Theory April 8, 2022

106

A hoie statement introdues a new loal variable with sope delimited by the begin-

end braketing; the state spae of the statement S is thus assumed to be extended

appropriately. This means that x is allowed to be a free variable in assertions about

segments of S . However, assertions about the hoie statement itself may not refer to

the variable x .

Just as for expressions on the right side of assignment statements, hoie riteria

must be implementable in a onventional programming language, and their evaluation

(for partiular input values) must be guaranteed to terminate.

The operational meaning of a hoie statement is that the variable x is assigned an

initial value that satis�es the riterion q ; then the program segment S is exeuted. We

doument a hoie statement by adding assertions as shown below. The preondition

pre and postondition post doument the spei�ation of the hoie statement and are

assumed to be given. Note that the preondition of the program segment S depends on

the state σ and on x |reeting the fat that the state spae has been augmented| ;

on the other hand, the postondition does not depend on x .

{ pre(σ) }

begin

hoose x suh that q(x,σ)

; { pre(σ) ∧ q(x,σ) }

S

{ post(σ) }

end

{ post(σ) }

In order to guarantee that suh a hoie statement meets a given spei�ation, it is

neessary to establish totality. (See de�nition 6.1(ii).) Supposing that the preondition

is de�ned in the usual way by a prediate pre , the totality requirement beomes

[[[pre(σ)]] ⇒ 〈∃x :: [[q(x,σ)]]〉] .

The hoie may be entirely deterministi: in partiular, a statement of the form

begin

hoose x suh that x=E

; S

end

Algorithmi Graph Theory April 8, 2022

107

introdues a new loal variable x that is initialised to the value of the expression E and

has sope the program segment S . In this ase, totality is immediate (exept in less

ommon ases where E may sometimes be unde�ned). When using suh a deterministi

hoie statement, we omit the words \hoose" and \suh that" and write the hoie in

the standard way as an assignment statement. (A frequent ourrene is the initialisation

of the program variables.)

6.8 Loops

So far, we have onsidered so-alled \straight-line programs": programs where termi-

nation is always guaranteed. In this setion, we onsider \loops" in the form of while

statements.

The meaning of a while statement is the least �xed point of a so-alled \reursive"

equation. Depth-�rst searh uses a more omplex form of reursion; its meaning is

disussed in setion 11.2 and, more generally, in setion 12. The loops we onsider in

this setion are simpler beause they are de�ned using the star operator of a regular

algebra.

The meaning [[B]] of a guard B is a oreexive, and the meaning of the statement

while B do S is

∼[[B]] ◦ ([[S]] ◦ [[B]])∗ .

That is, it is the least solution of the equation

W:: [W ⊇ ∼[[B]] ∪ W ◦ [[S]] ◦ [[B]]] .

This equation orresponds to the operational meaning of a while statement: the guard

B is used to hoose between terminating without a hange of state |the operational

meaning of the oreexive ∼[[B]]|- or exeuting S and then \looping" bak to exeute

the while statement again.

Termination of while statements is disussed in setion 6.8.3.

(Although we haven't disussed it here, a parameterised �xed point is a �xed point.

This is a fundamental property of �xed points | so fundamental indeed that it is almost

invariaby taken for granted. For reasons of expedieny, we have omitted the relevant

theory for now but we may inlude it at a later date.)

6.8.1 Invariant Relations

Given a spei�ation omprising a relation R and a (oreexive representation of a)

preondition p , the key to onstruting a loop implementing the spei�ation is the

Algorithmi Graph Theory April 8, 2022

108

invention of an invariant Inv . In the most general ase, invariants are relations on the

state spae; in more spei� ases, they are values or properties. In this subsetion, we

onsider the most general ase, whilst invariant values and properties are onsidered in

subsetion 6.8.4.

An invariant Inv is hosen in suh a way that it satis�es three properties. First,

the invariant an be \established" by some initialisation Init . Seond, the ombination

of the initialisation the invariant, and some termination Term satis�es the spei�ation

Spec . Third, the invariant is \maintained by" some loop body Body whilst making

progress towards termination.

These informal requirements an be made preise in a onise way. The omponents

Inv , Init , Term and Body are all homogeneous binary relations on the (parameterised)

state spae, just like the spei�ation Spec . Below we disuss how the tasks involved in

showing that the implementations of these omponents meet the spei�ation is ahieved.

6.8.2 Conditional Correctness

The �rst requirement is that the invariant relation is total. That is,

[p ⊆ Inv>] .

Often this requirement is met trivially and needs no further disussion.

\Establishing" the invariant is the requirement that

[Init◦p⊆ Inv] .

In words, for all states σ ′
and σ suh that σ satis�es the preondition p , if σ ′

is

related by Init to σ then σ ′
is also related by the invariant relation to σ .

That the ombination of the termination and invariant satis�es the relation R is the

requirement that

[Term◦Inv ⊆ R] .

This is the requirement that for all states σ and σ ′′
,

[〈∀σ ′ : σ ′′ Term σ ′∧σ ′ Inv σ : σ ′′ Spec σ〉]

(Here we see again the onvention of plaing input values on the right and output values

on the left.)

Finally, that the invariant is maintained by the loop body is expressed by

[Body◦Inv⊆ Inv] .

Pointwise this is

[〈∀σ,σ ′,σ ′′ : σ ′′ Body σ ′∧σ ′ Inv σ : σ ′′ Inv σ〉] .

Algorithmi Graph Theory April 8, 2022

109

So Body maps states σ ′
related by the invariant Inv to σ to states σ ′′

that are also

related by Inv to σ .

Together these three properties guarantee that

[Term ◦Body∗ ◦ Init ◦p ⊆ R]

sine

R

⊇ { [Term◦Inv ⊆ R] }

Term◦Inv

⊇ { [Body◦Inv ∪ Inv ⊆ Inv]

hene [Body∗◦Inv ⊆ Inv] }

Term ◦Body∗ ◦ Inv

⊇ { [Init◦p⊆ Inv] }

Term ◦ (Body◦b)∗ ◦ Init ◦p .

6.8.3 Totality and Termination

Our aount of invariants needs to be further re�ned if we are to relate it to the imple-

mentation of loops by a while statement. Reall that Body spei�es the body of the

loop, and Term spei�es the termination of the omputation. The implementation of

Term ◦Body∗ by a while statement demands that both relations Term and Body are

partial and, more spei�ally, that their right domains are omplementary.

Letting b denote the right domain of Body and ∼b its omplement (thus

[b∪∼b = IState ∧ b∩∼b = ⊥⊥] ,

where IState is the oreexive of type State∼State representing the entire state spae),

we have

[Term = Term ◦∼b ∧ Body=Body ◦b] .

Hene,

[Term ◦Body∗ ◦ Init = Term ◦∼b ◦ (Body ◦b)∗ ◦ Init] .

The statement

while b do

S

Algorithmi Graph Theory April 8, 2022

110

is the implementation of ∼b ◦ (Body ◦b)∗ provided that S implements the relation Body

under preondition

1 b . If [[S]] ◦b is (everywhere) well-founded, ∼b ◦ ([[S]] ◦b)∗ is, by the

unique extension property of regular algebra, the unique solution of the equation:

W:: [W = ∼b ∪ W ◦ [[S]] ◦b] .

Exeuting this equation is equivalent to exeuting the \reursive" program

W = if b then (S ;W) .

The well-foundedness of [[S]] ◦b guarantees that the exeution of the while statement

will always terminate. It also guarantees that the implementation is total, provided that

Term and Body have omplementary right domains, and the initialisation Init is total.

Spei�ally, we have:

(Term ◦Body∗ ◦ Init)> = Init>

= { domain alulus }

((Term ◦Body∗)> ◦ Init)> = Init>

⇐ { I is the identity of omposition }

(Term ◦Body∗)> = I

= { (Term ◦Body∗)> is the unique solution of the equation

p:: p = Term>∪ (p ◦Body)> }

I = Term> ∪ (I ◦Body)>

= { by assumption,

Term and Body have omplementary right domains.

In partiular, I = Term>∪Body> }

true .

The penultimate step needs further justi�ation. The laim is that the equation

p:: [p = Term>∪ (p ◦Body)>]

has a unique solution provided that Body is (everywhere) well-founded. This is easily

derived from the uep of regular algebra (theorem 3.16). Spei�ally, for all homogeneous

relations R , we have:

R is well-founded ≡ 〈∀S,T :: T = S∪T ◦R ≡ T = S ◦R∗〉 .(6.5)

(See setion 8.1 for more details.) Indeed, for all oreexives p ,
1

Stritly, b is a oreexive and what is meant here is the prediate orresponding to b .

Algorithmi Graph Theory April 8, 2022

111

p = Term>∪ (p ◦Body)>

= { domain alulus.

Spei�ally, (⊤⊤◦p)>=p and ⊤⊤◦R = ⊤⊤ ◦R> }

⊤⊤◦p = ⊤⊤◦Term ∪ ⊤⊤◦p◦Body

= { Body is well-founded, (6.5) }

⊤⊤◦p = ⊤⊤ ◦Term ◦Body∗

= { domain alulus (as above) }

p=(Term ◦Body∗)> .

That is, (Term ◦Body∗)> is the unique solution of the above equation in p .

6.8.4 Invariant Properties and Invariant Values

In general, invariants are relations on the (parameterised) state spae. Speial ases of

invariants are invariant properties and invariant values . Invariant properties will be

familiar to many readers and invariant values possibly less so. Nevertheless, we begin

with values beause formally they are simpler.

Consider a simple example: Suppose the state spae is a artesian produt of two

sets ranged over by program variables x and y . Then, obviously, an assignment x := E

has no e�et on the value of program variable y . We say that the value of y is an

invariant of the assignment. A slightly more omplex example is given by the assignment

x,y := x+1 ,y+1 (with state spae Int×Int); in this ase the value of x−y is an invariant

of the assignment.

In general, a \value" is given by a total funtion on the state spae. Let us denote suh

a funtion by h . Then that the \value" is an invariant of program segment S equivales

the relation h
∪

◦h is an invariant of S . That is, [S ⊆ h
∪

◦h] . Equivalently, [h◦S⊆h] ;

alternatively, if σ and σ ′
denote suessive states during exeution of S (i.e. σ ′[[S]]σ),

h.σ ′=h.σ . For example, the \value" x−y is given by the funtion mapping the pair

(x, y) to x−y . This funtion is an invariant \value" of the assignment x,y := x+1 , y+1

beause (x+1)−(y+1)=x−y is a theorem of arithmeti.

If h is a total funtion on the state spae, the relation h
∪

◦h is reexive and transi-

tive. This is an important property of invariant values when reasoning about loops and

reursion. (In fat, h
∪

◦h is an equivalene relation. However, in this ontext symmetry

is not relevant.)

Let us now turn to invariant \properties". Suppose h is a boolean funtion of the

state spae (a funtion of type Bool←State) and let S be a relation (typially, the

Algorithmi Graph Theory April 8, 2022

112

semantis of a program segment). Then h is an invariant property of S if

[

S ⊆ h
∪

◦ (⇐) ◦h
]

.

Expressed pointwise, h is an invariant property of S if

[〈∀σ ′,σ : σ ′[[S]]σ : h.σ ′⇐h.σ〉] .

Follows-from of boolean-funtion values is obviously a reexive and transitive relation. It

follows that, if h is a total boolean funtion of the state spae, the relation h
∪

◦ (⇐) ◦h

is also reexive and transitive. More generally, if h is a total funtion and R is a

homogeneous relation on the range of h , the relation h
∪

◦R ◦h is reexive if R is reexive

and transitive if R is transitive. As for invariant values, this is important when reasoning

about loops and reursion.

Invariant properties sometimes our naturally but, more ommonly, are introdued

arti�ially through the use of so-alled \ghost" variables. A \ghost" variable reords the

state before exeution of a program segment S but, unlike auxiliary variables, a \ghost"

variable is not made expliit in the program ode. Instead, the onvention is that a

subsript \0" is used to denote the initial value of variable.

6.8.5 Truthifying and Maintaining Invariant Properties

When reasoning about loops, we often say that a property is \truthi�ed" by the initial-

isation, and \maintained" by the body of the loop. Let us formulate these onepts.

Definition 6.6 Suppose P has type Bool←State . Then a relation S truthi�es P if

[S< ⊆ (TRUE ◦P)>] .

The relation S maintains P if

[

S ◦ (TRUE ◦P)> ⊆ P
∪

◦ (⇐) ◦P
]

.

(Equivalently, relation S maintains P if

[

S ◦ (TRUE ◦P)> ⊆ P
∪

◦ (⇐) ◦P ◦ (TRUE ◦P)>
]

sine, for all relations S and R and all oreexives p ,

[S◦p ⊆ R ≡ S◦p ⊆ R◦p] .

The easy proof of the equivalene by mutual impliation is left to the reader.)

✷

Algorithmi Graph Theory April 8, 2022

113

Typially de�nition 6.6 is used with S instantiated to the meaning of a program

segment. The square brakets denote universal quanti�ation over the ontext of the

program segment. Were we not to use the everywhere brakets, we would be obliged

to introdue new symbols for all �ve operators in the de�nition. We would also have

to write K.TRUE (the funtion that always returns TRUE) in the de�nition in order to

distinguish it from TRUE (the salar boolean value) as used, for example, in the hints in

the proof of the lemma below. See the disussion of the semantis of depth-�rst searh

in setion 11.2 for how so-alled \lifted" operators are de�ned.

Lemma 6.7 Suppose P has type Bool←State . Then

[

(P
∪

◦ (⇐) ◦P ◦ (TRUE ◦P)>)< ⊆ (TRUE ◦P)>
]

.

Proof

(P∪

◦ (⇐) ◦P ◦ (TRUE ◦P)>)<

= { domains: theorem 5.7(), and dual of (5.9) }

(P∪

◦ (⇐) ◦P ◦P
∪

◦TRUE)<

⊆ { P is funtional }

(P∪

◦ (⇐) ◦TRUE)<

= { IBool = FALSE∪TRUE

FALSE◦(⇐)◦TRUE = ⊥⊥

TRUE◦(⇐)◦TRUE = TRUE }

(P∪

◦TRUE)<

= { domains: theorem 5.7() and onverse }

(TRUE ◦P)> .

✷

Lemma 6.8 Suppose P has type Bool←State . Suppose S1 truthi�es P and S2

maintains P . Then S2◦S1 truthi�es P .

Proof We have:

S2 ◦ (TRUE ◦P)> ⊆ P
∪

◦ (⇐) ◦P ∧ S1< ⊆ (TRUE ◦P)>

⇒ { S1< ⊆ (TRUE ◦P)> ⇒ S1 = (TRUE ◦P)> ◦S1 }

S2 ◦ (TRUE ◦P)> ⊆ P
∪

◦ (⇐) ◦P ∧ (S2◦S1)< = (S2 ◦ (TRUE ◦P)> ◦S1)<

⇒ { monotoniity }

Algorithmi Graph Theory April 8, 2022

114

(S2◦S1)< ⊆ (P∪

◦ (⇐) ◦P ◦ (TRUE ◦P)>)<

⇒ { lemma 6.7 and transitivity }

(S2◦S1)< ⊆ (TRUE ◦P)> .

✷

Lemma 6.9 Suppose P has type Bool←State . Suppose Init is a program segment

that truthi�es P . Suppose T is a funtion of type Bool←State and t=(TRUE ◦T)> . (So

t is a oreexive representing the set of all states satisfying the termination ondition

T .) Suppose Body is a program segment suh that Body ◦∼t maintains P . Then

(Body ◦∼t)∗ maintains P and (Body ◦∼t)∗ ◦ Init truthi�es P . It follows that

t ◦ (Body ◦∼t)∗ ◦ Init

truthi�es P∧ T .

Proof The �rst step of the proof applies de�nition 6.6 and simultaneously \strengthens

the indution hypothesis" ready for use of �xed-point indution

(Body ◦∼t)∗ maintains P

= { de�nition 6.6 and domain alulus }

[(Body ◦∼t)∗ ◦ (TRUE ◦P)> ⊆ P
∪

◦ (⇐) ◦P ◦ (TRUE ◦P)>] .

But

(Body ◦∼t)∗ ◦ (TRUE ◦P)> ⊆ P
∪

◦ (⇐) ◦P ◦ (TRUE ◦P)>

⇐ { �xed-point indution }

(TRUE ◦P)> ⊆ P
∪

◦ (⇐) ◦P ◦ (TRUE ◦P)>

∧ Body ◦∼t ◦P∪

◦ (⇐) ◦P ◦ (TRUE ◦P)> ⊆ P
∪

◦ (⇐) ◦P ◦ (TRUE ◦P)>

= { domain alulus }

(TRUE ◦P)> ⊆ P
∪

◦ (⇐) ◦P

∧ Body ◦∼t ◦P∪

◦ (⇐) ◦P ◦ (TRUE ◦P)> ⊆ P
∪

◦ (⇐) ◦P

⇐ { TRUE⊆ IBool ; (⇐) is reexive, i.e. IBool ⊆ (⇐) ;

lemma 6.7 }

P> ⊆ P
∪

◦P

∧ Body ◦∼t ◦ (TRUE ◦P)> ⊆ P
∪

◦ (⇐) ◦P

⇐ { domains (spei�ally P> = I ∩ P∪

◦P);

Algorithmi Graph Theory April 8, 2022

115

assumption: Body ◦∼t maintains P }

true .

That (Body ◦∼t)∗ ◦ Init truthi�es P now follows from lemma 6.8 and the assumption

that Init truthi�es P .

✷

Lemma 6.9 justi�es the way that invariant properties are used in pratie. To dou-

ment the ode, we suppose that the spei�ation is deomposed into preondition pre(σ)

and postondition post(σ) ; then we add assertions:

{ pre(σ) }

Init

{ Invariant property: P }

; while ∼t do

{ P∧¬T }

S

{ P }

{ P∧ T }

{ post(σ) }

from whih we an extrat the three veri�ation onditions:

{ pre(σ) }

Init

{ P }

(the initialisation truthi�es P),

{ P∧¬T }

S

{ P }

(the loop body maintains P), and

{P∧ T }

{ post(σ) }

Algorithmi Graph Theory April 8, 2022

116

(the postondition is implied by the onjuntion of the invariant and the ondition for

terminating the loop).

A �nal remark is that, although onditional orretness is most often established

using invariant properties and values, relations are vital to establishing termination of

loops and other forms of reursion. Setion 6.9 gives an example.

6.8.6 Bound Functions

As we have seen in setion 6.8.3, the use of while statements in programs entails estab-

lishing that the body of the loop maintains an invariant that is a well-founded relation.

This is usually done by means of a so-alled bound funtion.

Formally, the use of bound funtions generalises the use of invariant properties to

invariant relations. Suppose ≺ is a well-founded relation on some set A , and suppose

h is a funtion from the state spae to A (i.e. a funtion of type A←State). Then,

establishing that a while statement with body Body and termination ondition t is

guaranteed to terminate is ahieved by showing that

[

Body ◦ ∼t ⊆ h
∪

◦ (≺) ◦h
]

.

The funtion h is alled the bound funtion ; the well-founded ordering is usually im-

pliit in the type of h .

The theorem that is being exploited here is that h
∪

◦ (≺) ◦h is a well-founded relation

if ≺ is well-founded. (See the disussion following lemma 8.36.) Note the resemblane

of this expression to the notion of an invariant property: the ordering relation in the

ase of an invariant property is the \if" relation on prediates. When we disuss onrete

algorithms, we see this pattern ourring repeatedly in the invariants we formulate.

6.9 Calculating a Least Fixed Point

As illustration, we present an iterative algorithm for alulating a least �xed point.

The least �xed point of a monotoni endofuntion F on a �nite, partially ordered set

(A,�) with least element 0 an be omputed by a simple iterative algorithm:

x := 0

; while x 6= F.x do

x := F.x

An invariant property of the algorithm is that x�µF ; the algorithm is guaranteed

to terminate if the relation ≻ is well-founded (in partiular, if A is �nite) sine x is

stritly inreased at eah iteration. On termination, x= F.x . That is, x is a �xed point

Algorithmi Graph Theory April 8, 2022

117

of F . Sine µF is the least �xed point and, at all times, x�µF , we onlude that, on

termination, x=µF .

In order to relate this brief, informal aount with the disussion above, we must

identify the individual omponents of the algorithm. The program is parameterised by

the partially ordered set (A,�) , the funtion F of type (A,�)←(A,�) (the set of

monotoni endofuntions on A) and the onstant 0 ; its state spae is A . All of these

onstitute what we have alled the ontext of the spei�ation. Note that, even for suh

a simple algorithm, the ontext is quite omplex. It inludes, for example, the fat that

the onstant � is a reexive, transitive and anti-symmetri relation.

The preondition of the spei�ation is true and the relation is the relation R of type

A∼A de�ned by, for all x and x0 of type A ,

x R x0 ≡ x=µF .

(The funtion F and the partially ordered set (A,�) are impliit parameters of R ,

as explained above.) By the assumed anti-symmetry of the ordering relation, and the

�xed-point indution rule,

[x=µF ⇐ x�µF ∧ x= F.x] .

(Here and elsewhere, the everywhere brakets denote a universal quanti�ation over the

input parameters and the state x .) Noting that x= F.x is the ondition for terminating

the loop, onditional orretness thus amounts to showing that the algorithm truthi�es

the postondition x�µF , for all monotoni funtions F of the given type. This suggests

the use of lemma 6.9, with the property x�µF as invariant. That is, we show that the

initialisation truthi�es x�µF and the loop body maintains x�µF .

Establishing that, in addition, the loop always terminates demands that we add the

additional onjunt x� F.x . By showing that this property is also invariant we infer that

the loop body |whih is just the funtion F| ombined with the preondition for its

exeution

x�F.x ∧ x 6= F.x ,

i.e. x≺F.x , is a subset of the relation ≻ . The guarantee of termination follows from the

assumption that this relation is well-founded.

Thus the remaining task is to show that the initialisation truthi�es, and the loop

body maintains the property

x�F.x ∧ x�µF .

This gives rise to two veri�ation onditions. Making use of the assignment axiom, the

veri�ation ondition for the initialisation is:

[0�F.0 ∧ 0�µF]

Algorithmi Graph Theory April 8, 2022

118

and that for the loop body is:

[F.x�F.(F.x) ∧ F.x�µF ⇐ x� F.x ∧ x�µF ∧ x 6= F.x] .

Given the assumptions made about the input parameters (impliit in the everywhere

brakets), both of these are true and the (\total") orretness of the algorithm has been

established. (Note that the guard on exeuting the loop body, x 6= F.x , is not needed for

the onditional orretness but is needed for the guarantee of termination.)

Algorithmi Graph Theory April 8, 2022

Part III

Components and Acyclicity

Algorithmi Graph Theory 119 April 8, 2022

Chapter 7

Equivalence Relations and Partitions

In this hapter we explore properties of equivalene relations, some of whih are well

known. Setion 7.1 formulates the well-known orrespondene between partitions of a

set and equivalene lasses in a point-free style and setion 7.2 explores properties of the

equivalene-lass funtion, in partiular with respet to omplementation.

7.1 Partitions

An equivalene relation is a relation that is reexive, transitive and symmetri. As

is well known, an equivalene relation partitions the set on whih it is de�ned into a

number of so-alled equivalene lasses . More formally, if R is an equivalene relation

on a set A , there is a set C and a surjetive funtion f of type C←A , suh that, for

all a and b in A ,

a[[R]]b ≡ f.a= f.b .(7.1)

(It is ommon to use square brakets to denote the funtion f . So, instead of writing

f.a , one writes [a] , or [a]R if it is thought neessary to make the equivalene relation

expliit.)

Conversely, given sets A and C and a total funtion f of type C←A , we an use

equation (7.1) to de�ne a homogeneous relation R on A . The relation R is then an

equivalene relation.

Equation (7.1) is expressed more suintly by the point-free equation

R = f
∪

◦ f .(7.2)

Point-free formulations of funtionality, totality, surjetivity and injetivity then support

e�etive point-free alulation. Here, for example, is the proof that it is transitive (in

every detail, inluding the use of the assoiativity of omposition).

Algorithmi Graph Theory 121 April 8, 2022

122

(f∪ ◦ f)◦(f∪ ◦ f)

= { omposition is assoiative }

f
∪

◦ (f ◦ f∪) ◦ f

⊆ { f is funtional, i.e. f ◦ f∪ ⊆ IC ,

monotoniity of omposition }

f
∪

◦ IC ◦ f

= { IC is identity of omposition }

f
∪

◦ f .

The onverse proposition is that if R is an equivalene relation on set A , the funtion

f of type 2A←A de�ned to be

〈a :: Set . (R ◦a)<〉

maps (oreexive) atoms a to equivalene lasses of R (where Set is a so-alled \ast"

that maps a oreexive of type A∼A , for some A , to the atomi oreexive of type 2A

representing the same subset of A). That is, R = f∪ ◦ f . The proof is straightforward,

although somewhat long. See theorem 7.7 below.

Lemma 7.3 If R is an equivalene relation, then for all proper atomi oreexives a

and b ,

(R◦a)< = (R◦b)< ≡ a◦R◦b = a◦⊤⊤◦b .

Proof By lemma 5.27 with R,p,b :=R,a,b ,

a ⊆ (R◦b)< ≡ a◦R◦b = a◦⊤⊤◦b .(7.4)

Seond,

(R◦a)< ⊆ (R◦b)<

⇒ { assuming R is reexive, a ⊆ (R◦a)< }

a ⊆ (R◦b)<

⇒ { monotoniity }

(R◦a)< ⊆ (R ◦ (R◦b)<)<

= { domains: (5.9) }

(R◦a)< ⊆ (R◦R◦b)<

⇒ { assuming R is transitive, R◦R⊆R ; monotoniity }

(R◦a)< ⊆ (R◦b)< .

Algorithmi Graph Theory April 8, 2022

123

That is, if R is reexive and transitive,

a ⊆ (R◦b)< ≡ (R◦a)< ⊆ (R◦b)< .(7.5)

Moreover, if R is symmetri and a and b are oreexives,

a◦R◦b = a◦⊤⊤◦b ≡ b◦R◦a = b◦⊤⊤◦a .(7.6)

Thus, if R is an equivalene relation,

(R◦a)< = (R◦b)<

= { anti-symmetry }

(R◦a)< ⊆ (R◦b)< ∧ (R◦b)< ⊆ (R◦a)<

= { (7.5) }

a ⊆ (R◦b)< ∧ b ⊆ (R◦a)<

= { (7.4) }

a◦R◦b = a◦⊤⊤◦b ∧ b◦R◦a = b◦⊤⊤◦a

= { (7.6) }

a◦R◦b = a◦⊤⊤◦b .

✷

Theorem 7.7 Suppose R is an equivalene relation. Let the funtion f be de�ned

to be

〈a :: Set . (R ◦a)<〉 .

Then

R = f
∪

◦ f

and

f = f ◦R .

Proof Suppose R is an equivalene relation on set A . By the de�nition of f , for all

points a of type A and points c of type 2A ,

c◦⊤⊤◦a ⊆ f ≡ c = Set.(R◦a)< .(7.8)

Thus, with dummies a and b ranging over points of type A , and dummy c ranging

over points of type 2A , we have:

Algorithmi Graph Theory April 8, 2022

124

R

= { saturation assumption: theorem 5.22

and all-or-nothing rule }

〈∪a,b : a◦R◦b=a◦⊤⊤◦b : a◦⊤⊤◦b〉

= { assumption: R is an equivalene relation, orollary 7.3 }

〈∪a,b : (R◦a)< = (R◦b)< : a◦⊤⊤◦b〉

= { Set asts a oreexive of type A∼A to a point of 2A }

〈∪a,b : Set.(R◦a)< = Set.(R◦b)< : a◦⊤⊤◦b〉

= { de�nition of f : (7.8), and (5.47) }

f
∪

◦ f

and

f ◦R

= { above }

f ◦ f
∪

◦ f

= { f is a funtion, so f ◦ f
∪ ⊆ I and hene f ◦ f

∪ = f< }

f< ◦ f

= { domains (spei�ally theorem 5.3) }

f .
✷

7.2 Properties of the Partition Function

In setion 7.1, the funtion 〈a :: Set . (R ◦a)<〉 was shown to map a proper atom a into

the set of proper atoms equivalent to a under the (equivalene) relation R . This setion

is about exploring the properties of the endofuntion 〈p :p⊆ I : (R◦p)<〉 . We show that

it is a omplementation-�xed losure operator.

To avoid lutter, we use the onvention that lower ase identi�ers p and q range

over oreexives. So the funtion of interest is 〈p :: (R◦p)<〉 .

Realling de�nition 2.47 of omplementation-�xed and noting that, for all relations

R , R•<=∼(R<) , we explore onditions under whih

(R ◦ (R◦S)•<)< = (R◦S)•<

beginning with the inlusion.

Algorithmi Graph Theory April 8, 2022

125

Lemma 7.9 For arbitrary relations R and S ,

(R ◦ (R◦S)•<)< ⊆ (R◦S)•< ⇐ R
∪

◦R ⊆ R .

Proof Note how the alulation below is used to determine simpler onditions on R

for whih the more ompliated inlusion holds. The use of the isomorphism between

onditionals and domains in the �rst step is driven by the fat that the negation of a

ondition is a ondition. The use of middle-exhange then beomes obvious.

(R ◦ (R◦S)•<)< ⊆ (R◦S)•<

= { theorem 5.8(e) }

R ◦ (R◦S)•< ◦⊤⊤ ⊆ (R◦S)•< ◦⊤⊤

= { property of negated left domain }

R ◦¬(R◦S◦⊤⊤) ⊆ ¬(R◦S◦⊤⊤)

= { middle-exhange rule (4.18)

with R,X,S,Y := R ,R◦S◦⊤⊤ , I , R◦S◦⊤⊤ }

R
∪

◦R ◦S ◦⊤⊤ ⊆ R◦S◦⊤⊤

⇐ { monotoniity of omposition }

R
∪

◦R ⊆ R .
✷

Corollary 7.10 If R is an equivalene relation, for all S ,

(R ◦ (R◦S)•<)< = (R◦S)•< .

In words, if R is an equivalene relation, (R◦S)•< is a �xed point of the funtion mapping

oreexive p to (R◦p)< .

Proof We have:

(R ◦ (R◦S)•<)<

⊆ { R is an equivalene relation, so R
∪

◦R ⊆ R , lemma 7.9 }

(R◦S)•<

= { I is unit of omposition; (R•<)<=R•<
for all R , with R :=R◦S }

(I ◦ (R◦S)•<)<

⊆ { R is an equivalene relation, so I⊆R ,

monotoniity of omposition and domains }

(R ◦ (R◦S)•<)< .

Algorithmi Graph Theory April 8, 2022

126

The equality thus follows by the anti-symmetry of ⊆ .

✷

Lemma 7.11 If R is reexive and transitive, the funtion 〈p :: (R◦p)<〉 is a losure

operator.

Proof The equivalene in de�nition 2.44 of a losure operator is established by mutual

impliation. Impliation:

(R◦q)<

⊆ { assume q ⊆ (R◦p)< , monotoniity of (R◦
) and

< }

(R ◦ (R◦p)<)<

= { domains (dual of theorem 5.9) }

(R◦R◦p)<

⊆ { R is transitive }

(R◦p)<

and follows-from:

q ⊆ (R◦p)<

⇐ { assume (R◦q)< ⊆ (R◦p)< , transitivity of ⊆ }

q ⊆ (R◦q)<

⇐ { R is reexive, i.e. I⊆R ; monotoniity of (

◦q) and < }

q ⊆ (I◦q)<

= { domains: theorem 5.8, and assumption: q is oreexive }

true .

✷

Theorem 7.12 If R is an equivalene relation, the funtion 〈p :p⊆ I : (R◦p)<〉 is a

omplementation-�xed and omplementation-idempotent losure operator.

Moreover, if R is an equivalene relation on a omplete, universally distributive,

saturated lattie, the set of oreexives Fix.〈p :: (R◦p)<〉 is a omplete, saturated lattie,

its atoms being the set of oreexives (R◦a)< where a is an atom of the lattie of all

oreexives.

Proof An equivalene relation R is reexive (I⊆R), symmetri (R=R∪

) and transitive

(R◦R⊆R). So the funtion 〈p :: (R◦p)<〉 is a losure operator by lemma 7.11 and, hene,

Algorithmi Graph Theory April 8, 2022

127

omplementation-idempotent by orollary 7.10. It is thus also omplementation-�xed by

lemma 2.48.

If R is an equivalene relation on a omplete, universally distributive lattie, the

ompleteness and saturation properties are given by theorem 2.71.

✷

Lemma 7.13 Suppose R is an equivalene relation on a saturated atomi lattie.

Then

〈∪a : atom.a : (R◦a)<〉 = I .

Proof

〈∪a : atom.a : (R◦a)<〉

= { the funtions

<
and (R◦

) are lower adjoints

and so are universally distributive }

(R ◦ 〈∪a : atom.a : a〉)<

= { the lattie of oreexives is saturated, i.e. 〈∪a : atom.a : a〉 = I }

(R ◦ I)<

= { R<⊆ I , for all R ;

R is reexive, i.e. I⊆R ; <
is monotoni and I<= I . }

I .

✷

Note that, as already observed, the funtion 〈p :: (R◦p)<〉 is the lower adjoint in a

Galois onnetion of the oreexives (ordered by the subset relation) with itself. Thus,

if R is an equivalene relation, the funtion is universally distributive, as well as being

a omplementation-�xed and omplementation-idempotent losure operator.

Finally, note that all the properties stated and proven in this setion an be dualised to

properties of the funtion 〈p :: (p◦R)>〉 . This is important, for example when we onsider

the notions of left- and right-de�niteness of a relation in setion 8.1. The funtion

〈R :: Set.〈p :: (R◦p)<〉〉 is akin to what Bird and De Moor [BdM97℄ all the \existential

image" funtor. The funtion 〈a :: Set . (R ◦a)<〉 (where a ranges over proper atoms)

is what they all the \power-transpose" of R . This terminology is more relevant to

appliations where relations are viewed as set-valued funtions.

Algorithmi Graph Theory April 8, 2022

128

Algorithmi Graph Theory April 8, 2022

Chapter 8

Acyclic Graphs

This hapter begins our presentation of algorithmi graph theory in point-free relation

algebra. From now on, a graph G is simply a homogeneous \edge" relation of type

Node∼Node where Node is a �nite set. A proper atom a in the lattie of oreexives

of type Node is a node of the graph. Then, if a and b are both nodes, the boolean

a◦G◦b 6=⊥⊥ represents the existene of an edge from a to b ; if indeed a◦G◦b 6=⊥⊥ ,

the edge itself is the atom a◦⊤⊤◦b (in the poset of relations of type Node∼Node). The

existene of a path from a to b is represented by the boolean a ◦G∗
◦b 6= ⊥⊥ . (The path

itself is a sequene of nodes.) In this way, relation algebra is the appropriate vehile for a

study of the algorithmi properties of the existene of paths in graphs. (Regular algebra

is the appropriate vehile for studying more general properties of paths in graphs.)

Ayli graphs (graphs without yli paths) form an important sublass of graphs.

This is not just beause they naturally our in pratial problems |they orrespond

to partial orderings on �nite sets| but also beause all graphs omprise a olletion

of so-alled \strongly onneted omponents" that are onneted by an ayli graph.

This strutural property of graphs |formalised in theorem 9.30| is important in path-

�nding algorithms as well as the seemingly unrelated problem of eÆiently representing

the inverse of a real matrix. (See the disussion following theorem 9.30 for further

disussion.)

Subsetion 8.1 de�nes ayliity in the onventional way in terms of paths. At

the same time, a less well-known property, whih we all \de�niteness" is introdued.

Whereas ayliity is partiularly appropriate to reasoning about graphs, de�niteness is

more general. For �nite graphs, the two notions oinide, as shown in this setion.

Subsetion 8.2 is about showing that the reexive-transitive redution of a de�nite

relation is its least starth root. Equivalently, every partial ordering on a �nite set has a

unique so-alled \Hasse diagram".

Subsetion 8.3 develops a formal proof of the following fat from graph theory: in

an ayli graph, the nodes reahable from set A oinide with the nodes reahable

Algorithmi Graph Theory 129 April 8, 2022

130

from the minimal elements of A. The theorem is a orollary of a muh more general

theorem about \right-de�niteness" of a relation. In more onventional terminology, it is

the theorem that, given a well-founded relation on a set S , every non-empty subset of

S has a minimal element (with respet to the well-founded relation).

The �nal subsetion in this setion, subsetion 8.4, is about how a \topologial searh"

of an ayli graph assigns to the nodes of the graph a so-alled \topologial ordering".

The de�nition of a topologial ordering and the algorithm for topologial searh are

formulated in point-free relation algebra.

Many properties we prove are valid for arbitrary relations and not just for graphs.

That is, the assumption of �niteness is not required. Nevertheless, we sometimes use

graph terminology| partly beause this is the primary appliation here but also beause

it is more \graphi" in the sense of being easier to explain with the aid of diagrams. In

order to make the level of generality lear, we use R to denote an arbitrary relation and

G to denote a graph | that is, a relation over a �nite set of nodes.

8.1 Definiteness and Acyclicity

We have to de�ne the meaning of a graph being ayli. Obviously, a yle gives rise to

an in�nite path in the graph. But, onversely, an in�nite path in a �nite graph ontains

a yle (beause the number of verties is �nite). Therefore, ayliity in �nite graphs

is the same as the absene of in�nite paths, to whih we give the name \(left- or right-)

de�nite".

Definition 8.1 ((Right/Left) Definite) Relation R is said to be right-de�nite if

and only if it satis�es

〈∀p :: p⊆⊥⊥ ⇐ p ⊆ (p◦R)>〉 .(8.2)

It is said to be left-de�nite if and only if it satis�es

〈∀p :: p⊆⊥⊥ ⇐ p ⊆ (R◦p)<〉 .(8.3)

It is said to be de�nite if it is both left- and right-de�nite.

✷

Informally, right-de�niteness means the absene of in�nite \desending" paths. That

is, there is not a non-empty set of atoms, represented by the oreexive p , suh that,

for all atoms a in p , it is always possible to �nd an atom b in p suh a is in the set

represented by (b◦R)> , i.e. b[[R]]a . Were this possible, the proess an be repeated ad

in�nitum ; in graphs, this means the existene of paths omprising an in�nite number

of edges. (See lemmas 8.17 and 8.19 for the formalisation of this argument.)

Algorithmi Graph Theory April 8, 2022

131

Note that R is right-de�nite equivales that its onverse R
∪

is left-de�nite. So left-

de�niteness means the absene of in�nite \asending" paths. A hint on how to remember

whih is whih is that left-de�niteness is de�ned in terms of the left domain operator

and right-de�niteness in terms of the right domain operator.

The importane of the onept of de�niteness is what we have alled the unique

extension property (uep) of relation algebra.

Theorem 8.4 (Uep of Relation Algebra) Suppose R is a right-de�nite relation.

Then, for all oreexives p and q ,

p = (p◦R)> ∪ q ≡ p = (q ◦R∗)> .

Also, for all relations X and S ,

X = X◦R∪S ≡ X = S ◦R∗ .

Dually, if R is a left-de�nite relation, for all oreexives p and q ,

p = (R◦p)< ∪ q ≡ p = (R∗
◦q)< ,

and, for all relations X and S ,

X = R◦X∪S ≡ X = R∗
◦S .

✷

A proof of theorem 8.4 an be found in [DBvdW97, setion 7℄. E�etively, in relation

algebra theorem 8.4 is equivalent to the unique extension property of regular algebra

presented in setion 3.3. (See theorem 3.16.) Note that [DBvdW97℄ uses the terminology

\well-founded" rather than \right-de�nite" in order to �t with the standard terminology

of the priniple appliation onsidered in the paper.

For later use, we note the following simple lemma.

Lemma 8.5 Suppose R is right-de�nite and R⊇S . Then S is right-de�nite. The

same is true with \left" replaing \right".

Proof Immediate from the monotoniity of transitive losure, omposition and the

domain operators.

✷

As mentioned earlier, in [DBvdW97℄ the better-known term \well-founded" was used

instead of our \right-de�nite". An example of a well-founded relation is the less-than

relation on the natural numbers. Expressed pointwise, (8.2) for this appliation is the

property that, for all subsets p of the natural numbers,

p=∅ ⇐ 〈∀m : m∈p : 〈∃n : n∈p : n<m〉〉 .

Algorithmi Graph Theory April 8, 2022

132

Expressed slightly di�erently, this is the property that for all subsets p of the natural

numbers,

p=∅ ∨ 〈∃m : m∈p : 〈∀n : n∈p : n≥m〉〉 .

In words, every non-empty set of natural numbers has a least element.

We mention this example beause it illustrates the fat that left-de�nite and right-

de�nite are not (in general) the same: the suessor relation on the natural numbers

(the onverse of the predeessor relation) is not well-founded. Left- and right-de�nite

are the same for �nite graphs, as we shall see.

The less-than relation on natural numbers is the transitive losure of the predeessor

relation (the onverse of the suessor funtion, where the suessor of m is m+1).

And, of ourse, the predeessor relation is well-founded. This exempli�es a (well-known)

property, namely:

Lemma 8.6 Relation R is right-de�nite equivales relation R+
is right-de�nite. Sim-

ilarly for left-de�nite and for de�nite. Thus R is right-de�nite if and only if it satis�es

〈∀p :: p⊆⊥⊥ ⇐ p ⊆ (p ◦R+)>〉 .(8.7)

It is left-de�nite if and only if it satis�es

〈∀p :: p⊆⊥⊥ ⇐ p ⊆ (R+
◦p)<〉 .(8.8)

Proof Obviously, R⊆R+
. So, by lemma 8.5, R is right de�nite if R+

is right de�nite.

For the onverse, we have:

p ⊆ (p ◦R+)>

= { de�nition of set union }

p ∪ (p ◦R+)> ⊆ (p ◦R+)>

= { distributivity, R∗ = 1∪R+ }

(p ◦R∗)> ⊆ (p ◦R+)>

= { R+ = R∗
◦R , domains }

(p ◦R∗)> ⊆ ((p ◦R∗)> ◦R)> .

Moreover, sine ⊥⊥ is the zero of omposition and p⊆ (p ◦R∗)> ,

p⊆⊥⊥ ≡ (p ◦R∗)>⊆⊥⊥ .

Thus

Algorithmi Graph Theory April 8, 2022

133

〈∀p :: p⊆⊥⊥ ⇐ p ⊆ (p◦R)>〉

⇒ { p := (p ◦R∗)> }

〈∀p :: (p ◦R∗)> ⊆ ⊥⊥ ⇐ (p ◦R∗)> ⊆ ((p ◦R∗)> ◦R)>〉

= { above }

〈∀p :: p⊆⊥⊥ ⇐ p ⊆ (p ◦R+)>〉 .

That is, R+
is right de�nite if R is right de�nite.

✷

Beause the anteedent of (8.2) is formally stronger than the anteedent of (8.7), it

an be easier to use de�nition 8.1 to establish that a relation is right-de�nite. On the

other hand, when it is known that a relation is right-de�nite, de�nition 8.6 may be easier

to use.

See [DBvdW97℄ for a detailed study of properties of R and R+
of whih lemma 8.6

is an instane.

Antiipating the de�nition of ayliity (de�nition 8.11), we rephrase right-de�niteness

in terms of atomi oreexives.

Lemma 8.9 For all R and all atomi oreexives a ,

a⊆R ≡ a ⊆ (a◦R)> .

Proof Suppose a is an atomi oreexive. Then, for all R ,

a ⊆ R

⇒ { a is oreexive, so (a◦a)>=a ; monotoniity }

a ⊆ (a◦R)>

⇒ { a◦⊤⊤◦a=a , monotoniity }

a ⊆ a ◦⊤⊤ ◦ (a◦R)>

= { domains (spei�ally, theorem 5.7(a)) }

a ⊆ a◦⊤⊤◦a◦R

⇒ { a◦⊤⊤◦a = a ⊆ I , monotoniity and transitivity }

a ⊆ R .

The lemma follows by mutual impliation.

✷

Lemma 8.10 If R is right-de�nite, then, for all atomi oreexives a ,

a⊆⊥⊥ ⇐ a⊆R+ .

Algorithmi Graph Theory April 8, 2022

134

Proof Assume that R is right-de�nite. Then,

a ⊆ R+

= { lemma 8.9 with R :=R+ }

a ⊆ (a ◦R+)>

⇒ { assumption: R is right-de�nite, lemma 8.6 }

a ⊆ ⊥⊥ .

✷

We now de�ne ayliity:

Definition 8.11 (Acyclicity) A relation R is said to be ayli if

I ∩ R+ = ⊥⊥ .

A proper atomi oreexive a is said to be in a yle of R if a⊆R+
.

✷

A proper atomi oreexive a that is in a yle of R \witnesses" the fat that R is

not ayli. Formally, we have:

Lemma 8.12

I ∩ R+ 6= ⊥⊥ ≡ 〈∃a : AC.a∧a 6=⊥⊥ : a⊆R+〉 .

Proof

I ∩ R+ 6= ⊥⊥

= { lattie of relations is atomi, de�nition 2.49 }

〈∃a : atom.a∧a 6=⊥⊥ : a ⊆ I∩R+〉

= { a ⊆ I∩R+ ≡ a⊆ I ∧ a⊆R+

trading and de�nition of atomi oreexive, AC }

〈∃a : AC.a∧a 6=⊥⊥ : a⊆R+〉 .

✷

A straightforward alulation shows that

I ∩ R+ = I ∩ (R
∪

)+ .

It follows that R is ayli equivales R
∪

is ayli.

An alternative de�nition of relation R being ayli is |essentially| that the relation

R∗
is a partial ordering (i.e. anti-symmetri as well as transitive and reexive). To be

preise:

Algorithmi Graph Theory April 8, 2022

135

Lemma 8.13 For all R , the relation R∗
is anti-symmetri (i.e. R∗∩ (R∗)∪ = I) if R

is ayli. Conversely, ¬I∩R is ayli if R∗
is anti-symmetri. (Equivalently |sine

R∗
is reexive and transitive| R∗

is a partial ordering if R is ayli and, onversely,

¬I∩R is ayli if R∗
is a partial ordering.)

Proof Suppose R is ayli. Then

R∗∩ (R∗)∪ = I

= { [R∗ = I∪R+] , distributivity }

(I∩ (R∗)∪) ∪ (R+∩ (R∗)∪) = I

= { [(R∗)∪=(R∪)∗] , [I∩S∗ = I] with S :=R∪

}

I ∪ (R+∩ (R∗)∪) = I

⇐ { ⊥⊥ is zero of supremum }

R+∩ (R∗)∪ ⊆ ⊥⊥

⇐ { modular law }

(R+
◦R∗ ∩ I) ◦ (R∗)∪ ⊆ ⊥⊥

= { [R+
◦R∗ = R+] , symmetry of ∩ ,

⊥⊥ is zero of supremum }

(I∩R+) ◦ (R∗)∪ = ⊥⊥

= { R is ayli, de�nition 8.11 }

true .

That is, R∗
is anti-symmetri if R is ayli.

For the onverse, suppose that R∗
is anti-symmetri. Then

I ∩ (¬I∩R)+ ⊆ ⊥⊥

⇐ { [(¬I∩R)+ = (¬I∩R) ◦R∗] ,

modular law and ⊥⊥ is zero of omposition }

(¬I∩R)∪ ∩ R∗ ⊆ ⊥⊥

= { distributivity, (¬I)∪ = ¬I }

¬I∩R∪ ∩ R∗ ⊆ ⊥⊥

⇐ { [R
∪⊆ (R∗)∪] , symmetry of union }

¬I∩ (R∗)∪ ∩ R∗ ⊆ ⊥⊥

Algorithmi Graph Theory April 8, 2022

136

⇐ { assumption: R∗
is anti-symmetri

(i.e. (R∗)∪∩R∗ = I) }

¬I∩ I ⊆ ⊥⊥

= { omplement }

true .

✷

De�nition 8.11 is meaningful for arbitrary relations but we instantiate it primarily

for �nite graphs. Reall that nodes are points. (See de�nition 5.13.) So identifying a

node in a yle of graph G establishes that G is not ayli. Formally, we have:

Lemma 8.14 Suppose a is a point. Then a ◦R+
◦a = ⊥⊥ if relation R is ayli.

Conversely, if a ◦R+
◦a 6= ⊥⊥ , R is not ayli, as witnessed by a ; that is, a is a point

in a yle of R .

Proof By lemma 5.15 and de�nition 5.13(),

a ◦R+
◦a = a ∨ a ◦R+

◦a = ⊥⊥(8.15)

for all points a .

Assume R is ayli. Then

a ◦R+
◦a = a

= { a is oreexive, lemmas 5.27 (with p,b :=a,a) and 8.9 }

a ⊆ I ∩ R+

⇒ { assumption: R is ayli (de�nition 8.11) }

a = ⊥⊥

⇒ { a is a point so a 6= ⊥⊥ }

false .

We onlude that, if R is ayli, a ◦R+
◦a = ⊥⊥ for all points a .

For the onverse, suppose a is an atomi oreexive and a ◦R+
◦a 6= ⊥⊥ . Then, by

(8.15), a ◦R+
◦a = a . It follows that a is proper and, applying de�nition 8.11, a is in

a yle of R .

✷

We now show that, for �nite graphs, right- (or left-) de�niteness equivales ayliity.

Lemma 8.16 shows that �niteness is not required to show that right- (or left-) de�niteness

implies ayliity but the onverse is not always true for relations on in�nite sets. For

example, the less-than ordering on real numbers is ayli but it is not well-founded.

Algorithmi Graph Theory April 8, 2022

137

Lemma 8.16 A right-de�nite relation is ayli. Symmetrially, a left-de�nite relation

is ayli.

Proof With a ranging over atomi oreexives, we have

rightdefinite.R

⇒ { de�nition 8.1 (with p :=a) and lemma 8.10 }

〈∀a :: a⊆⊥⊥ ⇐ a⊆R+〉

⇒ { the lattie of oreexives is saturated, i.e. 〈∪a ::a〉 = I }

I ∩ R+ = ⊥⊥

= { de�nition 8.11 }

acyclic.R .

The symmetri property of left-de�niteness follows straightforwardly. (See the remarks

above about the relation between left-de�niteness of R
∪

and right-de�niteness of R .)

✷

We turn now to the proof that de�niteness follows from ayliity. Like lemma 8.16,

lemma 8.17 and orollary 8.18 below do not require �niteness of the relation R ; however,

their appliation in lemma 8.19, will fore the restrition to �nite graphs.

Earlier we argued informally that right-de�niteness means the absene of in�nite

\desending" paths. Formally, we have:

Lemma 8.17 Suppose p is a oreexive suh that p 6=⊥⊥ and p ⊆ (p ◦R+)> . Suppose

a is a proper atomi oreexive suh that a⊆p . Then, with dummy b ranging over

atomi oreexives, we have

〈∃b :: b 6=⊥⊥ ∧ b⊆p ∧ a ⊆ (b ◦R+)> ∧ (a ◦R+)> ⊆ (b ◦R+)>〉 .

Proof The proof of (8.17) is in two stages. First,

a ⊆ p

⇒ { assumption: p ⊆ (p ◦R+)> , transitivity }

a ⊆ (p ◦R+)>

= { saturation assumption: de�nition 2.50, distributivity }

a ⊆ 〈∪b : b⊆p : (b ◦R+)>〉

⇒ { a is a proper atom, irreduibility: lemma 2.63 }

〈∃b : b 6=⊥⊥ ∧ b⊆p : a ⊆ (b ◦R+)>〉 .

Algorithmi Graph Theory April 8, 2022

138

Seond, assuming a ⊆ (b ◦R+)> ,

(a ◦R+)>

⊆ { assumption, monotoniity }

((b ◦R+)> ◦R+)>

= { domains (spei�ally theorem 5.9) }

(b ◦R+
◦R+)>

⊆ { R+
is transitive, monotoniity }

(b ◦R+)> .

✷

Corollary 8.18 Suppose p is a oreexive suh that p 6=⊥⊥ and p ⊆ (p ◦R+)> . Then

it is possible to onstrut an in�nite sequene of proper atomi oreexives ai suh that

〈∀i : 0≤ i : ai⊆p〉 ∧ 〈∀ i,j : 0≤ i< j : ai ⊆ (aj ◦R
+)>〉 .

Proof The initial term a0 is an arbitrary element of p . That is, a0 ⊆ p . (For-

mally, we exploit the assumption that the lattie of oreexives is atomi: see de�nition

2.49.) Subsequent nodes are onstruted by exploiting lemma 8.17 (with a,b :=ai,ai+1).

Beause, for all i ,

(ai ◦R
+)> ⊆ (ai+1 ◦R

+)>

it follows, by transitivity, that

〈∀ i,j : i< j : (ai ◦R
+)> ⊆ (aj ◦R

+)>〉 .

Combining this with the fat that, for all i , ai ⊆ (ai+1 ◦R
+)> , we have:

〈∀ i,j : 0≤ i< j : ai ⊆ (aj ◦R
+)>〉 .

✷

This is the point at whih we are obliged to introdue the �niteness assumption.

Lemma 8.19 Suppose G is a �nite graph. Then G is right-de�nite if G is ayli.

Proof We prove the ontrapositive: if G is a �nite graph that is not right-de�nite,

then G is not ayli.

Suppose G is not right-de�nite. Then there is a oreexive p suh that p 6=⊥⊥ and

p ⊆ (p ◦G+)> . Applying orollary 8.18 with R :=G , it is possible to onstrut an in�nite

sequene of nodes ai suh that

〈∀ i,j : 0≤ i< j : ai ⊆ (aj ◦G
+)>〉 .

Algorithmi Graph Theory April 8, 2022

139

There is only a �nite number of nodes; so, for some m and n , m<n and am=an .

Thus

am ⊆ (am ◦G+)> .

Hene,

true

= { lemma 8.9 (with a,R :=am,G) }

am ⊆ G+

⇒ { am = I∩am , monotoniity }

am ⊆ I∩G+

⇒ { ⊥⊥ 6=am , ⊥⊥ is the least element }

⊥⊥ 6= I∩G+ .

That is, G is not ayli.

✷

Corollary 8.20 Suppose G is a �nite graph. Then G is de�nite if G is ayli.

Proof Straightforward ombination of lemma 8.19 and properties of onverse. First,

true

= { lemma 8.19 }

〈∀G : finite.G : leftdefinite.G⇐ acyclic.G〉

= { onverse is a bijetion }

〈∀G : finite.G
∪

: leftdefinite.G
∪ ⇐ acyclic.G

∪〉

= { finite.G
∪ = finite.G , leftdefinite.G

∪ = rightdefinite.G ,

acyclic.G
∪ = acyclic.G }

〈∀G : finite.G : rightdefinite.G⇐ acyclic.G〉 .

So

true

= { lemma 8.19 and above }

〈∀G : finite.G : leftdefinite.G⇐ acyclic.G〉

∧ 〈∀G : finite.G : rightdefinite.G⇐ acyclic.G〉

Algorithmi Graph Theory April 8, 2022

140

= { prediate aulus }

〈∀G : finite.G : leftdefinite.G ∧ rightdefinite.G ⇐ acyclic.G〉

= { leftdefinite.G ∧ rightdefinite.G ≡ definite.G }

〈∀G : finite.G : definite.G⇐ acyclic.G〉 .

✷

To summarise, we have the following theorem.

Theorem 8.21 If G is a �nite graph, G is ayli equivales G is de�nite.

Proof Straightforward ombination of orollary 8.16 and orollary 8.20.

✷

Remark The term \de�nite" was, to our knowledge, �rst used by Carr�e [Car71℄.

Inspired by Conway's maxim [Con71, p.40℄ that any axiomatisation of a regular algebra

should extend to (�nite) matries, an algebrai formulation of \de�niteness" in a regular

algebra was introdued in [Ba75, BC75℄. (See setion 3.3 and, in partiular theorem

3.16.) This made it possible to establish a link between the notion of the \empty word

property" [Sal69℄ |of both languages and matries of languages| and the (well-known)

notion of singularity of matries in linear algebra. At that time no distintion was made

between the notions of left- and right-de�niteness, the sole appliation under onsidera-

tion being �nite matries (equivalently, �nite graphs) where |in view of theorem 8.21|

the two notions are indistinguishable..

The distintion between left- and right-de�niteness only emerged with the reogni-

tion that a regular algebra is an important subomponent of a relation algebra, and that,

in a relation algebra, right-de�niteness orresponds to the fundamental onept of well-

foundedness [DBvdW97℄ (and is distint from left-de�niteness). In the same way that

de�niteness in a regular algebra formulates Salomaa's (absene of the) empty word prop-

erty of a matrix of languages, the notion o�ers an alternative but equivalent algebrai

formulation of the ayliity of a �nite graph. The notions of left- and right-de�niteness

are, however, more general than ayliity, as we have seen in this setion. End of

Remark

8.2 Starth Root and Reflexive-Transitive Reduction

In this setion, we show that the reexive-transitive redution of a de�nite relation is the

least starth root of the graph. It follows that the same is true of a �nite, ayli graph.

Reall the de�nition of reexive-transitive redution: de�nition 3.18. The de�nition

of the funtion red is quite ompliated, muh of the ompliation being due to the

need to eliminate self-loops. An ayli relation has no self-loops so the de�nition an

be simpli�ed:

Algorithmi Graph Theory April 8, 2022

141

Lemma 8.22 If R is ayli, then R = R∩¬I . So

red.R = R∩¬(R ◦R+) .

Proof

R = R∩¬I

= { R ⊇ R∩¬I , anti-symmetry, R⊆R }

R⊆¬I

= { shunting rule (2.27) }

R∩I⊆⊥⊥

⇐ { R⊆R+
, monotoniity and transitivity }

R+∩ I ⊆ ⊥⊥

= { R is ayli }

true .

The formula for red.R follows by instantiating (3.19) and replaing R by R∩¬I .

✷

Theorem 8.23 The least starth root of a de�nite relation is its reexive-transitive

redution. That is, for all de�nite relations R ,

(red.R)∗ = R∗ ∧ 〈∀X : X∗=R∗ : red.R ⊆ X〉 .

In partiular, the least starth root of a �nite, ayli graph is its reexive-transitive

redution.

Proof Assume that R is de�nite. By theorem 3.22, it suÆes to prove the lefthand

onjunt.

(red.R)∗ = R∗

= { red.R⊆R and R is de�nite, so red.R is right-de�nite (theorem 8.21)

uep of relation algebra: theorem 8.4 }

R∗ = I ∪ red.R ◦R∗

⇐ { R∗ = I ∪ R+
, Leibniz }

R+ = red.R ◦R∗

= { R is left-de�nite,

Algorithmi Graph Theory April 8, 2022

142

uep of relation algebra: theorem 8.4 }

R+ = red.R ∪ R+
◦R

= { by lemma 8.16, R is ayli; lemma 8.22 }

R+ = (R∩¬(R ◦R+)) ∪ R+
◦R

= { R ◦R+ = R+
◦R and absorption rule of set alulus }

R+ = R ∪ R+
◦R

= { �xed-point de�nition of transitive losure }

true .

The partiular ase of a �nite, ayli graph follows from orollary 8.20.

✷

Observe that the proof of theorem 8.23 uses both left- and right-de�niteness. The

lexiographi ordering on words over an alphabet of size at least two demonstrates that

just one of left- or right-de�niteness is not suÆient: it is right-de�nite (i.e. well-founded)

but it is not left-de�nite (i.e. its onverse is not well-founded) and it does not have a

least starth root: see example 3.26.

Examples of non-�nite relations that are de�nite an be onstruted using one's

understanding of bound funtions (setion 6.8.6). An illustrative ase is the relation R

on integers de�ned by

〈∀m,n :: m[[R]]n ≡ even.m ∧ odd.n ∧ m<n〉 .

The bound funtion is the funtion even . Indeed,

R = even
∪

◦ (;) ◦ even ∧ 〈∀m,n :: m[[red.R]]n ≡ even.m ∧ n=m+1〉 .

where the symbol ; denotes the omplement of the only-if relation on booleans.

8.3 Minimal Nodes and Reachability

This setion is about formulating and proving the property that, given a right-de�nite

relation, the set of nodes \reahable" from a given set of nodes equals the set of nodes

\reahable" from a minimal subset of the given set of nodes.

Suppose G is a graph. To de�ne reahability we observe that node x is reahable

from a set of nodes A if there exists y∈A suh that there is a path from y to x . That

there is a path from y to x an of ourse be expressed as y[[G∗]]x , so reahability of x

from A beomes 〈∃y :y∈A :y[[G∗]]x〉 or by de�nition of omposition: 〈∃y :: y[[A◦G∗]]x〉 .

In the last expression we reognise the pointwise de�nition of the domain operator: if set

Algorithmi Graph Theory April 8, 2022

143

A is represented by the oreexive p , the expression is equivalent to x∈ (p◦G∗)> . Gener-

alising from graph G to an arbitrary relation R , the point-free de�nition of reachable.R.p

is therefore:

reachable.R.p = (p◦R∗)> .(8.24)

That a node x is a minimal element of a set of nodes A means that x is an element of

A and that, furthermore, there is no edge from a node in A to x. This is more formally

expressed as x∈A∧¬〈∃y :y∈A :y[[R]]x〉 . Alternatively, by again introduing the domain

operator and representing set A by the oreexive p , as x ∈ p∩ (p◦R)>• . Replaing the

intersetion by a omposition of oreexives, the set minimal.R.p of minimal elements of

p is thus de�ned as:

minimal.R.p = p ◦ (p◦R)>•(8.25)

The formal statement of the fat that the nodes reahable from set A oinide with the

nodes reahable from the minimal elements of A now beomes:

Lemma 8.26 Suppose relation R is right-de�nite. Then, for all oreexives p ,

reachable.R.p = reachable.R.(minimal.R.p) .(8.27)

More generally, for all oreexives p and q ,

reachable.R.p ⊆ reachable.R.q ⇐ minimal.R.p ⊆ q .(8.28)

Proof Assume that R is right-de�nite. We prove (8.27) by mutual inlusion. One

inlusion is easy. From the de�nition (8.24) it is lear that reachable.R is a monotone

funtion. Furthermore from (8.25) we see that p ontains minimal.R.p . Therefore

reachable.R.p ⊇ reachable.R.(minimal.R.p) .

It remains to prove the other inlusion. Somewhere we have to use the assumption of

right-de�niteness, but how? We have to prove that

reachable.R.p ⊆ reachable.R.(minimal.R.p) ,

whereof the righthand ourrene of reachable involves a reexive-transitive losure.

This suggests that we use the uep of relation algebra. Furthermore, it turns out that the

expression minimal.R.p does not play a role. Therefore, we begin by deriving a ondition

implying

reachable.R.p ⊆ reachable.R.q

for arbitrary oreexive q . (This turns out to be the property (8.28).) We begin by

exploiting (the dual of) lemma 7.11:

Algorithmi Graph Theory April 8, 2022

144

reachable.R.p ⊆ reachable.R.q

= { de�nition reahables: (8.24) }

(p◦R∗)> ⊆ (q◦R∗)>

= { the funtion 〈p :: (p◦R∗)>〉 is a losure operator

(dual of lemma 7.11) and de�nition 2.44 }

p ⊆ (q◦R∗)> .

Now we an invoke the right-de�niteness of R . From the disussion of theorem 8.4 on

the uep of relation algebra it follows that, for right-de�nite relation R , relation (q◦R∗)>

is the greatest �xed point of the funtion 〈X :: q∪ (X◦R)>〉 . Exploitation of this fat is

the main step in the following alulation.

p ⊆ (q◦R∗)>

= { R is right-de�nite: (q◦R∗)> = 〈νX :: q∪ (X◦R)>〉 ;

�xed-point indution }

p ⊆ (q∪p◦R)>

= { domain operator is ∪ -juntive }

p ⊆ q∪ (p◦R)>

= { shunting (2.27) in the oreexive lattie }

p ◦ (p◦R)>• ⊆ q

= { de�nition (8.25) }

minimal.R.p ⊆ q .

With this alulation we have established the property (8.28). Instantiating q with

minimal.R.p in this formula then gives the desired result:

reachable.R.p ⊆ reachable.R.(minimal.R.p) .

This ompletes the proof of the theorem.

✷

An interesting observation an be made if we take a loser look at the anteedent of

formula (8.28). After instantiating q to the empty relation and writing out the de�nition

of minimal.R it reads: p ◦ (p◦R)>• ⊆ ⊥⊥ . Now we an apply shunting in the oreexive

lattie and we get p ⊆ (p◦R)> . This expression is the anteedent in (8.2). So, another

formulation of a relation R being right-de�nite is: for all oreexives p ,

p⊆⊥⊥ ⇐ minimal.R.p ⊆ ⊥⊥ ,(8.29)

Algorithmi Graph Theory April 8, 2022

145

or the equivalent ontrapositive (using that ⊥⊥ is the bottom of the lattie): for all

oreexives p ,

p 6=⊥⊥ ⇒ minimal.R.p 6= ⊥⊥ .(8.30)

This is the familiar haraterisation \every non-empty set has a minimal element" of

well-foundedness.

Now we onsider the onverse of lemma 8.26. Is it true that a graph with property

(8.27) is right-de�nite? This question an be answered aÆrmatively and the proof is

simple. We show that a relation satisfying (8.27) also satis�es (8.29).

minimal.R.p = ⊥⊥

⇒ { Leibniz }

reachable.R.(minimal.R.p) = reachable.R.⊥⊥

= { assumption: reachable.R.(minimal.R.p) = reachable.R.p ;

de�nition of reachable : (8.24) }

reachable.R.p = (⊥⊥◦R∗)>

= { de�nition of reachable : (8.24);

⊥⊥ is zero of omposition }

(p◦R∗)> = ⊥⊥

⇒ { I⊆R∗ }

p ⊆ ⊥⊥ .

We thus onlude:

Theorem 8.31 Relation R is right-de�nite equivales for all oreexives p ,

reachable.R.p = reachable.R.(minimal.R.p) .

In partiular, that (�nite) graph G is ayli equivales for all oreexives p

reachable.G.p = reachable.G.(minimal.G.p) .

✷

8.4 Topological Search

\Topologial" searh is an algorithm for visiting all the nodes in an ayli graph in

so-alled \topologial" order.

Algorithmi Graph Theory April 8, 2022

146

Definition 8.32 (Topological Order) A topologial ordering of a homogeneous

relation R of type A is a total, injetive funtion ord from A to the natural numbers

with the property that, for all elements a and b of A , ord.a<ord.b if a[[R+]]b .

✷

Expressed as a point-free formula, the requirement for the funtion ord to be a

topologial ordering of R is as follows:

IA = ord
∪

◦ord ∧ ord ◦ord
∪

⊆ IIN ∧ R+ ⊆ ord
∪

◦ less ◦ord .(8.33)

Here we have used \ less " to denote the less-than ordering on natural numbers rather

than the symbol \< ".

In order to verify the property of being a topologial ordering, or |more importantly|

to onstrut a topologial ordering, it is useful to weaken the requirement, replaing R+

by R :

Lemma 8.34 Suppose ord is a total, injetive funtion of type IN←A and R is a

homogeneous relation of type A . Then ord is a topologial ordering of R equivales

R ⊆ ord
∪

◦ less ◦ord .

Proof The proof is a straightforward appliation of the de�nition of transitive losure

and �xed-point indution:

R+ ⊆ ord
∪

◦ less ◦ord

⇐ { R+= 〈µx :: R∪x◦x〉 ; �xed-point indution }

R ∪ ord∪

◦ less ◦ord ◦ord
∪

◦ less ◦ord ⊆ ord
∪

◦ less ◦ord

= { less ◦ord ◦ord
∪

◦ less

⊆ { ord ◦ord
∪ ⊆ I , monotonoity }

less ◦ less

⊆ { less is transitive }

less ;

de�nition of set union and monotoniity of omposition }

R ⊆ ord
∪

◦ less ◦ord

⇐ { R⊆R+ }

R+ ⊆ ord
∪

◦ less ◦ord .

Algorithmi Graph Theory April 8, 2022

147

✷

Lemma 8.34 means that the requirement (8.33) for the funtion ord to be a topo-

logial ordering of R an be simpli�ed to

IA = ord
∪

◦ord ∧ ord ◦ord
∪

⊆ IIN ∧ R ⊆ ord
∪

◦ less ◦ord .(8.35)

The less-than relation on natural numbers is, of ourse, well-founded | that is, right-

de�nite in the terminology used here. The funtion ord in the de�nition of a topologial

ordering thus ats like a so-alled bound funtion for establishing termination of a loop

in a program. The relevant property is the following.

Lemma 8.36 Suppose ord is a total funtion of type IN←A for some A . Then

the homogeneous relation ord
∪

◦ less ◦ord (where less denotes the less-than relation on

natural numbers) is right-de�nite.

Proof Suppose p is a oreexive of type A . Then

p ⊆ (p ◦ord
∪

◦ less ◦ord)>

⇒ { monotoniity (aiming to exploit the funtionality of ord) }

(p ◦ord
∪)> ⊆ ((p ◦ord

∪

◦ less ◦ord)> ◦ord
∪)>

= { domains: (5.9) }

(p ◦ord
∪)> ⊆ (p ◦ord

∪

◦ less ◦ord ◦ord
∪)>

⇒ { ord is funtional, i.e. ord ◦ord∪ ⊆ I , monotoniity }

(p ◦ord
∪)> ⊆ (p ◦ord

∪

◦ less)>

⇒ { preparing for use of (8.2): (5.9) }

(p ◦ord
∪)> ⊆ ((p ◦ord

∪)> ◦ less+)>

⇒ { less is well-founded, i.e. right-de�nite: (8.2) }

(p ◦ord
∪)> ⊆ ⊥⊥

= { domains: (5.6) }

p ◦ord
∪ ⊆ ⊥⊥

⇒ { ord is total (i.e. I ⊆ ord
∪

◦ord),

monotoniity and ⊥⊥ is zero of omposition }

p ⊆ ⊥⊥ .

Algorithmi Graph Theory April 8, 2022

148

Thus, by de�nition, ord
∪

◦ less ◦ord is right-de�nite.

✷

Lemma 8.36 is the basis of the use of so-alled \bound funtions" to establish ter-

mination of loops and reursion: the funtion ord \bounds" the number of iterations.

The only property of the relation less that is used in the proof of lemma 8.36 is that it

is well-founded (right-de�nite). So \bound funtions" an be used in onjuntion with

other well-founded relations although in some ases it would be diÆult to interpret the

funtion ord as a \bound". For example, the relation less ould be taken to be the

lexiographi ordering on words; the funtion ord would then map a state to a word.

Corollary 8.37 Suppose ord is a topologial ordering of the homogeneous relation

R . Then R is right-de�nite.

Proof Immediate from lemmas 8.5, 8.34 and 8.36.

✷

We now want to onsider the onverse of orollary 8.37. Is it the ase that every

right-de�nite relation an be topologially ordered? The answer is: no, not in general.

(For example, the lexiographial ordering of words over a �nite alphabet is well-founded

but it is not possible to assign a number to eah word that de�nes its position in the

ordering.) The answer is, however, yes if we restrit attention to �nite graphs. The proof

is onstrutive. We assume that G is a �nite graph that is ayli and we present an

algorithm that onstruts a topologial ordering of the nodes of G .

The development of the algorithm proeeds as follows. Given a �nite graph G , the

requirement is to onstrut a topologial ordering ord of all the nodes of G : spei�ally,

the postondition that must be satis�ed is given by (8.35).

The obvious strategy is to order the nodes one-by-one, beginning with the empty set

of nodes and ending with all the nodes of G . In order to guarantee injetivity, an obvious

hoie is to assign to eah node the number of nodes that have already been ordered.

(Thus, the �rst node to be ordered is assigned the number 0 , the seond 1 , and so on.)

Introduing the oreexive variable seen to represent the nodes that have been ordered

(the nodes that have been \seen" in the searh of the graph) and the integer variable k

to ount the number of nodes in the set represented by seen , we design a loop that has

invariants

seen = ord
∪

◦ord ∧ ord ◦ord
∪

= {j |0≤ j<k} , and(8.38)

seen ◦G ◦ seen ⊆ ord
∪

◦ less ◦ord .(8.39)

The overbar notation used in (8.38) denotes the mapping from a set to its representation

as a oreexive. The invariant (8.38) states that ord is funtional with right domain

Algorithmi Graph Theory April 8, 2022

149

seen and it is injetive with left domain the set of natural numbers less than k . The

invariant (8.39) states that if there is an edge in G from a node a that has been \seen"

to a node b that has also been \seen" then ord.a<ord.b .

The invariants (8.38) and (8.39) are learly derived from (8.35) by the well-known,

orret-by-onstrution design method of replaing a onstant by a variable: in this ase,

several ourrenes of the (sometimes invisible) identity relation are replaed.

The development thus far is summarised below. The property (8.40) listed as an

invariant has yet to be derived. Also, queries (\???") have been added to indiate that

the riterion for hoosing node b is inomplete.

{ acyclic.G }

seen ,ord , k := ⊥⊥ ,⊥⊥ , 0

; { Invariant: (8.38) ∧ (8.39) ∧ (8.40) }

while IA 6= seen do

begin

hoose arbitrary node b suh that b⊆∼seen ∧ ???

; seen := seen∪b

; ord,k := ord ∪ {k}◦⊤⊤◦b , k+1

end

{ IA = seen = ord∪

◦ord ∧ ord ◦ord
∪ ⊆ IIN ∧ G ⊆ ord

∪

◦ less ◦ord }

The key element of the algorithm is how to hoose the next node to be ordered. It

is straightforward to verify that (8.38) is an invariant of the algorithm as shown. (See

lemma 8.41 below.) The hoie of node b must guarantee that (8.39) is maintained.

That is, we require that, for all b and seen ,

(seen∪b) ◦G ◦ (seen∪b) ⊆ (ord ∪ {k}◦⊤⊤◦b)∪ ◦ less ◦ (ord ∪ {k}◦⊤⊤◦b)

⇐ seen ◦G ◦ seen ⊆ ord
∪

◦ less ◦ord ∧ (8.38) ∧ b⊆∼seen ∧ (8.40)

where (8.40) has yet to be derived.

Using distributivity properties, the left side of the topmost subset ordering expands

to

seen ◦G ◦ (seen∪b) ∪ b ◦G ◦ (seen∪b)

and, omitting two terms, the right side of this ordering expands to

ord
∪

◦ less ◦ord ∪ ord
∪

◦ less ◦ {k} ◦⊤⊤ ◦b .

Algorithmi Graph Theory April 8, 2022

150

(The two omitted terms are, in fat, equal to ⊥⊥ but this fat is not needed.) Taking

aount of domains (spei�ally, seen = ord∪

◦ord and b⊆∼seen), the invariant (8.39)

is thus maintained if

seen ◦G ◦ seen ⊆ ord
∪

◦ less ◦ord

∧ seen ◦G ◦b ⊆ ord
∪

◦ less ◦ {k} ◦⊤⊤ ◦b

∧ b ◦G ◦b = ⊥⊥

∧ b ◦G ◦ seen = ⊥⊥ .

The �rst onjunt is idential to the �rst onjunt on the right side of the impliation; so

it an be eliminated. The seond onjunt follows from (8.38) and properties of the less-

than ordering. The third onjunt is true beause G is assumed to be ayli and hene

has no self-loops. Finally, the fourth onjunt enables us to identify the as-yet-unde�ned

invariant (8.40): spei�ally,

∼seen ◦ G ◦ seen = ⊥⊥ .(8.40)

Of ourse, the introdution of a new invariant implies a new design obligation: property

(8.40) is learly established by the initialisation seen :=⊥⊥ but we must guarantee that

it is maintained by the loop body. Doing so gives us the ondition for hoosing node b :

maintaining the invariant demands that, for all b , G and seen ,

∼(seen∪b) ◦G ◦ (seen∪b) = ⊥⊥ ⇐ ∼seen ◦G ◦ seen = ⊥⊥ ∧ hoie of b .

An easy alulation gives the ondition for hoosing b as:

∼(seen∪b) ◦G ◦b = ⊥⊥ .

This ondition an be strengthened to:

∼seen ◦G ◦b = ⊥⊥ .

In words, there are no edges in the graph G from an unseen node to node b . This

ompletes the derivation of the algorithm:

{ acyclic.G }

seen ,ord , k := ⊥⊥ ,⊥⊥ , 0

; { Invariant: (8.38) ∧ (8.39) ∧ (8.40) }

while IA 6= seen do

begin

Algorithmi Graph Theory April 8, 2022

151

hoose arbitrary node b suh that b⊆∼seen ∧ ∼seen◦G◦b = ⊥⊥

; seen := seen∪b

; ord,k := ord ∪ {k}◦⊤⊤◦b , k+1

end

{ IA = seen = ord∪

◦ord ∧ ord ◦ord
∪ ⊆ IIN ∧ G ⊆ ord

∪

◦ less ◦ord }

There is one more |vital| proof obligation: we have to verify that the ondition for

hoosing b an be satis�ed. This is where the assumption that G is ayli, and hene

right-de�nite, is ruial: see lemma 8.45 below. (So far, we have only used the property

that G has no self-loops.) The formal veri�ation of all the informal laims made above

now follows.

The algorithm learly terminates sine the size of the set represented by seen in-

reases by one at eah iteration.

In order to verify that the algorithm meets its spei�ation, there are three tasks

remaining.

1. Establish that eah of (8.38), (8.40) and (8.39) is truthi�ed by the initialisation,

and that the truth of eah is invariant under exeution of the loop body.

2. Prove that it is possible to hoose a node b in aordane with the riterion for

its hoie.

3. Prove that the stated postondition is a logial onsequene of the invariant prop-

erty and the ondition for termination of the loop.

The �rst of these splits into three tasks, one for eah of the stated properties. These

tasks form lemmas 8.41, 8.42, and 8.43 below. The seond|the entral task both literally

and �guratively| is the topi of lemma 8.45, and the third is the topi of lemma 8.46.

Lemma 8.41 Property (8.38) is an invariant of the algorithm.

Proof Property (8.38) is learly true after the initial assignment seen,ord := ⊥⊥,⊥⊥ .

The veri�ation ondition

(8.38) [seen,ord,k := seen∪b , ord ∪ {k}◦⊤⊤◦b , k+1]

⇐ (8.38) ∧ b⊆∼seen ∧ b 6=⊥⊥

is a straightforward onsequene of the proper atomiity of {k} and b (viz. {k}◦⊤⊤◦{k}= {k} ,

⊤⊤◦{k}◦⊤⊤=⊤⊤ , and similarly for b). Spei�ally,

Algorithmi Graph Theory April 8, 2022

152

(ord ∪ {k}◦⊤⊤◦b)∪ ◦ (ord ∪ {k}◦⊤⊤◦b)

= { distributivity }

ord
∪

◦ord ∪ ord
∪

◦{k}◦⊤⊤◦b ∪ b◦⊤⊤◦{k}◦ord ∪ b◦⊤⊤◦{k}◦{k}◦⊤⊤◦b

= { ord∪
◦ {k}

= { assumption: (8.38) and domains }

ord ◦ {j |0≤ j<k} ◦ {k}

= { {j |0≤ j<k} ◦ {k} = ⊥⊥ }

⊥⊥ }

ord
∪

◦ord ∪ b◦⊤⊤◦{k}◦{k}◦⊤⊤◦b

= { assumption: (8.38);

by one rule: (4.16), and assumption: b 6=⊥⊥ ,

⊤⊤◦{k}◦{k}◦⊤⊤=⊤⊤ , b◦⊤⊤◦b=b }

seen∪b .

The veri�ation of the seond onjunt is very similar:

(ord ∪ {k}◦⊤⊤◦b) ◦ (ord ∪ {k}◦⊤⊤◦b)∪

= { distributivity, }

ord ◦ord
∪ ∪ ord◦b◦⊤⊤◦{k} ∪ {k}◦⊤⊤◦b◦ord

∪ ∪ {k}◦⊤⊤◦b◦b◦⊤⊤◦{k}

= { ord◦b

= { assumption: (8.38) and domains }

ord◦seen◦b

= { assumption: b⊆∼seen , i.e. b = ∼seen ◦b

seen ◦∼seen = ⊥⊥ }

⊥⊥ ,

so, also b◦ord
∪ = ⊥⊥ }

ord ◦ord
∪ ∪ {k}◦⊤⊤◦b◦b◦⊤⊤◦{k}

= { assumption: (8.38); b 6=⊥⊥ , one rule: (4.16) }

{j |0≤ j<k} ∪ {k}◦⊤⊤◦{k}

= { {k} is an atomi oreexive, so {k}◦⊤⊤◦{k}= {k} ,

properties of < relation on natural numbers }

Algorithmi Graph Theory April 8, 2022

153

{j | 0≤ j<k+1} .

✷

Lemma 8.42 Property (8.40) is an invariant of the algorithm.

Proof Property (8.40) is learly truthi�ed by the initial assignment seen :=⊥⊥ . For

the loop body, we verify that

(8.40) [seen := seen∪b] ⇐ (8.40) ∧ ∼seen◦G◦b = ⊥⊥

is a theorem for all oreexives b and seen and all relations G .

∼(seen∪b) ◦ G ◦ (seen∪b) = ⊥⊥

= { distributivity and ⊥⊥ is least element }

∼(seen∪b) ◦ G ◦ seen = ⊥⊥ ∧ ∼(seen∪b) ◦ G ◦ b = ⊥⊥

= { assumption (8.40): ∼seen ◦G ◦ seen = ⊥⊥

hoie of b : ∼seen ◦G ◦b = ⊥⊥

∼(seen∪b) ⊆ ∼seen and monotoniity }

true .

✷

Lemma 8.43 Property (8.39) is an invariant of the algorithm.

Proof Property (8.39) is learly true after the initial assignment seen,ord := ⊥⊥,⊥⊥ .

The veri�ation ondition

(8.39) [seen,ord := seen∪b , ord ∪ {k}◦⊤⊤◦b]

⇐ b⊆∼seen ∧ (8.40) ∧ acyclic.G ∧ (8.38) ∧ (8.39)

is shown to be true for all seen , ord , b , k and G in several steps. First,

(ord ∪ {k}◦⊤⊤◦b)∪ ◦ less ◦ (ord ∪ {k}◦⊤⊤◦b)

⊇ { distributivity and ignoring two of the four terms }

ord
∪

◦ less ◦ord ∪ ord
∪

◦ less ◦ {k} ◦⊤⊤ ◦b

⊇ { assumption: (8.39) }

seen◦G◦seen ∪ ord
∪

◦ less ◦ {k} ◦⊤⊤ ◦b .

Seond,

Algorithmi Graph Theory April 8, 2022

154

ord
∪

◦ less ◦ {k} ◦⊤⊤

= { assumption: (8.38), and domains }

ord
∪

◦ {j |0≤ j<k} ◦ less ◦ {k} ◦⊤⊤

= { property of less (spei�ally [0≤ j<k⇒ j<k])

all-or-nothing rule }

ord
∪

◦ {j |0≤ j<k} ◦⊤⊤ ◦ {k} ◦⊤⊤

= { {k} 6=⊥⊥ , one rule: (4.16) }

ord
∪

◦ {j |0≤ j<k} ◦⊤⊤

= { assumption: (8.38), and domains }

seen ◦⊤⊤

⊇ { ⊤⊤⊇G and monotoniity }

seen ◦G .

Putting the alulations together, we get that

(ord ∪ {k}◦⊤⊤◦b)∪ ◦ less ◦ (ord ∪ {k}◦⊤⊤◦b)

⊇ { �rst alulation (assuming (8.39)) }

seen ◦G ◦ seen ∪ ord
∪

◦ less ◦ {k} ◦⊤⊤ ◦b

⊇ { seond alulation (assuming (8.38)) }

seen ◦G ◦ seen ∪ seen ◦G ◦b

= { distributivity }

seen ◦G ◦ (seen∪b) .

That is, assuming (8.39) and (8.38),

(ord ∪ {k}◦⊤⊤◦b)
∪

◦ less ◦ (ord ∪ {k}◦⊤⊤◦b) ⊇ seen◦G◦(seen∪b) .(8.44)

Our goal has thus beome to omplify the right side of (8.44) to

(seen∪b) ◦G ◦ (seen∪b)

whih, by distributivity, equals

seen ◦G ◦ (seen∪b) ∪ b ◦G ◦ (seen∪b) .

In order to ahieve this goal, we must show that the rightmost term equals the empty

relation, ⊥⊥ . Lemma 8.14 (with the instantiation a,R :=b,G) and the preondition

that G is ayli establishes that b◦G◦b=⊥⊥ . That b◦G◦seen=⊥⊥ is a onsequene

of (8.40) and b⊆∼seen . Spei�ally,

Algorithmi Graph Theory April 8, 2022

155

b ◦G ◦ seen = ⊥⊥

⇐ { assumption: b⊆∼seen , ⊥⊥ is least element }

∼seen ◦G ◦ seen ⊆ ⊥⊥

= { assumption: (8.40) }

true .

In summary, we have:

(ord ∪ {k}◦⊤⊤◦b)∪ ◦ less ◦ (ord ∪ {k}◦⊤⊤◦b)

⊇ { (8.44) (assuming (8.39) and (8.38)) }

seen ◦G ◦ (seen∪b)

= { assumption: acyclic.G∧ (8.40). hene

b◦G◦b=⊥⊥ and b◦G◦seen=⊥⊥ (see above) }

seen ◦G ◦ (seen∪b) ∪ b ◦G ◦b ∪ b ◦G ◦ seen

= { distributivity }

(seen∪b) ◦G ◦ (seen∪b) .

We have thus veri�ed that (8.39) is an invariant of the loop body.

✷

We now establish that it is always possible to hoose a node b as spei�ed by the

algorithm. We exploit the preondition that the graph G is ayli, and hene de�nite.

Lemma 8.45 The set of nodes b suh that b⊆∼seen and ∼seen ◦G ◦b = ⊥⊥ is

non-empty.

Proof For brevity, let g denote ∼seen ◦G . Then the hoie riteria beome b⊆∼seen

and g◦b=⊥⊥ .

We show that the node b an always be hosen to be any element of minimal.g.∼seen

and the latter is non-empty. First, note that g is ayli sine G is ayli and g⊆G .

Applying theorem 8.21, it follows that g is de�nite and, in partiular, right-de�nite.

Thus

minimal.g.∼seen 6= ⊥⊥

⇐ { (8.30) with R,p := g ,∼seen ; g is right-de�nite }

∼seen 6= ⊥⊥

= { ondition for exeuting loop body: seen 6= IA , i.e. ∼seen 6= ⊥⊥ }

true .

Algorithmi Graph Theory April 8, 2022

156

Clearly, by de�nition (8.25), minimal.R.p⊆p , for all relations R and oreexives p . So,

we onlude that

⊥⊥ 6= minimal.g.∼seen ⊆ ∼seen .

This means that minimal.g.∼seen is (the oreexive representation of) a non-empty set

of nodes b suh that b ⊆ ∼seen . Also,

g ◦ minimal.g.∼seen

= { de�nition of minimal : (8.25) }

g ◦∼seen ◦ (∼seen ◦g)>•

= { g = ∼seen ◦g }

g ◦∼seen ◦g>•

⊆ { ∼seen⊆ I , monotoniity }

g ◦g>•

= { domains: (5.11) }

⊥⊥ .

That is, nodes b in (the set represented by) minimal.g.∼seen also satisfy the hoie

riterion g◦b=⊥⊥ . (Formally, this is an appliation of the saturation axiom.)

✷

Lemma 8.46 The postondition

IA = ord
∪

◦ord ∧ ord ◦ord
∪

⊆ IIN ∧ G+ ⊆ ord
∪

◦ less ◦ord

is implied by the onjuntion of (8.38) and (8.39) (the seond two onjunts of the loop

invariant) and IA= seen (the ondition for terminating the loop).

Proof It is obvious, from the de�nition of {j |0≤ j<k} and the transitivity of equality,

that the onjuntion of (8.38), (8.39) and IA= seen implies

IA = ord
∪

◦ord ∧ ord ◦ord
∪

⊆ IIN ∧ G ⊆ ord
∪

◦ less ◦ord .

That this implies the postondition follows from lemma 8.34.

✷

The onlusion of this setion is the following theorem.

Theorem 8.47 Suppose G is a �nite graph. Then that there is a topologial ordering

of G equivales G is ayli.

Algorithmi Graph Theory April 8, 2022

157

Proof The proof is by mutual impliation. The algorithm just disussed establishes

onstrutively that there is a topologial ordering of G if G is ayli. For the onverse,

suppose that ord is a topologial ordering of G . Then

IA∩G
+

⊆ { de�nition of topologial ordering: (8.33), and monotoniity }

ord
∪

◦ord ∩ ord∪

◦ less ◦ord

= { by de�nition (8.33), ord is a total funtion; distributivity }

ord
∪

◦ (IIN∩ less) ◦ord

= { IIN∩ less=⊥⊥ ; ⊥⊥ is zero of omposition }

⊥⊥ .

That is, G is ayli.

✷

Algorithmi Graph Theory April 8, 2022

158

Algorithmi Graph Theory April 8, 2022

Chapter 9

Components

This hapter is a preliminary to later disussion of the alulation of the so-alled

\strongly onneted omponents" of a graph. The fous is on the algebrai properties,

whilst later setions present an algorithm to alulate strongly onneted omponents.

The strongly onneted omponents of graph G are the equivalene lasses of the

relation G∗∩ (G∪)∗ . The algebrai properties that we present in this setion are valid

for arbitrary (homogeneous binary) relations and not just for �nite graphs. However, we

sometimes provide informal interpretations in terms of (paths in) graphs.

We begin by giving a de�nition of a \omponent" of a relation (de�nition 9.1) and

then explore its properties, �rst for relations in general, then for transitive relations

(setion 9.1), and �nally for transitive and symmetri relations (setion 9.2).

\Strongly onneted omponents" are de�ned in setion 9.3. Properties of strongly

onneted omponents are derived in setions 9.4, 9.5, 9.6 and 9.7. Setion 9.4 is about

onnetivity properties of nodes within and without the same strongly onneted om-

ponent. Setion 9.5 reords the well-known property that every node is an element of

exatly one strongly onneted omponent. Finally, setion 9.7 formalises the strutural

deomposition of a graph into a olletion of strongly onneted omponents and an

ayli graph that is \pathwise homomorphi" to the given graph. The non-trivial proof

of this property is enabled by a lemma on starth roots of a given graph formulated and

presented in setion 9.6.

Definition 9.1 Suppose p is a oreexive and R is a relation. We say that p is

onneted by R i� p◦⊤⊤◦p⊆R . We say that p is a omponent of R i� p is onneted

by R and 〈∀q : q◦⊤⊤◦q⊆R : p⊆q≡p=q〉 .

✷

Note that ⊥⊥ is, by de�nition, onneted by R . It is also a omponent of R in the

ase that the arrier of the lattie of oreexives is the empty set.

An obvious orollary of de�nition 9.1 is the following:

Algorithmi Graph Theory 159 April 8, 2022

160

Lemma 9.2

(a) Suppose q is a oreexive and S is a relation. Then, q is onneted by S if (q⊆p

and p is onneted by R and R⊆S).

(b) p is onneted by R∩S equivales p is onneted by both R and S .

(c) The following are all equivalent:

(i) p is onneted by R

(ii) p is onneted by R
∪

(iii) p is onneted by R∩R∪

(d) The following are all equivalent:

(i) p is a omponent of R

(ii) p is a omponent of R
∪

(iii) p is a omponent of R∩R∪

Proof (a) is obvious from the monotoniity of omposition.

(b) is immediate from the de�nition of in�ma, in partiular:

p◦⊤⊤◦p ⊆ R∩S ≡ p◦⊤⊤◦p⊆R ∧ p◦⊤⊤◦p⊆S .

() is obvious from the fat that p and p◦⊤⊤◦p are symmetri. More spei�ally:

p◦⊤⊤◦p ⊆ R

= { onverse }

(p◦⊤⊤◦p)∪ ⊆ R
∪

= { [(R◦S)∪ = S
∪

◦R
∪

] , p
∪ =p , ⊤⊤

∪

=⊤⊤ }

p◦⊤⊤◦p ⊆ R
∪

.

This establishes the equivalene of (i) and (ii). That (i) implies (iii) is then established

by (b) (with S instantiated to R
∪

) and the onverse (iii) implies (i) is established by

(a).

(d) Trivial onsequene of () and the de�nition of omponent.

✷

Informally, p is onneted by R means that, when restrited to p , R equals the

universal relation. Formally:

Algorithmi Graph Theory April 8, 2022

161

Lemma 9.3 For all oreexives p and relations R ,

p◦⊤⊤◦p⊆R ≡ p◦⊤⊤◦p=p◦R◦p .

Proof This is proved by mutual impliation as follows.

p◦⊤⊤◦p⊆R

⇒ { p◦p=p , monotoniity of omposition }

p◦⊤⊤◦p⊆p◦R◦p

= { R⊆⊤⊤ , monotoniity of omposition, anti-symmetry }

p◦⊤⊤◦p=p◦R◦p

⇒ { p⊆ I , monotoniity of omposition, transitivity of ⊆ }

p◦⊤⊤◦p⊆R .

✷

9.1 Transitive Relations

Lemma 9.4 Distint omponents of a transitive relation are disjoint. Formally, sup-

pose T is a transitive relation and p and q are both omponents of T . Then

p=q ∨ p∩q=⊥⊥ .

Proof For oreexives p and q , p◦q=p∩q=q◦p . This suggests applying the de�ni-

tion of a omponent in a way that introdues their produt:

p∩q=⊥⊥ ∨ p=q

= { idempoteny of ∪ }

p∩q=⊥⊥ ∨ p=p∪q=q

⇐ { p⊆p∪q , p is a omponent of T ,

q⊆p∪q , q is a omponent of T }

p∩q=⊥⊥ ∨ (p∪q)◦⊤⊤◦(p∪q) ⊆ T

= { distributivity; p and q are both onneted by T }

p∩q=⊥⊥ ∨ (p◦⊤⊤◦q ⊆ T ∧ q◦⊤⊤◦p ⊆ T)

= { distributivity, p◦q=p∩q=q◦p }

(p◦q=⊥⊥ ∨ p◦⊤⊤◦q ⊆ T) ∧ (q◦p=⊥⊥ ∨ q◦⊤⊤◦p ⊆ T)

Algorithmi Graph Theory April 8, 2022

162

⇐ { one rule: (4.16) with R :=p◦q and R :=q◦p :

i.e. p◦q=⊥⊥ ∨ ⊤⊤◦p◦q◦⊤⊤=⊤⊤ ,

and q◦p=⊥⊥ ∨ ⊤⊤◦q◦p◦⊤⊤=⊤⊤ }

p◦⊤⊤◦p◦q◦⊤⊤◦q ⊆ T ∧ q◦⊤⊤◦q◦p◦⊤⊤◦p ⊆ T

⇐ { T is transitive, transitivity of ⊆ }

p◦⊤⊤◦p◦q◦⊤⊤◦q ⊆ T ◦T ∧ q◦⊤⊤◦q◦p◦⊤⊤◦p ⊆ T ◦T

⇐ { p and q are onneted by T , omposition is monotoni }

true .

✷

Lemma 9.5 Suppose T is a transitive relation and p and q are both omponents of

T . Then

p◦T ◦q 6=⊥⊥ ∧ q◦T ◦p 6=⊥⊥ ⇒ p=q .

Proof

p◦T ◦q 6= ⊥⊥

⇒ { one rule: (4.16) }

⊤⊤◦p◦T ◦q◦⊤⊤ = ⊤⊤

⇒ { Leibniz }

p◦⊤⊤◦p◦T ◦q◦⊤⊤◦q = p◦⊤⊤◦q

= { p and q are both onneted by T ,

so, by lemma 9.3, p◦⊤⊤◦p=p◦T ◦p and q◦⊤⊤◦q=q◦T ◦q }

p◦T ◦p◦T ◦q◦T ◦q = p◦⊤⊤◦q

⇒ { p and q are oreexives, so I⊇p and I⊇q

monotoniity and I is unit of omposition }

p◦T ◦T ◦T ◦q ⊇ p◦⊤⊤◦q

⇒ { T is a transitive relation, transitivity of ⊇ }

p◦T ◦q ⊇ p◦⊤⊤◦q

= { T ⊆⊤⊤ , monotoniity of omposition and anti-symmetry of ⊆ }

p◦T ◦q = p◦⊤⊤◦q .

Algorithmi Graph Theory April 8, 2022

163

In summary,

p◦T ◦q 6=⊥⊥ ⇒ p◦T ◦q = p◦⊤⊤◦q .

Interhanging p and q , we get

q◦T ◦p 6=⊥⊥ ⇒ q◦T ◦p = q◦⊤⊤◦p .

So,

p◦T ◦q 6=⊥⊥ ∧ q◦T ◦p 6=⊥⊥

⇒ { above, and p and q are both onneted by T }

p◦T ◦q = p◦⊤⊤◦q ∧ q◦T ◦p = q◦⊤⊤◦p

∧ p◦T ◦p = p◦⊤⊤◦p ∧ q◦T ◦q = q◦⊤⊤◦q

⇒ { distributivity of omposition over ∪ , Leibniz }

(p∪q)◦T ◦(p∪q) = (p∪q)◦⊤⊤◦(p∪q)

⇒ { de�nition of onneted and lemma 9.3,

p⊆p∪q and q⊆p∪q , p and q are omponents of T ,

de�nition 9.1 }

p=p∪q=q .

✷

(The above proof parallels a pointwise proof. A pointwise proof would begin by

assuming that there are points u , v in p and x , y in q suh that u T x and y T v .

Then the argument would be made that u is onneted by T to all points in q and,

similarly x is onneted by T to all points in p . In the point-free proof, it is not

neessary to introdue four additional variables.)

Taking the ontrapositive of lemma 9.5, we get:

Corollary 9.6 Suppose T is a transitive relation and p and q are both omponents

of T . Then

p◦T ◦q=⊥⊥ ∨ q◦T ◦p=⊥⊥ ⇐ p 6=q .

✷

Corollary 9.6 is the basis of the onstrution of a direted ayli graph from the

strongly onneted omponents of a graph.

Algorithmi Graph Theory April 8, 2022

164

9.2 Transitive and Symmetric Relations

Undireted graphs orrespond to symmetri relations. The transitive losure of relation

R , denoted by R+
, has the property that

(R+)
∪

=(R
∪

)+ .

(The proof of this property is a nie illustration of the fusion theorem: R+
is a least

�xed point and onverse is Galois onneted to itself and ommutes with the funtion

mapping x to x◦x .) It follows that

(R+)
∪

=R+ ⇐ R
∪

=R .

Here we onsider properties of transitive and symmetri relations.

A remarkable (and perhaps surprising) property is that every undireted graph or

its (undireted) omplement is onneted. We don't know any pratial signi�ane of

this property but its proof is an interesting appliation of point-free reasoning. So, as

an aside to the main development, this is proved in theorem 9.8 below.

Lemma 9.7 For all symmetri and transitive relations S and T ,

S=⊤⊤ ∨ T =⊤⊤ ⇐ S∪T =⊤⊤ .

Proof Assume that S and T are symmetri and transitive, and S∪T =⊤⊤ . Then

S=S∪

, T =T∪

, S⊇S◦S , T ⊇T ◦T , S⊇¬T and T ⊇¬S . So,

S=⊤⊤ ∨ T =⊤⊤

= { omplements (preparing for one rule) }

S=⊤⊤ ∨ ¬T =⊥⊥

⇐ { one rule: (4.16) }

S=⊤⊤ ∨ ⊤⊤ ◦¬T ◦⊤⊤ 6= ⊤⊤

⇐ { boolean algebra and S=⊤⊤ ≡ S⊇⊤⊤ }

S ⊇ ⊤⊤ ◦¬T ◦⊤⊤

= { assumption: S∪T =⊤⊤ }

S ⊇ (S∪T) ◦¬T ◦ (S∪T)

= { distributivity }

S ⊇ S ◦¬T ◦S ∪ S ◦¬T ◦T ∪ T ◦¬T ◦S ∪ T ◦¬T ◦ T

⇐ { S is transitive, so S ⊇ S◦S and S ⊇ S◦S◦S ,

Algorithmi Graph Theory April 8, 2022

165

monotoniity of omposition }

S ⊇ ¬T ∪ ¬T ◦T ∪ T ◦¬T ∪ T ◦¬T ◦T

= { by assumption: S⊇¬T , suprema }

S ⊇ ¬T ◦T ∧ S ⊇ T ◦¬T ∧ S ⊇ T ◦¬T ◦ T

= { middle exhange rule, S=S∪

, T = T∪

}

T ⊇ ¬S ◦T ∧ T ⊇ T ◦¬S ∧ T ⊇ T ◦¬S ◦T

⇐ { T is transitive, so T ⊇ T ◦T and T ⊇ T ◦T ◦T ,

monotoniity of omposition }

T ⊇¬S

= { shunting rule (2.27) }

S∪T =⊤⊤ .

✷

Theorem 9.8 Suppose R is a symmetri relation. Then

R∗=⊤⊤ ∨ (¬R)∗=⊤⊤ .

Proof Suppose R is symmetri. If ⊤⊤=⊥⊥ then ⊤⊤=S=⊥⊥ for all relations S and

the theorem is trivial. So assume that ⊥⊥ 6= ⊤⊤ . Then

R∗=⊤⊤ ∨ (¬R)∗=⊤⊤

⇐ { (¬R)∪=¬(R∪) and (R∗)∪=(R∪)∗ ;

lemma 9.7 with S,T := R∗ , (¬R)∗ }

R∗∪ (¬R)∗ = ⊤⊤

⇐ { for all S , S=⊤⊤ ≡ S⊇⊤⊤

R∗⊇R , (¬R)∗⊇¬R , transitivity of ⊇ }

R∪¬R = ⊤⊤

= { omplements }

true .

✷

We now ontinue our investigation.

Lemma 9.9 Suppose T is a transitive and symmetri relation. Then (T ◦p)< is

onneted by T if p is onneted by T .

Algorithmi Graph Theory April 8, 2022

166

Proof We have

(T ◦p)< ◦⊤⊤ ◦ (T ◦p)<

= { theorem 5.7(a) and () }

T ◦p ◦⊤⊤ ◦p ◦T
∪

⊆ { assume p is onneted by T ;

de�nition 9.1 and monotoniity of omposition }

T ◦T ◦T
∪

⊆ { T is transitive and symmetri }

T .

The lemma follows by de�nition of is-onneted-by.

✷

Theorem 9.10 Suppose T is a transitive and symmetri relation. Then p=(T ◦p)<

if p is a omponent of T .

Proof Assume T is transitive and symmetri and p is a omponent of T .

p = (T ◦p)<

⇐ { assumptions, lemma 9.9, and de�nition 9.1 of omponent }

p ⊆ (T ◦p)<

= { oreexive-ondition isomorphism }

p◦⊤⊤ ⊆ T ◦p◦⊤⊤

⇐ { p is a omponent of T , so p is onneted by T

i.e. p◦⊤⊤◦p ⊆ T

monotoniity of omposition and transitivity of ⊆ }

p◦⊤⊤ ⊆ p◦⊤⊤◦p◦p◦⊤⊤

= { p is a oreexive, so p◦p=p , one rule: (4.16) }

p◦⊤⊤ ⊆ p◦⊤⊤◦p◦⊤⊤ ∧ (⊤⊤◦p◦⊤⊤=⊤⊤ ∨ p=⊥⊥)

= { distributivity of onjuntion over disjuntion

Leibniz and ⊥⊥ is zero of omposition and least element }

true .

✷

Algorithmi Graph Theory April 8, 2022

167

Corollary 9.11 The omponents of an equivalene relation T are atoms in the lattie

of �xed points of the funtion that maps oreexive q to (T ◦q)< . That is, if T is an

equivalene relation and p is a omponent of T ,

(q⊆p ≡ q=p ∨ q=⊥⊥) ⇐ q = (T ◦q)< .

Proof Apply lemma 2.65 with f instantiated to the funtion that maps oreexive q

to (T ◦q)< . This funtion is a omplementation-�xed losure operator by theorem 7.12.

✷

Theorem 9.12 Suppose p is a oreexive, T is a transitive and symmetri relation

and q is a omponent of T . Then

p◦T ◦q=⊥⊥ ⇐ p◦q=⊥⊥ .

In partiular, the property holds when p and q are both omponents of T .

Proof

p◦T ◦q

= { property of domains: [R = R< ◦R] with R :=T ◦q }

p ◦ (T ◦q)< ◦T ◦q

= { theorem 9.10 with p :=q }

p◦q◦T ◦q

= { assume p◦q=⊥⊥ , ⊥⊥ is zero of omposition }

⊥⊥ .

✷

9.3 Strongly Connected Components

The notion of a \strongly onneted omponent" of a �nite graph is prominent in algo-

rithmi graph theory. This setion is about fundamental properties of strongly onneted

omponents. Sine the properties do not depend on the �niteness of graphs, we present

them for arbitrary relations.

Definition 9.13 (Strongly Connected Component) Coreexive p is said to be a

strongly onneted omponent of relation R if p is a omponent of R∗
.

✷

Algorithmi Graph Theory April 8, 2022

168

Definition 9.14 The funtion equiv mapping arbitrary relations to equivalene rela-

tions is de�ned by, for all R ,

equiv.R = R∗∩ (R∗)
∪

.

It is a well-known fat that equiv.R is an equivalene relation (i.e. it is reexive, transitive

and symmetri). The straightforward (point-free) proof is omitted.

✷

Theorem 9.15 Suppose p is a strongly onneted omponent of R . Then p is a

omponent of equiv.R . Conversely, every omponent of equiv.R is a strongly onneted

omponent of R .

Proof Immediate from the de�nition of strongly-onneted and lemma 9.2(d).

✷

Theorem 9.16 Suppose p is a strongly onneted omponent of R . Then

p = (equiv.R ◦p)<

Moreover, p is an atom in the lattie of �xed points of the funtion that maps p to

(equiv.R ◦p)< .

Proof Immediate from the de�nition of strongly-onneted, lemma 9.2, theorem 9.10

and orollary 9.11.

✷

9.4 Absolute Connectivity

This setion is about paths in a graph onneting two nodes in one and the same strongly

onneted omponent of the graph. We show that all nodes on suh paths are elements

of the strongly onneted omponent.

As in setion 9.3, the �niteness of graphs is not used and the stated properties are

valid for arbitrary relations; nevertheless, we interpret the properties in terms of graphs.

Reall that ∼p denotes the negation of p in the lattie of oreexives. For a �nite

graph, lemma 9.18 states that there are no paths from omponent p to itself that pass

through nodes not in p . The lemma is a orollary of lemma 9.17.

Lemma 9.17 Suppose p is a strongly onneted omponent of relation R . Then

p = (p ◦R∗)> ∩ (R∗
◦p)< .

Algorithmi Graph Theory April 8, 2022

169

Proof Let us abbreviate (p ◦R∗)> ∩ (R∗
◦p)< to q . We have to prove that q=p . In

order to exploit the assumption that p is a a strongly onneted omponent of R , the

goal is to prove that q is onneted by R∗
.

q◦⊤⊤◦q

⊆ { q = (p ◦R∗)> ∩ (R∗
◦p)< , monotoniity }

(R∗
◦p)< ◦⊤⊤ ◦ (p ◦R∗)>

= { [R< ◦⊤⊤ = R◦⊤⊤] with R := R∗
◦p ,

[⊤⊤ ◦R> = ⊤⊤◦R] with R := p ◦R∗ }

R∗
◦p ◦⊤⊤ ◦p ◦R∗

= { p is strongly onneted by R ,

de�nitions 9.1 and 9.13, and lemma 9.3 }

R∗
◦p ◦R∗

◦p ◦R∗

⊆ { p⊆ I , monotoniity of omposition }

R∗
◦R∗

◦R∗

= { R∗ = R∗
◦R∗ }

R∗ .

That is, by de�nition 9.1, q is onneted by R∗
. Hene

p=q

⇐ { p is strongly onneted by R , de�nitions 9.13 and 9.1 }

q is onneted by R∗ ∧ p⊆q

= { above, de�nition of q }

p ⊆ (p ◦R∗)> ∩ (R∗
◦p)<

= { I⊆R∗
, monotoniity and properties of oreexives }

true .

✷

Lemma 9.18 Suppose R is a relation and p is a strongly onneted omponent of

R . Then

p ◦R∗
◦∼p ◦R∗

◦p = ⊥⊥ .

Proof We have:

Algorithmi Graph Theory April 8, 2022

170

p ◦R∗
◦∼p ◦R∗

◦p = ⊥⊥

= { domains }

p ◦R∗
◦ (p ◦R∗)> ◦∼p ◦ (R∗

◦p)< ◦R∗
◦p = ⊥⊥

⇐ { ⊥⊥ is zero of omposition }

(p ◦R∗)> ◦∼p ◦ (R∗
◦p)< = ⊥⊥

⇐ { [p◦q=p∩q] (for oreexives p and q), properities of intersetion }

(p ◦R∗)> ∩ (R∗
◦p)< ⊆ p

= { lemma 9.17 }

true .

✷

Like lemma 9.18, lemma 9.19 below is valid for all relations but, for �nite graphs, it

formulates a property of paths between nodes in the same strongly onneted omponent:

in this ase, in terms of the edges that form the paths. The �rst term, p◦⊤⊤◦p , is the

relation that holds between all nodes in the same omponent p. The seond and third

terms apture the existene of paths de�ned by edges from the omponent p . The

third term is more omplex than the seond term; it is inluded beause it expresses

more diretly that elements of strongly onneted omponent p are onneted by paths

formed of edges onneting elements of p. Spei�ally, the term p◦R represents the edges

in R from a node in p , and the term p◦R◦p represents the edges of R that onnet

nodes in p. So (p ◦R)∗ ◦p is interpreted as the relation between two nodes of whih

the seond is in p that are onneted by edges that are from nodes in p ; similarly,

p ◦ (p◦R◦p)∗ represents the relation between two nodes of whih the �rst is in p and

that are onneted by edges that onnet nodes in p . The outer ourrenes of \p " are

neessary beause (for all R) R∗
inludes the identity relation.

Lemma 9.19 Suppose R is a relation and p is a strongly onneted omponent of

R . Then

p◦⊤⊤◦p = (p ◦R)∗ ◦p = p ◦ (p◦R◦p)∗ ◦p .

Proof The equality between the seond and third terms is straightforward:

p ◦ (p ◦R ◦p)∗

= { mirror rule: [R ◦ (S◦R)∗ = (R◦S)∗ ◦R] with R,S := p , p◦R }

(p ◦p ◦R)∗ ◦p

= { p is a oreexive, so p◦p=p }

(p ◦R)∗ ◦p .

Algorithmi Graph Theory April 8, 2022

171

It is somewhat more diÆult to establish the equality between the �rst and seond terms,

whih we now do.

The relation R∗
represents paths to and from all nodes and not just nodes in p .

In order to separate out paths that are not to or not from nodes in p we begin by

omplifying R∗
:

R∗

= { p∪∼p = I }

((p∪∼p) ◦R ◦ (p∪∼p))∗

= { distributivity of omposition over union,

idempoteny of set union and p∪∼p = I }

(p ◦R ◦p ∪ R ◦∼p ∪ ∼p ◦R)∗

= { star deomposition }

(p ◦R ◦p)∗ ◦ ((R ◦∼p ∪ ∼p ◦R) ◦ (p ◦R ◦p)∗)∗ .

We have indeed onstruted a ompliated expression for R∗
. It is the omposition of

two terms; our goal is to show that the seond term an be eliminated when we onsider

p ◦R∗
◦p . So that the expressions don't beome too long, let us write the seond term in

the omposition as S∗ . That is,

S = (R ◦∼p ∪ ∼p ◦R) ◦ (p ◦R ◦p)∗ ∧ R∗ = (p ◦R ◦p)∗ ◦S∗ .(9.20)

We show that

p ◦S∗ ◦p = p .(9.21)

We have:

p ◦S∗ ◦p

= { S∗ = I ∪ S ◦S∗ ,

distributivity of omposition over union, et. }

p ∪ p ◦S ◦S∗ ◦p

= { 1st onjunt of (9.20), distributivity and p ◦∼p = ⊥⊥ }

p ∪ p ◦R ◦∼p ◦ (p ◦R ◦p)∗ ◦S∗ ◦p

= { 2nd onjunt of (9.20) }

p ∪ p ◦R ◦∼p ◦R∗
◦p

= { R⊆R∗
, lemma 9.18 }

p .

Algorithmi Graph Theory April 8, 2022

172

We an now omplete the alulation.

p◦⊤⊤◦p

= { p is a strongly onneted omponent of R ,

de�nition 9.13 and lemma 9.3 }

p ◦R∗
◦p

= { (9.20) }

p ◦ (p ◦R ◦p)∗ ◦S∗ ◦p

= { mirror rule: [R ◦ (S◦R)∗ = (R◦S)∗ ◦R] with R,S := p , p◦R , p◦p=p }

(p ◦R)∗ ◦p ◦S∗ ◦p

= { (9.21) }

(p ◦R)∗ ◦p .

✷

9.5 Saturation

Note that atomiity has not been used anywhere above. Saturated atomiity is neessary

to show that all nodes in a graph are elements of a strongly onneted omponent of the

graph. The alulations are straightforward:

Lemma 9.22 For all points a and relations R , (equiv.R ◦a)< is a strongly onneted

omponent of R . (Reall de�nition 5.13 of a point.)

Proof We exploit theorem 9.15. Aordingly, we have to show that (equiv.R ◦a)< is a

omponent of equiv.R . That is, (equiv.R ◦a)< is onneted by equiv.R and it is maximal

among suh oreexives.

First, we show that (equiv.R ◦a)< is onneted by equiv.R . For all points a and all

relations R , we have:

(equiv.R ◦a)< ◦⊤⊤ ◦ (equiv.R ◦a)<

= { domains (spei�ally theorem 5.7(a)) }

equiv.R ◦a ◦⊤⊤ ◦ (equiv.R ◦a)∪

= { onverse }

equiv.R ◦a ◦⊤⊤ ◦a ◦ equiv.R

= { a◦⊤⊤◦a=a : de�nition 5.13() }

Algorithmi Graph Theory April 8, 2022

173

equiv.R ◦a ◦ equiv.R

⊆ { a⊆ I , monotoniity }

equiv.R ◦ equiv.R

⊆ { equiv.R is transitive }

equiv.R .

Now we must show that, if a is a point,

〈∀q : q◦⊤⊤◦q ⊆ equiv.R : (equiv.R ◦a)< ⊆ q ≡ (equiv.R ◦a)< = q〉 .

Suppose q is a oreexive suh that q◦⊤⊤◦q ⊆ equiv.R . Then, by lemma 9.3,

q◦⊤⊤◦q = q ◦ equiv.R ◦q .

So,

(equiv.R ◦a)< ⊇ q

= { oreexive-ondition isomorphism }

equiv.R ◦a ◦⊤⊤ ⊇ q ◦⊤⊤

⇐ { q◦⊤⊤◦q ⊆ equiv.R }

q ◦⊤⊤ ◦q ◦a ◦⊤⊤ ⊇ q ◦⊤⊤

⇐ { monotoniity }

⊤⊤ ◦q ◦a ◦⊤⊤ ⊇ ⊤⊤

= { assume (equiv.R ◦a)< ⊆ q

then, sine I⊆ equiv.R , (I◦a)< ⊆ q

i.e. a ⊆ q and q ◦a=a }

⊤⊤ ◦a ◦⊤⊤ ⊇ ⊤⊤

= { a is a point, one rule (4.16) }

true .

We have thus shown that, if a is a point,

〈∀q : q◦⊤⊤◦q ⊆ equiv.R : (equiv.R ◦a)< ⊇ q ⇐ (equiv.R ◦a)< ⊆ q〉 .

The required equivalene is a straightforward onsequene of the anti-symmetry and

reexivity of the subset relation.

✷

The onverse of lemma 9.22 is the following:

Algorithmi Graph Theory April 8, 2022

174

Lemma 9.23 If p is a strongly onneted omponent of R , and a is a point suh

that a⊆p , then p=(equiv.R ◦a)< .

Proof Assume p is a strongly onneted omponent of R , and a is a point suh that

a⊆p . Then,

true

= { theorem 9.16 }

p = (equiv.R ◦p)<

⇒ { a⊆p , monotoniity of omposition and domains }

p ⊇ (equiv.R ◦a)<

⇒ { lemma 9.22, theorem 9.15 and de�nition 9.1 }

p = (equiv.R ◦a)< .

✷

Summarising, we have:

Theorem 9.24 Suppose R is a homogeneous relation. Then the strongly onneted

omponents of R are given by 〈∪a :point.a : {(equiv.R ◦a)<}〉 . The strongly onneted

omponents partition the set of all points

1

. That is, distint strongly onneted om-

ponents are disjoint and eah point is an element of a strongly onneted omponent

(spei�ally, a is an element of (equiv.R ◦a)<).

Proof Lemmas 9.22, 9.23, 9.4 and 7.13 (with R := equiv.R).

✷

9.6 Starth Roots of the Equivalence Relation

We have de�ned equiv.R as R∗∩ (R∗)∪ . (See de�nition 9.14.) It is useful to express

it as E∗ where (for graph R) E represents the edges in R that onnet nodes in the

same strongly onneted omponent (i.e. nodes that are \E"quivalent under the relation

equiv.R). This is the ontent of theorem 9.26.

One appliation of theorem 9.26 is theorem 9.28, whih states |with a minor quali�-

ation| that a graph G being ayli is equivalent to the relation equiv.G being the

identity relation. Appliation of theorem 9.26 is also an important step in the proof of

theorem 9.30 below, whih deomposes paths in a graph into paths in an ayli graph

onneting strongly onneted omponents of the graph. First, a lemma:

1

When applied to graphs, \points" are \nodes".

Algorithmi Graph Theory April 8, 2022

175

Lemma 9.25 For all relations R , U , V and W ,

R∗ ∩ U◦V◦W = R∗ ∩ U ◦ (R∗∩V) ◦W ⇐ U∪W⊆ (R
∪

)∗ .

(Note that omposition has preedene over intersetion. The spaing of our formulae is

designed to make this lear.)

Proof We alulate the ondition on U and W as follows.

R∗ ∩ U◦V◦W = R∗ ∩ U ◦ (R∗∩V) ◦W

= { V ⊇ R∗∩V , monotoniity and anti-symmetry }

R∗ ∩ U◦V◦W ⊆ R∗ ∩ U ◦ (R∗∩V) ◦W

= { properties of ∩ }

R∗ ∩ U◦V◦W ⊆ U ◦ (R∗∩V) ◦W

⇐ { modularity rule (4.8) with R,S,T := U,V◦W ,R∗
,

and symmetri rule with R,S,T := W , V , U
∪

◦R∗ }

U ◦ (U∪

◦R∗
◦W

∪ ∩ V) ◦W ⊆ U ◦ (R∗∩V) ◦W

⇐ { monotoniity }

U
∪

◦R∗
◦W

∪ ∩ V ⊆ R∗∩V

⇐ { R∗
◦R∗

◦R∗ = R∗
, monotoniity }

U
∪⊆R∗ ∧ W

∪⊆R∗

= { (4.1) and (R∪)∗ = (R∗)∪ }

U⊆ (R∪)∗ ∧ W⊆ (R∪)∗ .

(The anteedent in the statement of the lemma is, of ourse, equivalent to the last line

of the alulation.)

✷

Now, the theorem:

Theorem 9.26 For all relations R ,

equiv.R = (R
∪

∩R∗)∗ = (R∩ (R
∪

)∗)∗ .

Proof We begin by proving, by indution on k , that, for all U and W ,

R∗ ∩ U◦(R
∪

)k◦W = R∗ ∩ U◦(R
∪

∩R∗)k◦W ⇐ U∪W⊆ (R
∪

)∗ .(9.27)

The basis, k= 0 is trivial sine X0= I , for all X . For the indution step, assume U and

W are suh that U∪W⊆ (R∪)∗ . Then,

Algorithmi Graph Theory April 8, 2022

176

R∗ ∩ U ◦ (R∪∩R∗)k+1 ◦W

= { de�nition of (R∪ ∩R∗)k+1 }

R∗ ∩ U ◦ (R∪∩R∗)k ◦ (R∪∩R∗) ◦W

= { by assumption, U⊆ (R∪)∗ ; so U◦(R∪∩R∗)k⊆ (R∪)∗ ,

also, by assumption, W⊆ (R∪)∗

lemma 9.25 with U,V,W := U◦(R∪∩R∗)k , R∪

,W }

R∗ ∩ U ◦ (R∪∩R∗)k ◦R
∪

◦W

= { by assumption, W⊆ (R∪)∗ ; so R∪

◦W ⊆ (R∪)∗

also, by assumption, U⊆ (R∪)∗

indution hypothesis (9.27) with W := R
∪

◦W }

R∗ ∩ U ◦ (R∪)k ◦ R
∪

◦W

= { de�nition of (R∪)k+1 }

R∗ ∩ U ◦ (R∪)k+1 ◦W .

By indution, we have established (9.27) for all natural numbers k . Hene,

equiv.R

= { de�nition 9.14 }

R∗∩ (R∗)∪

= { (R∗)∪ =(R∪)∗ , de�nition of star as a sum of powers }

R∗ ∩
〈

∪k : 0≤k : (R∪)k
〉

= { distributivity }
〈

∪k : 0≤k : R∗ ∩ (R∪)k
〉

= { (9.27) with U,W := I,I }
〈

∪k : 0≤k : R∗ ∩ (R∪∩R∗)k
〉

= { distributivity }

R∗ ∩
〈

∪k : 0≤k : (R∪∩R∗)k
〉

= { de�nition of star as a sum of powers, R∗ ⊇ (R∪∩R∗)∗ }

(R∪∩R∗)∗ .

The �nal equality in the statement of the lemma follows by symmetry (formally, by

replaing R by R
∪

in the �rst equality and using the properties of onverse).

Algorithmi Graph Theory April 8, 2022

177

✷

Given that theorem 9.26 expresses a property that some might regard as obvious,

the proof is surprisingly ompliated: the indution hypothesis is non-trivial. It is also

unfortunate that the proof uses the de�nition of the star operator as a sum of powers

(and not as a least �xed point). A proof using �xed-point fusion would be preferable

|albeit by mutual inlusion| but, so far, has eluded us.

The following theorem exploits theorem 9.26.

Theorem 9.28 If R is ayli, equiv.R is the identity relation. That is,

I∩R+ = ⊥⊥ ⇒ equiv.R= I .

Conversely, if equiv.R is the identity relation, R∩¬I is ayli. That is,

equiv.R = I ⇒ I∩ (R∩¬I)+ = ⊥⊥ .

(In terms of graphs, R∩¬I is the graph R with \self-loops" removed.)

Proof Suppose I∩R+ = ⊥⊥ . Then

equiv.R

= { theorem 9.26 }

(R∪∩R∗)∗

⊆ { modularity rule: (4.8), monotoniity }

(R∪

◦ (I ∩ R ◦R∗))∗

= { R ◦R∗ = R+
, assumption: I∩R+ = ⊥⊥ }

(R∪

◦⊥⊥)∗

= { ⊥⊥ is zero of omposition, ⊥⊥∗= I }

I .

That is, equiv.R⊆ I . Sine, I⊆ equiv.R , it follows by anti-symmetry of set inlusion that

equiv.R= I .

For the onverse, we have:

I ∩ (R∩¬I)+

= { [R+ = R ◦R∗] with R := R∩¬I , R∗=(R∩¬I)∗ }

I ∩ (R∩¬I) ◦R∗

⊆ { modularity rule: (4.8), I is unit of omposition }

Algorithmi Graph Theory April 8, 2022

178

(R∩¬I) ◦ ((R∩¬I)∪ ∩ R∗)

⊆ { R∩¬I ⊆ ¬I , (R∩¬I)∪ ⊆R∪

, theorem 9.26,

[R⊆R∗] with R := R∪ ∩ R∗

monotoniity (of onverse, omposition and star) }

¬I ◦ equiv.R .

Thus

equiv.R ⊆ I

⇒ { above, monotoniity of omposition and transitivity of ⊆ }

I∩ (R∩¬I)+ ⊆ ¬I ◦ I

= { I is unit of omposition, omplements,

idempoteny of intersetion }

I∩ (R∩¬I)+ = ⊥⊥ .

✷

Note that, although theorem 9.28 is valid for all relations, its signi�ane is primarily

when applied to �nite graphs; the more signi�ant property of a non-�nite relation is

whether or not it is left- or right-de�nite (or both).

9.7 A Pathwise Homomorphism

A well-known property is that the strongly onneted omponents of a graph G de�ne

an ayli graph G ′
. The nodes of the graph G ′

are the strongly onneted omponents

of G , and the edges of G ′
are the edges of G that onnet nodes of G in distint

strongly onneted omponents. Moreover, there is a path in G from node u to node v

equivales there is a path in G ′
from the strongly onneted omponent ontaining u to

the strongly onneted omponent ontaining v . The primary purpose of this setion is

to formalise this theorem.

Beause the nodes of G and G ′
are di�erent, it is neessary to use a typed algebra of

heterogeneous relations rather than the untyped algebra of homogeneous relations. As

remarked earlier, the rules that we have been using remain valid provided some aution

is exerised when overloading notation.

Suppose N is a set (of \nodes") and G is a relation of type N∼N (the \edges" of

the \graph"). As we have seen the funtion

〈a : a∈N : Set . (equiv.G ◦ a)<〉

Algorithmi Graph Theory April 8, 2022

179

maps nodes to strongly onneted omponents. Let us denote this funtion by sc and

the set of strongly onneted omponents of G by C . Then sc has type C←N and, by

theorem 7.7,

equiv.G = sc
∪

◦ sc .(9.29)

The relation

sc ◦G ◦ sc
∪

∩ ¬IC

is a homogeneous relation on the strongly onneted omponents of G , i.e. a relation

of type C∼C . Informally, it is a graph obtained from the graph G by oalesing the

nodes in a strongly onneted omponent of G into a single node whilst retaining the

edges of G that onnet nodes in distint strongly onneted omponents. Theorem

9.30 establishes the formal relationship between its reexive-transitive losure and G∗
.

Theorem 9.30 Let A denote sc ◦G ◦ sc
∪ ∩ ¬IC . Then,

G∗ = sc
∪

◦A∗
◦ sc .(9.31)

Moreover, A is ayli. That is,

IC ∩ A+ = ⊥⊥ .(9.32)

It follows that A∗
is a partial ordering of the strongly onneted omponents of G .

Proof With theorem 9.26 in mind, we split G into two relations: D and E where D

is de�ned by

D = G ∩ ¬((G
∪

)∗)

and E is de�ned by

E = G ∩ (G
∪

)∗ .

The relation D aptures the edges of G that onnet \D"istint strongly onneted

omponents. To be preise:

sc ◦D ◦ sc
∪

⊆ ¬IC ,(9.33)

sine

sc ◦D ◦ sc
∪ ⊆ ¬IC

= { de�nition of D }

sc ◦ (G∩¬((G∪)∗)) ◦ sc∪ ⊆ ¬IC

Algorithmi Graph Theory April 8, 2022

180

= { middle-exhange (4.18),

IC is unit of omposition, and omplements }

sc
∪

◦ sc ⊆ ¬G∪ (G∪)∗

⇐ { (9.29) }

equiv.G ⊆ (G∪)∗

= { equiv.G = G∗∩ (G∗)∪ and (G∗)∪ =(G∪)∗ }

true .

Conversely, the relation E aptures the edges of G that are in \E"qual strongly on-

neted omponents:

sc ◦E ◦ sc
∪

⊆ IC ,(9.34)

sine

sc ◦E ◦ sc
∪

⊆ { E⊆E∗ and monotoniity }

sc ◦E∗ ◦ sc
∪

= { by (9.29) and theorem 7.7 with R :=G ,

E∗ = equiv.G = sc
∪

◦ sc }

sc ◦ sc
∪

◦ sc ◦ sc
∪

⊆ { sc is a funtion }

IC .

In order to prove (9.31) and (9.32) we need three additional properties of D . The �rst,

D
∪

∩G∗ = ⊥⊥ ,(9.35)

is obvious from the de�nition of D and properties of onverse and omplement:

D
∪∩G∗

= { de�nition of D }

(G∩¬((G∪)∗))∪∩G∗

= { distributivity properties of onverse and [(G∪)∪=G] }

G
∪ ∩¬(G∗)∩G∗

= { [R∩¬S∩S = ⊥⊥] with R,S := G∪

,G∗ }

⊥⊥ .

Algorithmi Graph Theory April 8, 2022

181

The seond,

G∗ = equiv.G ◦ (D ◦ equiv.G)∗ ,(9.36)

is proved as follows:

G∗

= { D∪E=G }

(D∪E)∗

= { star deomposition }

E∗ ◦ (D ◦E∗)∗

= { by theorem 9.26 with R :=G , E∗= equiv.G }

equiv.G ◦ (D ◦ equiv.G)∗ .

The third property,

A = sc ◦D ◦ sc
∪

,(9.37)

is a ombination of (9.33) and (9.34):

A

= { de�nition of A , D∪E=G }

sc ◦ (D∪E) ◦ sc∪ ∩ ¬IC

= { distributivity }

(sc ◦D ◦ sc
∪ ∩ ¬IC) ∪ (sc ◦E ◦ sc

∪ ∩ ¬IC)

= { (9.33) and (9.34) }

sc ◦D ◦ sc
∪

.

We now prove (9.31).

G∗

= { (9.36) }

equiv.G ◦ (D ◦ equiv.G)∗

= { (9.29) }

sc
∪

◦ sc ◦ (D ◦ sc
∪

◦ sc)∗

= { mirror rule }

Algorithmi Graph Theory April 8, 2022

182

sc
∪

◦ (sc ◦D ◦ sc
∪)∗ ◦ sc

= { (9.37) }

sc
∪

◦A∗
◦ sc .

It remains to prove that A is ayli. We have:

IC∩A+

= { A+ = A◦A∗
and (9.37) }

IC ∩ sc ◦D ◦ sc
∪

◦ (sc ◦D ◦ sc
∪)∗

= { mirror rule and (9.29) }

IC ∩ sc ◦ (D ◦ equiv.G)∗ ◦D ◦ sc
∪

⊆ { modularity rule: (4.8) (applied in both forms) }

sc ◦ (sc∪ ◦ sc ◦D
∪ ∩ (D ◦ equiv.G)∗) ◦D ◦ sc

∪

= { (9.29) }

sc ◦ (equiv.G ◦D
∪ ∩ (D ◦ equiv.G)∗) ◦D ◦ sc

∪

⊆ { modularity rule: (4.8), and equiv.G=(equiv.G)∪ }

sc ◦ equiv.G ◦ (D∪ ∩ equiv.G ◦ (D ◦ equiv.G)∗) ◦D ◦ sc
∪

= { (9.36) }

sc ◦ equiv.G ◦ (D∪∩G∗) ◦D ◦ sc
∪

= { (9.35) and ⊥⊥ is zero of omposition }

⊥⊥ .

Property (9.32) follows from the fat that ⊥⊥⊆R , for all R , and anti-symmetry of the

subset relation.

✷

Theorem 9.30 is valid for all relations G and not just for graphs. (Nowhere have we

used the assumption that the set of nodes is �nite.) Its primary importane, however,

is that solving path problems an be deomposed into solving the problems for eah

individual strongly onneted omponent and then ombining the results using a topo-

logial searh of an ayli graph. Perhaps surprisingly, it is also used when inverting

real matries in order to preserve sparsity. As shown in [BC75℄, the standard so-alled

elimination tehniques for inverting a matrix are algebraially idential to algorithms

for onstruting paths in a graph. (Essentially, A−1=(1−(1−A))−1=(1−A)∗ . The

elimination algorithms exploit the star-deomposition rule to deompose the omputa-

tion of A−1
into smaller omponents; the mirror rule is then used to evaluate A−1

for

Algorithmi Graph Theory April 8, 2022

183

row/olumn matries.) In this appliation, a topologial searh is often alled \forward

substitution". See also [BC82℄ for more detailed disussion of sparsity onsiderations.

(Of ourse, this does not mean that theorem 9.30 is valid for other interpretations

of the star operator. For example, if G is a matrix of languages, it is not valid. Many

steps in the alulation are valid in other interpretations but lemma 9.25 relies on the

modularity rule, whih is valid for relations but not for languages.)

Algorithmi Graph Theory April 8, 2022

184

Algorithmi Graph Theory April 8, 2022

Part IV

Graph Searching

Algorithmi Graph Theory 185 April 8, 2022

Chapter 10

Generic Algorithms

In hapters 11 and 13, we show how depth-�rst searh is used to ompute the strongly

onneted omponents of a �nite graph. There are two ways that depth-�rst searh an

be implemented. The �rst is an iterative algorithm that expliitly maintains a stak

representing inomplete searhes. The seond is a reursive algorithm.

In general, the implementation of a reursive algorithm involves maintaining a stak

representing inomplete omputations but the algorithm itself typially does not make

expliit use of the stak. One way to reason about reursive algorithms is to make the

stak expliit. In our analysis of depth-�rst searh we do not adopt that approah;

instead, we hoose to takle the reursion head on using �xed-point indution as the

primary tool. This poses signi�ant hallenges onerning how to present the alulations

in a way that truly supports understanding of the algorithms.

This hapter is a prelude to hapters 11 and 13 intended as a gentle introdution to

the more omplex alulations of those hapters. In setion 10.1, we present a generi

graph-searhing algorithm of whih depth-�rst searh is an instane. The algorithm

determines the set of nodes that an be reahed in a graph from a given set of nodes.

Reasoning about the algorithm is a ombination of �xed-point indution and a lemma,

lemma 10.1, that helps to haraterise when a searh is omplete. As mentioned earlier,

depth-�rst searh is an instane of the generi algorithm; in this way, setion 10.1 is an

introdution to hapter 11.

Then, in setion 10.2, we onsider repeated graph searhes: that is, starting from an

empty set of nodes, repeatedly initiating a new searh from a node that has not already

been \seen". Just as in setion 10.1, we onsider a generi algorithm whereby new

searhes are initiated using a hoie funtion. The hoie is reorded in the algorithm

by the onstrution of a funtion that we all the \delegate" funtion: the \delegate" of

a node a is the node b from whih the searh that \sees" a was initiated.

Apart from being total and funtional, no other requirements are plaed on the hoie

of initiating nodes. We see, however, in hapter 13 how depth-�rst searh is used to

Algorithmi Graph Theory 187 April 8, 2022

188

onstrut a hoie funtion with the property that the \delegate" of a node a is a

representative of the strongly onneted omponent of whih a is a member. In this

way, setion 10.2 is a neessary preliminary to setion 13.

10.1 A Generic Graph-Searching Algorithm

In setion 6.9, we presented a simple iterative algorithm for omputing the least �xed

point of a monotoni endofuntion on a �nite, partially ordered set with a given least

element. This small theory is immediately appliable to graph-searhing.

Given a set of nodes s and a graph G the nodes reahable from a node in s are

given by (s ◦G∗)> . Sine this is a least �xed point of the funtion 〈x :: s∪ (x◦G)>〉 , the

reahable nodes an be omputed as follows:

seen := ⊥⊥

; while seen 6= s∪ (seen◦G)> do

seen := s∪ (seen◦G)>

The name \ seen " onveys an operational interpretation of the algorithm: initially no

nodes have been \seen"; subsequently nodes that are reahable by a single edge from

nodes that have already been \seen" are also \seen" .

Remark As always, the use of ommon English words to name variables an be mislead-

ing. Elsewhere (for example, [AHU82, pp.222{226℄) the word \visited" is used instead of

our \seen". We have hosen to use \seen" primarily beause it is shorter. However, an-

other reason is that \visited" suggests an ation that has been ompleted. In the seond

phase of the strongly-onneted-omponents algorithm, it is important to distinguish

between when a searh from a given node has \started" and when it has \�nished". Our

use of the word \seen" rather than \visited" is intended to suggest that the searh has

started but may not have �nished. Nevertheless, it may be interpreted di�erently by

di�erent readers. Formal statements larify the preise funtions of the variables. End

of Remark

The invariant property is that seen⊆ (s ◦G∗)> and the loop is guaranteed to termi-

nate whenever G is a �nite graph. On termination, seen=(s ◦G∗)> . That is, seen is

(a oreexive representing) the set of nodes reahable from s .

This simple algorithm has the drawbak that it is not very eÆient: it involves

the omputation of (x◦G)> for an inreasingly large set of nodes x and muh of this

omputation just repeats what has already been omputed. In order to eliminate this

reomputation, we need a property that separates the new from the old. Suh a property

is the following:

Algorithmi Graph Theory April 8, 2022

189

Lemma 10.1 Let p be a oreexive and R a homogeneous relation. Then

(p ◦R∗)> = p ∪ (p ◦R ◦∼p ◦R∗)>

(We use variables p and R to emphasise that no assumption of �niteness is made.)

Proof

(p ◦R∗)> = p ∪ (p ◦R ◦∼p ◦R∗)>

= { de�nition of R∗
, distributivity, p>=p }

p ∪ (p ◦R ◦R∗)> = p ∪ (p ◦R ◦∼p ◦R∗)>

= { ∼p⊆ I , monotoniity and reversing �rst step }

(p ◦R∗)> ⊆ p ∪ (p ◦R ◦∼p ◦R∗)>

⇐ { �xed-point indution }

p ∪ ((p ∪ p ◦R ◦∼p ◦R∗) ◦R)> ⊆ p ∪ (p ◦R ◦∼p ◦R∗)>

⇐ { distributivity and monotoniity }

(p◦R)> ⊆ p ∪ (p ◦R ◦∼p ◦R∗)>

∧ (p ◦R ◦∼p ◦R∗
◦R)> ⊆ (p ◦R ◦∼p ◦R∗)>

= { R∗
◦R ⊆ R∗

and monotoniity }

(p◦R)> ⊆ p ∪ (p ◦R ◦∼p ◦R∗)>

⇐ { ase analysis: p∪∼p = I }

(p◦R)> ◦p ⊆ p

∧ (p◦R)> ◦∼p ⊆ (p ◦R ◦∼p ◦R∗)>

= { (p◦R)>⊆ I and monotoniity,

I⊆R∗
and domains (theorems 5.9 and 5.8) }

true .
✷

Lemma 10.1 suggests an alternative iterative algorithm for omputing reahable

nodes. Applying it to �nite graph G and set of nodes seen , we have:

(seen ◦G∗)> = seen ∪ (seen ◦G ◦∼seen ◦G∗)> .

The subexpression seen ◦G ◦∼seen represents a set of \unexplored" edges of G in the

sense that they are edges from a node that has been \seen" to a node that has not been

\seen". The nodes reahable from s an thus be omputed by initialising seen to s

and then subsequently hoosing an edge (a, b) in the set of \unexplored" edges; the

node b has not previously been \seen" and so an be added to seen .

Algorithmi Graph Theory April 8, 2022

190

{ G is a �nite graph and s is a oreexive representing a subset of the nodes }

seen := s

; { Invariant: (s ◦G∗)> = (seen ◦G∗)> }

while seen ◦G ◦∼seen 6= ⊥⊥ do

begin

hoose nodes a and b suh that a◦⊤⊤◦b ⊆ seen ◦G ◦∼seen

{ b⊆∼seen }

; seen := seen∪b

end

{ (s ◦G∗)> = seen }

Obviously, the invariant is truthi�ed by the initialisation. Termination is guaranteed

by the fat that b⊆∼seen is a preondition of the assignment seen := seen∪b in

the loop body. (Thus the assignment inreases the number of nodes in seen by 1 and

so the number of times the loop body is exeuted is at most the number of nodes in the

graph.) We prove this fat as follows:

true

= { hoie of a and b }

a◦⊤⊤◦b ⊆ seen ◦G ◦∼seen

⇒ { monotoniity }

(a◦⊤⊤◦b)> ⊆ (seen ◦G ◦∼seen)>

⇒ { a and b are atoms, so (a◦⊤⊤◦b)>=b

(seen ◦G ◦∼seen)> ⊆ ∼seen }

b ⊆ ∼seen .

Exeution of the loop body demands that there exist nodes a and b satisfying the

ondition

a◦⊤⊤◦b ⊆ seen ◦G ◦∼seen .

This is an immediate onsequene of the ondition for exeuting the loop body. (For-

mally, we exploit the fat that the lattie of relations is saturated.) It remains to show

that the invariant is maintained by the body of the loop, and the laimed postondition

is implied by the onjuntion of the invariant and the ondition for terminating the loop.

We verify the invariant in the following lemma.

Algorithmi Graph Theory April 8, 2022

191

Lemma 10.2 For all s , G , a and b ,

(((s ◦G∗)> = (seen ◦G∗)>)[seen := seen∪b] ≡ (s ◦G∗)> = (seen ◦G∗)>)

⇐ a◦⊤⊤◦b ⊆ seen ◦G ◦∼seen .

Proof We assume that nodes a and b satisfy a◦⊤⊤◦b ⊆ seen ◦G ◦∼seen .

((seen ◦G∗)>)[seen := seen∪b]

= { de�nition of substitution and distributivity }

(seen ◦G∗)> ∪ (b ◦G∗)>

= { (seen ◦G∗)>

⊇ { lemma 10.1 with p,R := seen,G }

(seen ◦G ◦∼seen ◦G∗)>

⊇ { hoie of a and b : a◦⊤⊤◦b ⊆ seen ◦G ◦∼seen }

(a ◦⊤⊤ ◦b ◦G∗)>

= { domains (spei�ally (R◦S)>=(R> ◦S)>)

(a◦⊤⊤◦b)>=b }

(b ◦G∗)> }

(seen ◦G∗)> .

The lemma follows by the de�nition of substitution.

✷

That the postondition (s ◦G∗)> = seen is valid is an immediate onsequene of

lemma 10.1:

(s ◦G∗)> = (seen ◦G∗)> ∧ seen ◦G ◦∼seen = ⊥⊥

= { lemma 10.1 with p,R := seen,G }

(s ◦G∗)> = seen ∪ (seen ◦G ◦∼seen ◦G∗)> ∧ seen ◦G ◦∼seen = ⊥⊥

⇒ { Leibniz, ⊥⊥ is zero of omposition, ⊥⊥>=⊥⊥ }

(s ◦G∗)> = seen .

A onrete implementation of the above graph-searhing algorithm involves hoos-

ing a suitable data struture in whih to store the unexplored edges represented by

seen ◦G ◦∼seen . Breadth-�rst searh stores the edges in a queue (so newly added edges

are hosen in the order that they are added), whilst depth-�rst searh stores the edges

in a stak (so the most reently added edge is hosen �rst). Other variations enable the

Algorithmi Graph Theory April 8, 2022

192

solution of more spei� path-�nding problems. For example, if edges are labelled by

distanes, shortest paths from a given soure an be found by storing edges in a prior-

ity queue. Topologial searh (setion 8.4) is also an instane: edges from eah node

are grouped together and an edge from a given node is hosen when the node has no

unexplored inoming edges. We do not go into details any further.

10.2 Repeated Search and Delegates

In this setion, we explore a property of repeated appliation of graph-searhing starting

with an empty set of \seen" nodes until all nodes have been seen.

The algorithmwe onsider is introdued in setion 10.2.2 and further re�ned in setion

10.2.3. Roughly speaking, the algorithm repeatedly searhes a given graph starting from

a node hosen from among the nodes not yet seen so as to maximise a \hoie funtion";

at eah iteration, the graph searhed is the given graph but restrited to edges onneting

nodes not yet seen. The algorithm reords the hosen nodes in a funtion that we all a

\delegate funtion", the \delegate" of a node a being the node from whih the searh

that \sees" a is initiated. The formal spei�ation of the delegate funtion is given in

setion 10.2.1.

Our formulation of the notion of a \delegate" is inspired by Cormen, Leiserson and

Rivest's [CLR90, p.490℄ disussion of a \forefather" funtion as used in depth-�rst searh

to ompute strongly onneted omponents of a graph. However, our presentation is

muh more general than theirs. In partiular, Cormen, Leiserson and Rivest assume

that the hoie funtion is injetive. We establish some onsequenes of this assumption

in setion 10.2.4; this is followed in setion 10.2.5 by a omparative disussion of our

aount and that of Cormen, Leiserson and Rivest.

10.2.1 Delegate Function

Suppose f is a total funtion of type IN←Node and suppose G is a graph. We all f

the hoie funtion.

A delegate funtion on G aording to f is a relation ϕ of type Node∼Node with

the properties that

ϕ ◦ϕ
∪

⊆ INode ⊆ ϕ
∪

◦ϕ , and(10.3)

ϕ ⊆ (G∗)
∪

∧ G∗ ⊆ (f◦ϕ)
∪

◦ ≥ ◦ f .(10.4)

The property (10.3) states that ϕ is a total funtion. Property (10.4), expressed point-

wise and in words, states that for all nodes a and b , node a is the delegate of node

b equivales the onjuntion of (i) there is a path in G from b to a and (ii) among

Algorithmi Graph Theory April 8, 2022

193

all nodes c suh that there is a path from b to c , node a maximises the value of the

hoie funtion f .

Delegate funtions have a ouple of additional properties that we exploit later. These

are formulated and proved in the lemma below.

Lemma 10.5 If ϕ is a delegate funtion on G aording to f ,

I ⊆ G∗
◦ϕ ∧ G∗ ⊆ (f◦ϕ)

∪

◦ ≥ ◦ f ◦ϕ .

In words, there is a path in G from eah node to its delegate, and if there is a path in

G from node b to node c , the value of f at the delegate of b is at least the value of f

at the delegate of c .

Proof First,

I ⊆ G∗
◦ϕ

⇐ { ϕ is total, i.e. I ⊆ ϕ
∪

◦ϕ }

ϕ
∪ ⊆ G∗

= { onverse }

ϕ ⊆ (G∗)∪

= { (G∗)∪=(G∪)∗ and de�nition of delegate: (10.4) }

true .

Seond,

G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f ◦ϕ

⇐ { I ⊆ G∗
◦ϕ (see above) }

G∗
◦G∗

◦ϕ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f ◦ϕ

⇐ { G∗
◦G∗ = G∗

, monotoniity }

G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f

= { de�nition of delegate: (10.4) }

true .

✷

Lemma 10.6 If ϕ is a delegate funtion on G aording to f ,

ϕ ⊆ f
∪

◦ ≥ ◦ f .

In words, the delegate of a node has f -value that is at least that of the node.

Algorithmi Graph Theory April 8, 2022

194

Proof

true

= { de�nition: (10.3) and (10.4) }

ϕ ◦ϕ
∪ ⊆ I ∧ G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f

⇒ { I⊆G∗
and transitivity; onverse }

ϕ ◦ϕ
∪ ⊆ I ∧ I ⊆ ϕ

∪

◦ f
∪

◦ ≥ ◦ f

⇒ { ϕ◦I=ϕ , monotoniity of omposition and transitivity }

ϕ ⊆ f∪ ◦ ≥ ◦ f .

✷

10.2.2 Assigning Delegates

The basi struture of the algorithm for omputing a delegate funtion is shown in �g.

10.1. It is a simple loop that initialises the oreexive seen (representing a set of nodes)

to ⊥⊥ and then repeatedly hooses a node a that has the largest f -value among the

nodes that do not have a delegate and adds to seen the oreexive ∼seen ◦ (G∗
◦a)< ;

this oreexive represents the nodes that do not have a delegate and from whih there

is a path to a in the graph. Simultaneous with the assignments to seen , the variable

ϕ is initialised to ⊥⊥ and subsequently updated by assigning the value of ϕ to a at

all newly \delegated" nodes.

For brevity in the alulations below, the temporary variable s (short for \seen")

has been introdued. The sequene of assignments

s := ∼seen ◦ (G∗
◦a)<

; ϕ,seen := ϕ ∪ a◦⊤⊤◦s , seen∪ s

is implemented by an adaptation of the graph-searhing algorithm disussed in setion

10.1. The details of how this is done are given in setion 10.2.3.

Apart from being a total funtion, we impose no restritions on f . If f is a onstant

funtion (for example, if f.a=0 for all nodes a), the \hoie" is ompletely arbitrary.

The property

ϕ ⊆ (G
∪

∩ ϕ
∪

◦ϕ)∗

in the postondition is stronger than the requirement ϕ ⊆ (G∗)∪ in (10.4). It states that

there is a path from eah node to its delegate omprising nodes that all have the same

delegate. (More preisely, it states that there is a path from eah node to its delegate

Algorithmi Graph Theory April 8, 2022

195

{ f ◦ f
∪ ⊆ IIN ∧ INode ⊆ f

∪

◦ f }

ϕ,seen := ⊥⊥,⊥⊥ ;

{ Invariant: (10.7) thru (10.14) }

while seen 6= INode do

begin

hoose node a suh that a◦seen=⊥⊥ and ∼seen ◦⊤⊤ ◦a ⊆ f
∪

◦≤ ◦ f

; s := ∼seen ◦ (G∗
◦a)<

; ϕ,seen := ϕ ∪ a◦⊤⊤◦s , seen∪ s

end

{ ϕ ◦ϕ
∪ ⊆ INode ⊆ equiv.G ⊆ ϕ

∪

◦ϕ

∧ ϕ ⊆ (G∪ ∩ ϕ∪

◦ϕ)∗ ∧ G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f

∧ ϕ = ϕ◦ϕ }

Figure 10.1: Repeated Searh. Outer Loop

suh that suessive nodes on the path have the same delegate. The equivalene of these

two informal interpretations is formulated in lemma 10.36.)

Note the property ϕ = ϕ◦ϕ in the postondition. Cormen, Leiserson and Rivest

[CLR90, p.490℄ require that the funtion f is injetive and use this to derive the prop-

erty from the de�nition of a delegate (\forefather" in their terminology). We don't

require that f is injetive but show instead that it is a onsequene of the algorithm

used to alulate delegates. For ompleteness, we also show that it is a onsequene of

the de�nition of delegate under the assumption that f is injetive: see lemma 10.30.

Similarly, the property equiv.G ⊆ ϕ
∪

◦ϕ an be derived from the de�nition of a delegate

if f is assumed to be injetive. Again for ompleteness, we also show that it is a onse-

quene of the de�nition of delegate under the assumption that f is injetive: see lemma

10.31.

Termination of the loop is obvious: the oreexive seen represents a set of nodes that

inreases stritly in size at eah iteration. (The hosen node a is added at eah iteration.)

The number of iterations of the loop body is thus at most the number of nodes in the

graph, whih is assumed to be �nite. The priniple task is thus to verify onditional

orretness (orretness assuming termination, often alled \partial" orretness).

The invariant properties of the algorithm are as follows:

ϕ> = seen ,(10.7)

Algorithmi Graph Theory April 8, 2022

196

ϕ ◦ϕ
∪

⊆ seen ,(10.8)

ϕ ⊆ (G
∪

∩ ϕ
∪

◦ϕ)∗ ,(10.9)

ϕ = ϕ◦ϕ ,(10.10)

seen = (G∗
◦ seen)< ,(10.11)

seen ◦⊤⊤ ◦∼seen ⊆ (f◦ϕ)
∪

◦ ≥ ◦ f ,(10.12)

seen ◦G∗
◦ seen ⊆ (f◦ϕ)

∪

◦ ≥ ◦ f ,(10.13)

seen ◦ equiv.G ◦ seen ⊆ ϕ
∪

◦ ϕ .(10.14)

Before verifying the invariant properties, let us onsider the postondition. The post-

ondition

ϕ ◦ϕ
∪

⊆ INode ⊆ ϕ
∪

◦ϕ

expresses the fat that, on termination, ϕ is total and funtional; the laimed invariants

(10.7) and (10.8) state that intermediate values of ϕ are total on seen and funtional.

The invariants (10.9) and (10.10) are both onjunts of the postondition. The additional

onjunt

equiv.G ⊆ ϕ
∪

◦ϕ

states that strongly onneted nodes have the same delegate. The invariant (10.14)

states that this is the ase for nodes that have been assigned a delegate. Like (10.7) and

(10.8), invariant (10.13) states that intermediate values of ϕ maximise f for those nodes

for whih a delegate has been assigned. It is therefore obvious that the postondition is

implied by the onjuntion of the invariant and the termination ondition. The additional

invariants (10.11) and (10.12) are needed in order to establish the invariane of (10.13).

Sine, for all oreexives p and q ,

p∪q = p ∪ ∼p ◦q ,

it is the ase that

seen ∪ ∼seen ◦ (G∗
◦a)< = seen∪ (G∗

◦a)< .(10.15)

Note that the left side of this equality is the right side of the assignment to seen in the

above algorithm. The right side is slightly simpler. Aordingly, we use the right side

when reasoning about the invariant properties of seen . (The right side of the assignment

to ϕ annot be simpli�ed in this way.)

As usually happens, it is obvious that all of the laimed invariant properties are

true on initialisation (sine ⊥⊥ is the zero of omposition). It remains to establish the

veri�ation ondition: for all ϕ , seen and a ,

Algorithmi Graph Theory April 8, 2022

197

((10.7) thru (10.14)) [ϕ,seen := ϕ ∪ a◦⊤⊤◦s , seen∪ s]

⇐ ((10.7) thru (10.14))

∧ a◦seen=⊥⊥ ∧ ∼seen ◦⊤⊤ ◦a ⊆ f
∪

◦≤ ◦ f

where s = ∼seen ◦ (G∗
◦a)< . We onsider eah of the onjunts in the onsequent in turn,

invoking the premises when neessary. (The �rst line of premises is the onjuntion of

all the laimed invariant properties and the seond line is the riterion used to hoose

a .) Beause of the large number of properties, the remainder of this setion is quite

long. Most of the alulations are, however, straightforward. An exeption is, perhaps,

the invariane of (10.9), proved in lemma 10.22.

We begin with a few lemmas on the onsequenes of the invariant properties.

Lemma 10.16 Assuming properties (10.7), (10.8) and a◦seen=⊥⊥ , the following

properties also hold:

ϕ ◦ s = ⊥⊥ = s ◦ϕ ∧ ϕ ◦a = ⊥⊥ .

Proof These are all straightforward. First,

ϕ ◦ s

= { domains }

ϕ ◦ ϕ> ◦ s

= { (10.7) }

ϕ ◦ seen ◦ s

= { s = ∼seen ◦ (G∗
◦a)< }

ϕ ◦ seen ◦∼seen ◦ (G∗
◦a)<

= { omplements: seen ◦∼seen = ⊥⊥ }

⊥⊥ .

Seond,

s ◦ϕ

= { domains }

s ◦ϕ< ◦ϕ

⊆ { (10.8): ϕ< ⊆ seen }

s ◦ seen ◦ϕ

Algorithmi Graph Theory April 8, 2022

198

= { s◦seen ⊆ ∼seen ◦ seen ⊆ ⊥⊥ }

⊥⊥ .

The third property is an immediate onsequene of ϕ◦s=⊥⊥ (the �rst property) and

a⊆ s (whih is a onsequene of the hoie of a).

✷

Lemma 10.17 Assuming seen = (G∗
◦ seen)< (i.e. (10.11)) and a◦seen=⊥⊥ , the

following properties also hold:

∼seen ◦ G∗
◦ seen = ⊥⊥ ∧ ∼seen ◦G∗

◦a = (∼seen ◦G)∗ ◦a .

Proof First,

∼seen ◦G∗
◦ seen

= { domains: [R = R< ◦R] with R := G∗
◦ seen ;

seen = (G∗
◦ seen)< }

∼seen ◦ seen ◦G∗
◦ seen

= { ∼seen ◦ seen = ⊥⊥ }

⊥⊥ .

Seond,

∼seen ◦G∗
◦a

= { I = seen∪∼seen ; distributivity and star deomposition:

[(R∪S)∗ = R∗
◦ (S ◦R∗)∗] with R,S := seen ◦G , ∼seen ◦G }

∼seen ◦ (seen ◦G)∗ ◦ (∼seen ◦G ◦ (seen ◦G)∗)∗ ◦a

= { (seen◦G)∗ = I ∪ seen◦G◦(seen◦G)∗

distributivity and ∼seen ◦ seen = ⊥⊥ }

∼seen ◦ (∼seen ◦G ◦ (seen ◦G)∗)∗ ◦a

= { (seen◦G)∗ = I ∪ seen◦G◦(seen◦G)∗

distributivity and ∼seen ◦G∗
◦ seen = ⊥⊥

(whene ∼seen ◦G ◦ seen = ⊥⊥) }

∼seen ◦ (∼seen ◦G)∗ ◦a

= { (∼seen ◦G)∗ = I ∪ ∼seen ◦G ◦ (∼seen ◦G)∗

Algorithmi Graph Theory April 8, 2022

199

distributivity }

∼seen ◦a ∪ ∼seen ◦∼seen ◦G ◦ (∼seen ◦G)∗ ◦a

= { ∼seen ◦a = a and ∼seen ◦∼seen = ∼seen ,

(∼seen ◦G)∗ = I ∪ ∼seen ◦G ◦ (∼seen ◦G)∗

distributivity }

(∼seen ◦G)∗ ◦a .

✷

Lemma 10.18 Assuming properties (10.7) thru (10.14) and a◦seen=⊥⊥ ,

s = ((∼seen ◦G)∗ ◦a)< .

Proof

s

= { de�nition }

∼seen ◦ (G∗
◦a)<

= { domains: for all oreexives p and all relations R ,

p ◦R< = (p◦R)< with p,R := ∼seen , G∗
◦a }

(∼seen ◦G∗
◦a)<

= { lemma 10.17 }

((∼seen ◦G)∗ ◦a)< .

✷

Lemma 10.19 Assuming properties (10.7) thru (10.14) and a◦seen=⊥⊥ ,

s = ((s◦G)∗ ◦a)< .

Proof Applying lemma 10.18, the task is to prove that

((∼seen ◦G)∗ ◦a)< = ((s◦G)∗ ◦a)< .

Clearly, sine s⊆∼seen , the left side of this equation is at least the right side. So it

suÆes to prove the inlusion. This we do as follows.

((∼seen ◦G)∗ ◦a)< ⊆ ((s◦G)∗ ◦a)<

⇐ { �xed-point fusion }

Algorithmi Graph Theory April 8, 2022

200

a ⊆ ((s◦G)∗ ◦a)<

∧ (∼seen ◦G ◦ ((s◦G)∗ ◦a)<)< ⊆ ((s◦G)∗ ◦a)<

= { �rst onjunt is learly true ;

∼seen

= { ase analysis: I = (G∗
◦a)< ∪ (G∗

◦a)•< }

∼seen ◦ (G∗
◦a)< ∪ ∼seen ◦ (G∗

◦a)•<

= { de�nition of s }

s ∪ ∼seen ◦ (G∗
◦a)•< }

((s ∪ ∼seen ◦ (G∗
◦a)•<) ◦G ◦ ((s◦G)∗ ◦a)<)< ⊆ ((s◦G)∗ ◦a)<

= { domains: [(R ◦S<)< = (R◦S)<]

with R,S := (s ∪ ∼seen ◦ (G∗
◦a)•<) ◦G , (s◦G)∗ ◦a ;

distributivity }

(s ◦G ◦ (s◦G)∗ ◦a)< ⊆ ((s◦G)∗ ◦a)<

∧ (∼seen ◦ (G∗
◦a)•< ◦G ◦ (s◦G)∗ ◦a)< ⊆ ((s◦G)∗ ◦a)<

⇐ { �rst onjunt is true (sine [R◦R∗ ⊆ R∗] with R := s◦G);

seond onjunt: G ◦ (s◦G)∗ ⊆ G∗
and domains }

(∼seen ◦ (G∗
◦a)•< ◦ (G∗

◦a)<)< ⊆ ((s◦G)∗ ◦a)<

= { omplements: (G∗
◦a)•< ◦ (G∗

◦a)< = ⊥⊥ }

true .

✷

We an now proeed to the veri�ation of eah of the invariant properties.

Lemma 10.20 Property (10.7) is an invariant of the algorithm.

Proof It is learly true after initialisation of ϕ and seen . For the loop body, assume

(10.7) is true. Let s denote ∼seen ◦ (G∗
◦a)< . Then we have:

(ϕ ∪ a◦⊤⊤◦s)>

= { distributivity }

ϕ> ∪ (a◦⊤⊤◦s)>

= { assumption: (10.7) }

seen ∪ (a◦⊤⊤◦s)>

Algorithmi Graph Theory April 8, 2022

201

= { s = ∼seen ◦ (G∗
◦a)< , domains }

seen ∪ (a ◦⊤⊤ ◦a ◦ (G∗)∪ ◦∼seen)>

= { a is an atom, so a◦⊤⊤◦a=a }

seen ∪ (a ◦ (G∗)∪ ◦∼seen)>

= { domains, s = ∼seen ◦ (G∗
◦a)< }

seen∪ s .

That is, (10.7) is an invariant of the algorithm.

✷

Lemma 10.21 Property (10.8) is an invariant of the algorithm.

Proof It is learly true after initialisation of ϕ and seen . For the loop body, assume

(10.8) is true. Let s = ∼seen ◦ (G∗
◦a)< . Then

(ϕ ∪ a◦⊤⊤◦s) ◦ (ϕ ∪ a◦⊤⊤◦s)∪ ⊆ seen∪ s

= { distributivity }

ϕ ◦ϕ
∪ ∪ a ◦⊤⊤ ◦ s ◦ϕ

∪ ∪ ϕ◦s◦⊤⊤◦a ∪ a◦⊤⊤◦s◦s◦⊤⊤◦a ⊆ seen∪ s

⇐ { de�nition of set union }

ϕ ◦ϕ
∪ ⊆ seen

∧ a ◦⊤⊤ ◦ s ◦ϕ
∪ ⊆ ⊥⊥

∧ ϕ ◦ s ◦⊤⊤ ◦a ⊆ ⊥⊥

∧ a◦⊤⊤◦s◦s◦⊤⊤◦a ⊆ s .

We onsider eah of the onjunts in turn. The �rst is (10.8) whih we assume to be

true. The seond and third are learly equivalent (beause a=a∪

, s= s∪ and ⊥⊥=⊥⊥
∪

)

and the third is obviously an immediate onsequene of lemma 10.16 (in partiular,

ϕ ◦ s = ⊥⊥). Finally,

a◦⊤⊤◦s◦s◦⊤⊤◦a

⊆ { ⊤⊤◦s◦s◦⊤⊤ ⊆ ⊤⊤ }

a◦⊤⊤◦a

= { a is a node (an atomi oreexive) }

a

⊆ { I⊆G∗
, monotoniity;

Algorithmi Graph Theory April 8, 2022

202

hoie of a : a◦seen=⊥⊥ }

∼seen ◦ (G∗
◦a)<

= { de�nition }

s .

We have thus veri�ed that (10.8) is an invariant of the algorithm.

✷

Lemma 10.22 Property (10.9) is an invariant of the algorithm.

Proof We have to prove that

ϕ ∪ a◦⊤⊤◦s ⊆ (G
∪

∩ (ϕ ∪ a◦⊤⊤◦s)
∪

◦ (ϕ ∪ a◦⊤⊤◦s))∗

assuming (10.7) thru (10.14).

Clearly (by monotoniity)

ϕ ⊆ (G
∪

∩ (ϕ ∪ a◦⊤⊤◦s)
∪

◦ (ϕ ∪ a◦⊤⊤◦s))∗ ⇐ (10.9)

so it suÆes to prove that

a◦⊤⊤◦s ⊆ (G
∪

∩ (ϕ ∪ a◦⊤⊤◦s)
∪

◦ (ϕ ∪ a◦⊤⊤◦s))∗ .

As usual, we begin with the more ompliated side.

(G∪ ∩ (ϕ ∪ a◦⊤⊤◦s)∪ ◦ (ϕ ∪ a◦⊤⊤◦s))∗

⊇ { monotoniity }

(G∪ ∩ (a◦⊤⊤◦s)∪ ◦a ◦⊤⊤ ◦ s)∗

= { onverse; a is a node, so ⊤⊤ ◦a
∪

◦ a ◦ ⊤⊤ = ⊤⊤ }

(G∪ ∩ s◦⊤⊤◦s)∗

= { s is a oreexive, so s= s<= s> ; domains }

(s ◦G∪

◦ s)∗

⊇ { I⊇ s }

(s ◦G∪

◦ s)∗ ◦ s

= { mirror rule, s◦s= s }

s ◦ (G∪

◦ s)∗

⊇ { s⊇a , monotoniity }

Algorithmi Graph Theory April 8, 2022

203

a ◦ (G∪

◦ s)∗

= { a is a node, so a◦⊤⊤◦a=a

distributivity properties of onverse }

a ◦⊤⊤ ◦a ◦ ((s◦G)∗)∪

= { lemma 10.19 and domains }

a◦⊤⊤◦s .

✷

Lemma 10.23 Property (10.10) is an invariant of the algorithm.

Proof It is learly true after initialisation of ϕ . For the loop body, assume (10.10) is

true. Then

(ϕ ∪ a◦⊤⊤◦s)◦(ϕ ∪ a◦⊤⊤◦s)

= { distributivity }

ϕ◦ϕ ∪ ϕ◦a◦⊤⊤◦s ∪ a◦⊤⊤◦s◦ϕ ∪ a◦⊤⊤◦s◦a◦⊤⊤◦s

= { lemma 10.16 }

ϕ◦ϕ ∪ a◦⊤⊤◦s◦a◦⊤⊤◦s

= { by lemma 10.18, s◦a=a ;

so, by one rule (4.16): ⊤⊤◦s◦a◦⊤⊤=⊤⊤

hypothesis (10.10): ϕ◦ϕ=ϕ }

ϕ ∪ a◦⊤⊤◦s .

The property (10.10) is thus maintained by the body of the loop.

✷

Lemma 10.24 Property (10.11) is an invariant of the algorithm.

Proof It is learly true after initialisation of seen . For the loop body, assume (10.11)

is true. Then

(G∗
◦ (seen∪ (G∗

◦a)<))<

= { distributivity }

(G∗
◦ seen)< ∪ (G∗

◦ (G∗
◦a)<)<

= { assumption: (10.11) and domains }

Algorithmi Graph Theory April 8, 2022

204

seen ∪ (G∗
◦G∗

◦a)<

= { G∗
◦G∗ = G∗ }

seen ∪ (G∗
◦a)< .

Realling property (10.15), it follows that (10.11) is an invariant of the algorithm.

✷

Lemma 10.25 Property (10.12) is an invariant of the algorithm.

Proof It is learly true after the initialisation of seen and ϕ . For the loop body,

assume (10.12) is true.

(seen∪ s) ◦⊤⊤ ◦∼(seen∪ s)

= { distributivity }

seen ◦⊤⊤ ◦∼(seen∪ s) ∪ s ◦⊤⊤ ◦∼(seen∪ s)

⊆ { assumption: (10.12) and domains }

(f◦ϕ)∪ ◦ ≥ ◦ f ∪ s ◦⊤⊤ ◦∼seen .

We ontinue with the seond term:

s ◦⊤⊤ ◦∼seen ⊆ s ◦⊤⊤ ◦a ◦ f
∪

◦≥ ◦ f

⇐ { hoie of a : ∼seen ◦⊤⊤ ◦a ⊆ f∪ ◦≤ ◦ f

i.e. a ◦⊤⊤ ◦∼seen ⊆ f
∪

◦≥ ◦ f }

s ◦⊤⊤ ◦∼seen ⊆ s ◦⊤⊤ ◦a ◦a ◦⊤⊤ ◦∼seen

= { a is a node (a non-empty atom), one rule: ⊤⊤◦a◦a◦⊤⊤=⊤⊤ }

true .

Combining the two alulations:

(seen∪ s) ◦⊤⊤ ◦∼(seen∪ s)

⊆ { monotoniity of set union }

(f◦ϕ)∪ ◦ ≥ ◦ f ∪ s ◦⊤⊤ ◦a ◦ f
∪

◦≥ ◦ f

= { distributivity }

(f ◦ (ϕ ∪ a◦⊤⊤◦s))∪ ◦ ≥ ◦ f .

That is, (10.12) is invariant under the assignment.

✷

Algorithmi Graph Theory April 8, 2022

205

Lemma 10.26 Property (10.13) is an invariant of the algorithm.

Proof It is learly true after initialisation of seen . For the loop body, assume (10.13)

is true. The left side of (10.13) [seen := seen∪ s] expands into the union of four terms.

We onsider eah in turn.

First,

seen ◦G∗
◦ seen

⊆ { assumption: (10.13) }

(f◦ϕ)∪ ◦ ≥ ◦ f .

Seond,

s ◦G∗
◦ s

⊆ { G∗⊆⊤⊤ , monotoniity }

s◦⊤⊤◦s

= { de�nition of s , domains }

s ◦⊤⊤ ◦a ◦ (G∗)∪ ◦∼seen

⊆ { (G∗)∪⊆⊤⊤ , monotoniity }

s ◦⊤⊤ ◦a ◦⊤⊤ ◦∼seen

⊆ { hoie of a : ∼seen ◦⊤⊤ ◦a ⊆ f∪ ◦≤ ◦ f ; onverse and a◦a=a }

s ◦⊤⊤ ◦a ◦ f
∪

◦≥ ◦ f .

Third,

s ◦G∗
◦ seen

= { domains }

s ◦ (G∗
◦ seen)< ◦G∗

◦ seen

= { invariant: (10.11) }

s ◦ seen ◦G∗
◦ seen

= { de�nition of s , oreexives ommute }

(G∗
◦a)< ◦∼seen ◦ seen ◦G∗

◦ seen

= { ∼seen ◦ seen = ⊥⊥ }

⊥⊥ .

Finally,

Algorithmi Graph Theory April 8, 2022

206

seen ◦G∗
◦ s

⊆ { by de�nition and propertie of oreexives, s⊆∼seen }

seen ◦G∗
◦∼seen

⊆ { G∗⊆⊤⊤ and lemma 10.25 }

(f◦ϕ)∪ ◦ ≥ ◦ f .

Putting the alulations together, we have:

(seen∪ s) ◦G∗
◦ (seen∪ s)

⊆ { distributivity and above alulations }

(f◦ϕ)∪ ◦ ≥ ◦ f ∪ s ◦⊤⊤ ◦a ◦ f
∪

◦≥ ◦ f

= { distributivity }

(f ◦ (ϕ ∪ a◦⊤⊤◦s))∪ ◦ ≥ ◦ f

That is, (10.13) is invariant under the assignment.

✷

Lemma 10.27 Property (10.14) is an invariant of the algorithm.

Proof It is learly true after initialisation of seen and ϕ . For the loop body, assume

(10.14) is true. Then

(ϕ ∪ a◦⊤⊤◦s)∪ ◦ (ϕ ∪ a◦⊤⊤◦s)

= { distributivity }

ϕ
∪

◦ϕ ∪ ϕ
∪

◦a ◦⊤⊤ ◦ s ∪ s◦⊤⊤◦a◦ϕ ∪ s◦⊤⊤◦a◦a◦⊤⊤◦s

= { lemma 10.16 }

ϕ
∪

◦ϕ ∪ s◦⊤⊤◦a◦a◦⊤⊤◦s

⊇ { one rule: ⊤⊤◦a◦a◦⊤⊤=⊤⊤

hypothesis (10.14) }

seen ◦ equiv.G ◦ seen ∪ s◦⊤⊤◦s

⊇ { by lemma 10.17, equiv.G⊆G∗
, and s⊆∼seen

seen ◦ equiv.G ◦ s = ⊥⊥ ;

so, using properties of onverse, s ◦ equiv.G ◦ seen = ⊥⊥ }

seen ◦ equiv.G ◦ seen ∪ s ◦ equiv.G ◦ s

Algorithmi Graph Theory April 8, 2022

207

∪ s ◦ equiv.G ◦ seen ∪ seen ◦ equiv.G ◦ s

= { distributivity }

(seen∪s) ◦ equiv.G ◦ (seen∪s) .

The property (10.14) is thus maintained by the body of the loop.

✷

This ompletes the veri�ation of the algorithm.

10.2.3 Incremental Computation

The algorithm shown in �g. 10.1 assigns to the variable s (the oreexive representing)

all the nodes that do not yet have a delegate and an reah the node a . The variable ϕ

is also updated so that a beomes the delegate of all the nodes in the set represented

by s . As mentioned then, the assignments are implemented by an adaptation of the

graph-searhing algorithm disussed in setion 10.1. Fig. 10.2 shows the details.

The onseutive assignments in the body of the loop in �g. 10.1 (to s , and to ϕ and

seen) are implemented by an inner loop together with initialising assignments. The

assertions should enable the reader to verify that the two algorithms are equivalent: the

variables s , seen0 and ϕ0 are auxiliary variables used to express the property that

the inner loop orretly implements the two assignments that they replae in the outer

loop; in an atual implementation the assignments to these variables may be omitted

(or, preferably, inluded but identi�ed as auxiliary statements that an be ignored by

the omputation proper).

It is straightforward to verify the orretness of this algorithm. For ompleteness, we

give the details below.

The auxiliary variable seen0 reords the initial value of seen . That

∼seen0 ◦G ◦ seen0 = ⊥⊥

is truthi�ed is a straightforward onsequene of (10.11):

Lemma 10.28

(∼seen0 ◦G ◦ seen0 = ⊥⊥)[seen0 := seen] ⇐ seen = (G∗
◦ seen)< .

Proof

(∼seen0 ◦G ◦ seen0)[seen0 := seen]

= { substitution }

∼seen ◦G ◦ seen

Algorithmi Graph Theory April 8, 2022

208

{ a◦seen=⊥⊥ ∧ (10.7) thru (10.14) }

/∗ s , seen0 and ϕ0 are auxiliary variables ∗/

s,seen0,ϕ0 := a,seen,ϕ

{ ∼seen0 ◦G ◦ seen0 = ⊥⊥ }

; seen,ϕ := seen∪a , ϕ ∪ a◦⊤⊤◦a

; { Invariant: seen = s∪ seen0 ∧ ϕ = ϕ0 ∪ a◦⊤⊤◦s

Invariant: a ⊆ s ⊆ ∼seen0 ◦ (G
∗
◦a)< }

while ∼seen ◦G ◦ seen 6= ⊥⊥ do

begin

hoose node b suh that b ⊆ ∼seen ◦ (G◦seen)<

{ b ⊆ ∼seen0 ◦ (G
∗
◦a)< }

; s := s∪b

; seen,ϕ := seen∪b , ϕ ∪ a◦⊤⊤◦b

end

{ s = ∼seen0 ◦ (G
∗
◦a)< ∧ seen = s∪ seen0 ∧ ϕ = ϕ0 ∪ a◦⊤⊤◦s }

{ seen = seen0∪ (G∗
◦a)< ∧ ϕ = ϕ0 ∪ a ◦⊤⊤ ◦∼seen0 ◦ (G

∗
◦a)< }

Figure 10.2: Repeated Searh. Inner Loop.

= { domains }

∼seen ◦ (G◦seen)< ◦G ◦ seen

⊆ { G⊆G∗
, monotoniity }

∼seen ◦ (G∗
◦ seen)< ◦G ◦ seen

= { assume: seen = (G∗
◦ seen)< (i.e. (10.11)) }

∼seen ◦ seen ◦G ◦ seen

= { ∼seen ◦ seen = ⊥⊥ }

⊥⊥

= { substitution }

⊥⊥[seen0 := seen] .

✷

Algorithmi Graph Theory April 8, 2022

209

Now we must show that the invariants are truthi�ed by the initialisation. That

seen = seen0∪ s ∧ ϕ = ϕ0 ∪ a◦⊤⊤◦s

is truthi�ed is a straightforward appliation of the assignment axiom. That

a⊆ s

is truthi�ed is obvious. Finally, that

s ⊆ ∼seen0 ◦ (G
∗
◦a)<

is truthi�ed is a straightforward onsequene of the preondition a◦seen=⊥⊥ :

Lemma 10.29

(s ⊆ ∼seen0 ◦ (G
∗
◦a)<)[seen0,s := seen,a] ⇐ a◦seen=⊥⊥ .

Proof

(s ⊆ ∼seen0 ◦ (G
∗
◦a)<)[seen0,s := seen,a]

= { substitution }

a ⊆ ∼seen ◦ (G∗
◦a)<

= { oreexives }

a ⊆ ∼seen ∧ a ⊆ (G∗
◦a)<

⇐ { domains and I⊆G∗ }

seen◦a = ⊥⊥ ∧ a ⊆ a<

= { preondition and a is a oreexive }

true .

✷

The next step is to show that the invariants are maintained by the loop body. To do

this, we establish the assertion

b ⊆ ∼seen0 ◦ (G
∗
◦a)<

that follows the hoie of b . First, we must note that b an always be hosen, sine

∼seen ◦G ◦ seen 6= ⊥⊥ ≡ ∼seen ◦ (G◦seen)< 6= ⊥⊥ .

Then,,

Algorithmi Graph Theory April 8, 2022

210

b

⊆ { hoie of b }

∼seen ◦ (G◦seen)<

⊆ { invariant: seen = s∪ seen0 and monotoniity }

∼seen0 ◦ (G ◦ (s∪ seen0))<

= { distributivity and lemma 10.28 }

∼seen0 ◦ (G ◦ s)<

⊆ { invariant: s ⊆ ∼seen0 ◦ (G
∗
◦a)< and monotoniity }

∼seen0 ◦ (G ◦ (G∗
◦a)<)<

⊆ { domains, G ◦G∗ ⊆ G∗
and monotoniity }

∼seen0 ◦ (G
∗
◦a)< .

It is now straightforward to hek that eah of the invariants is maintained by the loop

body. We leave this task to the reader.

The �nal task is to verify that the postondition is a onsequene of the invariants

and the ondition for terminating the loop. Clearly it is only neessary to verify the

postondtion

s = ∼seen0 ◦ (G
∗
◦a)< .

This we do as follows:

s = ∼seen0 ◦ (G
∗
◦a)<

= { invariant: s ⊆ ∼seen0 ◦ (G
∗
◦a)< and anti-symmetry }

s ⊇ ∼seen0 ◦ (G
∗
◦a)<

= { shunting rule (2.27) }

s∪ seen0 ⊇ (G∗
◦a)<

⇐ { �xed-point indution }

s∪ seen0 ⊇ a ∧ s∪ seen0 ⊇ (G◦(s∪ seen0))<

⇐ { invariants: a⊆ s and seen = s∪ seen0 }

seen ⊇ (G◦seen)<

= { domains }

∼seen ◦G ◦ seen = ⊥⊥ .

Algorithmi Graph Theory April 8, 2022

211

Sine the property ∼seen ◦G ◦ seen = ⊥⊥ is the ondition for terminating the loop, we

are done.

10.2.4 Injective Choice

This setion is a preliminary to the disussion in setion 10.2.5. Throughout the setion,

we assume that f has type IN←Node . Also, the symbol I denotes INode : the identity

relation on nodes.

Previous setions have established the existene of a delegate funtion ϕ aording to

hoie funtion f with the only proviso being that f is total and funtional. Moreover,

the property ϕ◦ϕ = ϕ is an invariant of the algorithm for omputing delegates. Cormen,

Leiserson and Rivest [CLR90℄ derive it from the other requirements assuming that f is

also injetive. For ompleteness, this is the point-free rendition of their proof.

Lemma 10.30 If f is a total, injetive funtion and ϕ is a delegate funtion aording

to f , then

ϕ◦ϕ = ϕ .

Proof

ϕ◦ϕ = ϕ

⇐ { assumption: f is total and injetive, i.e. f
∪

◦ f = I }

f◦ϕ◦ϕ = f◦ϕ

= { antisymmetry of ≥

and distributivity properties of total funtions }

I ⊆ (f◦ϕ◦ϕ)∪ ◦ ≤ ◦ f ◦ϕ

∧ I ⊆ (f◦ϕ◦ϕ)∪ ◦ ≥ ◦ f ◦ϕ .

We establish the truth of both onjunts as follows. First,

(f◦ϕ◦ϕ)∪ ◦ ≤ ◦ f ◦ϕ

= { onverse }

ϕ
∪

◦ (f◦ϕ)∪ ◦ ≤ ◦ f ◦ϕ

⊇ { G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f ◦ϕ (lemma 10.5)

i.e. (G∗)∪ ⊆ (f◦ϕ)∪ ◦ ≤ ◦ f ◦ϕ

(distributivity properties of onverse and (≥)∪ = (≤)) }

Algorithmi Graph Theory April 8, 2022

212

ϕ
∪

◦ (G∗)∪

⊇ { I ⊆ G∗
◦ϕ (lemma 10.5) and onverse }

I .

Seond,

(f◦ϕ◦ϕ)∪ ◦ ≥ ◦ f ◦ϕ

= { onverse }

ϕ
∪

◦ (f◦ϕ)∪ ◦ ≥ ◦ f ◦ ϕ

⊇ { de�nition of delegate: (10.4) and monotoniity }

ϕ
∪

◦G∗
◦ϕ

⊇ { I ⊆ G∗ }

ϕ
∪

◦ϕ

⊇ { ϕ is total (by de�nition: (10.3)) }

I .

✷

As also shown above, the property equiv.G ⊆ ϕ
∪

◦ϕ is an invariant of the algorithm.

However, if f is a total, injetive funtion, the property follows from the de�nition of a

delegate, as we show below.

Lemma 10.31 If f is a total, injetive funtion and ϕ is a delegate funtion aording

to f , strongly onneted nodes have the same delegate. That is

equiv.G ⊆ ϕ
∪

◦ϕ .

Proof

equiv.G

= { de�nition }

G∗∩ (G∗)∪

⊆ { lemma 10.5 }

(f◦ϕ)∪ ◦ ≥ ◦ f ◦ϕ ∩ ((f◦ϕ)∪ ◦ ≥ ◦ f ◦ϕ)∪

= { onverse }

(f◦ϕ)∪ ◦ ≥ ◦ f ◦ϕ ∩ (f◦ϕ)∪ ◦ ≤ ◦ f ◦ϕ

= { f and ϕ are total funtions, distributivity }

Algorithmi Graph Theory April 8, 2022

213

(f◦ϕ)∪ ◦ (≥∩≤) ◦ f ◦ϕ

= { ≤ is antisymmetri }

ϕ
∪

◦ f
∪

◦ f ◦ϕ

= { f is injetive and total, i.e. f∪ ◦ f = I }

ϕ
∪

◦ϕ .

✷

The relation ϕ ◦G
∪

◦ϕ
∪

is a relation on delegates. Viewed as a graph, it is a ho-

momorphi image of the graph G
∪

formed by oalesing all the nodes with the same

delegate into one node. Exluding self-loops, this graph is ayli and topologially

ordered by f , as we now show.

Lemma 10.32 If f is a total, injetive funtion and ϕ is a delegate funtion aording

to f , the graph ϕ ◦G
∪

◦ϕ
∪ ∩ ¬I is ayli with f as a topologial ordering.

Proof By theorem 8.47, it suÆes to show that f is a topologial ordering. The funtion

f is, by assumption, a total, injetive funtion of type IN←Node . Thus, by assumption,

f satis�es the �rst requirement of being a topologial ordering. (See de�nition 8.32.)

Applying lemma 8.34, establishing the seond requirement is ahieved by the following

alulation.

ϕ ◦G
∪

◦ϕ
∪ ∩ ¬I ⊆ f

∪

◦< ◦ f

= { shunting rule (2.27) }

ϕ ◦G
∪

◦ϕ
∪ ⊆ f

∪

◦< ◦ f ∪ I

= { f is total and injetive, i.e. I = f∪ ◦ f

distributivity and de�nition of ≤ }

ϕ ◦G
∪

◦ϕ
∪ ⊆ f

∪

◦≤ ◦ f

⇐ { ϕ is funtional, i.e. ϕ ◦ϕ
∪ ⊆ I

monotoniity, onverse and transitivity }

G
∪ ⊆ (f◦ϕ)∪ ◦≤ ◦ f ◦ϕ

= { onverse }

G ⊆ (f◦ϕ)∪ ◦≥ ◦ f ◦ϕ

⇐ { G⊆G∗
, transitivity }

G∗ ⊆ (f◦ϕ)∪ ◦≥ ◦ f ◦ϕ

= { lemma 10.5 }

Algorithmi Graph Theory April 8, 2022

214

true .

✷

The algorithm presented in �g. 10.1 shows that, viewed as a spei�ation of the

funtion ϕ , the equation (10.4) always has at least one solution. However, the algorithm

is non-deterministi, whih means that there may be more than one solution. We now

prove that (10.4) has a unique solution in unknown ϕ if the funtion f is total and

injetive.

Lemma 10.33 Suppose f of type IN←Node is a total and injetive funtion, and ϕ

and ψ are both total funtions of type Node←Node . Then

ϕ=ψ

⇐ (ϕ ⊆ (G∗)∪ ∧ G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f)

∧ (ψ ⊆ (G∗)∪ ∧ G∗ ⊆ (f◦ψ)∪ ◦ ≥ ◦ f) .

Proof Suppose ψ is a total funtion of type Node←Node . Then

ψ ⊆ (G∗)∪ ∧ G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f

⇒ { onverse and transitivity }

ψ∪ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f

= { ψ is total, i.e. I ⊆ ψ
∪

◦ψ }

I ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f ◦ψ .

Interhanging ϕ and ψ , and ombining the two properties thus obtained, we get that,

if ϕ and ψ are both total funtions of type Node←Node ,

(ϕ ⊆ (G∗)∪ ∧ G∗ ⊆ (f◦ψ)∪ ◦ ≥ ◦ f)

∧ (ψ ⊆ (G∗)∪ ∧ G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f)

⇒ { see above }

I ⊆ (f◦ψ)∪ ◦ ≥ ◦ f ◦ϕ

∧ I ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f ◦ψ

= { f , ϕ and ψ are all total funtions,

onverse and distributivity }

I ⊆ (f◦ψ)∪ ◦ ((≤)∩ (≥)) ◦ f ◦ϕ

∧ I ⊆ (f◦ϕ)∪ ◦ ((≤)∩ (≥)) ◦ f ◦ψ

= { anti-symmetry of (≤) }

Algorithmi Graph Theory April 8, 2022

215

I ⊆ (f◦ψ)∪ ◦ f ◦ϕ ∧ I ⊆ (f◦ϕ)∪ ◦ f ◦ψ

= { f and ψ are total funtions, anti-symmetry of subset }

f◦ψ = f◦ϕ

= { f is an injetive, total funtion }

ψ = ϕ .

The lemma follows by symmetry and assoiativity of onjuntion.

✷

Earlier, we stated that (10.9) formulates the property that there is a path from eah

node to its delegate on whih suessive nodes have the same delegate. Combined with

(10.10) and the transitivity of equality, this means that there is a path from eah node

to its delegate on whih all nodes have the same delegate. We onlude this setion with

a point-free proof of this laim. Sine the laim is not spei� to the delegate funtion,

we formulate the underlying lemmas (lemmas 10.34 and 10.35) in general terms. The

relevant property of the delegate funtion, lemma 10.36, is then a simple instane.

Should one wish to interpret lemma 10.34 pointwise, the key is to note that, for total

funtion h and arbitrary relation S , h
∪

◦h ∩ S relates two points x and y if they are

related by S and h.x=h.y . However, it is not neessary to do so: ompletion of the

alulation in lemma 10.35 demands the proof of lemma 10.34 and this is best ahieved

by uninterpreted alulation. In turn, lemma 10.35 is driven by lemma 10.36 whih

expresses the delegate funtion ϕ as a least �xed point; ruially, this enables the use

of �xed-point indution to reason about ϕ .

Lemma 10.34 If h is a total funtion,

h ∩ R◦(h
∪

◦h ∩ S) = h ∩ (h∩R)◦S

for all relations R and S .

Proof By mutual inlusion:

h ∩ (h∩R)◦S

⊆ { modularity rule: (4.8) }

(h∩R) ◦ ((h∩R)∪ ◦h ∩ S)

⊆ { h∩R⊆h , monotoniity }

(h∩R) ◦ (h∪

◦h ∩ S)

⊆ { h is a total funtion, so h ◦h
∪

◦h = h

h∩R⊆h , distributivity and monotoniity }

Algorithmi Graph Theory April 8, 2022

216

h ∩ R ◦ (h∪

◦h ∩ S)

= { idempoteny (preparatory to next step) }

h ∩ h ∩ R ◦ (h∪

◦h ∩ S)

⊆ { modularity rule: (4.8) }

h ∩ (h ◦ (h∪

◦h ∩ S)∪ ∩ R) ◦ (h∪

◦h ∩ S)

⊆ { h is a total funtion, so h ◦h
∪

◦h = h

(h∪

◦h ∩ S)∪ ⊆ h
∪

◦h ,

distributivity and monotoniity }

h ∩ (h∩R)◦S .

✷

Lemma 10.35 If h is a total funtion,

h ∩ (h
∪

◦h ∩ R)∗ = 〈µX :: h∩ (I ∪ X◦R)〉

for all relations R .

Proof We derive the right side as follows.

h ∩ (h∪

◦h ∩ R)∗ = µg

⇐ { fusion theorem }

〈∀X :: h∩ (I ∪ X◦(h∪

◦h ∩ R)) = g.(h∩X)〉

= { distributivity, lemma 10.34 with R,S :=X,R }

〈∀X :: (h∩ I)∪ (h ∩ (h∩X)◦R) = g.(h∩X)〉

⇐ { strengthening: X :=h∩X }

〈∀X :: (h∩ I)∪ (h ∩ X◦R) = g.X〉

= { distributivity }

〈∀X :: h∩ (I ∪ X◦R) = g.X〉 .

✷

Lemma 10.36

ϕ =
〈

µX :: ϕ∩ (I ∪ X ◦G
∪

)
〉

.

Proof

Algorithmi Graph Theory April 8, 2022

217

ϕ

= { lemma 10.22 (spei�ally, ϕ ⊆ (G∪ ∩ ϕ∪

◦ϕ)∗) }

ϕ ∩ (G∪ ∩ ϕ∪

◦ϕ)∗

= { lemma 10.35 }

〈µX :: ϕ∩ (I ∪ X ◦G
∪)〉 .

✷

The signi�ane of the equality in lemma 10.36 is the inlusion of the left side in the

right side. (The onverse is trivial.) Thus, in words, the lemma states that there is a

path from eah node to its delegate on whih every node has the same delegate.

10.2.5 Summary and Discussion

We summarise the results of this setion with the following theorem.

Theorem 10.37 (Delegate Function) Suppose f of type IN←Node is a total fun-

tion and G is a �nite graph. Then the equation

ϕ :: ϕ ◦ϕ
∪

⊆ INode ⊆ ϕ
∪

◦ϕ ∧ ϕ ⊆ (G∗)
∪

∧ G∗ ⊆ (f◦ϕ)
∪

◦ ≥ ◦ f

has a solution with the additional properties that the solution is a losure operator (i.e.

a delegate is its own delegate):

ϕ◦ϕ=ϕ ,

strongly onneted nodes have the same delegate:

equiv.G ⊆ ϕ
∪

◦ϕ

and there is a path from eah node to its delegate on whih suessive nodes have the

same delegate:

ϕ ⊆ (G
∪

∩ ϕ
∪

◦ϕ)∗ .

More preisely, there is a path from eah node to its delegate on whih all nodes have

the same delegate:

ϕ =
〈

µX :: ϕ∩ (INode ∪ X ◦G
∪

)
〉

.

Moreover, a delegate has the largest f value

ϕ ⊆ f
∪

◦ ≥ ◦ f .

Algorithmi Graph Theory April 8, 2022

218

If the funtion f is injetive, the solution is unique; in this ase, we all the unique

solution the delegate funtion on G aording to f . Moreover, f is a topologial ordering

of the nodes of the graph

ϕ ◦G
∪

◦ϕ
∪

∩ ¬INode

(the graph obtained from G
∪

by oalesing all nodes with the same delegate and remov-

ing self-loops). This graph is therefore ayli.

Proof As disussed prior to lemma 10.33, the algorithm establishes the existene of at

least one solution, and lemma 10.33 shows that any solution is unique. The remaining

properties are proved in lemmas 10.30, 10.31, 10.22, 10.36, 10.6 and 10.32.

✷

As mentioned above, this setion is inspired by Cormen, Leiserson and Rivest's notion

of the \forefather" funtion and its use in applying depth-�rst searh to the omputation

of strongly onneted omponents [CLR90, pp.488{494℄. However, our presentation is

more general than theirs; in partiular, we do not assume that the hoie funtion is

injetive.

The motivation for our more general presentation is primarily to kill two birds with

one stone. As do Cormen, Leiserson and Rivest, we apply the results of this setion to

omputing strongly onneted omponents: see setion 13. This is one of the \birds".

The seond \bird" is represented by the ase that the hoie funtion is a onstant

funtion (for example, f.a=0 , for all nodes a). In this ase, the hoie of node a in

the algorithm of �g. 10.1 redues to the one ondition a◦seen=⊥⊥ (in words, a has not

yet been seen) and the funtion f plays no role whatsoever. Despite this high level of

nondeterminism, the spei�ation of a delegate (see setion 10.2.1) allows many solutions

that are not omputed by the algorithm. (For example, the identity funtion satis�es

the spei�ation.) The analysis of setion 10.2.2 is therefore about the properties of a

funtion that reords the history of repeated searhes of a graph until all nodes have

been seen: the delegate funtion omputed by repeated graph searh reords for eah

node b , the node a from whih the searh that sees b was initiated.

This analysis reveals many properties of graph searhing that other aounts may

suggest are peuliar to depth-�rst searh. Most notable is the property that strongly

onneted nodes are assigned the same delegate. As shown in lemma 10.31, this is a

neessary property when the hoie funtion is injetive; otherwise, it is not a neessary

property but it is a property of the delegate funtion omputed by repeated graph searh,

whatever graph-searhing algorithm is used. The seond notable property of repeated

graph searh is that there is a path from eah node to its delegate on whih all nodes

have the same delegate. This is losely related to the property that Cormen, Leiserson

and Rivest all the \white-path theorem" [CLR90, pp.482℄, whih we disuss shortly.

Algorithmi Graph Theory April 8, 2022

219

Our analysis shows that the property is a generi property of repeated graph searh and

not spei� to depth-�rst searh.

In order to disuss the so-alled \white-path theorem", it is neessary to give a

preliminary explanation. Operational desriptions of graph-searhing algorithms often

use the olours white, grey and blak to desribe nodes. A white node is a node that

has not been seen, a grey node is a node that has been seen but not all edges from the

node have been \proessed", and a blak node is a node that has been seen and all edges

from the node have been \proessed". The property \white", \grey" or \blak" is, of

ourse, time-dependent sine initially all nodes are white and on termination all nodes

are blak.

Now lemmas 10.18 and 10.19 express subtley di�erent versions of what is alled the

\white-path theorem". Suppose a searh from node a is initiated in the outer loop.

The searh �nds nodes on paths starting from a . There are three formally di�erent

properties of the paths that are found:

(i) The �nal node on the path is white at the time the searh from a is initiated.

(ii) All nodes on the path are white at the time the searh from a is initiated.

(iii) All nodes on the path are white at the time the searh from their predeessor on

the path is initiated.

In general, if nodes are labelled arbitrarily white or non-white, the sets of paths

desribed by (i), (ii) and (iii) are di�erent. (They are ordered by the subset relation,

with (i) being the largest and (iii) the smallest.) However, in a repeated graph searh,

the sets of paths satisfying (i) and (ii) are equal. This is the informal meaning of lemma

10.17. Moreover, the right side of the assignment to s in �g. 10.1 is the set of nodes

reahed by paths satisfying (i); lemma 10.18 states that, in a repeated graph searh,

the nodes that are added by a searh initiated from node a are the nodes that an be

reahed by a path satisfying (ii).

We laim |without formal proof| that it is also the ase that, in a repeated graph

searh, all three sets of paths are equal. That is, the set of paths desribed by (iii) is also

equal to the set of paths desribed by (i). We don't give a proof beause it is not a fat

that we exploit and, without introduing additional auxiliary variables, it is impossible

to express formally. Informally, it is lear from the implementation shown in �g. 10.2,

in partiular the hoie of nodes b and c . The introdution of timestamps does allow

us to prove the laim formally for depth-�rst searh. See setion 14.2.

Cormen, Leiserson and Rivest's [CLR90, pp.482℄ \white-path theorem" states that it

is a property of depth-�rst searh that paths found satisfy (ii). Charateristi of depth-

�rst searh is that the property is true for all nodes, and not just nodes from whih a

searh is initiated in the outer loop. We disuss this in more detail later.

Algorithmi Graph Theory April 8, 2022

220

Finally, let us briey remark on lemma 10.32. As we see later, not only an depth-�rst

searh be used to alulate the strongly onneted omponents of a graph, in doing so it

also omputes a topologial ordering of these omponents (more preisely a topologial

ordering of the onverse of the homomorphi-image graph disussed in setion 9.7).

Lemma 10.32 is more general than this. It states that, if the hoie funtion is injetive,

it is a topologial ordering of the onverse of the graph obtained by oalesing all the

nodes with the same delegate and then omitting self-loops. In fat, this is also true of

the delegate funtion omputed as above. We leave its proof to the reader: remembering

that during exeution of the algorithm ϕ is partial with right domain ϕ>
, identify

and verify an invariant that states that f is a topologial ordering on a subgraph of

ϕ ◦G
∪

◦ϕ
∪ ∩ ¬I .

Algorithmi Graph Theory April 8, 2022

Chapter 11

Depth-First Search

In setion 10.1, we desribed a generi graph-searhing algorithm and onluded with

the laim that depth-�rst searh is an instane of the algorithm whereby unexplored

edges are stored in a stak. The stak-based, iterative implementation was the basis of

Tarjan's [Tar72℄ seminal paper on depth-�rst searh. In this and later setions, we base

the disussion on the (equivalent) reursive formulation of depth-�rst searh ommonly

presented in textbooks (for example, [AHU82, pp.222{226℄). The reason for this hoie

is that \timestamping" events during the searh (see setion 13.1) is easier to present.

On the other hand, reasoning about the reursive algorithm poses new hallenges. The

hallenges ould be overome by transforming the reursive implementation into the

equivalent stak-based iterative algorithm but we hoose to takle them head on. This

setion introdues the basi graph-searhing algorithm as a relatively straightforward

illustration of how to reason about reursion. (Later setions are more ompliated.)

Given a �nite graph G , the following proedure initiates a depth-�rst searh at

seleted nodes of G until all nodes of the graph have been \seen" (denoted by seen).

Nodes are seleted arbitrarily from the set of nodes that have not yet been seen (denoted

by ∼seen).

seen := ∅ ;

while ∼seen 6= ∅ do

begin

hoose node a suh that a∈∼seen

; dfs(a)

end

(We use standard set-theory notation temporarily for reasons of familiarity. Shortly,

we swith to the notation of the point-free alulus.)

Algorithmi Graph Theory 221 April 8, 2022

222

The proedure dfs(a) for exeuting a depth-�rst searh of the nodes reahable from

a is implemented as follows:

seen := seen ∪ {a}

; while there is an edge (a, b) suh that b∈∼seen do

begin

hoose node b suh that (a, b)∈G ∧ b∈∼seen

; dfs(b)

end

To see the onnetion with setion 10.1 note that the riterion for hoosing b is

equivalent to the property

a◦⊤⊤◦b ⊆ seen ◦G ◦∼seen ,

the property that is key to an eÆient implementation of graph searhing. As a onse-

quene, lemma 10.1 will also play an important part in reasoning about the reursive

implementation.

There is a large element of non-determinism in the exeution of depth-�rst searh.

Fig. 11.1 illustrates one partiular exeution sequene. The labels O1 thru O6 are the

nodes that initiate a searh in the outer loop; the numbers indiate the order in whih

they have been hosen. Searhes from the nodes that do not have suh a label are initiated

in the inner loop. The edges (a, b) that are hosen in the inner loop are highlighted.

The pairs of numbers labelling eah node are \timestamps". We disuss the imple-

mentation and properties of these timestamps in detail in setion 13.1. For the moment,

we use them to illustrate some remarks we make. The �rst omponent of suh a pair

gives the \time" at whih the searh from the node is started and the seond omponent

is the \time" at whih the searh is �nished. For example, the searh from the top-left

node (the node labelled O2) is begun at \time" 19 and �nished at \time" 20 ; the searh

from the node labelled O1 is begun at \time" 1 and �nished at \time" 18 . By hasing

the timestamps, it is possible to see whih hoies were made in the partiular exeution

shown in �g. 11.1.

Fig. 11.1 has been designed to illustrate a ouple of points about depth-�rst searh.

First, most aounts of depth-�rst searh emphasise the onstrution of a forest of so-

alled \spanning" trees. In �g. 11.1 only two trees are readily visible: the trees de�ned

by the highlighted edges. Note that the tree with root O1 \spans" a non-trivial strongly

onneted omponent of the graph. That is, the omponent has more than one node

and every node in the omponent is reahable by a path onsisting of tree edges from

O1; however, not all nodes in the tree are strongly onneted. Similarly, the tree with

Algorithmi Graph Theory April 8, 2022

223

O2

O1

2,11

3,8 9,10

4,7

5,6

O4

O3

O5

O6

14,15

13,16

12,17

19,20

1,18

21,22

23,24 26,27

25,28

Figure 11.1: Timestamps

root O5 has two nodes, O5 and O6. Eah of these nodes forms a strongly onneted

omponent but the two nodes are not strongly onneted.

There are three additional trees: eah of the nodes O2, O3 and O4 is the root of a

tree with just one node. Thus, although the subgraph de�ned by the nodes O3, O4, O5

and O6 forms a \spanning" tree in the graph, it is not one of the forest of \spanning"

trees onstruted by this partiular exeution of depth-�rst searh.

The seond point to make about depth-�rst searh is that a all of dfs(a) does

not neessarily \see" all nodes reahable from node a . For example, the node with

timestamp 12 , 17 is reahable from the node with timestamp 2 , 11 but, as indiated by

the fat that 11<12 , the searh from the node with timestamp 2 , 11 is ended before

the searh from the node with timestamp 12 , 17 begins.

In the next setion, we formulate preisely what is meant by the informal statement

that depth-�rst searh is a graph-searhing algorithm. Essentially, we show that (the

Algorithmi Graph Theory April 8, 2022

224

reursive implementation of) depth-�rst searh is an instane of repeated graph searh

(see setion 10.2). But we do more than this. We formulate preisely the di�erenes

in properties of alls of dfs in the outer and inner loops as well as the properties that

are ommon to both. An important step in the analysis is to show that the proedure

dfs implements a funtion mapping a set of nodes to a set of nodes. This is done in

setion 11.3 following whih properties of the inner and outer loops are formally veri�ed

in setions 11.4 and 11.5. Setion 11.1 formulates these properties (without proof) whilst

setion 11.2 formulates preisely the (relational) semantis of the proedure dfs that we

assume in the formal veri�ations.

The �nal setion serves as an introdution to our later disussion of applying depth-

�rst searh to the alulation of strongly onneted omponents. We show that, although

a all of dfs(b) in the inner loop does not \see" all the nodes that an be reahed from

b |inluding nodes that an be reahed from b by paths along edges that have not

already been \seen"| it is the ase that all alls of dfs , whether from the outer or inner

loops, \see" every strongly onneted omponent of the input graph either in its entirety

or not at all; in other words, alls of dfs never \see" a non-empty, proper subset of the

nodes of a strongly onneted omponent of the graph.

11.1 Properties of Depth-First Search

As illustrated by �g. 11.1, a all of the proedure dfs does not always \see" all the nodes

that are reahable from a given node. This laim is, however, true of the searhes that are

initiated in the outer loop. Just as for the generi repeated-graph-searh algorithm that

we analysed in setion 10.2, the funtion of a all of the proedure dfs(a) , in general, is

to �nd all the nodes that are reahable from a along edges that have not already been

\seen". We make this preise in this setion.

There are several elements to this laim. One is that the proedure dfs is always

guaranteed to terminate (provided the graph is �nite). The seond is an assertion about

the relation between the variable seen and the nodes reahable from a node in seen .

We shall prove that the property

(seen ◦G∗)> = seen(11.1)

is an invariant of the outer loop. In words, before and after eah iteration of the outer

loop, seen is losed under reahability in the graph G . In general, we shall prove that

dfs(a) implements the funtion D.a given by, for all oreexives s and nodes a ,

D.a.s = s ∪ (a ◦ (G ◦∼s)∗)> .(11.2)

Algorithmi Graph Theory April 8, 2022

225

This fat is ritial to reasoning about depth-�rst searh beause it means that a all of

dfs(a) is equivalent to the assignment statement

seen := seen ∪ (a ◦ (G ◦∼seen)∗)> .(11.3)

The diÆulty posed by the reursion has thus been onquered: subsequent reasoning an

use straightforward and well-known tehniques for reasoning about iterative programs.

(The diÆulties of reursion will, however, reappear when we onsider timestamps.)

We introdue the relations GE and GT on sets of nodes, de�ned by

s1[[GE]]s0 ≡ s1⊇ s0 , and

s1[[GT]]s0 ≡ s1⊇ s0 ∧ s1 6= s0 .

The name \GE " is just another name for the ontainment relation (\⊇ ") on sets of

nodes, whih is reexive and transitive. That is,

INode ⊆ GE ∧ GE ◦GE ⊆ GE .(11.4)

We introdue a new name beause, otherwise, the overloading of notation in (11.4) and

similar statements ould be onfusing. We ontinue to use the familiar mathematial

symbol where no onfusion an our. See, for example, the use of the \⊆ " symbol

in (11.7) below. (Another way of resolving the problem is to adorn all ourrenes

of relations like the subset relation with their type, but that would introdue a lot of

unneessary noise in the formulae.)

Similarly, the name \GT " denotes \proper" ontainment. It is thus transitive (but

not reexive) and GE is the reexive losure of GT . That is,

GT ∗ = ISetOfNode ∪GT = GE .(11.5)

Beause equiv.G⊆G∗
, it is straightforward to show that (11.1) implies

(seen ◦ equiv.G)> = seen .(11.6)

Given that (11.1) is an invariant of the outer loop, we see from (11.6) that strongly

onneted omponents are added to seen as a whole and not in parts by alls of dfs

initiated in the outer loop. (A formal proof of this laim is given in orollary 11.25.)

More signi�ant, however, is what happens when dfs is alled from the inner loop. We

show that the strongly onneted omponent p ontaining node a is added to seen by

a all of dfs(a) if a is the �rst node in p to be added to seen . See theorem 11.24.

As remarked earlier, (11.1) is not an invariant of the inner loop. So we are obliged to

seek a relation that is an invariant of both the inner and outer loops and whose invariane

implies (11.1) in the outer loop. The appropriate relation is suggested by lemma 10.1.

Algorithmi Graph Theory April 8, 2022

226

The term seen ◦G ◦∼seen represents a subset of the set of edges of the graph G : the

edges at the \frontier" of the searh. To emphasise the importane of the frontier edges,

we introdue the funtion Fr of type

(SetOfNode∼SetOfNode) ← SetOfNode

de�ned by

Fr.s = s ◦G ◦∼s .(11.7)

We show that the subset relation on frontier edges is an invariant of the proedure dfs .

To be preise, we show that the relation Fr
∪

◦ (⊆) ◦Fr of type SetOfNode∼SetOfNode

de�ned by

s1[[Fr
∪

◦ (⊆) ◦Fr]]s0 ≡ s1 ◦G ◦∼s1 ⊆ s0 ◦G ◦∼s0(11.8)

is an invariant relation of the proedure dfs .

Similarly, as remarked earlier, alls of dfs(b) in the inner loop do not \see" all the

nodes that an be reahed from node b along edges that have not already been \seen".

However, this is the ase for alls of dfs(a) . This is formalised by introduing two

relations of type SetOfNode∼SetOfNode . The relation New where

s1[[New]]s0 ≡ s1 = s0 ∪ (s1 ◦∼s0 ◦ (G ◦∼s0)∗)>

is an invariant of the outer loop whereas the weaker relation NR , where

s1[[NR]]s0 ≡ s1 ◦∼s0 ⊆ (∼s0 ◦ (G ◦∼s0)∗)> ,

is an invariant of the inner loop.

The invariants of the outer and inner loops are doumented in �gs. 11.2 and 11.3.

(The meaning of D.a being an invariant value of the inner loop will be disussed in

detail later.) The remainder of this setion is about formally verifying the assertions

made in these �gures.

We invite the reader to ompare �g. 11.2 with �g. 10.1. When doing so, a warning

is in order: the repeated searh shown in �g. 10.1 is about searhing G
∪

, not G as

in �g. 11.2. So omparisons may be onfusing. (The reason for this di�erene is that

the alulation of strongly onneted omponents has two phases. In the �rst phase, a

depth-�rst searh of the graph G is used to onstrut a funtion f ; in the seond phase,

the funtion f is used by the delegate algorithm in a searh of G
∪

; the output funtion

ϕ assigns to eah strongly onneted omponent of the graph a representative element

of the omponent.)

Apart from this di�erene, the two algorithms still look very di�erent. However,

supposing the hoie funtion f used in �g. 10.1 is a onstant funtion, all mention of

Algorithmi Graph Theory April 8, 2022

227

seen := ⊥⊥ ;

{ Invariant Relation: New :: (SetOfNode∼SetOfNode)

where s1[[New]]s0 ≡ s1 = s0 ∪ (s1 ◦∼s0 ◦ (G ◦∼s0)∗)>

Invariant Property: Fr.seen=⊥⊥ ∧ (seen ◦G∗)> = seen

where Fr.s = s ◦G ◦∼s

Invariant Property: 〈∀p : scc.p : p◦seen=⊥⊥ ∨ p◦seen=p〉

where scc.p means p is a strongly onneted omponent of G }

while seen 6= INode do

begin

hoose node a suh that a◦seen=⊥⊥

; { a ◦∼seen = a }

/∗ dfs(a) implements the funtion D.a ∗/

/∗ where D.a.s = s ∪ (a ◦ (G ◦∼s)∗)> . ∗/

/∗ So it is equal to the assignment seen := D.a.seen . ∗/

dfs(a)

end

Figure 11.2: Invariants of the Outer Loop

it an be elided. Also, ignore assignments to ϕ . Then, in �g. 11.2, the assignment to

seen is

seen := seen ∪ (a ◦ (G ◦∼seen)∗)>

whereas in �g. 10.1, it is

seen := seen ∪ ∼seen ◦ (G∗
◦a)< .

Lemma 10.18 states that the latter assignment is equivalent to the assignment

seen := seen ∪ ((∼seen ◦G)∗ ◦a)<

whih, using distributivity properties of onverse, is the same as

seen := seen ∪ (a ◦ (G
∪

◦∼seen)∗)> .

Algorithmi Graph Theory April 8, 2022

228

{ a ◦∼seen = a }

{ Invariant Relation:

(Fr∪ ◦ (⊆) ◦Fr ∩ NR) :: (SetOfNode∼SetOfNode)

where Fr.s = s ◦G ◦∼s

and s1[[NR]]s0 ≡ s1⊇ s0 ∧ s1 ◦∼s0 ⊆ (∼s0 ◦ (G ◦∼s0)∗)> .

Invariant Value: D.a

where D.a.s = s ∪ (a ◦ (G ◦∼s)∗)> .

Invariant Property: 〈∀p : scc.p : p◦seen=⊥⊥ ∨ p◦seen=p〉

where scc.p means p is a strongly onneted omponent of G }

seen := seen ∪ a

{ a◦seen = a }

; { Invariant Property:

〈∀p : scc.p ∧ p 6=(a ◦ equiv.G)> : p◦seen=⊥⊥ ∨ p◦seen=p〉 }

while a ◦G ◦∼seen 6= ⊥⊥ do

begin

hoose node b suh that a◦⊤⊤◦b ⊆ a ◦G ◦∼seen

; { b ◦∼seen = b }

dfs(b)

end

{ Input/Output Relation: D.a ∩ Fr
∪

◦ (⊆) ◦ Fr ∩ NR }

Figure 11.3: Invariants of the Proedure dfs

So, in the ase that the hoie funtion f is a onstant funtion, the two algorithms

are the same exept for the replaement of G by G
∪

. By showing that dfs(a) im-

plements the funtion D.a we e�etively show that depth-�rst searh is an instane of

the generi repeated graph searh algorithm presented in setion 10.2. Consequently, we

may instantiate properties of repeated graph searh proved in setion 10.2.

Algorithmi Graph Theory April 8, 2022

229

11.2 Semantics of the Basic Procedure

In order to reason formally about the searh proedure, we have to formalise its semantis.

Chapter 6 explained the semantis of the basi programming onstruts (assignment

statements, sequential omposition, et.) but stopped short of explaining the semantis

of reursion.

Let us write DFS.a for the semantis of dfs(a) . This is a ombination of the

semantis of the omponent statements in its implementation (as disussed in setion 6)

and the \equation" between the text \dfs(a) " and its implementation.

Let pre.a denote the oreexive representing the assertion a ◦∼seen = a and let

S.a denote [[seen := seen ∪ a]] .

The semantis of the inner while statement is learly dependent on the parameter

a ; it also depends on DFS.b (the meaning of the all of dfs(b) in its body). In order

to formulate the semantis more preisely, we abstrat from DFS and let W.d.a denote

the semantis of the while loop when the semantis of dfs(b) is generalised to d.b for

some funtion d of type

(SetOfNode∼SetOfNode)←Node .

Then we de�ne the semantis of dfs to be a least �xed point:

DFS = 〈µd :: 〈a :: W.d.a ◦S.a〉〉 .(11.9)

In words, DFS is the least �xed point of the funtion that maps a funtion d of ap-

propriate type into a funtion that maps node a into (the relation) W.d.a ◦S.a . Let

_⊆ denote the pointwise ordering on funtions from nodes to relations. That is, for all

nodes a and all funtions f and g mapping nodes to relations

f _⊆g ≡ 〈∀a :: f.a⊆g.a〉 .

Similarly, we extend omposition of relations to funtions from nodes to relations. Speif-

ially, if funtions f and g map nodes to relations, we de�ne f_◦g by

f_◦g = 〈a :: f.a ◦g.a〉 .

Using this notation, we an rewrite de�nition (11.9) as:

DFS = 〈µd :: W.d _◦S〉 .(11.10)

Reall that S.a is the meaning of the assignment statement that adds a to seen.

(Another notation for it would be (∪a).) The funtion W gives the meaning of the

inner while statement after abstrating from the all of dfs . That is,

W.d.a = t.a ◦ (〈∪b :: d.b ◦C.b.a〉 ◦ ∼t.a)∗(11.11)

Algorithmi Graph Theory April 8, 2022

230

where, for all a and b , C.b.a is the riterion for hoosing b given a in the urrent

state and t.a is the ondition for terminating the while statement.

An important �rst step in our veri�ation of our \obvious" property of depth-�rst

searh is to inorporate the preondition on alls of dfs into the �xed-point de�ni-

tion of DFS . Reall that pre.a denotes the oreexive representing the assertion

a ◦∼seen = a . Then we have:

Lemma 11.12

DFS _◦pre = 〈µd :: W.d _◦S _◦pre〉

Proof We use �xed-point fusion. See theorem 2.43. Reall that omposition of relations

is the lower adjoint in a Galois onnetion |spei�ally (4.6)| it is easily proved that

the lifted omposition (_

◦pre) is also the lower adjoint in a Galois onnetion. Thus we

an alulate as follows:

DFS _◦pre = 〈µd :: W.d _◦S _◦pre〉

= { de�nition (11.10) of DFS }

〈µd :: W.d _◦S〉 _◦pre = 〈µd :: W.d _◦S _◦pre〉

⇐ { �xed-point fusion: theorem 2.43 }

〈∀d :: W.d _◦S _◦pre = W.(d_◦pre) _◦S _◦pre〉

⇐ { Leibniz }

〈∀d :: W.d = W.(d_◦pre)〉 .

Continuing with the left side of the equality, we have, for all d and all a ,

W.d.a

= { (11.11) }

t.a ◦ (〈∪b :: d.b ◦C.b.a〉 ◦ ∼t.a)∗

= { C.b.a is a oreexive representing the state

a◦⊤⊤◦b ⊆ seen ◦G ◦∼seen

thus b⊆∼seen , i.e. pre.b ◦C.b.a = C.b.a }

t.a ◦ (〈∪b :: d.b ◦pre.b ◦C.b.a〉 ◦ ∼t.a)∗

= { de�nition of lifted omposition }

t.a ◦ (〈∪b :: (d_◦pre).b ◦C.b.a〉 ◦ ∼t.a)∗

= { de�nition (11.11) of W }

W.(d_◦pre).a .

Algorithmi Graph Theory April 8, 2022

231

Combining the two alulations ompletes the proof.

✷

11.3 The Function of a Depth-First Search

Our goal in this setion is to prove that, for eah node a , the proedure dfs(a) imple-

ments the funtion D.a of type SetOfNode←SetOfNode de�ned by equation (11.2).

Theorem 11.13 is the theorem that we desribed earlier as being ruial to under-

standing depth-�rst searh. Lemma 11.12 gives a relational semantis to depth-�rst

searh but theorem 11.13 shows that it is, in fat, a funtion from sets of nodes to sets

of nodes. Thus, in spite of the unlimited nondeterminism in the hoie of nodes in the

inner loop, the outome is always the same.

The proof of theorem 11.13 is unusual beause we are obliged to swith from the point-

free formulation of the relational semantis to pointwise reasoning about sets of nodes.

Sine point-free reasoning is less well-known, we begin the proof with the equivalent

pointwise rendition of the argument used whih we hope will make it more aessible.

Theorem 11.13 The proedure dfs(a) implements the funtion D.a , where

D.a.s = s ∪ (a ◦ (G ◦∼s)∗)> .

That is, with preondition pre.a de�ned to be the oreexive representing the set of

states s suh that

s◦a=⊥⊥ ,

then

DFS.a ◦pre.a = D.a ◦pre.a .

Proof Realling lemma 11.12, whih gives the semantis DFS.a of the proedure

dfs(a) , our task is to prove that, for all a ,

〈µd :: W.d _◦S _◦pre〉 = D _

◦pre .

The ourrene of a least �xed point on the left side of the equation immediately suggests

the use of �xed-point indution. Now, D.a is a total funtion, and to prove that a

relation R is equal to a funtion f restrited to some right domain p , it suÆes to prove

that the right domain of R is p and R is a subset of f . (We leave the straightforward

veri�ation of this laim to the reader.) That is, we have to prove that

〈µd :: W.d _◦S _◦pre〉 _⊆ D

Algorithmi Graph Theory April 8, 2022

232

and

〈∀a :: (〈µd :: W.d _◦S _◦pre〉.a)> = pre.a〉 .

The proof of the seond property is muh more straightforward than it might look at �rst

sight. It is in fat a use of �xed-point fusion: the \apply to a " funtion (\(.a)") and

the right domain operator are both lower adjoints in Galois onnetions of appropriate

type, and W.d.a and S.a are both total funtions. It follows that ((W.d _◦S _◦pre).a)>

equals pre.a , for all d , and hene its least �xed point is also pre.a , as required.

The proof of the inequation is more demanding. The basis of the proof is summarised

in the annotations added to dfs(a) in the text below.

{ a ◦∼seen = a ∧ seen= s0 }

seen := seen ∪ a

; { Invariant Property: a◦seen=a

Invariant Value: D.a }

while a ◦G ◦∼seen 6= ⊥⊥ do

begin

hoose node b suh that a◦⊤⊤◦b ⊆ a ◦G ◦∼seen

; { b ◦∼seen = b }

dfs(b)

end

{ a◦seen=a ∧ D.a.seen=D.a.s0 ∧ a ◦G ◦∼seen = ⊥⊥ }

{ seen=D.a.s0 }

Note the preondition seen= s0 and the postondition seen=D.a.s0 . The introdu-

tion of the auxiliary variable s0 in this preondition-postondition pair is a familiar

pointwise mehanism for expressing the relation between the input value, s0 , of seen

and its output value.

The laim is that a◦seen=a is an invariant property and D.a is an invariant value

of the while statement. In point-free terms, their ombination is an intersetion of

relations. The property a◦seen=a is represented by the oreexive relation q.a where,

for all s0 and s,

s ′[[q.a]]s ≡ a◦s=a ∧ s ′= s .(11.14)

The invariane of the value D.a is expressed by the relation (D.a)∪ ◦D.a and their

onjuntion is the relation

q.a ◦⊤⊤ ∩ (D.a)
∪

◦D.a .

Algorithmi Graph Theory April 8, 2022

233

(Equivalently, this is q.a ◦ (D.a)∪ ◦D.a . However, expressing it as an intersetion allows

a simple deomposition of the proof obligations.) The annotation asserts that both

relations are truthi�ed by the initial assignment S.a and maintained by the while

statement W.D.a . On termination, the ombination of the invariant and termination

ondition imply that the �nal value of seen is the result of applying the funtion D.a

to its initial value. Formally, we have:

〈µd :: W.d _◦S _◦pre〉 _⊆ D

⇐ { �xed-point indution }

W.D _

◦S _◦pre _⊆ D

= { de�nition of pointwise operators }

〈∀a :: W.D.a ◦S.a ◦pre.a ⊆ D.a〉 .

Now, for all a ,

W.D.a ◦S.a ◦pre.a ⊆ D.a

⇐ { prelude to introduing invariant

D.a is a funtion, so D.a ◦ (D.a)∪ ⊆ I }

W.D.a ◦S.a ◦pre.a ⊆ D.a ◦ (D.a)∪ ◦D.a

⇐ { introdue invariant q.a ◦⊤⊤ ∩ (D.a)∪ ◦D.a

monotoniity of omposition }

S.a ◦pre.a ⊆ q.a ◦⊤⊤

∧ S.a ◦pre.a ⊆ (D.a)∪ ◦D.a

∧ W.D.a ◦q.a ⊆ D.a

⇐ { W.D.a = t.a ◦ (〈∪b :: D.b ◦C.b.a〉 ◦ ∼t.a)∗

monotoniity of omposition }

S.a ◦pre.a ⊆ q.a ◦⊤⊤

∧ S.a ◦pre.a ⊆ (D.a)∪ ◦D.a

∧ (〈∪b :: D.b ◦C.b.a〉 ◦ ∼t.a)∗ ◦q.a ⊆ q.a ◦⊤⊤

∧ (〈∪b :: D.b ◦C.b.a〉 ◦ ∼t.a)∗ ⊆ (D.a)∪ ◦D.a

∧ t.a ◦q.a ◦ (D.a)∪ ◦D.a ⊆ D.a .

Noting that

Algorithmi Graph Theory April 8, 2022

234

(〈∪b :: D.b ◦C.b.a〉 ◦ ∼t.a)∗ ⊆ (D.a)∪ ◦D.a

⇐ { �xed-point indution }

I ⊆ (D.a)∪ ◦D.a

∧ (D.a)∪ ◦D.a ◦ (〈∪b :: D.b ◦C.b.a〉 ◦ ∼t.a) ⊆ (D.a)∪ ◦D.a

⇐ { �rst onjunt: D.a is a total funtion;

seond onjunt: monotoniity, distributivity }

〈∀b :: D.a ◦ D.b ◦ C.b.a ◦ ∼t.a ⊆ D.a〉 ,

we have derived from the formal semantis of DFS.a �ve veri�ation onditions. Two

establish q.a as a postondition, one of S.a :

〈∀a :: S.a ◦pre.a ⊆ q.a ◦⊤⊤〉

and one of the while statement:

〈∀a :: (〈∪b :: D.b ◦C.b.a〉 ◦ ∼t.a)∗ ◦q.a ⊆ q.a ◦⊤⊤〉 .

Three veri�ation onditions are properties of D : the veri�ation ondition for the

initial assignment:

〈

∀a :: S.a ◦pre.a ⊆ (D.a)
∪

◦D.a
〉

,

the veri�ation ondition for the body of the loop:

〈∀a,b :: D.a ◦ D.b ◦ C.b.a ◦ ∼t.a ⊆ D.a〉 ,

and the veri�ation ondition for termination of the loop:

〈

∀a :: t.a ◦q.a ◦ (D.a)
∪

◦D.a ⊆ D.a
〉

.

Realling (11.14) |the de�nition of q.a| it is obvious that the �rst property is valid.

The seond property is less obvious but involves a straightforward appliation of the

fusion theorem and the property that s⊆D.b.s for all s ; we omit the details. We

omplete the proof by translating the �nal three point-free properties of relations into

pointwise boolean onditions relating suessive states of the program variable seen .

This is done in lemmas 11.15, 11.16 and 11.17 below.

✷

Lemma 11.15 Suppose a is a node and s is a oreexive representing a set of nodes.

Then

s◦a=⊥⊥ ⇒ D.a.s = D.a.(s∪a) .

Algorithmi Graph Theory April 8, 2022

235

Proof

D.a.s = D.a.(s∪a)

= { anti-symmetry }

D.a.s ⊆ D.a.(s∪a) ∧ D.a.(s∪a) ⊆ D.a.s

= { de�nition of D (see (11.2)) and distributivity }

s ⊆ D.a.(s∪a)

∧ (a ◦ (G ◦∼s)∗)> ⊆ D.a.(s∪a)

∧ s∪a ⊆ D.a.s

∧ (a ◦ (G ◦∼(s∪a))∗)> ⊆ D.a.s .

With the exeption of the seond, it is easily heked that eah of these onjunts is

true . The seond onjunt is where the ondition s◦a=⊥⊥ is needed:

(a ◦ (G ◦∼s)∗)> ⊆ D.a.(s∪a)

⇐ { de�nition of D , distributivity }

(a ◦ (G ◦∼s)∗)> ⊆ (a ◦ (G ◦∼s ◦∼a)∗)>

⇐ { �xed-point fusion }

a ⊆ (a ◦ (G ◦∼s ◦∼a)∗)>

∧ ((a ◦ (G ◦∼s ◦∼a)∗)> ◦G ◦∼s)> ⊆ (a ◦ (G ◦∼s ◦∼a)∗)>

= { �rst onjunt is true sine I⊆ (G ◦∼s ◦∼a)∗ ;

domains }

(a ◦ (G ◦∼s ◦∼a)∗ ◦G ◦∼s)> ⊆ (a ◦ (G ◦∼s ◦∼a)∗)>

= { assumption: s◦a=⊥⊥ , hene ∼s = ∼s ◦∼a ∪ a

distributivity }

(a ◦ (G ◦∼s ◦∼a)∗ ◦G ◦a)> ⊆ (a ◦ (G ◦∼s ◦∼a)∗)>

∧ (a ◦ (G ◦∼s ◦∼a)∗ ◦G ◦∼s ◦∼a)> ⊆ (a ◦ (G ◦∼s ◦∼a)∗)>

= { �rst onjunt: a is a node, so (a◦R◦a)>⊆a , for all R ,

a ⊆ (a ◦ (G ◦∼s ◦∼a)∗)>

seond onjunt: de�nition of

∗ }

true .

✷

Algorithmi Graph Theory April 8, 2022

236

Lemma 11.16 Suppose a and b are nodes and s is a oreexive. Then

s◦b=⊥⊥ ∧ a◦G◦b=a◦⊤⊤◦b ⇒ D.a.(D.b.s) ⊆ D.a.s .

Proof We have:

D.a.(D.b.s) ⊆ D.a.s

= { de�nition of D and set union }

D.b.s ⊆ D.a.s ∧ (a ◦ (G ◦∼(D.b.s))∗)> ⊆ D.a.s .

We onsider the onjunts in order. First,

D.b.s

= { de�nition }

s ∪ (b ◦ (G ◦∼s)∗)>

= { assumption: a◦G◦b=a◦⊤⊤◦b , so (a◦G◦b)>=b , domains }

s ∪ (a ◦G ◦b ◦ (G ◦∼s)∗)>

⊆ { assumption: s◦b=⊥⊥ , so b⊆∼s }

s ∪ (a ◦G ◦∼s ◦ (G ◦∼s)∗)>

⊆ { [R ◦R∗ ⊆ R∗] with R := G ◦∼s }

s ∪ (a ◦ (G ◦∼s)∗)>

= { de�nition }

D.a.s .

Seond,

(a ◦ (G ◦∼(D.b.s))∗)> ⊆ D.a.s

⇐ { de�nition, monotoniity }

∼(D.b.s) ⊆ ∼s

= { anti-monotoniity of omplementation }

s ⊆ D.b.s

= { de�nition, set union }

true .

✷

Algorithmi Graph Theory April 8, 2022

237

Lemma 11.17 Suppose a is a node and s and s0 are oreexives representing sets

of nodes. Then

a ◦G ◦∼s = ⊥⊥ ∧ a◦s=a ∧ D.a.s=D.a.s0 ⇒ s = D.a.s0 .

Proof

D.a.s0

= { assumption: D.a.s=D.a.s0 }

D.a.s

= { de�nition }

s∪ (a ◦ (G ◦∼s)∗)>

= { a ◦ (G ◦∼s)∗ = a ∪ a ◦G ◦∼s ◦ (G ◦∼s)∗

assumption: a ◦G ◦∼s = ⊥⊥ }

s∪a>

= { a is a node, so a>=a

assumption: a◦s=a }

s .

✷

11.4 Properties of the Inner Loop

A onsequene of theorem 11.13 is that GE is an invariant of the inner loop and dfs(a)

satis�es the relation GT . Although requiring formal proof, and used extensively below,

these are obvious properties. This setion is about less obvious properties.

From the de�nition of D.a.s , it is lear that no new frontier edges are added by a

all of dfs(a) . This is made preise in lemma 11.18. An important orollary is the laim

that (11.1) is an invariant of the outer loop.

Lemma 11.18 A depth-�rst searh redues the set of frontier edges. That is, for all

a , s and G ,

D.a.s ◦G ◦∼(D.a.s) ⊆ s ◦G ◦∼s .

Proof

D.a.s ◦G ◦∼(D.a.s) ⊆ s ◦G ◦∼s

Algorithmi Graph Theory April 8, 2022

238

= { de�nition, omplements and set union }

s ◦G ◦∼(D.a.s) ⊆ s ◦G ◦∼s

∧ (a ◦ (G ◦∼s)∗)> ◦G ◦∼s ◦ (a ◦ (G ◦∼s)∗)>• ⊆ s ◦G ◦∼s

⇐ { s⊆D.a.s , so ∼(D.a.s)⊆∼s , monotoniity;

⊥⊥ ⊆ s ◦G ◦∼s , transitivity }

(a ◦ (G ◦∼s)∗)> ◦G ◦∼s ◦ (a ◦ (G ◦∼s)∗)>• ⊆ ⊥⊥

⇐ { domains }

a ◦ (G ◦∼s)∗ ◦G ◦∼s ◦ (a ◦ (G ◦∼s)∗)>• ⊆ ⊥⊥

= { (G ◦∼s)∗ ◦G ◦∼s ⊆ (G ◦∼s)∗

de�nition of omplemented right domain }

true .

✷

It is useful to also observe that the nodes \newly" reahed by a all of the proedure

are onneted by paths between previously unreahed nodes. That is, we introdue the

relation NR of type SetOfNode∼SetOfNode and de�ned by

s1[[NR]]s0 ≡ s1⊇ s0 ∧ s1 ◦∼s0 ⊆ (∼s0 ◦ (G ◦∼s0)∗)>(11.19)

and show that it is an invariant relation of the proedure dfs .

Lemma 11.20 The relation NR is an invariant of the inner loop.

Proof The veri�ation ondition is: for all s0 , s1 and s2 ,

s2 ◦∼s0 ⊆ (∼s0 ◦ (G ◦∼s0)∗)>

⇐ s1 ◦∼s0 ⊆ (∼s0 ◦ (G ◦∼s0)∗)> ∧ s2=D.b.s1 ∧ b◦s1=⊥⊥ ∧ s0⊆ s1

This we prove as follows.

s2 ◦∼s0 ⊆ (∼s0 ◦ (G ◦∼s0)∗)>

= { assumption: s2=D.b.s1 }

(s1 ∪ (b ◦ (G ◦∼s1)∗)>) ◦∼s0 ⊆ (∼s0 ◦ (G ◦∼s0)∗)>

⇐ { distributivity,

assumption: s1 ◦∼s0 ⊆ (∼s0 ◦ (G ◦∼s0)∗)> }

(b ◦ (G ◦∼s1)∗)> ◦∼s0 ⊆ (∼s0 ◦ (G ◦∼s0)∗)>

⇐ { assumption: b◦s1=⊥⊥ , i.e. b⊆∼s1 , monotoniity }

Algorithmi Graph Theory April 8, 2022

239

(∼s1 ◦ (G ◦∼s1)∗)> ◦∼s0 ⊆ (∼s0 ◦ (G ◦∼s0)∗)>

= { s0⊆ s1 , i.e. ∼s1⊆∼s0 and monotoniity }

∼s0⊆ I

= { ∼s0 is a oreexive }

true .
✷

11.5 Properties of the Outer Loop

Theorem 11.13 has important onsequenes for reasoning about depth-�rst searh. Ef-

fetively, it says that the all of the proedure dfs(a) is equal to the assignment

seen := seen ∪ (a ◦ (G ◦∼seen)∗)> .

This setion is about its onsequenes for the outer loop. We show, for example, that

(11.1) is an invariant of the outer loop. (Reall that (11.1) is not an invariant of the

inner loop.)

Corollary 11.21 The property (11.1) is an invariant of the outer loop.

Proof Clearly the property

seen ◦G ◦∼seen = ⊥⊥(11.22)

is truthi�ed by the initial assignment seen := ⊥⊥ . Sine ⊥⊥ is the least element in the

subset ordering of relations, and eah all of dfs(a) has the e�et of assigning D.a.seen

to seen , it follows from lemma 11.18 that (11.22) is an invariant of the outer loop.

Consequently, by lemma 10.1 (with R,p :=G,seen), property (11.1) is also an invariant

of the outer loop.

✷

The relation NR only establishes an upper bound on newly reahed nodes. In the

outer loop, the relation an be sharpened from a ontainment to an equality. This is

ahieved by exploiting the property (11.1).

Lemma 11.23

〈∀ s1,s0

: s1 [[GE∩NR]] s0 ∧ (s1 ◦G∗)> = s1

: s1 = s0 ∪ (s1 ◦∼s0 ◦ (G ◦∼s0)∗)>

〉

Algorithmi Graph Theory April 8, 2022

240

In words, eah iteration of the outer loop \loses" seen under reahability by edges

onneting previously unseen nodes.

Proof

s1 = s0 ∪ (s1 ◦∼s0 ◦ (G ◦∼s0)∗)>

= { antisymmetry of the subset relation

assumption: s1 [[NR]] s0 and shunting (2.27) }

s1 ⊇ s0∪ (s1 ◦∼s0 ◦ (G ◦∼s0)∗)>

= { assumption: s1 [[GE]] s0 (i.e. s1⊇ s0) }

s1 ⊇ (s1 ◦∼s0 ◦ (G ◦∼s0)∗)>

= { assumption: (s1 ◦G∗)> = s1 }

(s1 ◦G∗)> ⊇ (s1 ◦∼s0 ◦ (G ◦∼s0)∗)>

= { ∼s0⊆ I , monotoniity }

true .

✷

11.6 Strongly Connected Components

We onlude this setion with the theorem on strongly onneted omponents announed

earlier: eah strongly onneted omponent is added in its entirety within a single all

of dfs .

Theorem 11.24 Suppose a and b are nodes and p is the oreexive representing

the strongly onneted omponent ontaining b . That is, suppose p=(b ◦ equiv.G)> .

Then, if dfs(a) is exeuted with preondition p◦seen=⊥⊥ , and it terminates with

postondition b◦seen=b , it will terminate with postondition p◦seen=p .

Proof Suppose p=(b ◦ equiv.G)> and suppose s1 and s0 satisfy the relation GT ∩NR ;

furthermore, suppose p◦s0=⊥⊥ (the assumed preondition for exeuting dfs(a)) and

b◦s1=b (the assumed postondition of dfs(a)). We prove that p◦s1=p .

p◦s1=p

= { oreexives }

p⊆ s1

= { assume: s1 [[GT ∩NR]] s0 , lemma 11.23 }

Algorithmi Graph Theory April 8, 2022

241

p ⊆ s0 ∪ (s1 ◦∼s0 ◦ (G ◦∼s0)∗)>

⇐ { assumption: p◦s0=⊥⊥ , i.e. p⊆∼s0);

assumption: b◦s1=b }

p ⊆ (b ◦p ◦ (G◦p)∗)>

= { absolute onnetivity: lemma 9.19 }

p ⊆ (b ◦p ◦G∗
◦p)>

⇐ { b◦p=b ; equiv.G⊆G∗ }

p ⊆ (b ◦ equiv.G ◦p)>

⇐ { p = (b ◦ equiv.G)> , domains }

true .

✷

Corollary 11.25 An invariant property of the inner loop is

〈∀p : scc.p ∧ p 6=(a ◦ equiv.G)> : p◦seen=⊥⊥ ∨ p◦seen=p〉(11.26)

where scc.p is the property that p is a oreexive representing a strongly onneted

omponent of the graph G . An invariant property of the outer loop is

〈∀p : scc.p : p◦seen=⊥⊥ ∨ p◦seen=p〉 .(11.27)

Proof The property (11.27) is learly truthi�ed by the initialisation seen :=⊥⊥ in the

outer loop. Then, assuming that (11.27) is a preondition of a all of dfs(a) , (11.26)

remains true after the initialisation

seen := seen∪a .

(It is at this point that it beomes lear why the ase

p = (a ◦ equiv.G)>

is exluded from the universal quanti�ation.) The invariane of the property (11.26)

under exeution of dfs(b) in the inner loop is then immediate from theorem 11.24.

In the outer loop, (11.27) is a onsequene of (11.6). Spei�ally, suppose p is

a oreexive representing a strongly onneted omponent of G . Suppose also that

p◦seen 6=⊥⊥ . Then, with dummy a ranging over nodes of G , we have:

p◦seen 6=⊥⊥

= { theorem 9.24 }

Algorithmi Graph Theory April 8, 2022

242

〈∃a : p=(a ◦ equiv.G)< : seen◦a=a〉

⇒ { Leibniz }

〈∃a : p=(a ◦ equiv.G)< : (seen ◦a ◦ equiv.G)> = (a ◦ equiv.G)>〉

= { seen and a are oreexives, so seen◦a=a◦seen }

〈∃a : p=(a ◦ equiv.G)< : (a ◦ seen ◦ equiv.G)> = p〉

= { (11.6) and domains }

〈∃a : p=(a ◦ equiv.G)< : (a ◦ seen ◦ equiv.G ◦ seen)> = p〉

⇒ { domains [seen⊇ (R◦seen)>] with R := a ◦ seen ◦ equiv.G }

〈∃a : p=(a ◦ equiv.G)< : seen⊇p〉

= { oreexives and theorem 9.24 }

p◦seen=p .

✷

Corollary 11.25 antiipates the use of depth-�rst searh in onstruting strongly on-

neted omponents. As representative element of eah strongly onneted omponent,

one hooses the �rst node in the omponent that is \seen" by a depth-�rst searh. Tarjan

[Tar72℄, Sharir [Sha81℄ and Aho, Hoproft and Ullman [AHU82℄ all the representative of

a strongly onneted omponent the \root" of the omponent, whilst Cormen, Leiserson

and Rivest [CLR90, p.482℄ all it the \forefather" of the omponent. (In a later edition,

Cormen, Leiserson, Rivest and Stein [CLRS09, p.619℄ have elided the expliit disussion

of the \forefather" of the ompenent; impliitly, they also all the representative the

\root".) The problem is to identify whih nodes are \roots". This problem is solved

in setion 13. The solution involves \timestamping" searhes with both start and �nish

\times". The addition of �nish \times" means that we have to extend the semantis of

depth-�rst searh to inlude the e�et of adding an assignment statement at the end of

eah all of the proedure dfs . This is the topi of the next setion.

Fig. 11.3 douments the properties we have established of the proedure dfs(a) .

Algorithmi Graph Theory April 8, 2022

Chapter 12

An Induction Theorem for
Depth-First Search

The primary purpose of this setion is to formulate a general rule for reasoning about

di�erent implementations of depth-�rst searh. See theorem 12.5. Several hoies are

made in formulating the rule. In order to motivate the hoies, we show how to sharpen

the reahability property of depth-�rst searh; we also establish a property that is the

basis of a ruial lassi�ation of the edges following a depth-�rst searh of a graph.

Spei�ally, in setion 12.3, we show that whenever a all of dfs(a) is exeuted, for

some node a , the node a is reahable from all nodes from whih the searh has started

but not �nished; moreover, there are no edges in the graph from a node from whih the

searh has �nished to a node from whih the searh has not started.

Both these properties involve augmenting the implementation with a variable that

reords the set of nodes from whih the searh has �nished. The form that the revised

implementation takes antiipates the implementation of timestamps in setion 13.

The generi implementation that we onsider is a omposition of three statements:

an initial assignment, whih we all S , a while statement, whih we all W , and a �nal

assignment statement, whih we all F . (See �g. 12.4 for an example.) Aordingly, we

need to revise the de�nition (11.9). The appropriate de�nition is as follows.

DFS = 〈µd :: F _◦W.d _◦S〉(12.1)

where

W.d.a = t.a ◦ (〈∪b :: d.b ◦C.b.a〉 ◦ ∼t.a)∗ .(12.2)

(The de�nition of W has not hanged but is repeated here for onveniene.)

Fig. 12.1 may help the reader to better understand the development. It shows the

generi form of the proedure dfs(a) and the relevant doumentation. The assertion

p.a is a preondition on the exeution of the proedure dfs(a) ; note that p.b is a

Algorithmi Graph Theory 243 April 8, 2022

244

preondition on the exeution of dfs(b) . The assertion q.a is a so-alled intermediate

assertion. Use of the indution theorem requires some reativity in the formulation of

both p and q . The ombination of the preondition p and the invariant relation R is

the spei�ation of the proedure; theorem 12.5 gives suÆient onditions that guarantee

when an implementation meets the spei�ation.

{ p.a }

{ Invariant Relation: R }

S.a

{ q.a }

; { Invariant Relation: R∗

Invariant Property: q.a }

while ∼t.a do

begin

hoose node b suh that C.b.a

; { C.b.a ◦ ∼t.a ◦ q.a }

{ p.b }

dfs(b)

end

; { t.a ◦q.a }

F.a

Figure 12.1: Doumenting Depth-First Searh Indution

12.1 Formal Statement and Proof

In the following, we assume that p.a , q.a , ∼t.a and C.b.a are oreexives and R ,

S.a and F.a are homogeneous relations on the state spae. In all the implementations

we onsider, S.a and F.a are assignment statements; that is, S.a and F.a are total

endofuntions on the state spae.

Previously, lemma 11.12 was used to establish an indution rule for DFS _◦pre (where

pre was the \obvious" preondition). Theorem 12.5 below replaes lemma 11.12. Un-

fortunately, the fusion theorem does not appear to be strong enough and we have been

Algorithmi Graph Theory April 8, 2022

245

obliged to �nd a more spei� proof tehnique based on the following two lemmas.

Lemma 12.3 For all relations T and oreexives q ,

T ∗ ◦q = (T ◦q)∗ ◦q ⇐ T ◦q = q◦T ◦q .

Proof

T ∗ ◦q = (T ◦q)∗ ◦q

= { q⊆ I , monotoniity and anti-symmetry }

T ∗ ◦q ⊆ (T ◦q)∗ ◦q

⇐ { T ∗ ◦q is a least �xed point, indution }

q ∪ T ◦ (T ◦q)∗ ◦q ⊆ (T ◦q)∗ ◦q

⇐ { (T ◦q)∗ = I ∪ T ◦q ◦ (T ◦q)∗

distributivity and monotoniity }

(T ◦q)∗ ◦q ⊆ q ◦ (T ◦q)∗ ◦q

= { q◦q=q (applied twie) and mirror rule }

(T ◦q)∗ ◦q ⊆ (q◦T ◦q)∗ ◦q

⇐ { Leibniz }

T ◦q = q◦T ◦q .

✷

Lemma 12.4 For all relations R and oreexives p and q ,

R/p ◦q = R◦q ⇐ q=p◦q

Proof

R/p ◦q

⊆ { assume: q=p◦q , anellation of fators }

R◦q

⊆ { p⊆ I , (anti-)monotoniity of fators }

R/p ◦q .

The lemma follows by anti-symmetry.

✷

We are now in a position to formulate a theorem for reasoning about the generi form

of depth-�rst searh expressed by (12.1).

Algorithmi Graph Theory April 8, 2022

246

Theorem 12.5 (Depth-First Search Induction) Suppose R is a relation on the

state spae of depth-�rst searh, and p.a and q.a are oreexives representing subsets

of the state spae. Then

〈∀a :: DFS.a ◦p.a ⊆ R〉 ⇐ (12.6) ∧ (12.7) ∧ (12.8) ∧ (12.9)

where the premises (12.6), (12.7), (12.8) and (12.9) are de�ned as follows.

S _◦p = q _◦S _◦p .(12.6)

This spei�es the intermediate assertion q : when S is exeuted with preondition p ,

q is a valid postondition. Equivalently, q.a is at least the left domain of S.a ◦ p.a .

〈∀a,b :: C.b.a ◦ ∼t.a ◦ q.a ⊆ p.b〉 .(12.7)

This is the property that if the (inner) loop body is exeuted with preondition q.a

then the all of dfs(b) will be exeuted with preondition p.b .

K.R _◦q = q _◦K.R _◦q .(12.8)

(Reall that K denotes the onstant ombinator.) This asserts that property q is

\maintained by" relation R .

F _

◦ t _

◦ K.R∗
_

◦ S _

◦ p _⊆ K.R .(12.9)

This asserts that exeuting F after S with preondition p maintains the relation R .

Proof We begin by proving that, assuming (12.6), (12.7) and (12.8),

DFS _◦p _⊆ K.R ⇐ F _◦W.(K.R) _◦S _◦p _⊆ K.R .(12.10)

We give a pointwise alulation (primarily beause giving a point-free alulation involves

introduing additional notation that is used just one). Apart from the highlighted step,

the alulation below is straightforward.

DFS _◦p _⊆ K.R

= { de�nitions of pointwise operators }

〈∀a :: DFS.a ◦p.a ⊆ R〉

= { fators }

〈∀a :: DFS.a ⊆ R/p.a〉

= { de�nition of pointwise ordering }

DFS _⊆ 〈a :: R/p.a〉

Algorithmi Graph Theory April 8, 2022

247

⇐ { (12.1) and �xed point indution }

F _◦ W.〈a :: R/p.a〉 _◦ S _⊆ 〈a :: R/p.a〉

= { de�nition of pointwise orderings, de�nition (12.2) of W }

〈∀a :: F.a ◦ t.a ◦ (〈∪b :: R/p.b ◦ C.b.a〉 ◦ ∼t.a)∗ ◦S.a ⊆ R/p.a〉

= { fators }

〈∀a :: F.a ◦ t.a ◦ (〈∪b :: R/p.b ◦ C.b.a〉 ◦ ∼t.a)∗ ◦S.a ◦p.a ⊆ R〉

= { see below }

〈∀a :: F.a ◦ t.a ◦ (〈∪b ::R ◦C.b.a〉 ◦ ∼t.a)∗ ◦S.a ◦p.a ⊆ R〉

= { de�nition of W }

〈∀a :: F.a ◦W.(K.R).a ◦S.a ◦p.a ⊆ R〉

= { de�nitions of pointwise operators }

F _◦W.(K.R) _◦S _◦p _⊆ K.R .

The highlighted step above was to replae the term R/p.b by R . This apparently

innouous step is the most diÆult step of all. In antiipation of later steps, we introdue

the oreexive q.a into the alulation as follows:

R/p.b ◦ C.b.a ◦ ∼t.a ◦ q.a

= { assumption (12.7): C.b.a ◦ ∼t.a ◦ q.a ⊆ p.b

lemma 12.4 with p,q := p.b , C.b.a ◦ ∼t.a ◦ q.a }

R ◦ C.b.a ◦ ∼t.a ◦ q.a

= { oreexives ommute }

R ◦ q.a ◦ C.b.a ◦ ∼t.a

= { assumption (12.8): R ◦q.a = q.a ◦R ◦q.a }

q.a ◦ R ◦ q.a ◦ C.b.a ◦ ∼t.a

= { reverse �rst two steps }

q.a ◦ R/p.b ◦ C.b.a ◦ ∼t.a ◦ q.a .

In summary, assuming (12.7) and (12.8),

R/p.b ◦ C.b.a ◦ ∼t.a ◦ q.a = q.a ◦ R/p.b ◦ C.b.a ◦ ∼t.a ◦ q.a .(12.11)

Now, for all a ,

Algorithmi Graph Theory April 8, 2022

248

(〈∪b :: R/p.b ◦ C.b.a〉 ◦ ∼t.a)∗ ◦S.a ◦p.a

= { assumption (12.6): S.a ◦p.a = q.a ◦S.a ◦p.a }

(〈∪b :: R/p.b ◦ C.b.a〉 ◦ ∼t.a)∗ ◦q.a ◦S.a ◦p.a

= { distributivity }

〈∪b :: R/p.b ◦ C.b.a ◦ ∼t.a〉∗ ◦q.a ◦S.a ◦p.a

= { lemma 12.3 with T := 〈∪b :: R/p.b ◦ C.b.a ◦ ∼t.a〉 and q :=q.a

(appliable beause of (12.11)), distributivity }

〈∪b :: R/p.b ◦ C.b.a ◦ ∼t.a ◦ q.a〉∗ ◦q.a ◦S.a ◦p.a

= { assumption (12.7): C.b.a ◦ ∼t.a ◦ q.a ⊆ p.b , lemma 12.4 }

〈∪b :: R ◦ C.b.a ◦ ∼t.a ◦ q.a〉∗ ◦q.a ◦S.a ◦p.a

= { assumption (12.8): R ◦q.a = q.a ◦R ◦q.a , distributivity

lemma 12.3 with T := 〈∪b :: R ◦ C.b.a ◦ ∼t.a〉 and q :=q.a }

〈∪b :: R ◦ C.b.a ◦ ∼t.a〉∗ ◦q.a ◦S.a ◦p.a

= { assumption (12.6): S.a ◦p.a = q.a ◦S.a ◦p.a }

(〈∪b ::R ◦C.b.a〉 ◦ ∼t.a)∗ ◦S.a ◦p.a .

This veri�es the postponed step (the step marked \see below") in the initial alulation

and onludes the proof of (12.10).

We now apply (12.10). Assume (12.6), (12.7) and (12.8). Then

DFS _◦p _⊆ K.R

⇐ { (12.10) and assumptions }

F _◦W.(K.R) _◦S _◦p _⊆ K.R

= { de�nition of pointwise operators }

〈∀a :: F.a ◦ t.a ◦ (〈∪b ::R ◦C.b.a〉 ◦ ∼t.a)∗ ◦S.a ◦p.a ⊆ R〉

⇐ { C.b.a and ∼t.a are oreexives, monotoniity }

〈∀a :: F.a ◦ t.a ◦ 〈∪b ::R〉∗ ◦S.a ◦p.a ⊆ R〉

⇐ { 〈∪b ::R〉⊆R }

〈∀a :: F.a ◦ t.a ◦R∗
◦S.a ◦p.a ⊆ R〉

= { de�nition of pointwise operators }

F _

◦ t _

◦ K.R∗
_

◦ S _

◦ p _⊆ K.R .
✷

Algorithmi Graph Theory April 8, 2022

249

12.2 Verification Conditions

In order to apply theorem 12.5, four veri�ation onditions must be met: one for the

initial assignment S (that it truthi�es q), one for the preondition for exeution of

dfs(b) (that it is truthi�ed by the ondition for hoosing b), one for the intermediate

assertion q (that it is invariant under R), and �nally one for the ombination of the

initial assignment S and the �nal assignment F (that they maintain the invariant relation

R , assuming preondition p and ondition for terminating the loop t).

Fig. 12.2 summarises theorem 12.5. The symbol \σ " denotes the urrent state; the

notation p(σ,a) is used rather than the point-free p.a to signify the dependene of

preondition p on the state, and the fat that p(σ,a) is a syntati expression. Two

ghost variables σ0 and σ1 help to relate the state at (respetively) the start of exeution

of the proedure and at the start of exeution of the while statement to its value at later

points during the exeution.

The initial assignment statement gives rise to a veri�ation ondition. Applying the

assignment axiom, this is

〈∀σ,a :: q(S(σ,a) , a) ⇐ p(σ,a)〉 .(12.12)

The two instanes of onseutive assertions eah give rise to a veri�ation ondition:

〈∀σ,a :: p(σ,b) ⇐ C(σ,b,a)∧∼t(σ,a)∧q(σ,a)〉 , and(12.13)

〈∀σ,σ1,a :: q(σ,a) ⇐ t(σ,a)∧q(σ1,a)∧σ [[R
∗]]σ1〉 .(12.14)

The �nal assignment statement also gives rise to a veri�ation ondition.

〈∀σ,σ0,a :: F(σ,a)[[R]]σ0 ⇐ t(σ,a) ∧ σ [[R∗]]S(σ0,a) ∧ p(σ0,a)〉 .(12.15)

The sequene

{ p(σ,b) ∧ σ [[R∗]]σ1 }

dfs(b)

{ σ [[R∗]]σ1 }

in the loop body is the indution hypothesis : �xed-point indution enables the assump-

tion that this is valid.

Sometimes (12.9) is used in ombination with (12.6) and (12.8) in order to strengthen

the preondition on F in (12.15) from t(σ,a) to t(σ,a)∧q(σ,a) as shown in �g. 12.2.

Formally, this is based on the theorem that, in the ontext of (12.6) and (12.8),

F _

◦ t _

◦ K.R∗
_

◦ S _

◦ p = F _

◦ t _◦ q _

◦ K.R∗
_

◦ q _

◦ S _

◦ p ,

Algorithmi Graph Theory April 8, 2022

250

{ p(σ,a) ∧ σ=σ0 }

{ Invariant Relation R }

σ :=S(σ,a)

{ q(σ,a) ∧ σ=σ1 }

; { Invariant Relation R∗ }

while ∼t(σ,a) do

begin

hoose node b suh that C(σ,b,a)

; { C(σ,b,a) ∧ ∼t(σ,a) ∧ q(σ,a) }

{ p(σ,b) ∧ σ [[R∗]]σ1 }

dfs(b)

{ σ [[R∗]]σ1 }

end

{ t(σ,a) ∧ q(σ1,a) ∧ σ [[R∗]]σ1 }

; { t(σ,a) ∧ q(σ,a) }

σ :=F(σ,a)

{ σ [[R]]σ0 }

Figure 12.2: Summary of the Indution Theorem

and hene property (12.9) is equivalent to

F _

◦ t _◦ q _

◦ K.R∗
_

◦ q _

◦ S _

◦ p _⊆ K.R .(12.16)

For ompleteness, we give the proof:

F _◦ t _◦ K.R∗
_

◦S _

◦ p = F _◦ t _◦q _

◦ K.R∗
_

◦q _

◦ S _

◦ p

⇐ { assumption: (12.6) and q=q_◦q }

K.R∗
_

◦q = q _◦K.R∗
_

◦q

= { q⊆ I , domains }

(K.R∗
_

◦q)< ⊆ q

⇐ { �xed-point fusion and distributivity }

Algorithmi Graph Theory April 8, 2022

251

q _∪ (K.R_◦q)< ⊆ q

= { distributivity, assumption: (12.8) and domains }

true .

Clearly the veri�ation of (12.9) (or its equivalent (12.16)) is the most ompliated

task beause it involves onsidering the ombined e�et of the initial assignment S and

the �nal assignment F . Sometimes this is unavoidable but often it an be deomposed

and/or simpli�ed using properties of the relation R .

Firstly, R is typially transitive so that R∗
equals I∪R . In some ases, R is both

transitive and reexive so that R∗
equals R . This allows a simpli�ation of (12.9),

albeit with the additional obligation to show that R is indeed transitive (and possibly

reexive), whereby R∗
is simpli�ed to I∪R (or just R if R is reexive).

Seondly, R is typially the intersetion of several relations. By de�nition, R∩T is

transitive if

(R∩T)◦(R∩T) ⊆ R ∧ (R∩T)◦(R∩T) ⊆ T .

This proof obligation is often simpler than it looks beause one or both of R and T is

transitive. Some relations, suh as set inlusion, are obviously transitive and reexive.

What we have alled \property invariants" and \value invariants" (see setion 6.8.4) are

also transitive and reexive.

Assuming that R∩T is transitive, our proof obligation takes the form

F _◦ t _◦ K.(I∪(R∩T)) _◦ S _

◦ p _⊆ K.(R∩T) .

Letting α.R be F _◦ t _◦ K.(I∪R) _◦ S _

◦ p , this follows from the onjuntion of

α.R _∩ α.T _⊆ K.R

and

α.R _∩ α.T _⊆ K.T .

Sometimes it suÆes to show that

α.R _⊆ K.R ∧ α.T _⊆ K.T

(if R and T are entirely independent) or

α.R _⊆ K.R ∧ α.R _∩ α.T _⊆ K.T

(R an be validated independently of T but the validity of T depends on the validity

of R .) This helps to eliminate unneessary detail.

Algorithmi Graph Theory April 8, 2022

252

In some ases, a substantial simpli�ation of (12.9) is possible. Spei�ally,

(12.16) ⇐ F_◦t_◦q _⊆ K.R ∧ q_◦S_◦p _⊆ K.R

if R is reexive and transitive. It follows that |sometimes| the veri�ation ondition

(12.9) an be replaed by the two onditions

q_◦S_◦p _⊆ K.R(12.17)

and

F_◦t_◦q _⊆ K.R .(12.18)

In words, for some reexive and transitive relations R , it is the ase that R is indepen-

dently an invariant of F and an invariant of S ; that is, it is not neessary to onsider the

ombined e�et of F and S to establish the invariane of R . Exploiting this simpli�a-

tion is a reason for distinguishing between invariant relations, invariant properties and

invariant values: the tehnique is typially applied to invariant properties and values but

not to other relations. The downside is that more are needs to be taken in formulating

the intermediate assertion q sine its role beomes more pronouned.

12.3 “Grey” Paths and Impossible Edges

In this setion, we return to the implementation of depth-�rst searh doumented in

�gs. 11.2 and 11.3, adding a new variable that reords the set of nodes from whih a

depth-�rst searh has �nished. This addition antiipates the omputation of timestamps

in setion 13. The indution theorem, theorem 12.5, is used to establish a number of

properties that are ruial to alulating strongly onneted omponents. (See setion

13.)

We all the new variable fnd (short for \�nished") and begin by adding its initiali-

sation to the outer loop. See �g. 12.3.

The invariant relation New has been replaed by the relation GE2 : the state spae

is now a artesian produt of two sets of nodes, and GE2 is likewise the artesian produt

of two instanes of GE , whih is learly a subset of the relation New . (The extra detail

supplied by New was used to prove theorem 11.24; we don't need the information here.)

Thus, the laim is that both seen and fnd are inreasing. The frontier funtion Fr has

been rede�ned so that it depends only on the state of the seen nodes. A new invariant

property has been added as well. Finally, the preondition on the all of dfs(a) has also

been augmented with an additional onjunt.

The invariant property has, in total, four onjunts, divided into two pairs of two,

but there is some (obvious) redundany in the onjunts. They have been stated in this

Algorithmi Graph Theory April 8, 2022

253

seen,fnd := ⊥⊥,⊥⊥ ;

{ Invariant Relation: GE2 ∩ Fr
∪

◦ (⊆) ◦Fr

where (s ′, f ′) [[GE2]] (s, f) ≡ s ′⊇ s ∧ f ′⊇ f

and Fr(s,f) = s ◦ (⊆) ◦∼s

Invariant Property:

fnd⊆ seen ∧ fnd ◦G ◦∼seen = ⊥⊥

Invariant Property:

seen ◦∼fnd = ⊥⊥ ∧ fnd ◦G∗
◦∼seen = ⊥⊥ }

while ∼seen 6=⊥⊥ do

begin

hoose node a suh that a ◦∼seen = a

; { a ◦∼seen = a ∧ seen ◦∼fnd ◦⊤⊤ ◦a ⊆ (seen ◦∼fnd ◦G)∗ }

dfs(a)

end

Figure 12.3: Grey Paths and Impossible Edges. Outer Loop

way in order to larify di�erenes between the invariants of the outer and the inner loops.

Spei�ally, the �rst pair is also an invariant of the inner loop, but the seond is not.

It is easy to hek that all are truthi�ed by the initial assignment to seen and fnd .

Thus, to say they are \invariant" means that their true value is unhanged before eah

iteration of the loop body. The meaning of the �rst, fnd⊆ seen , is obvious. In the

third onjunt, the term seen ◦∼fnd represents the set of nodes from whih a searh

has started but has not �nished. The assertion

seen ◦∼fnd = ⊥⊥(12.19)

states that this set is empty at every iteration of the outer loop; this is not neessarily

the ase when exeuting the inner loop. The ombination of fnd⊆ seen and (12.19)

implies fnd= seen . The onjunt

fnd ◦G ◦∼seen = ⊥⊥(12.20)

asserts that there are no edges in G from nodes from whih the searh has �nished to

nodes that have not been seen. (These are the \impossible edges" referred to in the title

Algorithmi Graph Theory April 8, 2022

254

of this setion.) As we shall see, this property is ruial to the use of depth-�rst searh

in determining the strongly onneted omponents of a graph. The �nal onjunt

fnd ◦G∗
◦∼seen = ⊥⊥(12.21)

asserts that there are no unseen nodes that are reahable from the set of �nished nodes.

Like (12.19), this is a property of the outer loop but not the inner loop.

Many desriptions of depth-�rst searh use olours to distinguish nodes and edges of

the graph at di�erent stages of the searh. The nodes represented by ∼seen are alled

white nodes, those represented by seen ◦∼fnd are alled grey nodes and, �nally, those

represented by fnd are alled blak nodes. The property fnd⊆ seen , whih we shall

establish to be an invariant at all stages, implies that all nodes are either white, grey or

blak (as is easily shown). The property (12.20) asserts that there are no edges from a

blak node to a white node. The invariant (12.21) asserts that there are no paths from

a blak node to a white node (in the outer loop).

The property (12.21) learly subsumes (12.20). Indeed, sine fnd= seen in the outer

loop, (12.20) is equivalent to the property

seen ◦G ◦∼seen = ⊥⊥

whih we established in orollary 11.21. The importane of (12.20) is that it is also an

invariant of the inner loop, whereas (12.19) and (12.21) may be false when exeuting

the inner loop. This is one way in whih this setion sharpens the results of setion 11.1.

The seond way is the additional preondition on the all of dfs(a) :

seen ◦∼fnd ◦⊤⊤ ◦a ⊆ (seen ◦∼fnd ◦G)∗ .(12.22)

This assertion is trivially true in the outer loop given that fnd= seen . However, the

boolean (12.19) is not an invariant of the inner loop, whih means that (12.22) is non-

trivial.

The next step is to add ode to the proedure dfs that updates fnd whenever a

all is ompleted, and to add the appropriate doumentation. This is shown in �g. 12.4.

First note that an assignment to fnd has been added following the while statement;

as in the outer loop, the invariant has been weakened to the relation GT on suessive

values of seen and then extended to GT 2 in order to inlude fnd ; the invariant GE

of the inner loop is similarly extended. Now note that

fnd⊆ seen ∧ fnd ◦G ◦∼seen = ⊥⊥(12.23)

is asserted to be an invariant property of both the proedure dfs and the inner loop;

the assertion about

seen ◦∼fnd(12.24)

Algorithmi Graph Theory April 8, 2022

255

{ Invariant Relation: GT 2 ∩ Fr
∪

◦ (⊆) ◦Fr

Invariant Property: fnd⊆ seen ∧ fnd ◦G ◦∼seen = ⊥⊥

Invariant Value: seen ◦∼fnd }

{ a◦seen=⊥⊥ ∧ seen ◦∼fnd ◦⊤⊤ ◦a ⊆ (seen ◦∼fnd ◦G)∗ }

seen := seen ∪ a

{ Invariant Relation: GE2 ∩ Fr
∪

◦ (⊆) ◦Fr

Invariant Property:

fnd⊆ seen ∧ fnd ◦G ◦∼seen = ⊥⊥

∧ a ◦ seen ◦∼fnd = a

∧ seen ◦∼fnd ◦⊤⊤ ◦a ⊆ (seen ◦∼fnd ◦G)∗

Invariant Value: seen ◦∼fnd }

; while a ◦G ◦∼seen 6= ⊥⊥ do

begin

hoose node b suh that a◦⊤⊤◦b ⊆ a ◦G ◦∼seen

; { fnd⊆ seen ∧ fnd ◦G ◦∼seen = ⊥⊥

∧ b◦seen=⊥⊥ ∧ seen ◦∼fnd ◦⊤⊤ ◦b ⊆ (seen ◦∼fnd ◦G)∗ }

dfs(b)

end

{ fnd⊆ seen ∧ fnd ◦G ◦∼seen = ⊥⊥

∧ a ◦ seen ◦∼fnd = a

∧ a ◦G ◦∼seen = ⊥⊥ }

; fnd := fnd ∪ a

Figure 12.4: Grey Paths and Impossible Edges. The Proedure dfs(a) .

Algorithmi Graph Theory April 8, 2022

256

is that it is an invariant value. Sine the distintion between invariant \relation", \prop-

erty" and \value" is unommon, the reader may wish to take the opportunity to review

the disussion in setions 6.8.4 and 12.2. When applying theorem 12.5, the relation R

is instantiated to

GT 2 ∩ Fr
∪

◦ (⊆) ◦ Fr ∩ H1
∪

◦ (⇐) ◦H1 ∩ Grey
∪

◦Grey

where H1(s,f) is the boolean

f⊆ s ∧ f ◦G ◦∼s = ⊥⊥

and Grey(s,f) is the set of nodes represented by the oreexive

s ◦∼f .

(That is, Grey(s,f) is the set of nodes that are \grey" at a given time.) See setion 12.2

for disussion of how we break down the veri�ation ondition (12.9).

Assertion (12.23) is a boolean expression (i.e. has value true or false) but we want

to show that it is an invariant \property", i.e. the fat that it has the value true is

unhanging. In suh ases, additional arguments must be given to establish that the

value is truthi�ed appropriately. This means that the preondition of the all of dfs(a)

is the onjuntion of (12.23) and the ondition that immediately preedes the assignment

to seen :

fnd⊆ seen ∧ fnd ◦G ◦∼seen = ⊥⊥

∧ a◦seen=⊥⊥ ∧ seen ◦∼fnd ◦⊤⊤ ◦a ⊆ (seen ◦∼fnd ◦G)∗ .

In order to failitate the appliation of theorem 12.5, we denote the oreexive orre-

sponding to this preondition by p.a . For the same reason, we denote the assertion that

immediately follows the assignment to seen , viz.

fnd⊆ seen ∧ fnd ◦G ◦∼seen = ⊥⊥

∧ a ◦ seen ◦∼fnd = a ∧ seen ◦∼fnd ◦⊤⊤ ◦a ⊆ (seen ◦∼fnd ◦G)∗ ,

by q.a .

The assertion p.b (that is, the assertion denoted p.a above but with a replaed

by b) pre�xes the all of dfs(b) in the inner loop. The �rst two onjunts, whih are

independent of a or b , are also listed as invariant properties of the proedure dfs .

They are truthi�ed by the initial assignment to seen and fnd in the outer loop. We

shall show that their true value remains unhanged at every point in the exeution of

the algorithm. The validity of the third onjunt is easily veri�ed. The fourth onjunt

seen ◦∼fnd ◦⊤⊤ ◦a ⊆ (seen ◦∼fnd ◦G)∗(12.25)

Algorithmi Graph Theory April 8, 2022

257

asserts that there is a path from all \grey" nodes to the node from whih the searh

is about to start; moreover, eah edge on suh a path is from a \grey" node. (Reall

that \grey" nodes are the nodes represented by seen ◦∼fnd .) In the outer loop, this

ondition is learly implied by the invariant (12.19). The proof that this is also the ase

in the inner loop is provided here for two reasons: it helps to explain the requirements

used in the formulation of the basi indution theorem (theorem 12.5) for reasoning

about depth-�rst searh, and it is needed in hapter 13.

The assignment to fnd does not have an expliit postondition. It is impliit in

the invariants of the proedure dfs : the postondition is that (12.23) and (12.24) are

unhanged from their initial values. Similarly, the all dfs(b) is not doumented by a

postondition; when reasoning about it, we exploit the \indution hypothesis" that the

relations GT 2 , Fr
∪

◦ (⊆) ◦Fr , (12.23) and (12.24) are invariants of dfs . That assertion

(12.25) is also an invariant is an immediate onsequene of the fat that (12.24) is an

invariant value.

Let us use theorem 12.5 to prove that eah of the laimed invariants in �g. 12.4 is

indeed invariant.

12.3.1 Truthifying the Intermediate Assertion

The oreexives p.a and q.a were de�ned earlier. Thus property (12.6) is equivalent

to

{ fnd⊆ seen ∧ fnd ◦G ◦∼seen = ⊥⊥

∧ a◦seen=⊥⊥ ∧ seen ◦∼fnd ◦⊤⊤ ◦a ⊆ (seen ◦∼fnd ◦G)∗ }

seen := seen∪a

{ fnd⊆ seen ∧ fnd ◦G ◦∼seen = ⊥⊥

∧ a ◦ seen ◦∼fnd = a ∧ seen ◦∼fnd ◦⊤⊤ ◦a ⊆ (seen ◦∼fnd ◦G)∗ }

whose validity an be veri�ed using the assignment axiom.

12.3.2 The Precondition in the Inner Loop

Property (12.7) involves establishing that four onjunts follow from the onjuntion

of q.a , the ondition for exeuting the loop body and the riterion for hoosing b.

Detailed inspetion of what is required reveals that two of the onjunts are immediate.

The remaining two follow from the veri�ation ondition:

〈∀a,b,s,f

: a◦⊤⊤◦b ⊆ s ◦∼f ◦G ◦∼s ∧ s ◦∼f ◦⊤⊤ ◦a ⊆ (s ◦∼f ◦G)∗

Algorithmi Graph Theory April 8, 2022

258

: b◦s=⊥⊥ ∧ s ◦∼f ◦⊤⊤ ◦b ⊆ (s ◦∼f ◦G)∗

〉 .

The only non-trivial part of verifying this theorem is overed by the following simple

alulation.

a◦⊤⊤◦b ⊆ s ◦∼f ◦G ◦∼s ∧ s ◦∼f ◦⊤⊤ ◦a ⊆ (s ◦∼f ◦G)∗

⇒ { monotoniity }

s ◦∼f ◦⊤⊤ ◦a ◦a ◦⊤⊤ ◦b ⊆ (s ◦∼f ◦G)∗ ◦ s ◦∼f ◦G ◦∼s

⇒ { a 6=⊥⊥ , so ⊤⊤◦a◦a◦⊤⊤=⊤⊤ ; ∼s is a oreexive }

s ◦∼f ◦⊤⊤ ◦b ⊆ (s ◦∼f ◦G)∗ ◦ s ◦∼f ◦G

⇒ { [R∗
◦R ⊆ R∗] , transitivity }

s ◦∼f ◦⊤⊤ ◦b ⊆ (s ◦∼f ◦G)∗ .

12.3.3 Maintaining the Intermediate Assertion

Cheking (12.8) is trivial. We have to show that the property q.a is maintained by

the stated invariants. But q.a is the omposition of the oreexive orresponding to

(12.23), whih is an invariant property, and

a ◦ seen ◦∼fnd = a ∧ seen ◦∼fnd ◦⊤⊤ ◦a ⊆ (seen ◦∼fnd ◦G)∗ ,

whih is obviously invariant beause the value of seen ◦∼fnd is invariant. That is, q.a

is maintained, as required. (We still have to hek that the value of seen ◦∼fnd is

indeed invariant but this is independent of property (12.8). We also still have to hek

that (12.23) is an invariant property.)

12.3.4 Invariant Relations

We now onsider eah of the laimed invariant relations, values and properties in turn.

We begin with the invariant relation

GT 2 ∩ Fr
∪

◦ (⊆) ◦ Fr

beause the fat that it is invariant is needed when verifying the remaining invariants.

Apart from the replaement of NR by GT 2 and the rede�nition of the frontier fun-

tion Fr (neessitated by the addition of the assignment to fnd) that this relation is

invariant was disussed in setion 11.1. We leave the reader the straightforward task

of heking the validity of the replaements. (The main task is to use theorem 12.5 to

formally hek that the assignment to fnd auses its value to stritly inrease. Just as

for seen this is straightforward.)

Algorithmi Graph Theory April 8, 2022

259

12.3.5 Invariant Value

We now show that seen ◦∼fnd is a value invariant. This means literally that the value

of seen ◦∼fnd remains unhanged by a all of dfs. To show that this is the ase, we

de�ne the funtion Grey by Grey(s,f) = s ◦∼f and we instantiate R in (12.9) with

Grey
∪

◦Grey . (The relation Grey
∪

◦Grey asserts an equality between two evaluations

of the funtion Grey . That is,

(s ′, f ′)[[Grey
∪

◦Grey]](s, f) ≡ s ′ ◦∼f ′ = s ◦∼f .)

We have

〈∀a :: Grey
∪

◦Grey ◦S.a ◦p.a ⊆ (F.a)∪ ◦Grey
∪

◦Grey〉

⇐ { de�nitions of p , F , Grey and S }

〈∀a,s ′,f ′,s,f : s ′ ◦∼f ′ = (s∪a) ◦∼f ∧ s◦a=⊥⊥ : s ′ ◦∼(f ′∪a) = s ◦∼f〉 .

Now,

s ′ ◦∼(f ′∪a)

= { distributivity }

s ′ ◦∼f ′ ◦∼a

= { assume: s ′ ◦∼f ′ = (s∪a) ◦∼f }

(s∪a) ◦∼f ◦∼a

= { distributivity and ommutativity of oreexives }

a ◦∼a ◦∼f ∪ s ◦∼f ◦∼a

= { a ◦∼a = ⊥⊥ }

s ◦∼f ◦∼a

= { assume: a◦s=⊥⊥ , equivalently ∼a ◦ s = s }

s ◦∼f .

This ompletes the veri�ation.

12.3.6 Invariant Properties

We now hek that (12.23) is an invariant property.

Visual inspetion of the ode in �g. 12.4 suggests that veri�ation of the onjunt

fnd⊆ seen is straightforward. Indeed, this is the ase. Rather than establish (12.9),

Algorithmi Graph Theory April 8, 2022

260

we verify (12.17) and (12.18). That is, we establish that the property is maintained

independently by the assignments S and F .

The veri�ation of (12.17) orresponds to verifying the validity of

{ fnd⊆ seen }

seen := seen∪a

{ fnd⊆ seen }

and the veri�ation of (12.18) orresponds to verifying the validity of

{ fnd⊆ seen ∧ a◦seen=a }

fnd := fnd∪a

{ fnd⊆ seen } .

Both are easy appliations of the assignment axiom.

Note that the veri�ation of (12.18) is slightly more omplex than that of (12.17)

beause of the additional onjunt in the preondition. That the additional onjunt is

needed demonstrates why it is neessary to prove that the relation GT 2 is an invariant

of alls of dfs : the property a◦seen=a is truthi�ed by the initial assignment to seen

but we need to be sure that it is not falsi�ed by subsequent alls of dfs .

We now hek the onjunt

fnd ◦G ◦∼seen = ⊥⊥ .

First, it is an invariant of the initial assignment to seen :

(fnd ◦G ◦∼seen = ⊥⊥)[seen := seen∪a]

= { substitution and distributivity }

fnd ◦G ◦∼seen ◦∼a = ⊥⊥

⇐ { ∼a⊆ I , ⊥⊥ is least }

fnd ◦G ◦∼seen = ⊥⊥

Seond, it is an invariant of the assignment to fnd :

(fnd ◦G ◦∼seen = ⊥⊥)[fnd := fnd∪a]

= { substitution and distributivity }

fnd ◦G ◦∼seen = ⊥⊥ ∧ a ◦G ◦∼seen = ⊥⊥

= { assume t.a , i.e. a ◦G ◦∼seen = ⊥⊥

and q.a , in partiular fnd ◦G ◦∼seen = ⊥⊥ }

true .

Algorithmi Graph Theory April 8, 2022

261

12.3.7 Invariants of the Outer Loop

Our last task is to verify the assertions in the outer loop (�g. 12.3).

That the relation GE2 ∩ Fr∪ ◦ (⊆) ◦Fr is an invariant of the while statement is im-

mediate from the fat that it is an invariant of alls of dfs .

For the invariant property, reall that it suÆes to establish the three onjunts

fnd⊆ seen ∧ seen ◦∼fnd = ⊥⊥ ∧ fnd ◦G∗
◦∼seen = ⊥⊥ .

The initialisation of seen and fnd to ⊥⊥ learly truthi�es eah of the onjunts.

Sine fnd⊆ seen is an invariant of the proedure dfs , as is the value seen ◦∼fnd ,

it follows that the �rst two onjunts are invariants of the while statement so long

as we an prove that, together with the ondition for hoosing a , they guarantee the

preondition for exeuting dfs(a) . But this is trivially true.

That the third onjunt is also an invariant of the while statement now follows from

the property (11.1) proved earlier. Spei�ally,

fnd ◦G∗
◦∼seen

= { fnd⊆ seen ∧ seen ◦∼fnd = ⊥⊥

hene fnd= seen }

seen ◦G∗
◦∼seen

= { domains and (11.1) }

seen ◦G∗
◦ seen ◦∼seen

= { seen ◦∼seen = ⊥⊥ }

⊥⊥ .

This ompletes the veri�ation.

Algorithmi Graph Theory April 8, 2022

262

Algorithmi Graph Theory April 8, 2022

Chapter 13

Calculating Strongly Connected
Components

In this hapter, we establish the orretness of an algorithm to alulate the strongly

onneted omponents of a �nite graph. The algorithm is based on the one desribed in

[AHU82, pp.222{226℄.

Algorithms for alulating strong omponents are well ited. Invariably they are

based on depth-�rst searh. The algorithm presented here searhes the graph in two

onseutive phases. In the �rst phase depth-�rst searh is used but in the seond phase

any searh algorithm an be used. By presenting a formal proof of orretness, we hope

to larify the key properties.

We assume that G is the edge relation of a �nite (direted) graph. The algorithm

alulates a (total) funtion ϕ that assigns to eah node a of the graph a representative

of the strongly onneted omponent at a . Formally, ϕ has the properties

ϕ ◦ϕ
∪

⊆ INode ∧ ϕ
∪

◦ϕ = equiv.G .

The �rst phase alulates a funtion f that is then used in the seond phase as the hoie

funtion in the delegate algorithm disussed in setion 10.2. The funtion f reords the

order in whih the depth-�rst searhes in the �rst phase �nish: the representative of a

strongly onneted omponent p is the node in p from whih the depth-�rst searh in

the �rst phase �nishes last.

13.1 Timestamps

Timestamps omprise two funtions s (for \start") and f (for \�nish") that reord the

order in whih searhes are started and �nished. The spei�ation is thus a relation of

type

〈ΠNode : finite.Node : (IN←Node)× (IN←Node) ∼ (Node∼Node)〉

Algorithmi Graph Theory 263 April 8, 2022

264

suh that, for a given graph G , the onstruted values s and f , both of whih have

type IN←Node , are total, injetive funtions. To ensure totality, the �rst phase takes

the following form:

f,s := ⊥⊥,⊥⊥ ;

while s>• 6=⊥⊥ do

begin

hoose node a suh that a ◦ s> = ⊥⊥

; dfs(a)

end

We refer to this part of the implementation as the outer loop. Compared to the

implementation in �g. 12.3, the variables seen and fnd have been removed: the nodes

that have been \seen" (i.e. from whih a searh has been started) are the nodes repre-

sented by s> |the nodes that have a start time|, and the nodes have not been \seen"

|previously ∼seen| is represented by s>• . In pratie, a boolean array seen indexed

by nodes would be added to the implementation with the invariant property that seen

and s> represent the same set, namely the set of nodes for whih the funtion s is

de�ned. It helps to keep the aount shorter if we don't do so. Similarly, an auxiliary

variable fnd might be added to the implementation with the invariant property that

fnd equals f> (and ∼fnd equals f>•) but we don't do so for reasons of eonomy. How-

ever, we do translate all the properties established in previous setions of seen and fnd

into properties of s> and f> .

The implementation of dfs(a) is as follows:

s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a

; while a ◦G ◦ s>• 6= ⊥⊥ do

begin

hoose node b suh that a ◦⊤⊤ ◦b ⊆ a ◦G ◦ s>•

; dfs(b)

end

; f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a

Thewhile statement is braketed by two statements that set the value of the funtions

s and f at a . The notation MAX.s denotes the maximum value of the funtion s ,

and similarly for MAX.f . If s=⊥⊥ , the value of MAX.s is de�ned to be 0 . The value

Algorithmi Graph Theory April 8, 2022

265

MAX.s↑MAX.f ounts the number of times that an assignment to s or f has been

made; in this way, the assignment

s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a

reords the \time" that the searh from node a is initiated. The assignment to f is

similarly interpreted.

The oreexive s> represents the set of nodes from whih a searh has been started,

i.e. the nodes that have been \seen". As already mentioned, a depth-�rst searh from

a is only initiated when a ◦ s> = ⊥⊥ . This guarantees that the property that s is

funtional is invariant; the fat that (MAX.s↑MAX.f)+1 is distint from any existing

value of s guarantees that the property that s is injetive is also invariant. Similarly, the

oreexive f> represents the set of nodes from whih a searh has �nished |previously

represented by the variable fnd (see �g. 12.4)| and the assignment to f guarantees

that its funtionality and injetivity remain invariant.

Apart from the replaement of ∼seen by s>• , thewhile statement itself is unhanged

from setion 11.

The reader may wish to look at �g. 11.1 again as an example of the alulation of

timestamps. Reall that the �rst element of the pair of numbers labelling a node is

the timestamp of the start of the searh from that node and the seond element is the

timestamp of the �nish of the searh from that node. Reall also that the labels O1 thru

O6 indiate the nodes from whih a searh has been started in the outer loop.

For the purpose of alulating strongly onneted omponents, the start timestamp

s is not needed in its entirety: omputations in the �rst phase make use of just s> and

only the funtion f is used in the seond phase. Thus a pratial implementation would

introdue a boolean variable seen , as outlined earlier, and doument s as an auxiliary

variable.

13.1.1 Specification

The timestamps s and f have a number of properties that are ruial to the suess-

ful use of f in the seond phase to ompute representatives of the strongly onneted

omponents. Fig. 13.1 douments the outer loop with the relevant properties

1

.

For the moment, note partiularly the postondition. The �rst onjunt states for-

mally that s and f are total, injetive funtions (the property mentioned earlier). The

seond and third onjunts relate s and f to the given graph G ; take are to note that

G is on the left of an inlusion in the seond onjunt and on the right in the third

onjunt. The �nal onjunt is a harateristi property of depth-�rst searh.

1

Stronger properties are disussed in hapter 14.

Algorithmi Graph Theory April 8, 2022

266

{ G is a �nite graph }

f,s := ⊥⊥,⊥⊥ ;

{ Invariant Relation: ME2 ∩ Fr
∪

◦ (⊆) ◦Fr ∩ sInc

where (s ′, f ′) ME2 (s, f) ≡ s ′>⊇ s> ∧ f ′>⊇ f>

and Fr(s,f) = s> ◦G ◦ s>•

and (s ′, f ′) sInc (s, f) ≡ s>• ◦ s ′
∪

◦≤ ◦ s = ⊥⊥

Invariant Property: (13.1) ∧ (13.2) ∧ (13.3) ∧ (13.5) ∧ (13.4) }

while s> 6= INode do

begin

hoose node a suh that a ◦ s> = ⊥⊥

; dfs(a)

end

{ f> = f∪ ◦ f = s> = s∪ ◦ s = INode ∧ s ◦ s
∪ ⊆ IIN ∧ f ◦ f

∪ ⊆ IIN

∧ G
∪ ⊆ s

∪

◦≤ ◦ f

∧ s∪ ◦≤ ◦ s ∩ f∪ ◦≥ ◦ f ⊆ G∗

∧ s
∪

◦≤ ◦ s ∩ f
∪

◦< ◦ f = f
∪

◦< ◦ s }

Figure 13.1: Timestamps: Outer Loop

In this setion, we prepare the ground for applying the indution theorem, theorem

12.5, to establish these properties of the implementation of timestamps. That is, we

formulate an invariant relation R , preondition p and intermediate assertion q that

preisely apture the exeution of depth-�rst searh.

In setion 11, we proved formally that the set of \seen" nodes is stritly inreased by

alls of the proedure dfs. This and other elements of the invariants studied there need

to be adapted, replaing the variable seen by s> and the variable fnd by f> . Fig.

13.1 douments the fat that the relation ME2 ∩ Fr
∪

◦ (⊆) ◦Fr is an invariant, where

the de�nitions of relations ME and Fr are suitably modi�ed versions of the relations

GE and the frontier funtion Fr of �g. 12.3. These are supplemented in �g. 13.1 by the

relation sInc where, for all s ′ , f ′ , s and f

(s ′, f ′) sInc (s, f) ≡ s>• ◦ s ′ ◦≤ ◦ s = ⊥⊥ .

This relation expresses the property that, at eah iteration of the outer loop body, no

newly started node has a starting timestamp that is at most the starting timestamp of

Algorithmi Graph Theory April 8, 2022

267

a node from whih the searh has already been started. (The equivalent ontrapositive

of this is that nodes from whih a searh is newly started by an exeution of the body

of the outer loop have a timestamp that is stritly greater than the timestamp of nodes

from whih a searh has already been started.)

The invariant properties of the outer loop are formulated below. Aompanying eah

is a verbal explanation.

At the start of eah iteration of the outer loop body, f and s are injetive funtions

with equal right domains (but they are not total until termination of the loop): that is

f> = f
∪

◦ f = s> = s
∪

◦ s ∧ s ◦ s
∪

⊆ IIN ∧ f ◦ f
∪

⊆ IIN .(13.1)

For eah node in the right domain of f , the start timestamp is less than the �nish

timestamp:

f> ⊆ s
∪

◦< ◦ f .(13.2)

There are no edges from nodes from whih the searh has �nished to nodes from whih

the searh has either not started or started at a later time:

f> ◦G ◦ s>• = ⊥⊥ = f
∪

◦< ◦ s ∩ G .(13.3)

For all nodes a and b , if the searh from a starts before the start of the searh from

b , and the searh from a �nishes after the searh from b �nishes there is a path from

a to b :

s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f ⊆ G∗ .(13.4)

(Property (13.4) asserts an inlusion only. The inlusion an, in fat, be strengthened to

an equality by appropriately modifying the right side. See hapter 14 for disussion on

this and the \white-path theorem". Property (13.4) is suÆient for our urrent goals.)

For all nodes a and b , if the searh from a starts before the start of the searh

from b and �nishes before the �nish of the searh from b , the searh from a �nishes

before the searh from b starts.

s
∪

◦< ◦ s ∩ f
∪

◦< ◦ f = f
∪

◦< ◦ s .(13.5)

It is straightforward to hek that the stated postondition is implied by the onjuntion

of the termination ondition and the above invariant properties | with the exeption of

the seond onjunt:

G
∪

⊆ s
∪

◦≤ ◦ f .(13.6)

Algorithmi Graph Theory April 8, 2022

268

This is a onsequene of the invariant (13.3), as the following alulation shows

2

.

⊥⊥ = f
∪

◦< ◦ s ∩ G

= { shunting rule (2.27) }

f
∪

◦< ◦ s ⊆ ¬G

= { middle-exhange rule (4.18) }

f ◦G ◦ s
∪ ⊆ ¬(<)

= { not less-than relation on numbers is at-least }

f ◦G ◦ s
∪ ⊆ (≥)

= { on termination, f and s are total funtions }

G ⊆ f
∪

◦≥ ◦ s

= { onverse }

G
∪ ⊆ s

∪

◦≤ ◦ f .

In order to hek that the additional properties (13.1), (13.2) (13.3), (13.4) and (13.5)

are indeed maintained invariant by the body of the outer loop, we need to provide details

of the implementation of dfs(a) , whih we now do.

As demonstrated in setion 11.1, properties that hold in the outer loop may not hold

in the inner loop. Suh properties must be weakened in the inner loop, but properties

added to guarantee the stronger properties in the outer loop.

For onveniene, we summarise the properties in the following de�nition.

Definition 13.7 (Specification of Timestamped Depth-First Search) Suppose

G is a relation of type Node∼Node where Node is a �nite set. Suppose also that s , f ,

s ′ and f ′ are all funtions of type IN←Node . The invariant property of a depth-�rst

searh from an arbitrary node, whih we abbreviate to Inv(s,f) , is the onjuntion of

the following properties:

f> = f
∪

◦ f ⊆ s> = s
∪

◦ s ∧ s ◦ s
∪

⊆ IIN ∧ f ◦ f
∪

⊆ IIN ,(13.8)

f> ⊆ s
∪

◦< ◦ f ,(13.9)

2

E�etively, the alulation shows that |on termination of the outer loop| the negation of f
∪

◦< ◦ s

is f
∪

◦≥ ◦ s . When reasoning pointwise, it is tempting to dismiss this as an obvious property of the

less-than ordering on numbers. However, the proven equality is only valid on termination sine, during

exeution, s and f are partial funtions and the negation of f
∪

◦< ◦ s relates ertain nodes on whih

f and/or s are unde�ned. It is inorret to assert that the property G
∪ ⊆ s

∪

◦≤ ◦ f is an invariant of

depth-�rst searh.

Algorithmi Graph Theory April 8, 2022

269

f> ◦G ◦ s>• = ⊥⊥ = f
∪

◦< ◦ s ∩ G ,(13.10)

f>• ◦ s
∪

◦≤ ◦ s ⊆ G∗
,(13.11)

s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f ⊆ G∗
,(13.12)

s
∪

◦≤ ◦ s ∩ f
∪

◦< ◦ f = f
∪

◦< ◦ s ◦ f> .(13.13)

Formally, Inv(s,f) is de�ned to be

(13.8) ∧ (13.9) ∧ (13.10) ∧ (13.11) ∧ (13.12) ∧ (13.13) .

Also, P(a,s,f) is de�ned to be

a ◦ s>• = a ∧ s> ◦ f>• ◦⊤⊤ ◦a ⊆ (s> ◦ f>• ◦G)∗

and Q(a,s,f) is de�ned to be

a ◦ s> ◦ f>• = a

∧ f> ◦ s
∪

◦< ◦ s ◦a = f
∪

◦< ◦ s ◦a

∧ a ◦ s
∪

◦< ◦ s ◦ f>• = ⊥⊥

∧ f>• ◦ s> ◦⊤⊤ ◦a ⊆ (s> ◦ f>• ◦G)∗ .

Finally, Invrel is de�ned by

Invrel = MT 2 ∩ Fr
∪

◦ (⊆) ◦Fr ∩ Grey
∪

◦Grey ∩ Inv
∪

◦ (⇐) ◦ Inv ∩ sInc

where, for all s , f , s ′ and f ′ ,

(s ′, f ′) [[MT 2]] (s, f) ≡ s ′>⊇ s> ∧ f ′>⊇ f> ∧ s ′> 6= s> ∧ f ′> 6= f> ,

Fr(s,f) = s> ◦G ◦ s>• ,

Grey(s,f) = s> ◦ f>• , and

(s ′, f ′) [[sInc]] (s, f) ≡ s>• ◦ s ′
∪

◦≤ ◦ s = ⊥⊥ .

✷

Algorithmi Graph Theory April 8, 2022

270

The reader is invited to ompare invariant properties (13.8) thru (13.13) with invari-

ant properties (13.1) thru (13.5) of the outer loop. Properties (13.12) and (13.4) are

idential; the remainder are almost idential with some small di�erenes.

Property (13.8) is weaker than (13.1): the equality f>= s> has been weakened to

f>⊆ s> . This is the same weakening made in setion 11.1 where the equality fnd= seen

was weakened to fnd⊆ seen .

The property (13.11) is missing from the invariant properties of the outer loop. It

asserts that there is a path from node a to node b if a is grey and the searh from a

started before the searh from b . In the outer loop s> ◦ f>• = ⊥⊥ |it is the invariant

seen ◦∼fnd = ⊥⊥ disussed in setion 11.1| so (13.11) is easily shown to be true.

Finally, (13.13) di�ers from (13.5) in that it inludes an additional domain restrition

\ f> ". In the outer loop, the domain restrition is superuous beause s> and f> are

equal.

The property P(a,s,f) should be ompared with the properties used to instantiate

p.a when reasoning about the implementation of depth-�rst searh shown in �g. 12.3.

They are idential but for the replaement of seen by s> , ∼seen by s>• and ∼fnd by

f>• . We exploit this fat later.

The relations MT 2 , Fr
∪

◦ (⊆) ◦Fr and Grey
∪

◦Grey have been onsidered in depth

in setion 11.1 |albeit before the replaement of the variable seen by s> and fnd

by f>| . Consequently, we mention their veri�ation only briey below. (The term

Grey
∪

◦Grey expresses the property that the value of s> ◦ f>• is an invariant value; this

is equivalent to the invariane of the value of seen ◦∼fnd disussed in setion 12.3.)

The term Inv
∪

◦ (⇐) ◦ Inv states that Inv is an invariant property. The invariant

Inv is di�erent from the invariant property in setion 12.3 beause it expresses properties

of the orderings on start and �nish times. Nevertheless, we use the same tehniques to

verify its validity.

Fig. 13.2 summarises the implementation of dfs(a) with assertions braketing eah

statement.

Conditional orretness is established using the indution theorem, theorem 12.5.

The term p.a in theorem 12.5 is instantiated to the oreexive orresponding to the

property P(a,s,f)∧ Inv(s,f) ; similarly, the term q.a is the oreexive orresponding

to the property Q(a,s,f)∧ Inv(s,f) . The relation R is instantiated to Invrel (see

de�nition 13.7). The task is thus to verify (12.6), (12.7), (12.8) and (12.9) with these

instantiations.

Beause of the number of lauses that have to be established, a large number of

alulations have to be arried out. We begin with (12.9). Although it is typially

the hardest to verify, the groundwork that we have done in setion 11 means that it is

relatively easy to verify.

Algorithmi Graph Theory April 8, 2022

271

{ Invariant Relation: MT 2 ∩ Fr
∪

◦ (⊆) ◦ Fr ∩ sInc

Invariant Property: Inv(s,f)

Invariant Value: s> ◦ f>•

Invariant Value: s∪ ◦≤ ◦ s ◦ f>• }

{ P(a,s,f) ∧ Inv(s,f) }

s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a

{ Inner Loop Invariant: Q(a,s,f) ∧ Inv(s,f) }

; while a ◦G ◦ s>• 6= ⊥⊥ do

begin

hoose node b suh that a ◦⊤⊤ ◦b ⊆ a ◦G ◦ s>•

; { P(b,s,f) ∧ Inv(s,f) }

dfs(b)

{ Q(a,s,f) ∧ Inv(s,f) }

end

{ a ◦G ◦ s>• = ⊥⊥ ∧ Q(a,s,f) ∧ Inv(s,f) }

; f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a

Figure 13.2: Timestamps: The Proedure dfs(a)

Algorithmi Graph Theory April 8, 2022

272

13.1.2 The Relation Invrel

Comparing the relation Invrel with the invariant relation disussed in setion 12.3, the

hanges that have been made are the addition of the the relation sInc , and the hanges

to the invariant properties aptured by Inv . In this setion, we verify (12.9) for sInc .

(The veri�ation of (12.9) for the relation Inv
∪

◦ (⇐) ◦ Inv is the subjet of later

setions: beause it is reexive and transitive,

F _◦ t _◦ K.(Inv∪ ◦ (⇐) ◦ Inv)∗ _◦ S _

◦ p _⊆ K.(Inv∪ ◦ (⇐) ◦ Inv)

⇐ F _◦ t _◦q _⊆ K.(Inv∪ ◦ (⇐) ◦ Inv) ∧ S _◦p _⊆ K.(Inv∪ ◦ (⇐) ◦ Inv) .

That is, we show that Inv(s,f) is an invariant property of the �nal assignment to f and

of the initial assignment to s , assuming the preonditions t _◦q and p .)

We �rst show that (in ombination with other relations) sInc is reexive and transi-

tive. This means that the veri�ation of (12.9) for this new relation an be deomposed

into verifying that the initial assignment to s maintains the relation, and that the �nal

assignment to f also maintains the relation. The latter is trivially true (beause sInc

is independent of f) so only the simple proof of the former is required.

We have already seen that the relations MT 2 , Fr
∪

◦ (⊆) ◦ Fr and Inv
∪

◦ (⇐) ◦ Inv are

transitive. The remaining relation, sInc , is not transitive. However, in ombination

with the other relations, it is:

Lemma 13.14 When restrited to states (s, f) suh that s is funtional, the relation

sInc ∩MT 2

is transitive. With the same restrition, the relation

sInc ∩ (I∪MT 2)

is reexive and transitive. (The relation (I∪MT 2) is ME2 where ME is the superset

relation on oreexives.)

Proof The relation sInc is reexive sine

I⊆ sInc

= { type of sInc }

〈∀ s,f :: s>• ◦ s
∪

◦≤ ◦ s = ⊥⊥〉

= { s
∪ = s> ◦ s

∪

}

〈∀ s,f :: s>• ◦ s> ◦ s
∪

◦≤ ◦ s = ⊥⊥〉

= { s>• ◦ s> = ⊥⊥ , ⊥⊥ is zero of omposition }

true .

Algorithmi Graph Theory April 8, 2022

273

The relation I∪MT 2 is also reexive. It follows that the intersetion of the two relations

is reexive.

That sInc ∩MT 2 is transitive follows from the following alulation.

s0>• ◦ s2
∪

◦≤ ◦ s0

= { I = s1>∪ s1>• }

s0>• ◦ s1> ◦ s2
∪

◦≤ ◦ s0 ∪ s0>• ◦ s1>• ◦ s2
∪

◦≤ ◦ s0

⊆ { assume: s0 ⊆ s1 }

s0>• ◦ s1> ◦ s2
∪

◦≤ ◦ s0 ∪ s0>• ◦ s1>• ◦ s2
∪

◦≤ ◦ s1

= { assume: s1>• ◦ s2
∪

◦≤ ◦ s1 = ⊥⊥ }

s0>• ◦ s1> ◦ s2
∪

◦≤ ◦ s0

⊆ { domains (spei�ally [R> = I ∩ R∪

◦R] with R := s1) }

s0>• ◦ s1
∪

◦ s1 ◦ s2
∪

◦≤ ◦ s0

⊆ { assume: s1⊆ s2 }

s0>• ◦ s1
∪

◦ s2 ◦ s2
∪

◦≤ ◦ s0

⊆ { (13.8) (spei�ally, s2 is funtional) and monotoniity }

s0>• ◦ s1
∪

◦≤ ◦ s0

= { assume: s0>• ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥ }

⊥⊥ .

Summarising, we have shown that, for all s0 , s1 , s2 , f0 , f1 and f2

(s2, f2) [[sInc]] (s0, f0)

⇐ (s2, f2) [[sInc]] (s1, f1) ∧ (s1, f1) [[sInc]] (s0, f0)

∧ s0⊆ s1⊆ s2 ∧ s2> = s2∪

◦ s2 .

Sine MT 2 is transitive, it follows that sInc∩MT 2 is transitive under the stated re-

strition. (The �nal onjunt, s2> = s2∪

◦ s2 , is the reason for introduing the type

restrition.)

✷

Lemma 13.14 requires that the variable s in the de�nition of sInc is funtional. This

is a onsequene of the property Inv(s,f) whih we show to be an invariant property in

the subsetions that follow this one.

Corollary 13.15 The relation Invrel is transitive.

Algorithmi Graph Theory April 8, 2022

274

Proof The intersetion of transitive relations is transitive. (This is well-known. Its easy

(point-free) proof is left as an exerise for the reader.) Thus, ombining lemma 13.14

with the known transitivity of MT 2 , Fr
∪

◦ (⊆) ◦Fr , Grey∪

◦Grey and Inv
∪

◦ (⇐) ◦ Inv ,

we onlude that Invrel is transitive.

✷

Lemma 13.16 The property (12.9) is valid with R instantiated to sInc∩ME2 . To

be preise,

F _◦ K.Invrel _◦ S _

◦ p _⊆ K.sInc

where F and S are the timestamp assignments to s and f , respetively, and p.a is the

oreexive orresponding to the assertion P(a,s,f)∧ Inv(s,f) .

Proof We begin by showing that

K.Invrel _◦ S _

◦ p _⊆ K.sInc .

With m denoting (MAX.s0 ↑MAX.f0)+1 , we have:

(s1, f1)[[Invrel ◦S.a ◦p.a]](s0, f0)

⇒ { de�nitions of F , S and p }

(s1, f1)[[Invrel]](s0 ∪ m ◦⊤⊤ ◦a , f0)

∧ s0>• ◦∼a ◦ s1
∪

◦≤ ◦ (s0 ∪ m ◦⊤⊤ ◦a) = ⊥⊥

∧ s0◦a=⊥⊥ ∧ Inv(s0,f0)

⇒ { distributivity and properties of ⊥⊥ }

(s1, f1)[[Invrel]](s0 ∪ m ◦⊤⊤ ◦a , f0)

∧ s0>• ◦∼a ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥

∧ s0◦a=⊥⊥ ∧ Inv(s0,f0) .

Also,

(s1, f1)[[K.sInc]](s0, f0) ≡ s0>• ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥ .

Our goal is thus to prove that, for all a , m , s0 , s1 , f0 and f1 ,

(s1, f1)[[Invrel]](s0 ∪ m ◦⊤⊤ ◦a , f0)

∧ s0>• ◦∼a ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥

∧ s0◦a=⊥⊥ ∧ Inv(s0,f0)

⇒ s0>• ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥ .

Algorithmi Graph Theory April 8, 2022

275

Unusually, we begin with the simpler side (beause it is not immediately lear whih

omponents of Invrel are required).

s0>• ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥

⇐ { ase analysis on ∼a∪a }

s0>• ◦∼a ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥

∧ s0>• ◦a ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥

⇐ { introdue assumption: s0◦a=⊥⊥ ;

equivalently, s0>• ◦a = a }

s0>• ◦∼a ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥

∧ a ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥

∧ s0◦a=⊥⊥

⇐ { 1st onjunt: monotoniity;

2nd onjunt: introdue assumption s1◦a = m◦⊤⊤◦a }

s0>• ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥

∧ a ◦⊤⊤ ◦m ◦≤ ◦ s0 = ⊥⊥

∧ s0◦a=⊥⊥ ∧ s1◦a = m◦⊤⊤◦a

= { by de�nition of m , m ◦≤ ◦ s0 = ⊥⊥ }

s0>• ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥

∧ s0◦a=⊥⊥ ∧ s1◦a = m◦⊤⊤◦a

⇐ { lemma 5.49 with f,h := m◦⊤⊤◦a , s1◦a

(m◦⊤⊤◦a is funtional with right domain a ,

so too is s1◦a is if s1 is funtional) }

s0>• ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥

∧ s0◦a=⊥⊥

∧ s1 ⊇ m◦⊤⊤◦a ∧ s1 ◦ s1
∪ = s1< .

Comparing the goal with what has just been established, we have to prove that

(s1, f1)[[Invrel]](s0 ∪ m ◦⊤⊤ ◦a , f0) ∧ Inv(s0,f0)

⇒ s1⊇m◦⊤⊤◦a ∧ s1 ◦ s1
∪ = s1< .

Algorithmi Graph Theory April 8, 2022

276

The �rst onjunt follows from the MT 2 omponent of Invrel , and the seond and third

onjunts follow from the Inv
∪

◦ (⇐) ◦ Inv omponent of Invrel , in partiular (13.8).

That we an now dedue that

F _◦ K.Invrel _◦ S _

◦ p _⊆ K.sInc

is a straightforward onsequene of the property

(s1, f1)[[F]](s0, f0) ⇒ s1= s0 ,

for all s1 , f1 , s0 and f0 , and sInc(s,f) is independent of f . (The details are left to

the reader.)

✷

The following theorem summarises the results of this setion.

Theorem 13.17 The veri�ation ondition (12.9) is valid if it is valid for the invariant

properties expressed by Inv . That is,

(12.9)[R := MT 2 ∩ Fr
∪

◦ (⊆) ◦Fr ∩ Grey
∪

◦Grey ∩ sInc]

and it remains to prove

(12.9)[R := Inv
∪

◦ (⇐) ◦ Inv] .

Proof The relations MT 2 , Fr
∪

◦ (⊆) ◦Fr and Grey
∪

◦Grey involve only the right

domains of s and f and, onsequently, that (12.9) is valid for them was established in

setion 12.3 (with seen and fnd taking the plae of s> and f> , respetively). Lemma

13.16 establishes (12.9) for the relation sInc . (Reall the disussion in setion 12.2 of

how the proof obligations are broken down.)

✷

13.1.3 Assigning Start Times

The spei�ation of the assignment to s is that, assuming preondition P , it truthi�es

the property Q whilst maintaining the invariant property Inv . That is, we must verify

that

{ P(a,s,f) ∧ Inv(s,f) }

s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a

{ Q(a,s,f) ∧ Inv(s,f) }

Algorithmi Graph Theory April 8, 2022

277

for all a , s and f .

Beause of the number of onjunts in the postondition (ten in total!), the alulation

is inevitably long.

We begin with a lemma on the e�et of the assignment on subterms of Q and Inv .

Lemma 13.18

(s∪ ◦≤ ◦ s)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] = s
∪

◦≤ ◦ s ∪ (s> ∪ a)◦⊤⊤◦a ,

(s∪ ◦< ◦ s)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] = s
∪

◦< ◦ s ∪ s> ◦⊤⊤ ◦a , and

(s>)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] = s>∪a .

Proof In the alulations below, we use m to denote (MAX.s↑MAX.f)+1 ; that is, m
is a oreexive representing a natural number that is stritly greater than MAX.s↑MAX.f .
It is thus a proper atom and

m ◦≤ ◦ s = ⊥⊥ = m ◦< ◦ s

∧ s
∪

◦≤ ◦m = s> ◦⊤⊤ ◦m = s
∪

◦< ◦m

∧ m ◦≤ ◦m = m .

We have:

(s∪ ◦≤ ◦ s)[s := s ∪ m ◦⊤⊤ ◦a]

= { de�nition of substitution and distributivity,

a and m are oreexives, so a=a∪

and m=m∪

}

s
∪

◦≤ ◦ s ∪ a ◦⊤⊤ ◦m ◦≤ ◦ s

∪ s
∪

◦≤ ◦m ◦⊤⊤ ◦a ∪ a ◦⊤⊤ ◦m ◦≤ ◦m ◦⊤⊤ ◦a

= { de�ning properties of m (see above) }

s
∪

◦≤ ◦ s ∪ s> ◦⊤⊤ ◦m ◦⊤⊤ ◦a ∪ a ◦⊤⊤ ◦m ◦⊤⊤ ◦a

= { m 6=⊥⊥ , one rule and distributivity }

s
∪

◦≤ ◦ s ∪ (s> ∪ a)◦⊤⊤◦a .

Similarly, we have:.

Algorithmi Graph Theory April 8, 2022

278

(s∪ ◦< ◦ s)[s := s ∪ m ◦⊤⊤ ◦a]

= { de�nition of substitution and distributivity,

a and m are oreexives, so a=a∪

and m=m∪

}

s∪ ◦< ◦ s ∪ a ◦⊤⊤ ◦m ◦< ◦ s

∪ s
∪

◦< ◦m ◦⊤⊤ ◦a ∪ a ◦⊤⊤ ◦m ◦< ◦m ◦⊤⊤ ◦a

= { de�ning properties of m (see above) }

s
∪

◦< ◦ s ∪ s> ◦⊤⊤ ◦m ◦⊤⊤ ◦a

= { m 6=⊥⊥ , one rule and distributivity }

s
∪

◦< ◦ s ∪ s> ◦⊤⊤ ◦a .

(It is also possible to derive the seond assertion from the �rst using the obvious rela-

tion between less-than and at-most. The opy-and-paste we have just used is quiker.)

Finally,

(s>)[s := s ∪ m ◦⊤⊤ ◦a]

= { de�nition of substitution and distributivity }

s> ∪ (m ◦⊤⊤ ◦a)>

= { domains }

s> ∪ (⊤⊤◦m◦⊤⊤◦a)>

= { m 6=⊥⊥ , one rule, domains and a is oreexive }

s> ∪ a .

✷

Lemma 13.19 The property Q(a,s,f) is truthi�ed by the assignment to s . That is,

(Q(a,s,f))[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] ⇐ P(a,s,f)∧ Inv(s,f) .

Proof There are four onjunts in the de�nition of Q(a,s,f) :

a ◦ s> ◦ f>• = a

∧ f> ◦ s
∪

◦< ◦ s ◦a = f
∪

◦< ◦ s ◦a

∧ a ◦ s
∪

◦< ◦ s ◦ f>• = ⊥⊥

∧ f>• ◦ s> ◦⊤⊤ ◦a ⊆ (s> ◦ f>• ◦G)∗ .

Algorithmi Graph Theory April 8, 2022

279

(Beause they depend only on the domains s> and f>• , the �rst and last onjunts have

e�etively been veri�ed already in setion 12.3. Nevertheless, we repeat the proofs here

to show the additional elements in the alulation.)

The validity of the postondition a ◦ s> ◦ f>• = a is straightforward:

(a ◦ s> ◦ f>•)[s := s ∪ m ◦⊤⊤ ◦a]

= { de�nition of substitution, distributivity }

a ◦ s> ◦ f>• ∪ a ◦ (m ◦⊤⊤ ◦a)>

= { domains }

a ◦ s> ◦ f>• ∪ a◦a

= { assumption: P(a,s,f) , hene a ◦ s> = ⊥⊥ ;

a is a oreexive, so a◦a=a }

a .

That is (for arbitrary m),

(a ◦ s> ◦ f>• = a)[s := s ∪ m ◦⊤⊤ ◦a] ⇐ a ◦ s>• ◦ f>• = a

as required.

That the seond is truthi�ed is also obvious

3

. With m denoting (MAX.s↑MAX.f)+1 ,
we have:

(f> ◦ s
∪

◦< ◦ s ◦a = f
∪

◦< ◦ s ◦a)[s := s ∪ m ◦⊤⊤ ◦a]

= { substitution and lemma 13.18,

assumption: P(a,s,f) , hene a ◦ s> = ⊥⊥ }

f> ◦ s> ◦⊤⊤ ◦a = f
∪

◦< ◦m ◦⊤⊤ ◦a

= { assumption: Inv(s,f) , in partiular f>⊆ s> ;

by de�nition of m , f
∪

◦< ◦m = f> ◦⊤⊤ ◦m }

f> ◦⊤⊤ ◦a = f> ◦⊤⊤ ◦m ◦⊤⊤ ◦a

= { ⊤⊤◦m◦⊤⊤=⊤⊤ }

true .

That the third is truthi�ed is slightly less obvious:

3

This is perhaps not obvious in the point-free form. This is one ase where the pointwise formulation

is learer.

Algorithmi Graph Theory April 8, 2022

280

(a ◦ s
∪

◦< ◦ s ◦ f>•)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { substitution and lemma 13.18 }

a ◦ (s∪ ◦< ◦ s ∪ s> ◦⊤⊤ ◦a) ◦ f>•

= { distributivity and domains }

a ◦ s> ◦ (s∪ ◦< ◦ s ∪ s> ◦⊤⊤ ◦a) ◦ f>•

= { assumption: P(a,s,f) , hene a ◦ s> = ⊥⊥ }

⊥⊥ .

The validity of the fourth is established as follows.

(f>• ◦ s> ◦⊤⊤ ◦a ⊆ (s> ◦ f>• ◦G)∗)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { substitution and lemma 13.18 }

f>• ◦ (s>∪a) ◦⊤⊤ ◦a ⊆ ((s>∪a) ◦ f>• ◦G)∗

⇐ { distributivity, suprema }

f>• ◦ s> ◦⊤⊤ ◦a ⊆ (s> ◦ f>• ◦G)∗ ∧ f>• ◦a ◦⊤⊤ ◦a ⊆ (a ◦ f>• ◦G)∗

⇐ { a◦⊤⊤◦a=a , a⊆ I , f>•⊆ I , I⊆G∗
, and monotoniity }

f>• ◦ s> ◦⊤⊤ ◦a ⊆ (s> ◦ f>• ◦G)∗

⇐ { assumption: P(a,s,f) ,

in partiular f>• ◦ s> ◦⊤⊤ ◦a ⊆ (s> ◦ f>• ◦G)∗ }

true .
✷

We now onsider in turn eah of the onjunts of Inv(s,f) and show that they are

invariants of the assignment to s .

Lemma 13.20 The property (13.8) is an invariant of the assignment to s .

Proof We leave this to the reader. The alulation is very similar to the one in lemma

10.21.

✷

Lemma 13.21 The property (13.9) is an invariant of the assignment to s .

Proof This a trivial onsequene of the theorem s⊆ s∪a for all s and a .

✷

Lemma 13.22 The property (13.10) is an invariant of the assignment to s . Spei�-

ally,

Algorithmi Graph Theory April 8, 2022

281

(13.10) [s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] ⇐ (13.10) ∧P(a,s,f) .

Proof Obviously

(f> ◦G ◦ s>• = ⊥⊥)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] ⇐ f> ◦G ◦ s>• = ⊥⊥ .

(Formally, monotoniity is the key: the assignment inreases s and dereases s>• .) For

the seond onjunt, we have

(⊥⊥ = f
∪

◦< ◦ s ∩ G)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

⇐ { de�nition of substitution and (13.10) }

⊥⊥ = f
∪

◦< ◦ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a ∩ G

= { property of MAX : (f∪ ◦< ◦ (MAX.s↑MAX.f)+1)< = f> ,

domains }

⊥⊥ = f> ◦G ◦a

= { assumptions: P(a,s,f) , so a⊆ s>• , and (13.10) }

true .

✷

Lemma 13.23 The property (13.11) is an invariant of the assignment to s . Spei�-

ally,

(13.11) [s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] ⇐ (13.11) ∧ P(a,s,f) .

Proof

(f>• ◦ s
∪

◦≤ ◦ s)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { de�nition of substitution and lemma 13.18 }

f>• ◦ (s∪ ◦≤ ◦ s ∪ (s>∪a)◦⊤⊤◦a)

= { distributivity, a◦⊤⊤◦a=a }

f>• ◦ s
∪

◦≤ ◦ s ∪ f>• ◦ s> ◦⊤⊤ ◦a ∪ f>• ◦a

⊆ { assumption: P(a,s,f)

in partiular, f>• ◦ s> ◦⊤⊤ ◦a ⊆ G∗

and f>• ◦a = a }

f>• ◦ s
∪

◦≤ ◦ s ∪ f>• ◦ s> ◦G∗
◦a ∪ a

⊆ { assumption: (13.11),

Algorithmi Graph Theory April 8, 2022

282

a , f>• and s> are all oreexives }

G∗ ∪ G∗ ∪ I

= { de�nition of G∗
, idempoteny of union,

substitution }

(G∗)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] .

✷

Lemma 13.24 Property (13.12) is an invariant of the assignment to s . Spei�ally,

(13.12) [s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] ⇐ (13.12) ∧ a ◦ s>• ◦ f>• = a .

Proof It suÆes to prove that the left side of (13.12) is invariant under the assignment.

(s∪ ◦≤ ◦ s ∩ f
∪

◦≥ ◦ f)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f

assuming that a ◦ s>• ◦ f>• = a .

(s∪ ◦≤ ◦ s ∩ f
∪

◦≥ ◦ f)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { de�nition of substitutivity and lemma 13.18 }

(s∪ ◦≤ ◦ s ∪ (s∪ ∪ a)◦⊤⊤◦a) ∩ f
∪

◦≥ ◦ f

= { distributivity }

(s∪ ◦≤ ◦ s ∩ f
∪

◦≥ ◦ f) ∪ ((s∪ ∪ a)◦⊤⊤◦a ∩ f
∪

◦≥ ◦ f)

= { domains

(spei�ally R∩S = R ◦S> ∩ S and (f∪ ◦≥ ◦ f)> ⊆ f>) }

(s∪ ◦≤ ◦ s ∩ f
∪

◦≥ ◦ f) ∪ ((s∪ ∪ a) ◦⊤⊤ ◦a ◦ f> ∩ f
∪

◦≥ ◦ f)

= { assumption: a ◦ s>• ◦ f>• = a , hene a ◦ f> = ⊥⊥ }

s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f .

The lemma now follows from the de�nition of substitution.

✷

Lemma 13.25 Property (13.13) is an invariant of the assignment to s . Spei�ally,

Algorithmi Graph Theory April 8, 2022

283

(13.13) [s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] ⇐ (13.13) ∧ a ◦ s>• ◦ f>• = a .

Proof For brevity, we use m to denote (MAX.s↑MAX.f)+1 .

(13.13) [s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { de�nition of substitutivity and lemma 13.18 }

(s∪ ◦≤ ◦ s ∪ (s∪ ∪ a)◦⊤⊤◦a) ∩ f
∪

◦< ◦ f = f
∪

◦< ◦ (s ∪ m◦⊤⊤◦a) ◦ f>

⇐ { distributivity and assumption: (13.13) }

(s∪ ∪ a)◦⊤⊤◦a ∩ f
∪

◦< ◦ f = f
∪

◦< ◦m ◦⊤⊤ ◦a ◦ f>

= { domains }

(s∪ ∪ a) ◦ f∪ ◦< ◦ f ◦a = f
∪

◦< ◦m ◦⊤⊤ ◦a ◦ f>

= { assumption: a ◦ s>• ◦ f>• = a , hene a ◦ f> = ⊥⊥ }

⊥⊥=⊥⊥

= { reexivity }

true .
✷

In summary:

Lemma 13.26 The laimed postondition in the program segment

{ P(a,s,f) ∧ Inv(s,f) }

s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a

{ Q(a,s,f) ∧ Inv(s,f) }

is indeed valid.

✷

13.1.4 The Precondition

Next we onsider the preondition P of a all of dfs . That is, we establish ondition

12.7 of the depth-�rst searh indution theorem, theorem 12.5.

Reall our earlier remark that the property P is e�etively idential to the the prop-

erty used to instantiate p.a when reasoning about the implementation of depth-�rst

searh shown in �g. 12.3: one is obtained from the other by replaing seen by s> ,

∼seen by s>• and ∼fnd by f>• . The reasoning used in setion 12.3 (and more spei�-

ally setion 12.3.2) is therefore appliable here with only minor hanges.

Algorithmi Graph Theory April 8, 2022

284

The proedure dfs is alled from two plaes: the outer and the inner loops. Also,

P(a,s,f) is de�ned to be

a ◦ s>• = a ∧ s> ◦ f>• ◦⊤⊤ ◦a ⊆ (s> ◦ f>• ◦G)∗ .

The validity of P(a,s,f) when dfs(a) is alled in the outer loop follows from properties

established in setion 12.3. In the outer loop, f>= s> is an invariant |it is the property

fnd= seen established in 12.3| and the hoie of a is a ◦ s> = ⊥⊥ . Thus a ◦ s>• = a

follows immediately. The seond onjunt follows beause the invariant f>= s> implies

that f>• ◦ s> = ⊥⊥ .

When dfs(b) is alled in the inner loop, the validity of the two onjunts was estab-

lished in setion 12.3.2. The alulation given there an be repeated here by replaing

seen by s> , ∼seen by s>• and ∼fnd by f>• .

This ompletes the proof that the property P holds when dfs is alled from either

the outer or the inner loop.

13.1.5 Maintaining the Invariant of the Inner Loop

Reall that our task is to apply theorem 12.5 with the term q.a instantiated to the

oreexive orresponding to the property labelled \Inner Loop Invariant" in �g. 13.2.

That is, for all s ′ , f ′ , s and f ,

(s ′, f ′)[[q.a]](s, f) ≡ s ′= s ∧ f ′= f ∧ Q(a,s,f) ∧ Inv(s,f) .

The relation R is instantiated to Invrel (see de�nition 13.7). In this setion, we onsider

the task of verifying (12.8) with these instantiations. Spei�ally, we show that, for all

a , s0 , f0 , s1 and f1 ,

Q(a,s1,f1) ∧ Inv(s1,f1)

⇐ Q(a,s0,f0) ∧ Inv(s0,f0) ∧ (s1, f1) [[Invrel]] (s0, f0) .

In words, q.a is maintained by Invrel .

That the property Inv is maintained by Invrel is immediate: one of the terms in

the de�nition of Invrel is Inv
∪

◦ (⇐) ◦ Inv . The task is thus to show that the oreexive

orresponding to the boolean funtion 〈s,f ::Q(a,s,f)〉 is maintained by Invrel , with the

additional assumption that Inv is both a valid preondition and postondition. That

is, we prove that

Q(a,s1,f1)

⇐ Inv(s1,f1) ∧ Q(a,s0,f0) ∧ Inv(s0,f0) ∧ (s1, f1) [[Invrel]] (s0, f0) .

Algorithmi Graph Theory April 8, 2022

285

The prediate Q aptures properties of a that annot be strengthened further. For

example, the onjunt

a ◦ s
∪

◦< ◦ s ◦ f>• = ⊥⊥(13.27)

annot be strengthened to

f>• ◦ s
∪

◦< ◦ s ◦ f>• = ⊥⊥ .

Property (13.27) asserts that, at the beginning of eah iteration of the inner loop, node

a is the last node from whih a searh has started but not �nished. It is weaker than

the property

a ◦ s
∪

◦< ◦ s = ⊥⊥ ,

whih we showed to be established by the assignment to s (see lemma 13.26). The

introdution of the term \ f>• " is neessary beause, during exeution of dfs(a) , searhes

from other nodes are started and �nished. Beause the assertion is weaker, it is learly

true initially. That it is maintained by subsequent exeutions of dfs(b) in the inner

loop is an immediate onsequene of Invrel , in partiular the properties that s> ◦ f>• is

invariant and s is inreasing. This is proven in lemma 13.31. Similarly, it is shown that

the other onjunts of Q are maintained by the inner loop in lemmas 13.28, 13.30 and

13.32.

The �rst lemma is easy:

Lemma 13.28 For all a , s0 , f0 , s1 and f1 ,

a ◦ s1> ◦ f1>• = a

⇐ a ◦ s0> ◦ f0>• = a ∧ (s1, f1) [[Invrel]] (s0, f0) .

Proof This is immediate from the onjunt s1> ◦ f1>• = s0> ◦ f0>•
in the de�nition of

Invrel . (See de�nition 13.7.)

✷

Some of the remaining lemmas are not so easy. The following lemma is used repeat-

edly in the alulations.

Lemma 13.29 For all a , s0 , f0 , s1 and f1 ,

s1 = s0 ∪ s1 ◦ s0>• ∧ f1 = f0 ∪ f1 ◦ f0>• ∧ s1◦a = s0◦a ∧ s1 ◦ s0> = s0

⇐ a ◦ s0> = a ∧ (s1, f1) [[Invrel]] (s0, f0) .

Proof For the �rst onjunt, we exploit the key is that s1⊇ s0 and both s0 and s1

are injetive and funtional.

Algorithmi Graph Theory April 8, 2022

286

s1 = s0 ∪ s1 ◦ s0>•

= { anti-symmetry }

s1 ⊆ s0 ∪ s1 ◦ s0>• ∧ s1 ⊇ s0 ∪ s1 ◦ s0>•

= { assumption: (s1, f1) [[Invrel]] (s0, f0) ,

in partiular s1⊇ s0 ;

also I⊇ s0>• }

s1 ⊆ s0 ∪ s1 ◦ s0>•

⇐ { I = s0>∪ s0>•
, distributivity }

s1 ◦ s0> ⊆ s0

= { assumption: (s1, f1) [[Invrel]] (s0, f0) ,

in partiular s0> = s0∪

◦ s0 }

s1 ◦ s0
∪

◦ s0 ⊆ s0

⇐ { monotoniity }

s1 ◦ s0
∪ ⊆ I

⇐ { assumption: (s1, f1) [[Invrel]] (s0, f0) ,

in partiular s1> = s1∪

◦ s1 ,

s1>⊆ I }

s0
∪⊆ s1∪

= { assumption: (s1, f1) [[Invrel]] (s0, f0) ,

in partiular s0⊆ s1 ; monotoniity }

true .

The seond onjunt is proved in the same way. The �nal two onjunts are straightfor-

ward.

s1◦a

= { s1 = s0 ∪ s1 ◦ s0>•
, distributivity }

s0◦a ∪ s1 ◦ s0>• ◦a

= { assumption: a ◦ s0> = a , so s0>• ◦a = ⊥⊥ }

s0◦a .

Similarly,

Algorithmi Graph Theory April 8, 2022

287

s1 ◦ s0>

= { s1 = s0 ∪ s1 ◦ s0>•
, distributivity }

s0 ◦ s0> ∪ s1 ◦ s0>• ◦ s0>

= { s0 ◦ s0> = s0 , s0>• ◦ s0> = ⊥⊥ }

s0 .

✷

We now proeed to establish the maintenane properties as explained earlier.

Lemma 13.30 For all a , s0 , f0 , s1 and f1 ,

f1> ◦ s1
∪

◦< ◦ s1 ◦a = f1
∪

◦< ◦ s1 ◦a

⇐ a ◦ s0> ◦ f0>• = a ∧ f0> ◦ s0
∪

◦< ◦ s0 ◦a = f0
∪

◦< ◦ s0 ◦a

∧ Inv(s1,f1) ∧ Inv(s0,f0) ∧ (s1, f1) [[Invrel]] (s0, f0) .

Proof

f1> ◦ s1
∪

◦< ◦ s1 ◦a = f1
∪

◦< ◦ s1 ◦a

= { s1◦a = s0◦a (see lemma 13.29) }

f1> ◦ s1
∪

◦< ◦ s0 ◦a = f1
∪

◦< ◦ s0 ◦a

⇐ { I = s0>∪ s0>•
and distributivity }

f1> ◦ s0> ◦ s1
∪

◦< ◦ s0 ◦a = s0> ◦ f1
∪

◦< ◦ s0 ◦a

∧ f1> ◦ s0>• ◦ s1
∪

◦< ◦ s0 ◦a = s0>• ◦ f1
∪

◦< ◦ s0 ◦a

= { s1 ◦ s0> = s0 (see lemma 13.29) }

f1> ◦ s0
∪

◦< ◦ s0 ◦a = s0> ◦ f1
∪

◦< ◦ s0 ◦a

∧ f1> ◦ s0>• ◦ s1
∪

◦< ◦ s0 ◦a = s0>• ◦ f1
∪

◦< ◦ s0 ◦a

= { f1 ◦ f0> = f0 (see lemma 13.29) }

f0> ◦ s0
∪

◦< ◦ s0 ◦a = f0
∪

◦< ◦ s0 ◦a

∧ f1> ◦ f0>• ◦ s0
∪

◦< ◦ s0 ◦a = s0> ◦ f0>• ◦ f1
∪

◦< ◦ s0 ◦a

∧ f1> ◦ s0>• ◦ s1
∪

◦< ◦ s0 ◦a = s0>• ◦ f1
∪

◦< ◦ s0 ◦a

= { assumption: f0> ◦ s0
∪

◦< ◦ s0 ◦a = f0
∪

◦< ◦ s0 ◦a }

f1> ◦ f0>• ◦ s0
∪

◦< ◦ s0 ◦a = s0> ◦ f0>• ◦ f1
∪

◦< ◦ s0 ◦a

∧ f1> ◦ s0>• ◦ s1
∪

◦< ◦ s0 ◦a = s0>• ◦ f1
∪

◦< ◦ s0 ◦a

= { assumption: (s1, f1) [[Invrel]] (s0, f0) ;

Algorithmi Graph Theory April 8, 2022

288

in partiular (s1, f1) [[sInc]] (s0, f0) , i.e. s0>• ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥ }

f1> ◦ f0>• ◦ s0
∪

◦< ◦ s0 ◦a = s0> ◦ f0>• ◦ f1
∪

◦< ◦ s0 ◦a

∧ ⊥⊥ = s0>• ◦ f1
∪

◦< ◦ s0 ◦a

⇐ { assumption: (s1, f1) [[Invrel]] (s0, f0) ,

in partiular s0> ◦ f0>• = s1> ◦ f1>•
,

f1> ◦ f1>• = ⊥⊥ and ⊥⊥ is zero of omposition }

⊥⊥=⊥⊥ ∧ ⊥⊥ = s0>• ◦ f1
∪

◦< ◦ s0

⇐ { assumption: Inv(s1,f1) ; in partiular f1> ⊆ s1
∪

◦< ◦ f1 }

s0>• ◦ s1
∪

◦< ◦ f1 ◦ f1
∪

◦< ◦ s0 ⊆ ⊥⊥

⇐ { f1 ◦ f1
∪ ⊆ I , < is transitive }

s0>• ◦ s1
∪

◦< ◦ s0 ⊆ ⊥⊥

= { assumption: (s1, f1) [[Invrel]] (s0, f0) ;

in partiular (s1, f1) [[sInc]] (s0, f0) , i.e. s0>• ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥ }

true .

✷

Lemma 13.31 For all a , s0 , f0 , s1 and f1 ,

a ◦ s1
∪

◦< ◦ s1 ◦ f1>• = ⊥⊥

⇐ a ◦ s0> = a ∧ (s1, f1) [[Invrel]] (s0, f0) ∧ a ◦ s0
∪

◦< ◦ s0 ◦ f0>• = ⊥⊥ .

Proof

a ◦ s1
∪

◦< ◦ s1 ◦ f1>•

= { by lemma 13.29 and onverse, a ◦ s1
∪ = a ◦ s0

∪

,

also s1 = s1 ◦ s1> }

a ◦ s0
∪

◦< ◦ s1 ◦ s1> ◦ f1>•

= { assumption: (s1, f1) [[Invrel]] (s0, f0) ,

in partiular s1> ◦ f1>• = s0> ◦ f0>• }

a ◦ s0
∪

◦< ◦ s1 ◦ s0> ◦ f0>•

= { s1 ◦ s0> = s0 (see lemma 13.29) }

a ◦ s0
∪

◦< ◦ s0 ◦ f0>•

Algorithmi Graph Theory April 8, 2022

289

= { assumption: a ◦ s0
∪

◦< ◦ s0 ◦ f0>• = ⊥⊥ }

⊥⊥ .

✷

Lemma 13.32 For all a , s0 , f0 , s1 and f1 ,

f1>• ◦ s1> ◦⊤⊤ ◦a ⊆ G∗

⇐ f0>• ◦ s0> ◦⊤⊤ ◦a ⊆ G∗ ∧ (s1, f1) [[Invrel]] (s0, f0) .

Proof This is immediate from the onjunt s1> ◦ f1>• = s0> ◦ f0>•
in the de�nition of

Invrel . (See de�nition 13.7.)

✷

13.1.6 Postcondition of Inner Loop

Now we onsider the stated postondition of the inner loop. Comparing the onjunts

with those of the loop invariant, one onjunt has been added, viz.

a ◦G ◦ s>• = ⊥⊥ .

This is the ondition for the termination of the loop. We onlude, therefore, that the

postondition of the inner loop is valid.

For later referene, we state this as a lemma.

Lemma 13.33 On termination of the inner loop, the assertion

a ◦G ◦ s>• = ⊥⊥

∧ a ◦ s> ◦ f>• = a ∧ a ◦ s
∪

◦< ◦ s ◦ f>• = ⊥⊥

∧ s> ◦ f>• ◦⊤⊤ ◦a ⊆ G∗ ∧ Inv(s,f)

is valid.

Proof As remarked above, the �rst onjunt is the ondition for terminating the inner

loop. See subsetion 13.1.5 for the validity of the remaining onjunts.

✷

Algorithmi Graph Theory April 8, 2022

290

13.1.7 Assigning Finish Times

Now we turn to the �nal assignment to f . The task is to show that the property

Inv is maintained by the assignment. Again we begin by onsidering the e�et of the

assignment on various subterms.

Lemma 13.34

(f
∪

◦≥ ◦ f)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] = f
∪

◦≥ ◦ f ∪ a ∪ a ◦⊤⊤ ◦ f> ,

(f>)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] = f> ∪ a , and

(f>•)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] = f>• ◦∼a .

Proof For brevity, we let m denote (MAX.s↑MAX.f)+1 .

(f∪ ◦≥ ◦ f)[f := f ∪ m ◦⊤⊤ ◦a]

= { de�nition of substitution and distributivity,

a and m are oreexives, so a=a∪

and m=m∪

}

f
∪

◦≥ ◦ f ∪ a ◦⊤⊤ ◦m ◦≥ ◦ f

∪ f∪ ◦≥ ◦m ◦⊤⊤ ◦a ∪ a ◦⊤⊤ ◦m ◦≥ ◦m ◦⊤⊤ ◦a

= { by de�nition of m , m ◦≥ ◦ f< = m ◦⊤⊤ ◦ f< and f< ◦≥ ◦m = ⊥⊥ ;

also m ◦≥ ◦m = m◦⊤⊤◦m }

f
∪

◦≥ ◦ f ∪ a ◦⊤⊤ ◦m ◦⊤⊤ ◦ f ∪ a ◦⊤⊤ ◦m ◦⊤⊤ ◦m ◦⊤⊤ ◦a

= { m 6=⊥⊥ , one rule and distributivity }

f
∪

◦≥ ◦ f ∪ a◦⊤⊤◦(f∪a)

= { distributivity, a=a◦⊤⊤◦a , ⊤⊤◦f = ⊤⊤ ◦ f> }

f
∪

◦≥ ◦ f ∪ a ∪ a ◦⊤⊤ ◦ f> .

Also,

(f>)[f := f ∪ m ◦⊤⊤ ◦a]

= { de�nition of substitution }

(f ∪ m ◦⊤⊤ ◦a)>

= { distributivity }

f> ∪ (m ◦⊤⊤ ◦a)>

= { domains }

Algorithmi Graph Theory April 8, 2022

291

f> ∪ (⊤⊤ ◦m ◦⊤⊤ ◦a)>

= { one rule (m 6=⊥⊥) and (⊤⊤ ◦a)>=a }

f> ∪ a .

The �nal equality follows straightforwardly from f>•=∼(f>) and the properties of om-

plements.

✷

Lemma 13.35 The property (13.8) is an invariant of the assignment to f .

Proof As for lemma 13.20, we leave this straightforward alulation to the reader.

✷

Lemma 13.36 The property (13.9) is an invariant of the assignments to f .

Proof The invariane of the �rst onjunt is straightforward.

(f> ⊆ s
∪

◦< ◦ f)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { substitution and lemma 13.34 }

f> ∪ a ⊆ s
∪

◦< ◦ (f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a)

⇐ { assumption: f> ⊆ s
∪

◦< ◦ f }

a ⊆ s
∪

◦< ◦ (MAX.s↑MAX.f)+1 ◦ ⊤⊤ ◦ a

⇐ { a⊆ I and monotoniity }

a ⊆ a ◦ s
∪

◦< ◦ (MAX.s↑MAX.f)+1 ◦ ⊤⊤ ◦ a

⇐ { a=a◦⊤⊤◦a and a = a ◦ s> (so a = a ◦ s> ◦⊤⊤ ◦a) }

s> ◦⊤⊤ ⊆ s
∪

◦< ◦ (MAX.s↑MAX.f)+1 ◦⊤⊤

= { by de�nition of MAX ,

s> ◦⊤⊤ ⊆ s
∪

◦< ◦ (MAX.s↑MAX.f)+1 ◦⊤⊤ }

true .

The properties of MAX exploited in the last step are well known; we omit a formal

proof of their validity.

✷

Lemma 13.37 The property (13.10) is an invariant of the assignment to f .

Proof First,

Algorithmi Graph Theory April 8, 2022

292

(f> ◦G ◦ s>•)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { substitution and lemma 13.34 }

(f>∪a) ◦G ◦ s>•

= { assume: f> ◦G ◦ s>• = ⊥⊥ , distributivity }

a ◦G ◦ s>•

= { termination of inner loop: lemma 13.33 }

⊥⊥ .

Seond,

(f∪ ◦< ◦ s ∩ G)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { substitution, distributivity and assumption: f
∪

◦< ◦ s ∩ G = ⊥⊥ }

((MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a)∪ ◦< ◦ s ∩ G

= { onverse }

a ◦⊤⊤ ◦ (MAX.s↑MAX.f)+1 ◦< ◦ s ∩ G

= { (MAX.s↑MAX.f)+1 ◦< ◦ s=⊥⊥ }

⊥⊥ .

✷

Lemma 13.38 The property (13.11) is an invariant of the assignment to f .

Proof This is obvious:

(f>• ◦ s
∪

◦≤ ◦ s)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { substitution and lemma 13.34 }

∼a ◦ f>• ◦ s
∪

◦≤ ◦ s

⊆ { ∼a⊆ I and assumption: (13.11) }

G∗

= { subsitution }

(G∗)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] .

✷

Lemma 13.39 The property (13.12) is an invariant of the assignment to f . Spei�-

ally,

Algorithmi Graph Theory April 8, 2022

293

(13.12) [f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] ⇐ (13.11) ∧ (13.12) ∧ a ◦ f>• = a .

Proof

(s∪ ◦≤ ◦ s ∩ f∪ ◦≥ ◦ f) [f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { de�nition of substitution and lemma 13.34 }

s
∪

◦≤ ◦ s ∩ (f∪ ◦≥ ◦ f ∪ a ∪ a ◦⊤⊤ ◦ f>)

= { distributivity, s
∪

◦≤ ◦ s ∩ a = a }

(s∪ ◦≤ ◦ s ∩ f
∪

◦≥ ◦ f) ∪ a ∪ (s∪ ◦≤ ◦ s ∩ a ◦⊤⊤ ◦ f>)

⊆ { assume: (13.12) }

G∗ ∪ a ∪ (s∪ ◦≤ ◦ s ∩ a ◦⊤⊤ ◦ f>)

= { a⊆ I⊆G∗
, domains }

G∗ ∪ a ◦ s
∪

◦≤ ◦ s ◦ f>

⊆ { assumption: a ◦ f>• = a , i.e. a⊆ f>• }

G∗ ∪ f>• ◦ s
∪

◦≤ ◦ s ◦ f>

⊆ { (13.11) }

G∗ ∪ G∗
◦ f>

= { f>•⊆ I , idempoteny and substitution }

(G∗)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] .

✷

Lemma 13.40 The property (13.13) is an invariant of the assignment to f . Spei�-

ally,

(13.13) [f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] ⇐ (13.13) ∧ Q(a,s,f) .

(See the proof below for the spei� onjunt of Q(a,s,f) that is needed.)

Proof

(s
∪

◦≤ ◦ s ∩ f
∪

◦< ◦ f) [f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { de�nition of substitution and lemma 13.34 }

s
∪

◦≤ ◦ s ∩ (f∪ ◦< ◦ f ∪ f> ◦⊤⊤ ◦a)

= { distributivity and domains }

(s∪ ◦≤ ◦ s ∩ f
∪

◦< ◦ f) ∪ f> ◦ s
∪

◦≤ ◦ s ◦a

Algorithmi Graph Theory April 8, 2022

294

= { assumption: (13.13) }

f
∪

◦< ◦ s ◦ f> ∪ f> ◦ s
∪

◦≤ ◦ s ◦a

= { s is injetive, assumption: f> ◦a = ⊥⊥ }

f∪ ◦< ◦ s ◦ f> ∪ f> ◦ s∪ ◦< ◦ s ◦a

Also, letting m denote (MAX.s↑MAX.f)+1 ,

(f∪ ◦< ◦ s ◦ f>) [f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { de�nition of substitution and lemma 13.34 }

(f ∪ m ◦⊤⊤ ◦a)∪ ◦< ◦ s ◦ (f>∪a)

= { distributivity }

f
∪

◦< ◦ s ◦ (f>∪a) ∪ a ◦⊤⊤ ◦m ◦< ◦ s ◦ (f>∪a)

= { by de�nition of m , m ◦< ◦ s=⊥⊥ }

f
∪

◦< ◦ s ◦ (f>∪a)

= { distributivity }

f
∪

◦< ◦ s ◦ f> ∪ f
∪

◦< ◦ s ◦a .

So,

(13.13) [f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

⇐ { above and assumption: (13.13) }

f> ◦ s
∪

◦< ◦ s ◦a = f∪ ◦< ◦ s ◦a

⇐ { de�nition }

Q(a,s,f) .
✷

This ompletes the proof that timestamped depth-�rst searh meets the spei�ation

given in de�nition 13.7 using theorem 12.5. The veri�ation of (12.6) was ompleted in

subsetion 13.1.3, that of (12.7) in subsetion 13.1.4, that of (12.8) in subsetion 13.1.5

and, �nally, the veri�ation of (12.9) was ompleted in subsetion 13.1.2 and (for the

relation Inv
∪

◦ (⇐) ◦ Inv) in subsetions 13.1.3 and 13.1.7.

13.2 Calculating a Representative

The onlusion of this setion on alulating strongly onneted omponents is quite

short. It suÆes to observe that the delegate funtion on G aording to the timestamp

f is a representative funtion for the strongly onneted omponents of G .

Algorithmi Graph Theory April 8, 2022

295

Suppose ϕ is the delegate funtion on G aording to the timestamp f . From

theorem 10.37, we know that

equiv.G ⊆ ϕ
∪

◦ϕ .

It remains to show that

ϕ
∪

◦ϕ ⊆ equiv.G .

We do this by showing that ϕ⊆ equiv.G . That is, we show that the delegate of a node

aording to f is strongly onneted to the node. The key is to use indution, the main

diÆulty being to identify a suitable indution hypothesis. This is done in the following

lemma. Its proof ombines two properties of delegates: (i) for eah node, there is a path

to its delegate on whih all nodes have the same delegate and (ii) the delegate has the

largest f -value.

Lemma 13.41

ϕ ⊆
〈

µX :: f
∪

◦≥ ◦ f ∩ (I ∪ X ◦G
∪

)
〉

.

Proof

ϕ

= { lemma 10.36 }

〈µX :: ϕ∩ (I ∪ X ◦G
∪)〉

⊆ { theorem 10.37 (spei�ally, ϕ ⊆ f
∪

◦≥ ◦ f)

and monotoniity }

〈µX :: f
∪

◦≥ ◦ f ∩ (I ∪ X ◦G
∪)〉 .

✷

Lemma 13.41 enables us to use �xed-point indution to establish a key lemma:

Lemma 13.42

ϕ ⊆ s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f .

Proof

ϕ ⊆ s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f

⇐ { lemma 13.41 }

〈µX :: f
∪

◦≥ ◦ f ∩ (I ∪ X ◦G
∪)〉 ⊆ s

∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f

⇐ { �xed-point indution }

Algorithmi Graph Theory April 8, 2022

296

f
∪

◦≥ ◦ f ∩ (I ∪ (s∪ ◦≤ ◦ s ∩ f
∪

◦≥ ◦ f) ◦G∪) ⊆ s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f

⇐ { [R∪S = R∪ (¬R∩S)] with R,S := I , s
∪

◦≤ ◦ s ◦G
∪

and distributivity }

f∪ ◦≥ ◦ f ∩ I ⊆ s∪ ◦≤ ◦ s

∧ f
∪

◦≥ ◦ f ∩ ¬I ∩ (s∪ ◦≤ ◦ s ∩ f
∪

◦≥ ◦ f) ◦G∪ ⊆ s
∪

◦≤ ◦ s

= { ≤ is reexive and s is total, so I ⊆ s
∪

◦≤ ◦ s

f is injetive, so f
∪

◦≥ ◦ f ∩ ¬I = f
∪

◦> ◦ f }

f
∪

◦> ◦ f ∩ (s∪ ◦≤ ◦ s ∩ f
∪

◦≥ ◦ f) ◦G∪ ⊆ s
∪

◦≤ ◦ s .

We ontinue with the left-hand side of the inlusion.

f
∪

◦> ◦ f ∩ (s∪ ◦≤ ◦ s ∩ f
∪

◦≥ ◦ f) ◦G∪

⊆ { assumption (13.6): G
∪ ⊆ s

∪

◦≤ ◦ f }

f
∪

◦> ◦ f ∩ (s∪ ◦≤ ◦ s ∩ f
∪

◦≥ ◦ f) ◦ (s∪ ◦≤ ◦ f)

⊆ { [R∩S⊆R] with R,S := s
∪

◦≤ ◦ s , f
∪

◦≥ ◦ f

and monotoniity }

f
∪

◦> ◦ f ∩ s
∪

◦≤ ◦ s ◦ s
∪

◦≤ ◦ f

⊆ { s is funtional, so s ◦ s
∪ ⊆ I , ≤ is transitive }

f
∪

◦> ◦ f ∩ s
∪

◦≤ ◦ f

= { assumption : (13.5), i.e. (taking onverse and omplements)

s
∪

◦≤ ◦ f = s
∪

◦≤ ◦ s ∪ f
∪

◦≤ ◦ f }

f
∪

◦> ◦ f ∩ (s∪ ◦≤ ◦ s ∪ f
∪

◦≤ ◦ f)

= { f
∪

◦> ◦ f ∩ f
∪

◦≤ ◦ f = ⊥⊥ }

f
∪

◦> ◦ f ∩ s
∪

◦≤ ◦ s

⊆ { monotoniity }

s
∪

◦≤ ◦ s .

Combining the two alulations, the proof is omplete.

✷

Now we an proeed to show that every node is strongly onneted to its delegate.

Lemma 13.43 Suppose ϕ is the delegate funtion on G aording to the timestamp

f . Then

ϕ⊆ equiv.G .

Algorithmi Graph Theory April 8, 2022

297

Proof

ϕ⊆ equiv.G

= { de�nition of equiv.G , distributivity }

ϕ⊆G∗ ∧ ϕ⊆ (G∗)∪

= { by de�nition of delegate (see theorem 10.37), ϕ⊆ (G∗)∪ }

ϕ⊆G∗

⇐ { (13.4) is a postondition of repeated depth-�rst searh }

ϕ ⊆ s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f

⇐ { lemma 13.42 }

true .

✷

Theorem 13.44 The delegate funtion on G aording to the timestamp f is a

representative funtion for strongly onneted omponents of G . That is, if ϕ denotes

the delegate funtion,

ϕ
∪

◦ϕ = equiv.G .

Proof

ϕ
∪

◦ϕ = equiv.G

= { anti-symmetry }

equiv.G ⊆ ϕ
∪

◦ϕ ∧ ϕ
∪

◦ϕ ⊆ equiv.G

⇐ { theorem 10.37, lemma 13.43 }

true ∧ (equiv.G)∪ ◦ equiv.G ⊆ equiv.G

= { (equiv.G) is symmetri and transitive }

true .

✷

Algorithmi Graph Theory April 8, 2022

298

Algorithmi Graph Theory April 8, 2022

Chapter 14

A Short Comparison

Our analysis of timestamps and their use in onstruting strongly onneted omponents

has been inuened by Tarjan's [Tar72℄ and Cormen, Leiserson and Rivest's [CLR90℄

thorough but informal proofs. This hapter explains the onnetion. Setion 14.1 ex-

plains how the di�erent types of edge identi�ed by Tarjan are expressed using times-

tamps. Setions 14.2 and 14.3 delve further into Cormen, Leiserson and Rivest's [CLR90℄

so-alled \white path theorem". Finally, setion 14.4 formulates and proves a lemma said

by Lengauer and Tarjan [LT79℄ to be ruial to a \dominators" algorithm.

14.1 Classifying Edges

Tarjan's aount of depth-�rst searh [Tar72℄ lassi�es edges of the given graph into four

ategories: tree edges, anestor edges, fronds and vines .

In order to make the lassi�ation preise, we formulate how the edges may be iden-

ti�ed during exeution of depth-�rst searh. In the �rst instane, we onsider the im-

plementation shown in �g. 12.4. Suppose Wt is a relation on nodes suh that node a

is related by Wt to b if b is in ∼seen at the time that dfs(a) is alled. Similarly,

suppose Gy relates node a to node b if b is in seen ◦∼fnd and suppose Bk relates

node a to node b if b is in fnd at the time that dfs(a) is alled. \Wt " abbreviates

\White", \Gy " abbreviates \Grey" and \Bk " abbreviates \Blak": the olours used

in (eg.) Cormen, Leiserson and Rivest's [CLR90℄ aount of depth-�rst searh. Note

arefully that Wt , Gy and Bk are relations.

Beause fnd⊆ seen is an invariant property, there are no other possibilities. That

is,

Wt∩Gy = Gy∩Bk = Bk∩Wt = ⊥⊥ ∧ Wt∪Gy∪Bk = ⊤⊤ .

Now, the identity

G = (G∩Wt)∪ (G∩¬Wt)

Algorithmi Graph Theory 299 April 8, 2022

300

splits the edges into two types: the edges represented by the relation G∩Wt are tree

or anestor edges. These are the edges from a node a to nodes that have not been seen

at the time that dfs(a) is alled. Tree edges were highlighted in �g. 11.1. Whether an

edge beomes a tree edge or an anestor edge may depend on the order in whih edges

are hosen in the inner loop: a tree edge is an edge that is indeed hosen.

Next, the identity

G∩¬Wt = (G∩Gy)∪ (G∩Bk)

splits the seond type of edge into two types: the edges represented by the relation

G∩Gy are alled fronds . In the iterative stak-based implementation of depth-�rst

searh, these are edges from a to nodes that are on the stak at the time that dfs(a)

is alled. An important property of depth-�rst searh is that there is a path from node

b to node a in the graph if the edge from node a to node b is a frond. This is the

invariant property (12.25).

Finally, the edges represented by the relation G∩Bk are alled vines .

Beause of the temporal nature of the lassi�ation of nodes as white, grey or blak

|every node is initially white but eventually blak| it is impossible to reet the

lassi�ation of edges in the postondition of the implementation shown in �g. 12.4.

When timestamps are added this is (partially) possible.

First, we an split the edges aording to start times: the edges represented by the

relation

G ∩ s
∪

◦≤ ◦ s

are either tree or anestor edges. It is not possible to use timestamps to distinguish

between these types of edges

1

; the distintion reets the non-determinism in the imple-

mentation and is, in fat, irrelevant. Next, we an split the remaining edges aording

to �nish times: the edges represented by the relation

G ∩ s
∪

◦> ◦ s ∩ f
∪

◦< ◦ f

are fronds, and the edges represented by the relation

G ∩ s
∪

◦> ◦ s ∩ f
∪

◦> ◦ f

are vines. A ruial property of depth-�rst searh is the property (13.5). Applying this

property, the vines are represented by the relation

G ∩ s
∪

◦> ◦ f .

1

As for many informal statements, this is not ompletely orret: self-loops are anestor edges.

Algorithmi Graph Theory April 8, 2022

301

In words, a vine is an edge from a node a to a node b suh that the searh from a

started after the searh from b �nished.

Just as important as the above lassi�ation of edges is the property expressed by

the postondition

G ⊆ f
∪

◦≥ ◦ s .

Whenever there is an edge from node a to node b , the searh from a �nishes after the

searh from b starts; onversely, there are no edges from a node a to a node b suh that

the searh from a �nishes before the searh from b starts. This property was identi�ed

as a ruial harateristi property by Tarjan [Tar72℄. See also [CLR90, exerise 23.3-4,

p.484℄ (after orretion to inlude self-loops as in [CLRS09, exerise 22.3-5, p.611℄).

When illustrating depth-�rst searh, the layout of nodes and edges is typially in-

formed as muh as possible by the pratie of reading Latin sript from left to right and

top to bottom. So tree and anestor edges are most often (but not always) depited by

arrows pointing downwards, and vines are depited by arrows pointing from right to left

(and possibly downwards), thus suggesting the order in whih the nodes are proessed

during the searh. This extends to the display of strongly onneted omponents: the

top-to-bottom, left-to-right layout suggests the order in whih they are reognised. We

have adopted this pratie in �g. 11.1. See also [AHU82, �g. 6.37℄ and [CLR90, �g. 23.4℄.

14.2 The White-Path Theorem

Setion 11.3, in partiular theorem 11.13, identi�es the funtion implemented by dfs(a)

as D.a , where

D.a.seen = seen ∪ (a ◦ (G ◦∼seen)∗)> .

When dfs(a) is alled, the nodes represented by ∼seen are \white" relative to node a

and the relation (a ◦ (G ◦∼seen)∗)> represents nodes that an be reahed from a by a

so-alled \white" path. Theorem 11.13 is therefore a formal statement of what Cormen,

Leiserson and Rivest [CLR90℄ all the \white path theorem"

2

. Introduing timestamps

gives a di�erent way of formulating the theorem. Spei�ally, on termination of the outer

loop, the funtions s and f reord the history of the searh in the sense that the nodes

that were \white" at the time the searh from node a is initiated are represented by

(a ◦ s
∪

◦≤ ◦ s)>

2

More preisely, this is our interpretation of the \white path theorem" as stated by Cormen, Leiser-

son and Rivest. Beause of their informal, operational aount, their statements are open to di�erent

interpretations and we may have inadvertently hosen an interpretation that was not intended.

Algorithmi Graph Theory April 8, 2022

302

and the nodes that ould be reahed by a \white path" at that time are represented by

(a ◦ (G ◦ (a ◦ s
∪

◦≤ ◦ s)>)∗)> .

The nodes newly \seen" by the all of dfs(a) are represented by

(a ◦ (s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f))> ,

so the \white path theorem" is the theorem that, for all nodes a ,

(a ◦ (s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f))> = (a ◦ (G ◦ (a ◦ s
∪

◦≤ ◦ s)>)∗)> .(14.1)

We do not prove the orretness of this reformulation of theorem 11.13 beause it is not

needed to establish the orretness of the algorithm for alulating strongly onneted

omponents

3

. Beause of the two ourrenes of \a " in the right side of (14.1), it

annot be diretly restated in point-free form. Theorem 14.4 reformulates (14.1) and, in

so doing, adds greater insight into the laim.

First we need a lemma on domains and a lemma on �xed points.

Lemma 14.2 For all atomi oreexives a and relations R and S ,

a◦(R∩S) = a◦R ∩ a◦S = a ◦R ◦ (a◦S)> .

Proof The �rst equality is immediate from the fat that a is oreexive. Spei�ally,

a◦(R∩S) = a◦R ∩ a◦S

= { R∩S⊆R and R∩S⊆S }

a◦(R∩S) ⊇ a◦R ∩ a◦S

⇐ { modularity rule: (4.8) }

a◦(R∩S) ⊇ a◦(R ∩ a∪

◦a ◦S)

⇐ { monotoniity }

I ⊇ a
∪

◦a

= { a is oreexive }

true .

The seond equality is proved by mutual inlusion. First we note that

3

It should be possible to modify the statement and proof of theorem 11.13 appropriately but we have

not heked that this is the ase at the time of writing. We do establish the orretness of a stronger

\white-path theorem" in setion 14.3.

Algorithmi Graph Theory April 8, 2022

303

a ◦⊤⊤ ◦ (a◦S)>

= { domains }

a◦⊤⊤◦a◦S

= { a is an atomi oreexive, so a=a◦⊤⊤◦a }

a◦S .

Now for the ontainment, we have:

a◦R ∩ a◦S ⊇ a ◦R ◦ (a◦S)>

= { distributivity, I⊇ (a◦S)> and monotoniity }

a◦S ⊇ a ◦R ◦ (a◦S)>

⇐ { ⊤⊤⊇R and monotoniity }

a◦S ⊇ a ◦⊤⊤ ◦ (a◦S)>

= { see above }

true .

Seondly, for the inlusion we have

a ◦R ◦ (a◦S)>

= { domains }

a◦R ∩ ⊤⊤◦a◦S

⊇ { ⊤⊤⊇ I }

a◦R ∩ a◦S .

✷

Lemma 14.3 Suppose a is an atomi oreexive and R and S are arbitrary relations.

Then

a ◦ (R ◦ (a◦S)>)∗ = a ◦ 〈µX :: I∪ (X◦R∩S)〉 .

Proof

a ◦ (R ◦ (a ◦S)>)∗ = a ◦ 〈µX :: I∪ (X◦R∩S)〉

= { [R ◦S∗ = 〈µX :: R ∪ X◦S〉] with R,S := a , R ◦ (a ◦S)> }

〈µX :: a ∪ X ◦R ◦ (a◦S)>〉 = a ◦ 〈µX :: I∪ (X◦R∩S)〉

⇐ { (a◦
) is a lower adjoint, theorem 2.43 }

Algorithmi Graph Theory April 8, 2022

304

〈∀X :: a ∪ a◦X◦R◦(a◦S)> = a ◦ (I∪ (X◦R∩S))〉

⇐ { distributivity and Leibniz }

〈∀X :: a◦X◦R◦(a◦S)> = a◦X◦R ∩ a◦S〉

⇐ { lemma 14.2 with R,S := X◦R , S }

true .
✷

Theorem 14.4 Assuming the validity of (14.1),

s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f =
〈

µX :: I ∪ (X◦G ∩ s
∪

◦< ◦ s)
〉

.

Proof We have:

s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f

= { saturation axiom }

〈∪a :: a ◦ (s∪ ◦≤ ◦ s ∩ f
∪

◦≥ ◦ f)〉

= { assumption: (14.1) }

〈∪a :: a ◦ (a ◦ (G ◦ (a ◦ s
∪

◦≤ ◦ s)>)∗)>〉

= { lemma 14.3 with R,S := G , s∪ ◦≤ ◦ s }

〈∪a :: a ◦ 〈µX :: I ∪ (X◦G ∩ s∪ ◦≤ ◦ s)〉>〉

= { absorption rule, s
∪

◦≤ ◦ s ∩ ¬I = s
∪

◦< ◦ s

saturation axiom }

〈µX :: I ∪ (X◦G ∩ s∪ ◦< ◦ s)〉 .
✷

The expression 〈µX :: I ∪ (X◦G ∩ s∪ ◦< ◦ s)〉 is the relation between nodes a and b

suh that there is a path in G from a to b on whih every node is \white" at the time

that the searh from a is initiated. So theorem 14.4 is a formal statement of the \white-

path theorem". If we interpret the relation s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f as the anestor relation,

the property is that anestor equals white path. Pointwise, node a is an anestor of

node b in a depth-�rst searh if and only if there is a path from a to b on whih eah

node is white at the time that the searh from a starts.

14.3 Ancestor Paths

In the previous setion, we gave a preise formulation of the \white-path theorem": the

property that, in a depth-�rst searh of a �nite graph, there is a path from node a to a

Algorithmi Graph Theory April 8, 2022

305

node b in a graph omprising nodes that are white at the time that the searh from a

starts exatly when node a is an anestor of b in the searh (i.e. the searh from node

a starts before and �nishes after the start of the searh from node b).

A stronger statement is that, for eah node a , a all of dfs(a) alulates all nodes

that an be reahed from a by a path onsisting of edges onneting nodes with stritly

inreasing start times. This is a smaller set of paths than the \white paths". For example,

in �g. 11.1, it does not inlude the path from the node with start time 2 via the node

with start time 9 to the node with start time 4 (this being nevertheless a \white" path

beause the nodes with start times 9 and 4 are both white relative to the node with

start time 2); it does inlude the path via the node with start time 3 .

In this setion, we prove that for all nodes a , a all of dfs(a) alulates all nodes

that an be reahed from a by a path onsisting of \tree/anestor" edges.

The proof is in two steps. We begin by proving that, on termination of depth-�rst

searh,

s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f = (s
∪

◦< ◦ s ∩ G)∗ .(14.5)

This is stronger than theorem 14.4 beause the right side of the equality desribes paths

formed of edges whereby eah node is white with respet to its predeessor on the path

(as opposed to white with respet to the initial node on the path). Its proof involves

strengthening the assertions made about depth-�rst searh; in this way it gives greater

understanding of the algorithm. Then, we an infer the formally stronger property

s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f = (s
∪

◦< ◦ s ∩ f
∪

◦> ◦ f ∩ G)∗(14.6)

by a straightforward alulation. See theorem 14.21. In words, this is the property that

a node a is an anestor of node b in the searh exatly when there is a path from a to

b of whih eah edge is a tree or anestor edge.

In order to prove (14.5), the preondition for exeuting a depth-�rst searh, the

invariant, and the intermediate assertion must all be strengthened. The preondition,

P(a,s,f) , for exeuting dfs(a) is strengthened with the onjunt

f>• ◦ s> ◦⊤⊤ ◦a ⊆ (s
∪

◦< ◦ s ∩ G)∗ ◦G .(14.7)

(This strengthens the preondition f>• ◦ s> ◦⊤⊤ ◦a ⊆ G∗
.) The invariant is strengthened

by adding three onjunts:

f> ◦ (G ∩ s
∪

◦< ◦ s)∗ ◦ f> = s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f(14.8)

(a strengthening of s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f ⊆ G∗
),

f> ◦ (G ∩ s
∪

◦< ◦ s) ◦ f>• = ⊥⊥(14.9)

Algorithmi Graph Theory April 8, 2022

306

(a supplement to f> ◦G ◦ s>• = ⊥⊥) and

f>• ◦ (G ∩ s
∪

◦< ◦ s)∗ ◦ f> = f>• ◦ s
∪

◦≤ ◦ s ◦ f> .(14.10)

Finally, the intermediate assertion, Q(a,s,f) , is strengthened by adding the onjunt:

f>• ◦ s> ◦⊤⊤ ◦a ⊆ (s
∪

◦< ◦ s ∩ G)∗ .(14.11)

It is an immediate onsequene of (14.8) that (14.5) holds on termination of the outer

loop: on termination, f>= I . Properties (14.9) and (14.10) are needed to establish (14.8):

see the proof of lemma 14.14 below.

The veri�ation of these properties proeeds as follows. It is obvious that the three

invariants (14.8), (14.9) and (14.10) are truthi�ed by the initialisation in the outer loop

(beause the initial values of s> and f> are both ⊥⊥).

In the outer loop, f>= s> is an invariant property; it follows that in the outer loop,

the truth of (14.9) and (14.10) is guaranteed. The remaining invariant, (14.8) is obviously

truthi�ed by the initialisation of s and f ; so we must show that it is maintained by

alls of dfs .

The preondition (14.7) is learly satis�ed when dfs(a) is alled in the outer loop:

the left side is ⊥⊥ beause f>= s>). It is also satis�ed when dfs(b) is alled beause of

the ombination of (14.10) and the ondition for hoosing b .

a◦⊤⊤◦b ⊆ s> ◦ f>• ◦G ◦ s>• ∧ s> ◦ f>• ◦⊤⊤ ◦a ⊆ (s∪ ◦< ◦ s ∩ G)∗

⇒ { monotoniity }

s> ◦ f>• ◦⊤⊤ ◦a ◦a ◦⊤⊤ ◦b ⊆ (s∪ ◦< ◦ s ∩ G)∗ ◦ s> ◦ f>• ◦G ◦ s>•

⇒ { a 6=⊥⊥ , so ⊤⊤◦a◦a◦⊤⊤=⊤⊤ ; s>• is a oreexive }

s> ◦ f>• ◦⊤⊤ ◦b ⊆ (s∪ ◦< ◦ s ∩ G)∗ ◦ s> ◦ f>• ◦G ◦ s>•

⇒ { [R∗
◦R ⊆ R∗] , transitivity }

s> ◦ f>• ◦⊤⊤ ◦b ⊆ (s∪ ◦< ◦ s ∩ G)∗ ◦G .

(This is just a repeat of the alulation in setion 12.3.1 but with the strengthened

preondition.)

Verifying the strengthened intermediate assertion (in partiular, the onjunt (14.11))

is a straightforward appliation of the assignment axiom. It is also neessary to show that

(14.11) is maintained by subsequent searhes. (Formally, we have to establish (12.8).)

As before, the ruial fat is that f>• ◦ s> is an invariant value. Thus the left side of

(14.11) is invariant whilst the right side inreases (beause s inreases).

This leaves the veri�ation of eah of the new invariants. This is done by showing

that they are invariant properties of both the assignment to s and the assignment to f .

Algorithmi Graph Theory April 8, 2022

307

(Formally, we split the veri�ation of (12.9) into the veri�ation of (12.17) and (12.18),

as we did with other invariant properties.)

Beause the subterm (G ∩ s∪ ◦< ◦ s)∗ ours in two of the invariants, we separate it

out:

Lemma 14.12

((G ∩ s∪ ◦< ◦ s)∗)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= (G ∩ s∪ ◦< ◦ s)∗ ◦ (I ∪ s> ◦G ◦a) .

Proof

((G ∩ s∪ ◦< ◦ s)∗)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { lemma 13.18 }

(G ∩ (s∪ ◦< ◦ s ∪ s> ◦⊤⊤ ◦a))∗

= { distributivity and star deomposition }

(G ∩ s∪ ◦< ◦ s)∗ ◦ (s> ◦G ◦a ◦ (G ∩ s∪ ◦< ◦ s)∗)∗

= { R∗ = I ∪ R ◦R∗
with R := G ∩ s∪ ◦< ◦ s ,

a ◦ s> = ⊥⊥ (so a ◦ s
∪ = ⊥⊥) }

(G ∩ s∪ ◦< ◦ s)∗ ◦ (s> ◦G ◦a)∗

= { R∗ = I ∪ R∗
◦R with R := s> ◦G ◦a

distributivity, mirror rule and a ◦ s> = ⊥⊥ }

(G ∩ s∪ ◦< ◦ s)∗ ◦ (I ∪ s> ◦G ◦a) .
✷

Lemma 14.13 Property (14.8) is an invariant of the assignment to s .

Proof

(f> ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f>)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { substitution and lemma 14.12 }

f> ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ (I ∪ s> ◦G ◦a) ◦ f>

= { distributivity and a ◦ f> = ⊥⊥ }

f> ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f> .

By lemma 13.24 |the value of s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f is invariant under the assignment to

s| , invariane under the assignment to s follows.

✷

Algorithmi Graph Theory April 8, 2022

308

Lemma 14.14 Property (14.8) is an invariant of the assignment to f .

Proof We begin by showing that (14.9) is equivalent to

f> ◦ (G ∩ s
∪

◦< ◦ s)∗ ◦ f>• = ⊥⊥ .(14.15)

We have:

f> ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f>• = ⊥⊥

= { (omplemented) domains }

(f> ◦ (G ∩ s∪ ◦< ◦ s)∗)> ⊆ f>

⇐ { fusion theorem: theorem 2.43 }

(f> ∪ f> ◦ (G ∩ s∪ ◦< ◦ s))> ⊆ f>

= { distributivity }

(f> ◦ (G ∩ s∪ ◦< ◦ s))> ⊆ f>

= { (omplemented) domains }

f> ◦ (G ∩ s∪ ◦< ◦ s) ◦ f>• = ⊥⊥

⇐ { R⊆R∗
with R := G ∩ s∪ ◦< ◦ s and monotoniity }

f> ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f>• = ⊥⊥ .

Now we an proeed to establish the invariane of (14.9).

(f> ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f>)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { lemma 13.34 }

(f>∪a) ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ (f>∪a)

= { distributivity }

f> ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f> ∪ a ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦a

∪ a ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f> ∪ f> ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦a

= { a is an atom;

(14.10) and a ◦ f>• = a ; (14.15) and a ◦ f>• = a }

f> ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f> ∪ a ∪ a ◦ s
∪

◦≤ ◦ s ◦ f> .

Also,

(s∪ ◦≤ ◦ s ∩ f
∪

◦≥ ◦ f)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

Algorithmi Graph Theory April 8, 2022

309

= { lemma 13.34 }

s
∪

◦≤ ◦ s ∩ (f∪ ◦≥ ◦ f ∪ a ∪ a ◦⊤⊤ ◦ f>)

= { distributivity }

(s∪ ◦≤ ◦ s ∩ f∪ ◦≥ ◦ f) ∪ a ∪ a ◦ s∪ ◦≤ ◦ s ◦ f>

= { assumption: (14.8) }

f> ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f> ∪ a ∪ a ◦ s
∪

◦≤ ◦ s ◦ f> .

The lemma follows by the de�nition of substitution.

✷

Lemma 14.16 Property (14.9) is an invariant of the assignment to s .

Proof

(f> ◦ (G ∩ s∪ ◦< ◦ s) ◦ f>•)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { lemma 13.18 }

f> ◦ (G∩ (s∪ ◦< ◦ s ∪ s> ◦⊤⊤ ◦a)) ◦ f>•

= { distributivity and assumption: (14.9), f> ◦ s> = f> }

f> ◦G ◦a

⊆ { a ◦ s>• = a }

f> ◦G ◦ s>•

= { invariant (13.10) }

⊥⊥ .

✷

Lemma 14.17 Property (14.9) is an invariant of the assignment to f .

Proof

(f> ◦ (G ∩ s∪ ◦< ◦ s) ◦ f>•)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { lemma 13.34 }

(f>∪a) ◦ (G ∩ s∪ ◦< ◦ s) ◦ f>• ◦∼a

= { distributivity and assumption: (14.9) }

a ◦ (G ∩ s∪ ◦< ◦ s) ◦ f>• ◦∼a

⊆ { lemma 13.19, in partiular a ◦ s
∪

◦< ◦ s ◦ f>• = ⊥⊥ ,

Algorithmi Graph Theory April 8, 2022

310

and setion 13.1.5 }

⊥⊥ .

✷

Lemma 14.18 Property (14.10) is an invariant of the assignment to s .

Proof For the left side of (14.10), we have:

(f>• ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f>)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { substitution and lemma 14.12 }

f>• ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ (I ∪ s> ◦G ◦a) ◦ f>

= { a ◦ f> = ⊥⊥ }

f>• ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f> .

Also, for the right side, we have:

(f>• ◦ s
∪

◦≤ ◦ s ◦ f>)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { lemma 13.18 }

f>• ◦ (s∪ ◦≤ ◦ s ∪ s> ◦⊤⊤ ◦a) ◦ f>

= { distributivity and a ◦ f> = ⊥⊥ }

f>• ◦ s
∪

◦≤ ◦ s ◦ f> .

Both sides are thus unhanged by the assignment and so their equality is invariant.

✷

In order to establish that (14.10) is an invariant of the assignment to f , we need

to reformulate the intermediate property (14.11) as an equality. This is done in the

following lemma.

Lemma 14.19 Suppose s> ◦a = a . Then

f>• ◦ s> ◦⊤⊤ ◦a ⊆ (s∪ ◦< ◦ s ∩ G)∗

⇒ f>• ◦ s
∪

◦≤ ◦ s ◦a = f>• ◦ (s∪ ◦< ◦ s ∩ G)∗ ◦a .

(The anteedent of this impliation is the property (14.11).)

Proof

Algorithmi Graph Theory April 8, 2022

311

f>• ◦ (s∪ ◦< ◦ s ∩ G)∗ ◦a

= { assumption: s> ◦a = a , s> ◦ s
∪ = s∪ , s ◦ s> = s ,

mirror rule and distributivity property of oreexives }

f>• ◦ s> ◦ (s∪ ◦< ◦ s ∩ G)∗ ◦a

⊆ { s
∪

◦< ◦ s ∩ G ⊆ s
∪

◦< ◦ s and monotoniity }

f>• ◦ s> ◦ (s∪ ◦< ◦ s)∗ ◦a

= { the less-than relation is transitive and s is funtional

so (s∪ ◦< ◦ s)∗ = s∪ ◦≤ ◦ s

(simple formal proof left to reader) }

f>• ◦ s> ◦ s
∪

◦≤ ◦ s ◦a

⊆ { assumption: f>• ◦ s> ◦⊤⊤ ◦a ⊆ (s∪ ◦< ◦ s ∩ G)∗

f>• ◦ s> and a are oreexives, p◦p=p for all oreexives p }

f>• ◦ s> ◦ (s∪ ◦< ◦ s ∩ G)∗ ◦a

= { �rst step reversed }

f>• ◦ (s∪ ◦< ◦ s ∩ G)∗ ◦a .

The lemma follows by the anti-symmetry of the subset relation ombined with s> ◦ s
∪ = s∪ .

✷

Lemma 14.20 Property (14.10) is an invariant of the assignment to f .

Proof The key step is the use of lemma 14.19. It is appliable beause s> ◦a = a and

(14.11) are both valid when the assignment is exeuted (as shown earlier).

(f>• ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f>)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { lemma 13.34 }

f>• ◦∼a ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ (f>∪a)

= { oreexives ommute and distributivity }

∼a ◦ f>• ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f> ∪ ∼a ◦ f>• ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦a

= { (left summand) assumption: (14.10)

(right summand) assumption: (14.11) and lemma 14.19 }

∼a ◦ f>• ◦ s
∪

◦≤ ◦ s ◦ f> ∪ ∼a ◦ f>• ◦ s
∪

◦≤ ◦ s ◦a

Algorithmi Graph Theory April 8, 2022

312

= { distributivity }

∼a ◦ f>• ◦ s
∪

◦≤ ◦ s ◦ (f>∪a)

= { oreexives ommute and lemma 13.34 }

(f>• ◦ s∪ ◦≤ ◦ s ◦ f>)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] .

✷

We summarise the results of this setion in the following theorem. We all it the

\anestor paths" theorem beause it asserts that, for all nodes a and b , the searh

from node a starts before and �nishes after node b |i.e. a is an \anestor" of node

b| equivales there is a path from a to b formed of edges eah of whih is from an

\anestor" to a \desendant".

Theorem 14.21 (Ancestor Paths) On termination of depth-�rst searh,

s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f = (s
∪

◦< ◦ s ∩ G)∗ = (s
∪

◦< ◦ s ∩ f
∪

◦> ◦ f ∩ G)∗ .

Proof That

s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f = (s
∪

◦< ◦ s ∩ G)∗

on termination is immediate from the invariant property (14.8) and the termination

property f>= I . Now

s
∪

◦< ◦ s ∩ G

= { ⊤⊤IN = (<)∪ IIN∪ (>) , and f∪ ◦ f = I ,

so ⊤⊤Node = f
∪

◦< ◦ f ∪ INode ∪ f
∪

◦> ◦ f ;

distributivity and s
∪

◦< ◦ s ∩ INode = ⊥⊥ }

(s∪ ◦< ◦ s ∩ f
∪

◦< ◦ f ∩ G) ∪ (s∪ ◦< ◦ s ∩ f
∪

◦> ◦ f ∩ G)

= { invariant: (13.5) }

(f∪ ◦< ◦ s ∩ G) ∪ (s∪ ◦< ◦ s ∩ f
∪

◦> ◦ f ∩ G)

= { invariant: (13.3) }

s
∪

◦< ◦ s ∩ f
∪

◦> ◦ f ∩ G .

The theorem follows by Leibniz's rule.

✷

We now return to theorem 14.4. Reall that theorem 14.4 assumes the validity of

(14.1) whih we have not proved. It is straightforward to show that theorem 14.4 is

implied by theorem 14.21. For ompleteness,we give the proof below.

The following lemma, whih is relatively obvious, forms the ore of the argument.

Algorithmi Graph Theory April 8, 2022

313

Lemma 14.22 Suppose T is a reexive and transitive relation. Then, for all relations

R ,

(R∩T)∗ ⊆ 〈µX :: I ∪ (X◦R∩T)〉 ⊆ T .

Proof We begin by proving that

〈µX :: I ∪ (X◦R∩T)〉 ⊆ T .

We have

〈µX :: I ∪ (X◦R∩T)〉 ⊆ T

⇐ { �xed-point indution }

I ∪ (T ◦R∩T) ⊆ T

= { de�nition of supremum }

I⊆T ∧ T ◦R∩T ⊆ T

= { assumption: T is reexive (i.e. I⊆ T)

property of in�mum }

true .

Using the above, we an infer that

(R∩T)∗ ⊆ 〈µX :: I ∪ (X◦R∩T)〉 .

Introduing the abbreviation M for 〈µX :: I ∪ (X◦R∩T)〉 , we have:

(R∩T)∗ ⊆ 〈µX :: I ∪ (X◦R∩T)〉

= { de�nition of M }

(R∩T)∗ ⊆ M

⇐ { �xed-point indution }

I ∪ M ◦ (R∩T) ⊆ M

= { by (�xed-point) omputation rule, M= I ∪ (M◦R∩T) }

I ∪ M ◦ (R∩T) ⊆ I ∪ (M◦R∩T)

⇐ { monotoniity of (I∪) }

M ◦ (R∩T) ⊆ M◦R∩T

= { de�nition of in�mum }

M ◦ (R∩T) ⊆ M◦R ∧ M ◦ (R∩T) ⊆ T

Algorithmi Graph Theory April 8, 2022

314

⇐ { monotoniity and assumption: T is transitive }

M ◦ (R∩T) ⊆ T ◦T

⇐ { property of in�mum, monotoniity and de�nition of M }

〈µX :: I ∪ (X◦R∩T)〉 ⊆ T

= { see above }

true .

✷

Theorem 14.23 On termination of depth-�rst searh,

s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f

= (s∪ ◦< ◦ s ∩ G)∗

= (s∪ ◦< ◦ s ∩ f
∪

◦> ◦ f ∩ G)∗

= 〈µX :: I ∪ (X◦G ∩ s∪ ◦< ◦ s)〉 .

(As remarked earlier, 〈µX :: I ∪ (X◦G ∩ s∪ ◦≤ ◦ s)〉 is the relation between nodes a and

b expressing the existene of a path from a to b on whih every node is \white" at the

time that the all of dfs(a) is made. See the remarks preeding theorem 14.21 for the

interpretation of the other terms in the ontinued equality.)

Proof The �rst two equalities are as in theorem 14.21. We now prove that the �rst

and last terms are equal. The proof is by mutual inlusion.

Instantiating lemma 14.22 with R,T := G , s
∪

◦≤ ◦ s (and noting that s
∪

◦≤ ◦ s is

reexive and transitive beause the at-most relation is reexive and transitive and s is

a total funtion)

(G ∩ s
∪

◦≤ ◦ s)∗ ⊆
〈

µX :: I ∪ (X◦G ∩ s
∪

◦≤ ◦ s)
〉

⊆ s
∪

◦≤ ◦ s .

Moreover, (G ∩ s∪ ◦≤ ◦ s)∗=(s∪ ◦< ◦ s ∩ G)∗ . (This is beause R∗=(¬I∩R)∗ for all R ,

and the less-than relation is the intersetion of the not-equal and the at-most relation.)

So

(s
∪

◦< ◦ s ∩ G)∗ ⊆
〈

µX :: I ∪ (X◦G ∩ s
∪

◦≤ ◦ s)
〉

⊆ s
∪

◦≤ ◦ s .

Comparing with theorem 14.21, it remains to prove that

〈

µX :: I ∪ (X◦G ∩ s
∪

◦≤ ◦ s)
〉

⊆ f
∪

◦≥ ◦ f .

Now,

Algorithmi Graph Theory April 8, 2022

315

〈µX :: I ∪ (X◦G ∩ s∪ ◦≤ ◦ s)〉 ⊆ f
∪

◦≥ ◦ f

⇐ { �xed-point indution, f
∪

◦≥ ◦ f is reexive }

f
∪

◦≥ ◦ f ◦G ∩ s
∪

◦≤ ◦ s ⊆ f
∪

◦≥ ◦ f

= { shunting rule (2.27) }

f
∪

◦≥ ◦ f ◦G ∩ s
∪

◦≤ ◦ s ∩ f∪ ◦< ◦ f ⊆ ⊥⊥

⇐ { on termination of depth-�rst searh

s
∪

◦≤ ◦ s ∩ f
∪

◦< ◦ f = f
∪

◦< ◦ s

and G ⊆ f
∪

◦≥ ◦ s }

f
∪

◦≥ ◦ f ◦ f
∪

◦≥ ◦ s ∩ f
∪

◦< ◦ s ⊆ ⊥⊥

⇐ { ≥ is transitive, f is a total funtion }

f
∪

◦≥ ◦ s ∩ f
∪

◦< ◦ s ⊆ ⊥⊥

= { f and s are total funtions, (≥)∩ (<) = ⊥⊥ }

true .

✷

A yet stronger theorem than theorem 14.21 is expressed by the invariant property

s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f = Tree∗

where Tree is the subset of G apturing the \tree" edges: the edges a◦⊤⊤◦b hosen by

the seletion riterion

a ◦⊤⊤ ◦b ⊆ a ◦G ◦ s>•

in the proedure dfs(a) (see �g. 12.4). Reall, however, that it is impossible to distin-

guish tree and anestor edges using timestamps. Thus we are unable to exlude (non-tree)

anestor edges in the statement of theorem 14.21. Of ourse, it would be straightfor-

ward to augment the implementation to reord tree edges and then prove the stronger

theorem using the tehniques we have presented. The distintion between \tree" and

\anestor" edges is, however, irrelevant |it reets the nondeterminism in the hoie of

edges rather than being of intrinsi importane| and, in any ase, the full strength of

theorem 14.21 is not needed to establish the orretness of the algorithm for onstruting

strongly onneted omponents: only the inlusion of the left side of the equality in the

right side is needed, as we have shown in earlier setions.

Algorithmi Graph Theory April 8, 2022

316

14.4 Common Ancestors

Lengauer and Tarjan [LT79, Lemma 1℄ assert a property of depth-�rst searh that is use-

ful in alulating \dominators". We do not disuss algorithms for omputing dominators

here; see [SMC12℄ for a point-free formulation of the fundamental properties of domi-

nane. Here we restrit attention to formulating and validating Lengauer and Tarjan's

assertion.

Slightly adapted to �t the terminology used here, the assertion is the following:

If a and b are nodes of G suh that s.a≤ s.b , then any path from a to b

must ontain a ommon anestor of a and b in Tree .

Our formulation is as follows.

Theorem 14.24 If a and b are nodes of G suh that a◦⊤⊤◦b ⊆ s
∪

◦≤ ◦ s , then any

path from a to b must ontain a node c suh that c Anc a and c Anc b where the

anestor relation Anc is de�ned by

Anc = (s
∪

◦< ◦ s ∩ f
∪

◦> ◦ f ∩ G)∗ .

✷

Our theorem is slightly weaker than Lengauer and Tarjan's assertion in that our \an-

estor relation" is not the relation Tree∗ . (The relation Tree is a subset of the relation

s
∪

◦< ◦ s ∩ f
∪

◦> ◦ f ∩ G .) See the remarks following theorem 14.21 for an explanation

of what is involved in strengthening the theorem.

The theorem learly demands a onstrutive proof: an algorithm that omputes for a

given path a ommon anestor of the two end-nodes of the path. The preondition of the

algorithm is the postondition of depth-�rst searh. Theorem 14.23 plays a signi�ant

role: in the proof we use the equivalent de�nition

Anc = s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f .

Unlike elsewhere in this doument, our proof is not ompletely formal. We have not

formalised the notion of a \path", or being \on" a path. This means that some assertions

are not formally justi�ed. The tehniques used in [SMC12℄ are appliable to �lling this

gap.

The algorithm is very simple: in the ase that a=b , the \ommon anestor" is

hosen to be a and, in the ase that a 6=b , the \ommon anestor" c in the statement

of the theorem is hosen to be the node on the given path that minimises the value of

the funtion s . That is, for all nodes d on the path,

c◦⊤⊤◦d ⊆ s
∪

◦≤ ◦ s .

Algorithmi Graph Theory April 8, 2022

317

(The pointwise equivalent is s.c≤ s.d .)

The ase analysis on a=b or a 6=b turns out to be useful for the argument below:

in the ase that a=b the given path may be non-empty, and it is simpler not to have

to onsider this possibility. Clearly the hoie of the ommon anestor in the ase that

a=b is orret beause the anestor relation is reexive. From now on, we assume that

a 6=b .

The hoie of any node c on the given path divides the path into a path from a to

c and a path from c to b ; the spei� hoie of c has the impliation that

c◦⊤⊤◦b ⊆
〈

µX :: I ∪ (X◦G ∩ s
∪

◦≤ ◦ s)
〉

.

In words, the part of the given path from c to b is suh that every node d on it satis�es

s.c≤ s.d . Equivalently |just use the absorption rule to replae at-most by less-than|

c◦⊤⊤◦b ⊆
〈

µX :: I ∪ (X◦G ∩ s
∪

◦< ◦ s)
〉

.

Applying theorem 14.23, it follows that c Anc b as required.

It remains to show that c Anc a . If a=c , this is trivially true. So assume that

a 6=c . Now c Anc b (whih we have just proved) is, by theorem 14.23, the property

c◦⊤⊤◦b ⊆ s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f .

We also have, by assumption,

a◦⊤⊤◦b ⊆ s
∪

◦< ◦ s

and, by the hoie of c ,

c◦⊤⊤◦a ⊆ s
∪

◦< ◦ s .

(Reall the assumptions that a 6=b and a 6=c .) Now there are just two possibilities:

either b◦⊤⊤◦a ⊆ f
∪

◦> ◦ f or a◦⊤⊤◦b ⊆ f
∪

◦> ◦ f . In the �rst ase,

true

= { assumptions and hoie of c }

c◦⊤⊤◦a ⊆ s
∪

◦< ◦ s ∧ c◦⊤⊤◦b ⊆ f
∪

◦≥ ◦ f ∧ b◦⊤⊤◦a ⊆ f
∪

◦> ◦ f

⇒ { monotoniity and transitivity of f
∪

◦≥ ◦ f }

c◦⊤⊤◦a ⊆ s
∪

◦< ◦ s ∧ c◦⊤⊤◦a ⊆ f
∪

◦> ◦ f

⇒ { de�nition of Anc and theorem 14.23 }

c Anc a .

In the seond ase,

Algorithmi Graph Theory April 8, 2022

318

c◦⊤⊤◦a ⊆ f
∪

◦< ◦ f

= { assumption: c◦⊤⊤◦a ⊆ s
∪

◦< ◦ s }

c◦⊤⊤◦a ⊆ s
∪

◦< ◦ s ∩ f∪ ◦< ◦ f

= { on termination of depth-�rst searh (see (13.5))

s
∪

◦< ◦ s ∩ f
∪

◦< ◦ f = f
∪

◦< ◦ s }

c◦⊤⊤◦a ⊆ f
∪

◦< ◦ s

= { assumption: a◦⊤⊤◦b ⊆ s
∪

◦< ◦ s , monotoniity and transitivity }

c◦⊤⊤◦b ⊆ f
∪

◦< ◦ s ◦ s
∪

◦< ◦ s

⇒ { s is funtional, <◦s⊆<◦f and less-than is transitive }

c◦⊤⊤◦b ⊆ f
∪

◦< ◦ f

= { c Anc b (proved above), so c◦⊤⊤◦b ⊆ f
∪

◦≥ ◦ f }

c◦⊤⊤◦b ⊆ f
∪

◦< ◦ f ∩ f
∪

◦≥ ◦ f

= { f is funtional, <∩≥=⊥⊥ , c◦⊤⊤◦b 6=⊥⊥ }

false .

We onlude that

c◦⊤⊤◦a ⊆ f
∪

◦≥ ◦ f .

Combined with the hoie of c , in partiular c◦⊤⊤◦a ⊆ s
∪

◦≤ ◦ s , we have thus shown

that c Anc a .

(The property <◦s⊆<◦f used in the impliation step is the point-free formulation of

the property that, for all nodes d , s.d<f.d . In words, the start time of eah node is less

than its �nish time. More preisely, it is the point-free formulation of the property that,

for all numbers m and all nodes d , m<s.d⇒ m<f.d . We haven't atually proved

this property! To do so it suÆes to add the property

< ◦ s ◦ f> ⊆ < ◦ f

to the invariants of depth-�rst searh. Its veri�ation is straightforward.)

Note that the full extent of theorem 14.23 is used to establish theorem 14.24; the

white-path theorem on its own is inadequate.

Algorithmi Graph Theory April 8, 2022

Part V

Concluding Remarks

Algorithmi Graph Theory 319 April 8, 2022

321

The goal of this text has been to demonstrate the e�etiveness of point-free relation

algebra in reasoning about graph algorithms. We hope that our work may form the basis

for an investigation into the e�etiveness of ontemporary mahine-supported veri�ation

systems.

Some readers may onlude that our experiment has failed. In spite of our laim that

point-free reasoning ombines onision with preision, the length of this doument may

lead some to argue otherwise. Certainly, ompared to informal proofs our alulations

are substantially longer.

Aho, Hoproft and Ullman [AHU82, pp. 219{226℄ present depth-�rst searh, its

appliation to omputing a topologial ordering of the nodes in an ayli graph as well

as to omputing the strongly onneted omponents of an arbitrary graph, all within less

than ten pages. Their disussion of the orretness of the strongly-onneted-omponents

algorithm takes less than one page. Cormen, Leiserson and Rivest [CLR90, pp.465{497℄

over the same ground in less than forty pages. Their aount of the orretness of the

algorithm for omputing strongly onneted omponents |whih is muh more thorough

than that of Aho, Hoproft and Ullman| amounts to �ve pages. The formal veri�ation

we have given is modelled on these two aounts but totals more than 100 pages. One

may question whether this represents progress.

It has long been known that formal, axiomati proofs are substantially longer than

informal proofs in natural language. One reason is that formal proofs are neessarily

more omplete and are less prone to the sin of omission. More often than their formal

ounterparts, informal proofs tend to omit details that are onsidered \obvious" but

nevertheless are essential to the argument. (An example is the property that the times-

tamps in depth-�rst searh are total, injetive funtions.) Informal proofs undergo what

has been alled a \soial proess" before they beome aepted as legitimate: they rely

on the agreement of suÆiently many experts that all steps are orret and have been

adequately substantiated. (Undoubtedly, the graph algorithms disussed here have long

ago passed this test and there is no question about their orretness.) Informal proofs

ahieve onision at the expense of preision.

We would argue that the formal proofs we have given do ombine preision with

onision. This ombination is evident in the doumentation that we provide. See, for

example, �g. 13.1 in whih properties of depth-�rst searh are fully doumented. An

experiened, well-trained programmer will study the doumentation in order to gain

a full understanding of the implementation. Formal doumentation of this nature an

also be \exeuted" as a means of testing the implementation. Indeed, a well-trained

programmer should be able to hek for themself the veraity of the doumentation,

using it to design tests in ases of doubt.

Of ourse, mathematial formulae are less \readable" than natural language (at least

to those for whom the natural language in use is the mother tongue) but natural lan-

Algorithmi Graph Theory April 8, 2022

322

guage an be misleading: mathematial vernaular tends to be hosen so that it mimis

everyday language but its familiarity an be deeptive

4

. Our point-free formulae will be

even less readable to those unfamiliar with them but, we would argue, it is just a ques-

tion of pratie to gain the neessary reading and writing skills. Traditional pointwise

formulae name variables that do not need to be named, and sometimes involve several

layers of universal and existential quanti�ations.

For onrete instanes of the extra preision |without loss of onision| we refer

the reader to our disussion of the \white-path theorem" in setions 10.2.5 and 14.3. As

we explained in setion 10.2.5, the notion of a \white path" an have di�erent de�ni-

tions. The point-free alulus used here enables us to make the distintion onisely and

preisely | as we did in setion 14.3. The alulus also allows us to identify exatly

whih properties are neessary to establish the orretness of the algorithm for omputing

strongly onneted omponents: theorem 14.21 on \anestor paths" does add to a proper

understanding of depth-�rst searh but weaker properties suÆe for understanding how

it is exploited.

Textbook aounts of graph algorithms typially rely on an informal, operational

understanding of program statements. We have presented a basi \Algol-like" language

to whih we have given a simple non-operational relational semantis. In this way,

we have met the goal of larifying the basis of our formal arguments. The (now well-

known) relevane of regular algebra to reasoning about simple loops has been prominent

throughout; hapter 12 goes muh further in demonstrating the appliation of �xed-point

alulus in reasoning about so-alled \reursive" programs.

As mentioned in the introdution, our next step is to explore how good ontemporary

veri�ation systems are in the task of verifying non-trivial graph algorithms. For exam-

ple, to what extent is it possible to supply suh a system with the formal doumentation

and then have it heked without human intervention? Many of the alulations inluded

here are straightforward, leading to the hope that they might be automatially reon-

struted. If so, then the seemingly overwhelming explosion in the length of douments

like this one may not be so inevitable after all.

4

For example, we hoose to use the term \onditional orretness" rather \partial orretness" beause

being \partially" orret may also be interpreted as partially inorret. We use the term \orretness" re-

lutantly beause it suggests something absolute. We prefer to say that a program \meets its spei�ation",

thus allowing for the possibility that the spei�ation is awed.

Algorithmi Graph Theory April 8, 2022

Bibliography

[ABH

+
92℄ C.J. Aarts, R.C. Bakhouse, P. Hoogendijk, T.S. Voermans, and J. van der

Woude. A relational theory of datatypes. Available via World-Wide Web

at http://www.cs.nott.ac.uk/~psarb2/papers, September 1992.

[AC75℄ Alfred V. Aho and Margaret J. Corasik. EÆient string mathing: An

aid to bibliographi searh. Communiations of the ACM, 18(6):333{340,

1975.

[AHU82℄ Alfred V. Aho, John E. Hoproft, and Je�rey D. Ullman. Data Strutures

and Algorithms. Addison-Wesley, 1982.

[Ba75℄ R.C. Bakhouse. Closure algorithms and the star-height problem of

regular languages. PhD thesis, University of London, 1975. Avail-

able at https://spiral.imperial.ac.uk/bitstream/10044/1/22243/2

/Backhouse-RC-1976-PhD-Thesis.pdf.

[Ba00℄ Roland Bakhouse. Fixed point alulus. Summer Shool

and Workshop on Algebrai and Coalgebrai Methods in

the Mathematis of Program Constrution, available at

http:/www.cs.nott.ac.uk/~psarb2/MPC/acmmpc.pdf, April 2000.

[Ba02℄ Roland Bakhouse. Galois onnetions and �xed point alulus. In Roland

Bakhouse, Roy Crole, and Jeremy Gibbons, editors, Algebrai and Coal-

gebrai Methods in the Mathematis of Program Constrution, volume

2297 of LNCS Tutorial, hapter 4, pages 89{148. Springer, 2002. Inter-

national Summer Shool and Workshop, Oxford, UK, April 2000, Revised

Letures (Abridged version of [Ba00℄).

[Ba03℄ Roland Bakhouse. Program Constrution. Calulating Implementations

From Spei�ations. John Wiley & Sons, Ltd., 2003.

[Ba06℄ Roland Bakhouse. Regular algebra applied to language problems. Journal

of Logi and Algebrai Programming, 66:71{111, 2006.

Algorithmi Graph Theory 323 April 8, 2022

324

[Ba11℄ Roland Bakhouse. Algorithmi Problem Solving. John Wiley & Sons,

2011.

[Ba16℄ Roland Bakhouse. Fator theory and the unity of opposites. J. Logial

and Algebrai Methods in Programming, 85(5):824{846, 2016.

[BC75℄ R.C. Bakhouse and B.A. Carr�e. Regular algebra applied to path-�nding

problems. Journal of the Institute of Mathematis and its Appliations,

15:161{186, 1975.

[BC82℄ R.C. Bakhouse and B.A. Carr�e. A omparison of Gaussian and Gauss-

Jordan elimination in regular algebra. International Journal of Computer

Mathematis, 10:311{325, 1982.

[BDGv22℄ Roland Bakhouse, Henk Doornbos, Roland Gl�uk, and Jaap van der

Woude. Components and ayliity of graphs. an exerise in ombining

preision with onision. Journal of Logial and Algebrai Methods in

Programming, 124:100730, 2022.

[BdM97℄ Rihard S. Bird and Oege de Moor. Algebra of Programming. Prentie-Hall

International, 1997.

[BL77℄ R.C. Bakhouse and R.K. Lutz. Fator graphs, failure funtions and bi-trees.

In A. Salomaa and M. Steinby, editors, Fourth Colloquium on Automata,

Languages and Programming, pages 61{75. Springer-Verlag, LNCS 52,

July 1977.

[BN98℄ Lex Bijlsma and Rob Nederpelt. Dijkstra-Sholten prediate alulus: on-

epts and misoneptions. Ata Informatia, 35:1007{1036, 1998.

[Brz67℄ J.A. Brzozowski. Roots of star events. Journal of the ACM, 14(3):466{477,

July 1967.

[BW93℄ R.C. Bakhouse and J. van der Woude. Demoni operators and monotype

fators. Mathematial Strutures in Computer Siene, 3(4):417{433,

Deember 1993.

[Car71℄ B.A. Carr�e. A network routing algebra. J.Inst.Maths.Applis., 7:273{294,

1971.

[CLR90℄ Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Intro-

dution to Algorithms. MIT Eletrial Engineering and Computer Siene

Series, MIT Press, 1990.

Algorithmi Graph Theory April 8, 2022

325

[CLRS09℄ Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord

Stein. Introdution to Algorithms, 3rd edition. MIT Eletrial Engineer-

ing and Computer Siene Series, MIT Press, 2009.

[Con71℄ J.H. Conway. Regular Algebra and Finite Mahines. Chapman and Hall,

London, 1971.

[DB02℄ Henk Doornbos and Roland Bakhouse. Algebra of program termination. In

Roland Bakhouse, Roy Crole, and Jeremy Gibbons, editors, Algebrai and

Coalgebrai Methods in the Mathematis of Program Constrution, vol-

ume LNCS 2297 of Leture Notes in Computer Siene, Tutorial Series,

pages 203{235. Springer, 2002.

[DBvdW97℄ Henk Doornbos, Roland Bakhouse, and Jaap van der Woude. A alula-

tional approah to mathematial indution. Theoretial Computer Si-

ene, 179(1{2):103{135, 1 June 1997.

[DM60℄ A. De Morgan. On the syllogism, no. iv, and on the logi of relations.

Transations of the Cambridge Philosophial Soiety, 1860. Reprinted

in [DM66℄.

[DM66℄ Augustus De Morgan. On the Syllogism and Other Logial Writings.

Yale University Press, New Haven, 1966. Edited, with an Introdution, by

Peter Heath.

[Doo96℄ H. Doornbos. Redutivity arguments and program onstrution. PhD

thesis, Department of Mathematis and Computer Siene, June 1996.

[DS90℄ Edsger W. Dijkstra and Carel S. Sholten. Prediate Calulus and Pro-

gram Semantis. Texts and monographs in Computer Siene. Springer-

Verlag, 1990.

[Fv90℄ P.J. Freyd and A.

�

S�edrov. Categories, Allegories. North-Holland, 1990.

[Gl�u17℄ Roland Gl�uk. Algebrai investigation of onneted omponents. In

P. H�ofner, D. Pous, and G. Struth, editors, Relational and Algebrai Meth-

ods in Computer Siene { 16th International Conferene, RAMiCS

2017, volume 10226 of Leture Notes in Computer Siene, pages 109{

126. Springer, May 15{18 2017.

[Gri81℄ D. Gries. The Siene of Programming. Springer-Verlag, New York, 1981.

Algorithmi Graph Theory April 8, 2022

326

[Hoo97℄ Paul Hoogendijk. A Generi Theory of Datatypes. PhD thesis, Depart-

ment of Mathematis and Computer Siene, 1997.

[KMP77℄ D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern mathing in strings.

SIAM Journal of Computing, 6:325{350, June 1977.

[LT79℄ Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for �nding

dominators in a owgraph. ACM Transations on Programming Lan-

guages and Systems, 1(1):121{141, 1979.

[Mad91℄ Roger D. Maddux. The origin of relation algebras in the development and

axiomatization of the alulus of relations. Studia Logia, 50(3{4):421{455,

1991.

[Mat95℄ Mathematis of Program Constrution Group, Eindhoven University of

Tehnology. Fixed-point alulus. Information Proessing Letters,

53(3):131{136, February 1995.

[Pei70℄ C.S. Peire. Desription of a notation for the logi of relatives, resulting from

an ampli�ation of the oneptions of Boole's alulus of logi. Memoirs

of the Amerian Aademy of Sienes, 9:317{378, 1870. Reprinted in

[Pei33℄.

[Pei33℄ C.S. Peire. Colleted Papers. Harvard University Press, 1933.

[Pra92℄ V.R. Pratt. Origins of the alulus of binary relations. In Logi in Com-

puter Siene, pages 248{254. IEEE Computer Soiety Press, 1992.

[Rig48℄ J. Riguet. Relations binaires, fermetures, orrespondanes de Galois. Bul-

letin de la Soi�et�e Math�ematique de Frane, 76:114{155, 1948.

[Sal69℄ A. Salomaa. Theory of Automata. Pergamon Press, Oxford, 1969.

[Sh95℄ E. Shr�oder. Algebra der Logik, volume 3. Teubner, Leipzig, 1895.

[Sha81℄ M. Sharir. A strong-onnetivity algorithm and its appliation in data ow

analysis. Computers and Mathematis with Appliations, 7(1):67{72,

1981.

[SMC12℄ Ilya Sergey, Jan Midtgaard, and Dave Clarke. Calulating graph algorithms

for dominane and shortest path. In Jeremy Gibbons and Pablo Nogueira,

editors,Mathematis of Program Constrution, 11th International Con-

ferene, MPC2012, volume LNCS 7342, pages 132{156. Springer, 2012.

Algorithmi Graph Theory April 8, 2022

327

[SS88℄ G. Shmidt and T. Str�ohlein. Relationen und Grafen. Springer-Verlag,

1988.

[SS93℄ G. Shmidt and T. Str�ohlein. Relations and Graphs, Disrete Math-

ematis for Computer Sientists. EATCS Monographs on Theoretial

Computer Siene. Springer-Verlag, Berlin Heidelberg, 1993.

[Tar41℄ A. Tarski. On the alulus of relations. Journal of Symboli Logi, 6(3):73{

89, 1941.

[Tar72℄ Robert Endre Tarjan. Depth �rst searh and linear graph algorithms. SIAM

J. Computing, pages 146{160, 1972.

[TG87℄ Alfred Tarski and Steven Givant. A Formalization of Set Theory without

Variables, volume 41 of Colloquium Publiations. Amerian Mathematial

Soiety, Providene, Rhode Island, 1987.

[Voe99℄ Ed (Theodorus Sebastiaan) Voermans. Indutive Datatypes with Laws

and Subtyping { A Relational Model. PhD thesis, Department of Mathe-

matis and Computer Siene, Tehnishe Universiteit Eindhoven, 1999.

[Wei73℄ P. Weiner. Linear pattern mathing algorithms. In Conf. Reord IEEE

14th Annual Symposium on Swithing and Automata, pages 1{11, 1973.

Algorithmi Graph Theory April 8, 2022

Index

adjoint

lower, 16

upper, 16

all-or-nothing, 67{73, 92

allegory, 87

anestor, see edge type

anestor path, 304{315

anti-monotoni, 9

assertion, 100{102

atom, 21{31

irreduible, 30

proper, 22

atomi lattie, 21, 22, 71

auxiliary variable, 96, 112, 207

axiom of hoie, 7

bijetion, 82

bottom, 7

bound funtion, 116

bounded, 7

breadth-�rst searh, 191

lassial logi, 13

losure operator, 19{21

omplementation-�xed, 21, 92, 124, 126

omplementation-idempotent, 21, 92, 126

omplement, 7, 12

omplement operator

on oreexives, 72

on relations, 72

omplemented domain, 67

ompletely distributive, 7

omponent

of a relation, 157{167

strongly onneted, 159, 167

onditionally orret, 100

one rule, 58

onneted by, 159

onstrutive logi, 13

ontext (of a spei�ation), 117

oreexive, 61

atomi, 69

lattie of, 71

Curry-Howard isomorphism, 13

de Morgan, Augustus, 5, 59, 91

de�nite

right, 131

delegate, 192{220, 226, 263

depth-�rst searh, 294{297

depth-�rst searh, 1, 89, 99, 113, 187, 191,

192, 218, 219, 221{243, 246, 252,

254, 257, 263, 265, 266, 268, 270,

283, 294, 299{301, 304, 305, 312,

314, 316

Dijkstra, Edsger W., 2, 98, 99

divergene rule, 59

domain operator, 64{67

edge, 129

edge type (in depth-�rst searh)

anestor edge, 299, 300

frond, 299, 300

tree edge, 299, 300

vine, 299

empty-word property, 44

Algorithmi Graph Theory 328 April 8, 2022

329

equivalene lass, 121

equivalene relation, 121

everywhere brakets, 99

exluded middle, 13

extensional, 71

extensive, 20

fator graph, 44

fator matrix, 44

�xed point

omputation rule, 19

fusion rule, 19

indution rule, 19

least, 18

Freyd, P.J., 56, 61, 87

frond, see edge type

full, 22

funtional, 81, 82, 85

fusion

of �xed points, 19

Galois onnetion, 15{20, 30, 32, 40, 52, 54,

81

existene theorem, 16

ghost variable, 96, 97, 112

graph, 129

fator, 44

guard, 61, 107

Hasse diagram, 44

idempotent

(property of losure operator), 20

indiret equality, 10

injetive, 82

injetivity, 82

invariant, 108

establishing, 108

maintaining, 108

property, 108, 111{112

relation, 107{111

value, 108, 111{112

Knuth-Morris-Pratt

pattern mathing algorithm, 44

leapfrog rule, 42

left ondition, 61

left-domain operator, 64

Leibniz's rule, 14, 81

Leibniz, Gottfried Wilhelm, 14

Lengauer, Thomas, 299

lexiographi ordering, 49, 142

lower adjoint, 16

Maddux, Roger D., 92

maintain (a property), 112

matrix

fator, 44

middle-exhange rule, 59

mirror rule, 42

modularity rule, 56

monoid, 39

monotoni

(property of losure operator), 20

node, 72, 129

partially orret, 100

partition, 121

path, 129

pattern mathing, 44

Peire, C.S., 91

point, see proper atom, 68

point-free

axiomatisation, 51

pointwise

axiomatisation, 51

interpretation, 51

powerset, 5, 7, 21, 22, 30, 72

Pratt, V.R., 92

Algorithmi Graph Theory April 8, 2022

330

pre�x point, 18

least, 18

program

total, 100

proper

atom, 22

element, 22

pseudo-omplement, 8

psuedo-oomplement, 11

reexive losure, 20

reexive redution, 50

reexive-transitive redution, 44{50, 140, 141

regular algebra, 38{50

de�nition, 40

universally distributive, 40

relation

bijetive, 82

funtional, 81, 82, 85

injetive, 82

surjetive, 85

total, 85

relation algebra, 50{60

right ondition, 61

right-domain operator, 64

rotation rule, 59

saturated lattie, 21, 22, 33, 37

�

S�edrov, A., 56, 61, 87

Sholten, C.S., 98, 99

Shr�oder rule, 58

Shr�oder, E., 5, 59, 91

shunting rule, 15

singleton set, 30

spei�ation

de�nition, 100

total, 100

star deomposition, 42

starth root, 140{142

state spae, 61

strongly onneted omponent, 167{174

surjetive, 85

symmetri losure, 20

syntati substitution, 96

Tarjan, Robert Endre, 221, 242, 299, 301

Tarski's rule, 58

Tarski, Alfred, 5, 32, 91

terminating, 100

top, 7

topologial ordering, 130, 146, 156, 213

topologial searh, 130, 145{157, 192

total, 85

totality, 85

transitive losure, 20

transitive redution, 50

tree edge, see edge type

truthify (a property), 112

UEP, see unique extension property

unique extension property, 43, 44, 110

of relation algebra, 131

unity of opposites theorem, 17

unity-of-opposites, 32

universally distributive, 7

regular algebra, 40

upper adjoint, 16

variable

auxiliary, 112

ghost, 101, 112

veri�ation ondition, 102{103

vine, see edge type, 300, 301

well-founded, 44, 49, 110, 116, 117, 130{

132, 136, 142, 145, 147, 148

white-path theorem, 219, 267, 301{304, 318

Algorithmi Graph Theory April 8, 2022

