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Abstract We present a new generalised distributivity rule for manipulating quanti�ed expressions.

We use the rule to alulate the solution to a well-known light-bulb problem, whih is tradition-

ally solved using indution. Our rule appears to have more general appliability to ombinatorial

problems.
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1 Introduction

The following problem was ommuniated to us by Benjamin Kelly

1

:

\There are 100 light bulbs and 100 people, both numbered from 1 to 100. Initially,

all the light bulbs are o�. Person number k toggles all the light bulbs that are

divisible by k. For example, person 2 toggles bulbs 2, 4, 6, . . . , 100. After all 100

people have �nished toggling the light bulbs, whih light bulbs are on?"

The traditional approah to solving this problem is to experiment with the �rst so-

many light bulbs until a pattern emerges, and then verify the pattern using indution.

However, guess-and-verify is not very e�etive, as has also been noted in [GKP94℄:

\Indution has its plae, (. . . ) but it's still not really what we're seeking. (. . . )

Flashes of inspiration should not be neessary. We should be able to do sums even

on our less reative days."

The light-bulb problem is easily formalised |see Setion 2| whih formalisation

suggests that it should be solvable by straightforward alulation along the lines of

those in [BM06℄. Disappointingly, we got stuk at a very early stage |see Setion 3| ;

the published rules for manipulating quanti�ers [GKP94,GS00,Ba03℄ turn out to be

inadequate for this problem. The diÆulty was soon reti�ed by a generalisation of the

distributivity rule given in [Ba03℄, whih we develop in Setion 4.

Our new distributivity rule enables the diret appliation of the alulational ap-

proah to some ombinatorial problems, as we illustrate in Setion 5. It also enables us

to alulate the solution to the light-bulb problem| see Setion 6. Setion 7 draws some

onlusions and suggests diretions for further work.

1

Kelly saw the problem on a olleague's website; his olleague was given the problem by Jan van de Snepsheut.
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2 Modelling the problem

A straightforward modelling of whether light bulb n is �nally on is

odd.(Σk : k\n : 1) .

In general, (Σx : s.x : 1) denotes the number of values x for whih ondition s.x holds,

and this partiular instane denotes the number of times that light bulb n is toggled.

As the light bulbs are initially o�, the ones that are �nally on are those that have been

toggled an odd number of times.

AsideWe use the uniform \Eindhoven" quanti�er notation [Dij75,Dij76,Dij00℄ through-

out. The notation extends the binary operator, ⊕ say, of an abelian monoid to an arbi-

trary �nite bag of values, the bag being de�ned by a funtion (the term) ating on a set

(the range). The general form of a quanti�ed expression is

(
⊕

v ∈ type : range : term) .

where

⊕
is the quanti�er, v is the dummy or bound variable and type is its type, range

de�nes a subset of the type of the dummy over whih the dummy ranges, and term

de�nes a funtion on the range. The value of the quanti�ation is the result of applying

the operator ⊕ to all the values generated by evaluating the term at all instanes of the

dummy in the range. The type of the dummy is often umbersome to repeat. For this

reason, the type is omitted and a onvention on the naming of dummies is adopted. In

addition, the range is sometimes omitted if it is equivalent to a true range. Hints in our

alulation refer to the formulation of the quanti�er manipulation rules as presented in

[Ba03℄. End of Aside

The division ordering on the positive integers, denoted by \, an be de�ned in several

ways. One de�nition exploits existential quanti�ation, but in our alulation this quikly

leads to a dead end. An alternative is to exploit the Unique Prime Fatorisation theorem,

leading to the universal quanti�ation in the following de�nition:

(∀k, n :: k\n ≡ (∀p :: exp.k.p ≤ exp.n.p) )

where p ranges over the prime numbers. The so-alled exponent funtion exp is suh that

exp.n, for any positive integer n, maps prime numbers to natural numbers. It is de�ned

as follows:

(∀n, f :: exp.n = f ≡ n = (Πp :: pf.p) )

Note that this de�nition states formally that exp is a bijetion from the positive integers

to the type of f, whih is the set of all funtions from prime numbers to the natural

numbers that are eventually always zero. Its inverse is the funtion that maps f to

(Πp :: pf.p).
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3 Towards a calculational solution

Based on the modelling from Setion 2, we begin alulating the solution of the light-bulb

problem:

odd.(Σk : k\n : 1)

= f distribution of odd over Σ/6≡ g

( 6≡ k : k\n : odd.1)

= f use odd.1; trading g

( 6≡ k :: k\n)

= f de�nition of the division ordering g

( 6≡ k :: (∀p :: exp.k.p ≤ exp.n.p) )

= f range translation f := exp.k g

( 6≡ f :: (∀p :: f.p ≤ exp.n.p) ) .

The �rst two steps simplify the formula | at this stage, there is little hoie of what

to do. The distribution rule used in the �rst step may be unfamiliar. It exploits the fat

that odd distributes through addition turning it into boolean inequality (whih is more

ommonly known as exlusive-or). See [Ba03℄ for further details.

The introdution of boolean inequality motivates the hoie of de�nition of the divides

relation in the third step. The simpler hoie would be to replae k\n by an existential

quanti�ation. However, the ruial onsideration is that onjuntion (∧) distributes

over boolean inequality (6≡), whereas disjuntion does not.

The range translation in the last step is motivated by the fat that the only interest

in the positive number k, is in exp.k.p for any p. Its use is valid beause of the afore-

mentioned fat that exp is a bijetion from the type of k to the type of f.

This is the point at whih our alulation gets stuk. The diÆulty is that, although

∧ distributes over 6≡, none of the published rules of quanti�er manipulation aters for

nested quanti�ations of this partiular shape. This is the topi of the next setion,

following whih we ontinue the alulation in Setion 6.

4 Distributivity properties

The key to our diÆulty is a further generalisation of the distributivity rule doumented

in [Ba03℄. A binary operator ⊗ is said to distribute over the binary operator ⊕ if

0⊗ = 1⊕ and (∀x, y, z :: x⊗ (y⊕ z) = (x⊗ y) ⊕ (x⊗ z) ) ,
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where 0⊗ denotes the zero element of ⊗, and 1⊕ denotes the unit element of ⊕. If this is

the ase, the operator ⊗ distributes over �nite quanti�ations

⊕
as well

2

. That is,

(∀x, t :: x⊗ (
⊕

i :: t.i) = (
⊕

i :: x⊗ t.i) ) .

Some well-known instanes of ⊗ and ⊕ inlude × and +, ∧ and ∨, and |signi�antly|

∧ and 6≡.

Given that operator ⊗ distributes over operator ⊕, we have developed the following

new rule for distributing a �nite

⊗
quanti�ation over a

⊕
quanti�ation, for any t:

(
⊗

i :: (
⊕

j :: t.i.j) ) = (
⊕

f :: (
⊗

i :: t.i.(f.i)) )(1)

The types of the dummy f is a funtion whih maps a value of the type of variable i to

a value of the type of variable j.

The rule is easily established by indution on the size of the range of dummy i. The

base ase exploits that the type of f redues to a singleton, and the indutive ase is

justi�ed by exploiting distributivity of ⊗ over

⊕
(twie). A detailed proof is provided in

Appendix A.

Our new distribution rule an be desribed as formalising the axiom of hoie on

�nite domains. This is the rule

(∀i :: (∃j :: t.i.j) ) = (∃f :: (∀i :: t.i.(f.i)) )

obtained by instantiating ⊗ to ∧ and ⊕ to ∨. That onjuntion distributes over disjun-

tion in the way de�ned above is the ombination of the properties

0∧ = 1∨ = false and (∀x, y, z :: x∧ (y∨ z) = (x∧ y) ∨ (x∧ z) ) .

The funtion f, that is introdued in a left-to-right appliation of our distribution

rule, names (or \Skolemizes" in the jargon of foundational mathematis) the dummy j

that is hosen for a partiular value of the dummy i. A possibly less well-known example

of \Skolemization" is the rule

(∃i :: (∀j :: t.i.j) ) = (∀f :: (∃i :: t.i.(f.i)) ) .

It is obtained by instantiating ⊗ to ∨ and ⊕ to ∧. That disjuntion distributes over

onjuntion is the ombination of the properties

0∨ = 1∧ = true and (∀x, y, z :: x∨ (y∧ z) = (x∨ y) ∧ (x∨ z) ) .

Sine the range of the quanti�ation over variable i annot depend on j or f, any

proper range an be modelled using the type of variable i. This does not hold for the range

2

Whenever we introdue a quanti�ation, we assume, of ourse, that the binary operator in question is assoiative

and symmetri
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of variable j, whih ould depend on variable i. To make this expliit, we aim to generalise

the rule further by introduing a ondition s.i.j for the range of the quanti�ation over

j. Let us alulate the orresponding e�et on the right-hand side of the rule:

(
⊗

i :: (
⊕

j : s.i.j : t.i.j) )

= f trading, in order to eliminate the expliit range g

(
⊗

i :: (
⊕

j :: if s.i.j then t.i.j else 1⊕ fi) )

= f (3), distribution of

⊗
over

⊕
g

(
⊕

f :: (
⊗

i :: if s.i.(f.i) then t.i.(f.i) else 1⊕ fi) )

= f use 0⊗ = 1⊕, sine ⊗ distributes over ⊕ g

(
⊕

f :: if (∀i :: s.i.(f.i)) then (
⊗

i :: t.i.(f.i)) else 1⊕ fi )

= f trading, in order to introdue an expliit range g

(
⊕

f : (∀i :: s.i.(f.i)) : (
⊗

i :: t.i.(f.i)) ) .

Thus, under the same premises as before, we obtain the following alulational rule.

For any s and t:

(
⊗

i :: (
⊕

j : s.i.j : t.i.j) ) = (
⊕

f : (∀i :: s.i.(f.i)) : (
⊗

i :: t.i.(f.i)) ) .(2)

5 Intermezzo: relation to combinatorics

To provide a simple illustration of the e�etiveness of our new distributivity rule, we

onsider the following ombinatorial problem:

\How many ways are there to olour n objets using m olours?"

To model this problem, we represent eah objet i by a natural number between 1

and n, eah olour j by a natural number between 1 and m, and eah olouring c by a

funtion from objets to olours. Thus the problem an be formulated as omputing the

value of

(Σc : (∀i : 1 ≤ i ≤ n : 1 ≤ c.i ≤ m) : 1) .

In ontrast to the traditional approah to this problem, we simply alulate the

solution using our new rule:
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(Σc : (∀i : 1 ≤ i ≤ n : 1 ≤ c.i ≤ m) : 1)

= f introdue a produt g

(Σc : (∀i : 1 ≤ i ≤ n : 1 ≤ c.i ≤ m) : (Πi : 1 ≤ i ≤ n : 1) )

= f (4), distribution of Π over Σ g

(Πi : 1 ≤ i ≤ n : (Σj : 1 ≤ j ≤ m : 1) )

= f eliminate the summation g

(Πi : 1 ≤ i ≤ n : m )

= f eliminate the produt g

mn .

The standard way of solving this problem |whih we stress is a ounting problem|

is to immediately formulate the produt, with only a verbal justi�ation (if any) for the

replaement. This, in our view, is another example of the proverbial rabbit-in-a-hat with

whih traditional mathematial pratie abounds and whih puts many students o�.

The formulation of the quanti�er rule has the advantage of apturing the use of

indution in one general rule, whih has appliability in a wide range of irumstanes

(inluding to operators other than addition and multipliation). Another simple variation

on this ombinatorial problem is to restrit the available number of olours for eah objet

i to i. The solution an be omputed along the same lines, using that (Πi : 1 ≤ i ≤ n : i)

denotes the fatorial of n.

6 Completing a calculational solution

Armed with our new distributivity rule, we ontinue the alulation in Setion 3 using

the following maxim [GKP94℄:

\One you, the reader, have learned the material (. . . ), all you will need is a ool

head, a large sheet of paper, and fairly deent handwriting (. . . )."

So, let us alulate:

( 6≡ f :: (∀p :: f.p ≤ exp.n.p) )

= f (3), distribution of ∀ over 6≡ g

(∀p :: ( 6≡ e :: e ≤ exp.n.p) )

= f trading; use odd.1 g

(∀p :: ( 6≡ e : e ≤ exp.n.p : odd.1) )

= f distribution of odd over Σ/6≡ g

(∀p :: odd.(Σe : e ≤ exp.n.p : 1) )

= f eliminate the summation g

(∀p :: odd.(exp.n.p+ 1) )

= f relation between odd and even g

(∀p :: even.(exp.n.p) )



7

Observing both the introdution and the elimination of the 6≡ quanti�er, one might

wonder whether we ould not just stik to the Σ quanti�er in Setion 3. This turns out

to be possible, and it even slightly redues the length of the alulation by using rule (4)

whih embeds the two trading steps. However, the hoie of the partiular de�nition of

the division ordering beomes a bit harder to motivate, and before applying rule (4) a Π

quanti�er has to be introdued, as we did in the example in Setion 5.

Experiened mathematiians with a good knowledge of prime fatorisation might

already be able to interpret the last formula in terms of the original problem. Otherwise,

the only thing we an do is to apply the de�nition of even, and bravely ontinue our

alulation:

(∀p :: even.(exp.n.p) )

= f de�nition of even g

(∀p :: (∃m :: exp.n.p = m× 2) )

= f (3), distribution of ∀ over ∃ g

(∃f :: (∀p :: exp.n.p = f.p× 2) )

= f de�nition of exp, prime fatorisation g

(∃f :: n = (Πp :: p(f.p×2)) )

= f use x(y×z) = (xy)z; distribution of square over Π g

(∃f :: n = (Πp :: pf.p)2 )

= f range translation: k := (Πp :: pf.p) g

(∃k :: n = k2 ) .

(Observe the use of (3) again.) The �nal solution an easily be interpreted in terms of

the original problem. The light bulbs that are �nally on are the ones that are numbered

by a square.

7 Conclusions and further work

This work was driven by the desire to solve a light-bulb problem just by alulation.

Although this was our soure of inspiration, the main researh results are methodologial.

We have developed a general rule for the distribution of quanti�ers over quanti�ers. From

a problem-solving perspetive, this rule o�ers an important alulational tool that deals

with patterns that ould not be addressed before, viz., any quanti�ation whose range

is a universal quanti�ation, and quanti�ations whose term is another quanti�ation.

We have also demonstrated that the distributivity rule aptures a fundamental as-

pet of ombinatorial problems. Namely, that suh problems are formulated in terms of

funtions and sums (i.e., for ounting the number of possibilities), whilst their solutions

are obtained by translating to produts.
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Although we have as yet onsidered only a small number of examples, we expet that

many other problems will yield to a similar analysis. A partiular diretion for further

work is to investigate how, in our distributivity rule, the range of the quanti�ation

over the funtion spae an be generalised. In this way, we expet to be able to improve

problem-solving skills in this partiular area, whih in turn should lead to new insights

into many ombinatorial problems.
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A Proof of the distributivity rule

Although we have been very expliit regarding the main alulation, in Setion 4 we

have only skethed a proof of rule (3). The reason for doing so, is that a proper proof

demands some theory about funtion spaes, whih we only need for this proof.

The following are well-known properties of �nite funtion spaes:

m← O

∼= 1

(m← n) × m ∼= m ← (n+ 1)

where O denotes the empty spae, and 1 denotes the singleton spae. The sole element

in 1 is denoted by ∗.

Using these properties, we an provide a detailed proof of rule (3) by strutural

indution on the range of dummy i. For the base ase, i.e., the empty spae O, we

alulate from the right-hand side:

(
⊕

f : f ∈ (m← O) : (
⊗

i : i ∈ O : t.i.(f.i)) )

= f m← O

∼= 1; range translation and one-point rule g

(
⊗

i : i ∈ O : t.i.∗)

= f empty range g

1⊗

= f empty range g

(
⊗

i : i ∈ O : (
⊕

j : j ∈ m : t.i.j) ) .

For the indutive ase, i.e. the non-empty spae n+1, we alulate from the left-hand

side:

(
⊗

i : i ∈ n+ 1 : (
⊕

j : j ∈ m : t.i.j) )

= f split o� i ∈ 1 g

(
⊗

i : i ∈ n : (
⊕

j : j ∈ m : t.i.j) ) ⊗ (
⊕

j : j ∈ m : t.∗.j)

= f indution hypothesis for the ase n g

(
⊕

f : f ∈ m← n : (
⊗

i : i ∈ n : t.i.(f.i)) ) ⊗ (
⊕

j : j ∈ m : t.∗.j)

= f distribution of ⊗ over

⊕
g

(
⊕

f : f ∈ m← n : (
⊗

i : i ∈ n : t.i.(f.i)) ⊗ (
⊕

j : j ∈ m : t.∗.j) )

= f distribution of ⊗ over

⊕
g

(
⊕

f : f ∈ m← n : (
⊕

j : j ∈ m : (
⊗

i : i ∈ n : t.i.(f.i)) ⊗ t.∗.j) )

= f nesting g

(
⊕

f, j : f ∈ m← n ∧ j ∈ m : (
⊗

i : i ∈ n : t.i.(f.i)) ⊗ t.∗.j )

= f (m← n)×m ∼= m ← (n+ 1); range translation g

(
⊕

f : f ∈ m← (n+ 1) : (
⊗

i : i ∈ n : t.i.(f.i)) ⊗ t.∗.(f.∗) )

= f split o� i ∈ 1 g

(
⊕

f : f ∈ m← (n+ 1) : (
⊗

i : i ∈ n+ 1 : t.i.(f.i)) ) .

This onludes our proof of rule (3).


