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Abstract. Graph-searching algorithms typically assume that a node is
given from which the search begins but in many applications it is nec-
essary to search a graph repeatedly until all nodes in the graph have
been “visited”. Sometimes a priority function is supplied to guide the
choice of node when restarting the search, and sometimes not. We call
the nodes from which a search of a graph is (re)started the “delegate”
of the nodes found in that repetition of the search and we analyse the
properties of the delegate function. We apply the analysis to establishing
the correctness of the second stage of the Kosaraju-Sharir algorithm for
computing strongly connected components of a graph.
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1 Introduction

Graph-searching algorithms typically assume that a node is given from which
the search begins but in many applications it is necessary to search a graph
repeatedly until all nodes in the graph have been “visited”. Sometimes a priority
function is supplied to guide the choice of node when restarting the search, and
sometimes not.

The determination of the strongly connected components of a (directed)
graph using the two-stage algorithm attributed to R.Kosaraju and M.Sharir
by Aho, Hopcroft and Ullman [1] is an example of both types of repeated graph
search.

In the first stage, a repeated search of the given graph is executed until
all nodes in the graph have been “visited”. In this stage, the choice of node
when restarting the search is arbitrary; it is required, however, that the search
algorithm is depth-first. The output is a numbering of the nodes in order of
completion of the individual searches.

In the second stage, a repeated search of the given graph —but with edges
reversed— is executed; during this stage, the node chosen from which the search
is restarted is the highest numbered node (as computed in the first stage) that has
not been “visited” (during this second stage). Popular accounts of the algorithm
[1, 9] require a depth-first search once more but, as is clear from Sharir’s original
formulation of the algorithm [16], this is not necessary: an arbitrary graph-
searching algorithm can be used in the second stage of the algorithm. Each



individual search identifies a strongly connected component of the graph of which
the node chosen to restart the search is a representative.

The task of constructing a complete, rigorous, calculational proof of the two-
stage Kosaraju-Sharir algorithm is non-trivial. (Glück [13] calls it a “Herculean
Task”.) The task is made simpler by a proper separation of concerns: both stages
use a repeated graph search, the first stage requires depth-first search but the
second does not. So what are the properties of repeated graph search (in general),
and what characterises depth-first search (in particular)?

The current paper is an analysis of repeated graph search in which we ab-
stract from the details of the Kosaraju-Sharir algorithm. That is, we assume
the existence of a “choice” function from the nodes of the graph to the natural
numbers that is used to determine which node is chosen from which to restart
the search. We call the nodes from which a search of a graph is (re)started the
“delegate” of the nodes found in that repetition of the search and we analyse
the properties of the delegate function assuming, first, that the choice function is
arbitrary (thus allowing different nodes to have the same number) and, second,
that it is injective (i.e. different nodes are have different numbers).

The properties we identify are true irrespective of the searching algorithm
that is used, contrary to popular accounts of graph searching that suggest the
properties are peculiar to depth-first search. For example, all the nodes in a
strongly connected component of a graph are assigned the same delegate (irre-
spective of the graph searching algorithm used) whereas Cormen, Leiserson and
Rivest’s account [9, theorem 23.13, p.490] suggests that this is a characteristic
property of depth-first search.

The primary contribution of this paper is the subject of sections 3 and 4.
The definition of “delegate” (a function from nodes to nodes) “according to a
given choice function” is stated in section 3.1; an algorithm to compute each
node’s delegate is presented in section 3.2 and further refined in section 3.3.
The algorithm is generic in the sense that no ordering is specified for the choice
of edges during the search. (In breadth-first search, edges are queued and the
choice is first-in, first-out; in depth-first search, edges are stacked and the choice
is first-in, last-out. Other orderings are, of course, possible.)

Section 3.4 explores the properties of the delegate function when the choice
function is injective. Section 4 applies the analysis of the delegate function to
establishing the correctness of the second stage of the Kosaraju-Sharir algorithm.
The proof adds insight into the algorithm by identifying clearly and precisely
which elements of the so-called “parenthesis theorem” and the classification of
edges in a depth-first search [9, 10] are vital to the identification of strongly
connected components.

With the goal of achieving the combination of concision and precision, our
development exploits so-called “point-free” relation algebra. This is briefly sum-
marised in section 2.



2 Relation Algebra

For the purposes of this paper, a (directed) graph G is a homogeneous, binary
relation on a finite set of nodes. One way to reason about graphs —so-called
“pointwise” reasoning— is to use predicate calculus with primitive terms the
booleans expressing whether or not the relation G holds between a given pair
of nodes. In other words, a graph is a set of pairs —the edge set of the graph—
and a fundamental primitive is the membership relation expressing whether or
not a given pair is an element of a given graph. In so-called “point-free” relation
algebra, on the other hand, relations are the primitive elements and the focus is
on the algebraic properties of the fundamental operations on relations: converse,
composition, etc. Because our focus here is on paths in graphs —algebraically
the reflexive, transitive closure of a graph— we base our calculations firmly on
point-free relation algebra.

A relation algebra is a combination of three structures with interfaces con-
necting the structures. The first structure is a powerset: the homogeneous binary
relations on a set A are elements of the powerset 2A×A (i.e. subsets of A×A )
and thus form a complete, universally distributive, complemented lattice. We use
familiar notations for, and properties of, set union and set intersection without
further ado. (Formally, set union is the supremum operator of the lattice and set
intersection is the infimum operator.) The complement of a relation R will be
denoted by ¬R ; its properties are also assumed known. The symbols ⊥⊥ and
⊤⊤ are used for the least and greatest elements of the lattice (the empy relation
and the universal relation, respectively).

The second structure is composition: composition of the homogeneous binary
relations on a set A forms a monoid with unit denoted in this paper by IA (or
sometimes just I if there is no doubt about the type of the relations under
consideration). The interface with the lattice structure is that their combina-
tion forms a universally distributive regular algebra (called a “standard Kleene
algebra” by Conway [8, p.27]). Although not a primitive, the star operator is,
of course, a fundamental component of regular algebra. For relation R , the re-
lation R∗ is its reflexive-transitive closure; in particular, whereas graph G is
interpreted as the edge relation, the graph G∗ is interpreted as the path rela-
tion. The star operator can be defined in several different but equivalent ways
(as a sum of powers or as a fixed-point operator). We assume familiarity with
the different definitions as well as properties vital to (point-free) reasoning about
paths in graphs such as the star-decomposition rule [3, 7, 5].

The third structure is converse. We denote the converse of relation R by R
∪

(pronounced “R wok”). Converse is an involution (i.e. (R
∪

)
∪

=R , for all R ).
Its interface with the lattice structure is that it is its own adjoint in a Galois
connection; its interface with composition is the distributivity property

(R◦S)
∪

= S
∪

◦R
∪

.

Finally, the interface connecting all three structures is the so-called modularity

rule: for all relations R , S and T ,

R◦S ∩T ⊆ R ◦ (S ∩ R
∪

◦T ) .(1)



The (easily derived and equivalent) converse

R◦S ∩T ⊆ (R ∩ T ◦S
∪

) ◦S(2)

is also used later.
The axioms outlined above are applicable to homogeneous relations. They

can, of course, be extended to heterogeneous relations by including type restric-
tions on the operators. (For example, the monoid structure becomes a category.)
The structure is then sometimes known as an allegory [12]. We use A<∼B to
denote the type of a relation. The set A is called the target and the set B is
called the source of the relation. A homogeneous relation has type A<∼A for
some set A .

Our use of heterogeneous relations in this paper is limited to functions (which
we treat as a subclass of relations). Point-free relation algebra enables concise
formulations of properties usually associated with functions. A relation R of
type A<∼B is functional if

R ◦R
∪

⊆ IA ,

it is injective if

R
∪

◦R ⊆ IB ,

it is total if

IB ⊆ R
∪

◦R ,

and it is surjective if

IA ⊆ R ◦R
∪

.

We abbreviate “functional relation” to “function” and write A←B for the type.
(The arrowheads in A<∼B and A←B indicate that we interpret relations

as having outputs and inputs, where outputs are on the left and inputs are on
the right. Our terminology reflects the choice we have made: the words “func-
tional” and “injective”, and simultaneously “total” and “surjective”, can be
interchanged to reflect an interpretation in which inputs are on the left and
outputs are on the right.)

An idiom that occurs frequently in point-free relation algebra has the form

f
∪

◦R ◦ g

where f and g are functional and —often but not necessarily— total. Pointwise
this expresses the relation on the source of f and the source of g that holds of
x and y when f.x [[R]] g.y . (In words, the value of f at x is related by R to
the value of g at y .) The idiom occurs frequently below. For example,

f
∪

◦< ◦ s

is used later to express a relation between nodes a and b of a graph when
f.a<s.b . This is interpreted as “the search from a finishes before the search
from b starts”, f and s representing finish and start times, respectively.



The “points” in our algebra are typically the nodes of a graph. Inevitably,
we do need to refer to specific nodes from time to time. Points are modelled as
“proper, atomic coreflexives”.

A coreflexive is a relation that is a subset of the identity relation. The core-
flexives, viewed as a subclass of the homogeneous relations of a given type, form
a complete, universally distributive, complemented lattice under the infimum
and supremum operators (which, as we have said, we denote by the symbols
commonly used for set intersection and set union, respectively). We use lower-
case letters p , q etc. to name coreflexives. So, a coreflexive is a relation p such
that p⊆ I . We use ∼p to denote the complement in the lattice of coreflexives
of the coreflexive p . This is not the same as the complement of p in the lattice
of relations: the relation between them is given by the equation ∼p = I ∩¬p .

Elsewhere, with a different application area, we use the word “monotype” in-
stead of “coreflexive”. (See, for example, [4, 14, 11].) We now prefer “coreflexive”
because it is application-neutral. Others use the word “test” (eg. [13]).

In general, an atom in a lattice ordered by ⊑ and having least element ⊥⊥
is an element x such that

〈∀y :: y⊑x ≡ y=x ∨ y=⊥⊥〉 .

Note that ⊥⊥ is an atom according to this definition. If p is an atom that is
different from ⊥⊥ we say that it is a proper atom. A lattice is said to be atomic

if

〈∀y :: y 6=⊥⊥ ≡ 〈∃x : atom.x∧x 6=⊥⊥ : x⊑ y〉〉 .

In words, a lattice is atomic if every proper element includes a proper atom.
It is necessary to distinguish between atomic coreflexives and atomic rela-

tions. We use lower-case letters a , b to denote atomic coreflexives. Proper,
atomic coreflexives model singleton sets in set theory; so, when applying the
theory to graphs, proper, atomic coreflexive a models {u} for some node u

of the graph. Similarly, coreflexive p models a subset of the nodes, or, in the
context of algorithm development, a predicate on nodes (which explains why
they are sometimes called “tests”).

A lattice with top element ⊤⊤ and supremum operator ⊔ is saturated (aka
“full”) if ⊤⊤ is the supremum of the identity function on atoms, i.e. if

⊤⊤ = 〈⊔x :atom.x :x〉 .

A powerset is atomic and saturated; since we assume that both the lattice of
coreflexives and the lattice of relations form powersets, this is the case for both.
The coreflexives are postulated to satisfy the all-or-nothing rule [13]:

〈∀a,b,R :: a◦R◦b=⊥⊥ ∨ a◦R◦b=a◦⊤⊤◦b〉 .

Combined with the postulates about coreflexives, the all-or-nothing rule has
the consequence that the lattice of relations is a saturated, atomic lattice; the
proper atoms are elements of the form a◦⊤⊤◦b where a and b are proper
atoms of the lattice of coreflexives. In effect, the relation a◦⊤⊤◦b models the



pair (a, b) in a standard set-theoretic account of relation algebra; the boolean
a◦R◦b=a◦⊤⊤◦b plays a role equivalent to the boolean (a, b)∈[[R]] (where [[R]]
denotes the interpretation of R as a set of pairs).

The “domain” operators play a central role in relation algebra, particu-
larly in its use in algorithm development. The right domain of a relation R

is the coreflexive R> (read R “right”) defined by R> = I ∩⊤⊤◦R . The left

domain R< (read R “left”) is defined similarly. The interpretation of R> is
{x | 〈∃y :: (y, x)∈[[R]]〉} . The complement of the right domain of R in the lattice
of coreflexives is denoted by R>• ; similarly R•< denotes the complement of the
left domain of R . The left and right domains should not be confused with the
source and/or target of a relation (in an algebra of heterogeneous relations).

We assume some familiarity with relation algebra (specifically set calculus,
relational composition and converse, and their interfaces) as well as fixed-point
calculus and Galois connections. For example, monotonicity properties of the
operators, together with transitivity and anti-symmetry of the subset relation,
are frequently used without specific mention. On the other hand, because the
properties of domains are likely to be unfamiliar, we state the properties we use
in the hints accompanying proof steps.

3 Repeated Search and Delegates

In this section, we explore a property of repeated application of graph-searching
starting with an empty set of “seen” nodes until all nodes have been seen.

The algorithm we consider is introduced in section 3.2 and further refined in
section 3.3. Roughly speaking, the algorithm repeatedly searches a given graph
starting from a node chosen from among the nodes not yet seen so as to maximise
a “choice function”; at each iteration, the graph searched is the given graph but
restricted to edges connecting nodes not yet seen. The algorithm records the
chosen nodes in a function that we call a “delegate function”, the “delegate” of
a node a being the node from which the search that “sees” a is initiated.

Rather than begin with the algorithm, we prefer to begin with a specification
of what a repeated search of a graph is intended to implement. The formal
specification of the delegate function is given in section 3.1.

Our formulation of the notion of a “delegate” is inspired by Cormen, Leis-
erson and Rivest’s [9, p.490] discussion of a “forefather” function as used in
depth-first search to compute strongly connected components of a graph. How-
ever, our presentation is more general than theirs. In particular, Cormen, Leis-
erson and Rivest assume that the choice function is injective. We establish some
consequences of this assumption in section 3.4; this is followed in section 3.5
by a comparative discussion of our account and that of Cormen, Leiserson and
Rivest.
Aside on Terminology I have chosen to use the word “delegate” rather than
“forefather” because it has a similar meaning to the word “representative”, as
used in “a representative of an equivalence class”. Tarjan [17], Sharir [16], Aho,
Hopcroft and Ullman [1] and Cormen, Leiserson, Rivest and Stein [10, p.619] call



the representative of a strongly connected component of a graph the “root” of
the component. This is a reference to the “forest” of “trees” that is (implicitly)
constructed during any repeated graph search. In the two-stage algorithm, how-
ever, each stage is a repeated graph search and so to refer to the “root” could
be confusing: which forest is meant? Using the word “representative” might
also be confusing because it might (wrongly) suggest that the “representative”
computed by an arbitrary repeated graph search is a representative of the equiv-
alence class of strongly connected nodes in a graph. The introduction of novel
terminology also has the advantage of forcing the reader to study its definition.
End of Aside

3.1 Delegate Function

Suppose f is a total function of type IN←Node , where Node is a finite set of
nodes. Suppose G is a graph with set of nodes Node. That is, G is a relation of
type Node<∼Node . We call f the choice function (because it governs the choice
of delegates).

A delegate function on G according to f is a relation ϕ of type Node<∼Node
with the properties that

ϕ ◦ϕ
∪

⊆ INode ⊆ ϕ
∪

◦ϕ , and(3)

ϕ ⊆ (G
∪

)∗ ∧ G∗ ⊆ (f◦ϕ)
∪

◦ ≥ ◦ f .(4)

The property (3) states that ϕ is a total function. Property (4), expressed
pointwise and in words, states that for all nodes a and b , node a is the delegate
of node b equivales the conjunction of (i) there is a path in G from b to a and
(ii) among all nodes c such that there is a path from b to c , node a maximises
the value of the choice function f . (The relation “≥ ” on the right side of the
second inclusion is the usual at-least ordering on numbers.)

Note that, because our main motivation for studying repeated graph search
is to apply the results to understanding the second stage of the Kosaraju-Sharir
algorithm for computing strongly connected components of a graph, the defini-
tion of the delegate function is that appropriate to a search of G

∪

rather than
a search of G .

Delegate functions have a couple of additional properties that we exploit
later. These are formulated and proved in the lemma below.

Lemma 5 If ϕ is a delegate function on G according to f ,

I ⊆ G∗
◦ϕ ∧ G∗ ⊆ (f◦ϕ)

∪

◦ ≥ ◦ f ◦ϕ .

In words, there is a path in G from each node to its delegate, and if there is a
path in G from node b to node c , the value of f at the delegate of b is at
least the value of f at the delegate of c .

Proof First,



I ⊆ G∗
◦ϕ

⇐ { ϕ is total, i.e. I ⊆ ϕ
∪

◦ϕ }

ϕ
∪

⊆ G∗

= { converse }

ϕ ⊆ (G∗)
∪

= { (G∗)
∪

=(G
∪

)∗ and definition of delegate: (4) }

true .

Second,

G∗ ⊆ (f◦ϕ)
∪

◦ ≥ ◦ f ◦ϕ

⇐ { I ⊆ G∗
◦ϕ (see above) }

G∗
◦G∗

◦ϕ ⊆ (f◦ϕ)
∪

◦ ≥ ◦ f ◦ϕ

⇐ { G∗
◦G∗ = G∗ and monotonicity }

G∗ ⊆ (f◦ϕ)
∪

◦ ≥ ◦ f

= { definition of delegate: (4) }

true .

✷

Lemma 6 If ϕ is a delegate function on G according to f ,

ϕ ⊆ f
∪

◦≥ ◦ f .

In words, the delegate of a node has f -value that is at least that of the node.

Proof

true

= { definition: (3) and (4) }

ϕ ◦ϕ
∪

⊆ I ∧ G∗ ⊆ (f◦ϕ)
∪

◦ ≥ ◦ f

⇒ { I⊆G∗ and transitivity; converse }

ϕ ◦ϕ
∪

⊆ I ∧ I ⊆ ϕ
∪

◦f
∪

◦ ≥ ◦ f

⇒ { ϕ◦I=ϕ , monotonicity of composition and transitivity }

ϕ ⊆ f
∪

◦≥ ◦f .

✷



3.2 Assigning Delegates

The basic structure of the algorithm for computing a delegate function is shown
in fig. 1. It is a simple loop that initialises the coreflexive seen (representing a
set of nodes) to ⊥⊥ (representing the empty set of nodes) and then repeatedly
chooses a node a that has the largest f -value among the nodes that do not have
a delegate and adds to seen the coreflexive ∼seen ◦ (G∗

◦a)< ; this coreflexive
represents the nodes that do not have a delegate and from which there is a path
to a in the graph. Simultaneous with the assignments to seen , the variable
ϕ is initialised to ⊥⊥ and subsequently updated by setting the ϕ -value of all
newly “delegated” nodes to a .

{ f ◦ f
∪

⊆ IIN ∧ INode ⊆ f
∪

◦ f }

ϕ,seen := ⊥⊥,⊥⊥ ;

{ Invariant: (7) thru (14) }

while seen 6= INode do

begin

choose node a such that a◦seen=⊥⊥ and ∼seen◦⊤⊤◦a ⊆ f
∪

◦≤ ◦ f

; s := ∼seen ◦ (G∗
◦a)<

; ϕ,seen := ϕ ∪ a◦⊤⊤◦s , seen∪ s

end

{ ϕ ◦ϕ
∪

⊆ INode ⊆ equiv.G ⊆ ϕ
∪

◦ϕ

∧ ϕ ⊆ (G
∪

∩ ϕ
∪

◦ϕ)∗ ∧ G∗ ⊆ (f◦ϕ)
∪

◦ ≥ ◦ f

∧ ϕ = ϕ◦ϕ }

Fig. 1. Repeated Search. Outer Loop

For brevity in the calculations below, the temporary variable s (short for
“seen”) has been introduced. The sequence of assignments

s := ∼seen ◦ (G∗
◦a)<

; ϕ,seen := ϕ ∪ a◦⊤⊤◦s , seen∪ s

is implemented by a generic graph-searching algorithm. The details of how this
is done are given in section 3.3.

Apart from being a total function, we impose no restrictions on f . If f is
a constant function (for example, if f.a=0 for all nodes a ), the “choice” is
completely arbitrary.

The relation equiv.G in the postcondition of the algorithm is the equivalence
relation defined by

equiv.G = G∗ ∩ (G∗)
∪

.



If G is a graph, two nodes related by equiv.G are said to be in the same strongly
connected component of G . The first clause of the postcondition thus asserts
that the computed delegate relation ϕ is not only a total function, as required
by (3), but also that all nodes in any one strongly connected component are
assigned the same delegate.

The property

ϕ ⊆ (G
∪

∩ ϕ
∪

◦ϕ)∗

in the postcondition is stronger than the requirement ϕ ⊆ (G
∪

)∗ in (4). It states
that there is a path from each node to its delegate comprising nodes that all have
the same delegate. (More precisely, it states that there is a path from each node
to its delegate such that successive nodes on the path have the same delegate.
The equivalence of these two informal interpretations is formulated in lemma
25.)

Note the property ϕ = ϕ◦ϕ in the postcondition. Cormen, Leiserson and
Rivest [9, p.490] require that the function f is injective and use this to derive the
property from the definition of a delegate (“forefather” in their terminology). We
don’t impose this requirement but show instead that ϕ = ϕ◦ϕ is a consequence
of the algorithm used to calculate delegates. For completeness, we also show that
the property is a consequence of the definition of delegate under the assumption
that f is injective: see lemma 18. Similarly, the property equiv.G ⊆ ϕ

∪

◦ϕ can
be derived from the definition of a delegate if f is assumed to be injective.
Again for completeness, we also show that the property is a consequence of the
definition of delegate under the assumption that f is injective: see lemma 19.

Termination of the loop is obvious: the coreflexive seen represents a set
of nodes that increases strictly in size at each iteration. (The chosen node a

is added at each iteration.) The number of iterations of the loop body is thus
at most the number of nodes in the graph, which is assumed to be finite. The
principle task is thus to verify conditional correctness (correctness assuming
termination, often called “partial” correctness).

The invariant properties of the algorithm are as follows:

ϕ> = seen ,(7)

ϕ ◦ϕ
∪

⊆ seen ,(8)

ϕ ⊆ (G
∪

∩ ϕ
∪

◦ϕ)∗ ,(9)

ϕ = ϕ◦ϕ ,(10)

seen = (G∗
◦ seen)< ,(11)

seen ◦⊤⊤ ◦∼seen ⊆ (f◦ϕ)
∪

◦ ≥ ◦ f ,(12)

seen ◦G∗
◦ seen ⊆ (f◦ϕ)

∪

◦ ≥ ◦ f ,(13)

seen ◦ equiv.G ◦ seen ⊆ ϕ
∪

◦ ϕ .(14)



The postcondition

ϕ ◦ϕ
∪

⊆ INode ⊆ ϕ
∪

◦ϕ

expresses the fact that, on termination, ϕ is functional and total; the claimed
invariants (7) and (8) state that intermediate values of ϕ are total on seen

and functional. The invariant (7) also guarantees that seen is a coreflexive. The
invariants (9) and (10) are both conjuncts of the postcondition. The additional
conjunct

equiv.G ⊆ ϕ
∪

◦ϕ

in the postcondition states that strongly connected nodes have the same delegate.
The invariant (14) states that this is the case for nodes that have been assigned
a delegate. Like (7) and (8), invariant (13) states that intermediate values of
ϕ maximise f for those nodes for which a delegate has been assigned. It is
therefore obvious that the postcondition is implied by the conjunction of the
invariant and the termination condition. The additional invariants (11) and (12)
are needed in order to establish the invariance of (13). It is straightforward to
construct and check appropriate verification conditions. Full details are given in
[6].

3.3 Incremental Computation

The algorithm shown in fig. 1 assigns to the variable s (the coreflexive repre-
senting) all the nodes that do not yet have a delegate and can reach the node a .
The variable ϕ is also updated so that a becomes the delegate of all the nodes
in the set represented by s . The assignments are implemented by a generic
graph-searching algorithm. Fig. 2 shows the details.

The consecutive assignments in the body of the loop in fig. 1 (to s , and
to ϕ and seen ) are implemented by an inner loop together with initialising
assignments. The assertions should enable the reader to verify that the two al-
gorithms are equivalent: the variables s , seen0 and ϕ0 are auxiliary variables
used to express the property that the inner loop correctly implements the two
assignments that they replace in the outer loop; in an actual implementation the
assignments to these variables may be omitted (or, preferably, included but iden-
tified as auxiliary statements that can be ignored by the computation proper).

It is straightforward to verify the correctness of this algorithm. Because it
involves no new techniques, it is omitted here. Full details are included in [6].

A concrete implementation of the above graph-searching algorithm involves
choosing a suitable data structure in which to store the unexplored edges repre-
sented by ∼seen ◦ (G◦seen)< . Breadth-first search stores the edges in a queue
(so newly added edges are chosen in the order that they are added), whilst
depth-first search stores the edges in a stack (so the most recently added edge is
chosen first). Other variations enable the solution of more specific path-finding
problems. For example, if edges are labelled by distances, shortest paths from
a given source can be found by storing edges in a priority queue. Topological



{ a◦seen=⊥⊥ ∧ (7) thru (14) }

/∗ s , seen0 and ϕ0 are auxiliary variables ∗/

s,seen0,ϕ0 := a,seen,ϕ

{ ∼seen0 ◦G ◦ seen0 = ⊥⊥ }

; seen,ϕ := seen∪a , ϕ ∪ a◦⊤⊤◦a

; { Invariant: seen = s∪ seen0 ∧ ϕ = ϕ0 ∪ a◦⊤⊤◦s

Invariant: a ⊆ s ⊆ ∼seen0 ◦ (G∗
◦a)< }

while ∼seen ◦G ◦ seen 6= ⊥⊥ do

begin

choose node b such that b ⊆ ∼seen ◦ (G◦seen)<

{ b ⊆ ∼seen0 ◦ (G∗
◦a)< }

; s := s∪ b

; seen,ϕ := seen∪b , ϕ ∪ a◦⊤⊤◦b

end

{ s = ∼seen0 ◦ (G∗
◦ a)< ∧ seen = s∪ seen0 ∧ ϕ = ϕ0 ∪ a◦⊤⊤◦s }

{ seen = seen0 ∪ (G∗
◦a)< ∧ ϕ = ϕ0 ∪ a ◦⊤⊤ ◦∼seen0 ◦ (G∗

◦a)< }

Fig. 2. Repeated Search. Inner Loop.

search is also an instance: edges from each node are grouped together and an
edge from a given node is chosen when the node has no unexplored incoming
edges. We do not go into details any further.

For later discussion of the so-called “white-path theorem” [9, pp.482], we list
below some consequences of the invariant properties. Lemmas 15 and 16 relate
arbitrary paths to paths that are restricted to unseen nodes; lemma 17 similarly
relates arbitrary paths to paths restricted to nodes that have been seen thus far.

Lemma 15 Assuming seen = (G∗
◦ seen)< (i.e. (11)) and a◦seen=⊥⊥ , the

following properties also hold:

∼seen ◦ G∗
◦ seen = ⊥⊥ ∧ ∼seen ◦G∗

◦a = (∼seen ◦G)∗ ◦a .

(In words, the properties state that there are no paths from an unseen node
to a seen node and, for all unseen nodes b there is a path in G from b to a

equivales there is a path in G comprising unseen nodes from b to a .)

Proof First,

∼seen ◦G∗
◦ seen

= { domains: [ R = R< ◦R ] with R := G∗
◦ seen ;



seen = (G∗
◦ seen)< }

∼seen ◦ seen ◦G∗
◦ seen

= { ∼seen ◦ seen = ⊥⊥ }

⊥⊥ .

Second,

∼seen ◦G∗
◦a

= { I = seen∪∼seen ; distributivity, and star decomposition:

[ (R∪S)∗ = R∗
◦ (S ◦R∗)∗ ] with R,S := seen ◦G , ∼seen ◦G }

∼seen ◦ (seen ◦G)∗ ◦ (∼seen ◦G ◦ (seen ◦G)∗)∗ ◦a

= { (seen◦G)∗ = I ∪ seen◦G◦(seen◦G)∗

distributivity and ∼seen ◦ seen = ⊥⊥ }

∼seen ◦ (∼seen ◦G ◦ (seen ◦G)∗)∗ ◦a

= { (seen◦G)∗ = I ∪ seen◦G◦(seen◦G)∗

distributivity and ∼seen ◦G∗
◦ seen = ⊥⊥

(whence ∼seen ◦G ◦ seen = ⊥⊥ ) }

∼seen ◦ (∼seen ◦G)∗ ◦a

= { (∼seen ◦G)∗ = I ∪ ∼seen ◦G ◦ (∼seen ◦G)∗

distributivity }

∼seen ◦a ∪ ∼seen ◦∼seen ◦G ◦ (∼seen ◦G)∗ ◦a

= { ∼seen ◦a = a and ∼seen ◦∼seen = ∼seen ,

(∼seen ◦G)∗ = I ∪ ∼seen ◦G ◦ (∼seen ◦G)∗

distributivity }

(∼seen ◦G)∗ ◦a .

✷

The following two lemmas concern the properties of the variable s which is
assigned the value ∼seen ◦ (G∗

◦a)< in fig. 1.

Lemma 16 Assuming properties (7) thru (14) and a◦seen=⊥⊥ ,

s = ((∼seen ◦G)∗ ◦a)< .

(In words, the coreflexive s represents the set of all nodes b such that there is
a path in G comprising unseen nodes from b to a .)

Proof



s

= { definition (see fig. 1) }

∼seen ◦ (G∗
◦a)<

= { domains: for all coreflexives p and all relations R ,

p ◦R< = (p◦R)< with p,R := ∼seen , G∗
◦a }

(∼seen ◦G∗
◦a)<

= { lemma 15 }

((∼seen ◦G)∗ ◦a)< .

✷

Lemma 17 Assuming properties (7) thru (14) and a◦seen=⊥⊥ ,

s = ((s◦G)∗ ◦a)< .

(In words, the coreflexive s represents the set of all nodes b such that there is
a path in G comprising nodes in s from b to a .)

Proof Applying lemma 16, the task is to prove that

((∼seen ◦G)∗ ◦a)< = ((s◦G)∗ ◦a)< .

Clearly, since s⊆∼seen , the left side of this equation is at least the right side.
So it suffices to prove the inclusion. This we do as follows.

((∼seen ◦G)∗ ◦a)< ⊆ ((s◦G)∗ ◦a)<

⇐ { fixed-point fusion }

a ⊆ ((s◦G)∗ ◦a)<

∧ (∼seen ◦G ◦ ((s◦G)∗ ◦a)<)< ⊆ ((s◦G)∗ ◦a)<

= { first conjunct is clearly true ;

∼seen

= { case analysis: I = (G∗
◦a)< ∪ (G∗

◦a)•< }

∼seen ◦ (G∗
◦a)< ∪ ∼seen ◦ (G∗

◦a)•<

= { definition of s (see fig. 1) }

s ∪ ∼seen ◦ (G∗
◦a)•< }

((s ∪ ∼seen ◦ (G∗
◦a)•<) ◦G ◦ ((s◦G)∗ ◦a)<)< ⊆ ((s◦G)∗ ◦a)<

= { domains: [ (R ◦S<)< = (R◦S)< ]

with R,S := (s ∪ ∼seen ◦ (G∗
◦a)•<) ◦G , (s◦G)∗ ◦a ;

distributivity }



(s ◦G ◦ (s◦G)∗ ◦a)< ⊆ ((s◦G)∗ ◦a)<

∧ (∼seen ◦ (G∗
◦a)•< ◦G ◦ (s◦G)∗ ◦a)< ⊆ ((s◦G)∗ ◦a)<

⇐ { first conjunct is true (since [ R◦R∗ ⊆ R∗ ] with R := s◦G );

second conjunct: G ◦ (s◦G)∗ ⊆ G∗ and domains }

(∼seen ◦ (G∗
◦a)•< ◦ (G∗

◦a)<)< ⊆ ((s◦G)∗ ◦a)<

= { complements: (G∗
◦a)•< ◦ (G∗

◦a)< = ⊥⊥ }

true .

✷

3.4 Injective Choice

This section is a preliminary to the discussion in section 3.5. Throughout the
section, we assume that f has type IN←Node . Also, the symbol I denotes
INode : the identity relation on nodes.

Previous sections have established the existence of a delegate function ϕ

according to choice function f with the only proviso being that f is total and
functional. Moreover, the property ϕ◦ϕ = ϕ is an invariant of the algorithm for
computing delegates. Cormen, Leiserson and Rivest [9] derive it from the other
requirements assuming that f is also injective. For completeness, this is the
point-free rendition of their proof.

Lemma 18 If f is a total, injective function and ϕ is a delegate function
according to f , then

ϕ◦ϕ = ϕ .

Proof

ϕ◦ϕ = ϕ

⇐ { assumption: f is total and injective, i.e. f
∪

◦f = I }

f◦ϕ◦ϕ = f◦ϕ

= { antisymmetry of ≥

and distributivity properties of total functions }

I ⊆ (f◦ϕ◦ϕ)
∪

◦ ≤ ◦ f ◦ϕ ∧ I ⊆ (f◦ϕ◦ϕ)
∪

◦ ≥ ◦ f ◦ϕ .

We establish the truth of both conjuncts as follows. First,

(f◦ϕ◦ϕ)
∪

◦ ≤ ◦ f ◦ϕ

= { converse }

ϕ
∪

◦ (f◦ϕ)∪ ◦ ≤ ◦ f ◦ϕ

⊇ { G∗ ⊆ (f◦ϕ)
∪

◦ ≥ ◦ f ◦ϕ (lemma 5)



i.e. (G∗)
∪

⊆ (f◦ϕ)
∪

◦ ≤ ◦ f ◦ϕ

(distributivity properties of converse and ≥
∪

= (≤) ) }

ϕ
∪

◦ (G∗)
∪

⊇ { I ⊆ G∗
◦ϕ (lemma 5) and converse }

I .

Second,

(f◦ϕ◦ϕ)
∪

◦ ≥ ◦ f ◦ϕ

= { converse }

ϕ
∪

◦ (f◦ϕ)
∪

◦ ≥ ◦ f ◦ ϕ

⊇ { definition of delegate: (4) and monotonicity }

ϕ
∪

◦G∗
◦ϕ

⊇ { I ⊆ G∗ }

ϕ
∪

◦ϕ

⊇ { ϕ is total (by definition: (3)) }

I .

✷

As also shown above, the property equiv.G ⊆ ϕ
∪

◦ϕ is an invariant of the
algorithm. However, if f is a total, injective function, the property follows from
the definition of a delegate, as we show below.

Lemma 19 If f is a total, injective function and ϕ is a delegate function
according to f , strongly connected nodes have the same delegate. That is

equiv.G ⊆ ϕ
∪

◦ϕ .

Proof

equiv.G

= { definition }

G∗ ∩ (G∗)
∪

⊆ { lemma 5 }

(f◦ϕ)
∪

◦ ≥ ◦ f ◦ϕ ∩ ((f◦ϕ)
∪

◦ ≥ ◦ f ◦ϕ)
∪

= { converse }

(f◦ϕ)
∪

◦ ≥ ◦ f ◦ϕ ∩ (f◦ϕ)
∪

◦ ≤ ◦ f ◦ϕ

= { f and ϕ are total functions, distributivity }

(f◦ϕ)
∪

◦ (≥∩≤) ◦ f ◦ϕ



= { ≤ is antisymmetric, converse }

ϕ
∪

◦ f
∪

◦ f ◦ϕ

= { f is injective and total, i.e. f
∪

◦ f = I }

ϕ
∪

◦ϕ .

✷

The relation ϕ ◦G
∪

◦ϕ
∪

is a relation on delegates. Viewed as a graph, it is
a homomorphic image of the graph G

∪ formed by coalescing all the nodes with
the same delegate into one node. Excluding self-loops, this graph is acyclic and
topologically ordered by f , as we now show.

Definition 20 (Topological Order) A topological ordering of a homoge-
neous relation R of type A is a total, injective function ord from A to the
natural numbers with the property that

R+ ⊆ ord
∪

◦< ◦ ord .

✷

A straightforward lemma is that the requirement on ord is equivalent to

R ⊆ ord
∪

◦< ◦ ord .

Note that the less-than ordering relation on numbers is an implicit parameter
of the definition of topological ordering. Sometimes it is convenient to use the
greater-than ordering instead. In this way, applying basic properties of converse,
it is clearly the case that a topological ordering of R is also a topological ordering
of R

∪

.

Lemma 21 If f is a total, injective function and ϕ is a delegate function
according to f , the graph ϕ ◦G

∪

◦ϕ
∪

∩ ¬I is acyclic with f as a topological
ordering.

Proof It suffices to show that f is a topological ordering. The function f is, by
assumption, a total, injective function of type IN←Node . Thus, by assumption,
f satisfies the first requirement of being a topological ordering. (See definition
20.) Establishing the second requirement is achieved by the following calculation.

ϕ ◦G
∪

◦ϕ
∪

∩ ¬I ⊆ f
∪

◦< ◦ f

= { shunting rule }

ϕ ◦G
∪

◦ϕ
∪

⊆ f
∪

◦< ◦ f ∪ I

= { f is total and injective, i.e. I = f
∪

◦ f

distributivity and definition of ≤ }

ϕ ◦G
∪

◦ϕ
∪

⊆ f
∪

◦≤ ◦f



⇐ { ϕ is functional, i.e. ϕ ◦ϕ
∪

⊆ I

monotonicity, converse and transitivity }

G
∪

⊆ (f◦ϕ)
∪

◦≤ ◦f ◦ϕ

= { converse }

G ⊆ (f◦ϕ)
∪

◦≥ ◦ f ◦ϕ

⇐ { G⊆G∗ , transitivity }

G∗ ⊆ (f◦ϕ)
∪

◦≥ ◦ f ◦ϕ

= { lemma 5 }

true .

✷

An important corollary of lemma 21 is that the finish timestamp of (repeated)
depth-first search is a topological ordering of the strongly connected components
of a graph. (See section 3.5 for further discussion of depth-first-search timestamps
and lemma 21.)

The algorithm presented in fig. 1 shows that, viewed as a specification of
the function ϕ , the equation (4) always has at least one solution. However, the
algorithm is non-deterministic, which means that there may be more than one
solution. We now prove that (4) has a unique solution in unknown ϕ if the
function f is total and injective.

Lemma 22 Suppose f of type IN←Node is a total and injective function,
and ϕ and ψ are both total functions of type Node←Node . Then

ϕ=ψ

⇐ (ϕ ⊆ (G∗)
∪

∧ G∗ ⊆ (f◦ϕ)
∪

◦ ≥ ◦ f)

∧ (ψ ⊆ (G∗)
∪

∧ G∗ ⊆ (f◦ψ)
∪

◦ ≥ ◦ f) .

Proof Suppose ψ is a total function of type Node←Node . Then

ψ ⊆ (G∗)
∪

∧ G∗ ⊆ (f◦ϕ)
∪

◦ ≥ ◦ f

⇒ { converse and transitivity }

ψ
∪

⊆ (f◦ϕ)
∪

◦ ≥ ◦ f

⇒ { ψ is total, i.e. I ⊆ ψ
∪

◦ψ ;

monotonicity and transitivity }

I ⊆ (f◦ϕ)
∪

◦ ≥ ◦ f ◦ψ .

Interchanging ϕ and ψ , and combining the two properties thus obtained, we
get that, if ϕ and ψ are both total functions of type Node←Node ,

(ϕ ⊆ (G∗)
∪

∧ G∗ ⊆ (f◦ψ)
∪

◦ ≥ ◦ f)



∧ (ψ ⊆ (G∗)
∪

∧ G∗ ⊆ (f◦ϕ)
∪

◦ ≥ ◦ f)

⇒ { see above }

I ⊆ (f◦ψ)
∪

◦ ≥ ◦ f ◦ϕ

∧ I ⊆ (f◦ϕ)
∪

◦ ≥ ◦ f ◦ψ

= { f , ϕ and ψ are all total functions,

converse and distributivity }

I ⊆ (f◦ψ)
∪

◦ ((≤)∩ (≥)) ◦ f ◦ϕ

∧ I ⊆ (f◦ϕ)
∪

◦ ((≤)∩ (≥)) ◦ f ◦ψ

= { anti-symmetry of (≤ ) }

I ⊆ (f◦ψ)
∪

◦ f ◦ϕ ∧ I ⊆ (f◦ϕ)
∪

◦ f ◦ψ

⇒ { f , ϕ and ψ are functional;

hence f ◦ψ ◦ (f◦ψ)
∪

⊆ I and f ◦ϕ ◦ (f◦ϕ)
∪

⊆ I }

f◦ψ ⊆ f◦ϕ ∧ f◦ϕ ⊆ f◦ψ

= { anti-symmetry }

f◦ψ = f◦ϕ

⇒ { f is an injective, total function, i.e. f
∪

◦ f = I }

ψ = ϕ .

The lemma follows by symmetry and associativity of conjunction.
✷

Earlier, we stated that (9) formulates the property that there is a path from
each node to its delegate on which successive nodes have the same delegate.
Combined with (10) and the transitivity of equality, this means that there is a
path from each node to its delegate on which all nodes have the same delegate.
We conclude this section with a point-free proof of this claim. Since the claim
is not specific to the delegate function, we formulate the underlying lemmas
(lemmas 23 and 24) in general terms. The relevant property of the delegate
function, lemma 25, is then a simple instance.

For readers wishing to interpret lemma 23 pointwise, the key is to note that,
for total function h and arbitrary relation S , h

∪

◦h ∩ S relates two points x
and y if they are related by S and h.x=h.y . However, it is not necessary to
do so: completion of the calculation in lemma 24 demands the proof of lemma
23 and this is best achieved by uninterpreted calculation. In turn, lemma 24 is
driven by lemma 25 which expresses the delegate function ϕ as a least fixed
point; crucially, this enables the use of fixed-point induction to reason about ϕ .

Lemma 23 If h is a total function,

h ∩ R◦(h
∪

◦h ∩ S) = h ∩ (h∩R)◦S



for all relations R and S .

Proof By mutual inclusion:

h ∩ (h∩R)◦S

⊆ { modularity rule: (1) }

(h∩R) ◦ ((h∩R)
∪

◦h ∩ S)

⊆ { h∩R⊆h , monotonicity }

(h∩R) ◦ (h
∪

◦h ∩ S)

⊆ { h is a total function, so h ◦h
∪

◦h = h

h∩R⊆h , distributivity and monotonicity }

h ∩ R ◦ (h
∪

◦h ∩ S)

= { idempotency (preparatory to next step) }

h ∩ h ∩ R ◦ (h
∪

◦h ∩ S)

⊆ { modularity rule: (2) }

h ∩ (h ◦ (h
∪

◦h ∩ S)
∪

∩ R) ◦ (h
∪

◦h ∩ S)

⊆ { h is a total function, so h ◦h
∪

◦h = h

(h
∪

◦h ∩ S)
∪

⊆ h
∪

◦h ,

distributivity and monotonicity }

h ∩ (h∩R)◦S .

✷

Lemma 24 If h is a total function,

h ∩ (h
∪

◦h ∩ R)∗ = 〈µX :: h∩ (I ∪ X◦R)〉

for all relations R .

Proof We derive the right side as follows.

h ∩ (h
∪

◦h ∩ R)∗ = µg

⇐ { fusion theorem }

〈∀X :: h∩ (I ∪ X◦(h
∪

◦h ∩ R)) = g.(h∩X)〉

= { distributivity, lemma 23 with R,S :=X,R }

〈∀X :: (h∩ I)∪ (h ∩ (h∩X)◦R) = g.(h∩X)〉

⇐ { strengthening: X :=h∩X }

〈∀X :: (h∩ I)∪ (h ∩ X◦R) = g.X〉



= { distributivity }

〈∀X :: h∩ (I ∪ X◦R) = g.X〉 .

✷

Lemma 25

ϕ =
〈

µX :: ϕ∩ (I ∪ X ◦G
∪

)
〉

.

Proof

ϕ

= { (9) (i.e., ϕ ⊆ (G
∪

∩ ϕ
∪

◦ϕ)∗ ) }

ϕ ∩ (G
∪

∩ ϕ
∪

◦ϕ)∗

= { lemma 24 }

〈µX :: ϕ∩ (I ∪ X ◦G
∪

)〉 .

✷

The significance of the equality in lemma 25 is the inclusion of the left side
in the right side. (The converse is trivial.) Thus, in words, the lemma states that
there is a path from each node to its delegate on which every node has the same
delegate.

3.5 Summary and Discussion

We summarise the results of this section with the following theorem.

Theorem 26 Suppose f of type IN←Node is a total function and G is a
finite graph. Then the equation

ϕ :: ϕ ◦ϕ
∪

⊆ INode ⊆ ϕ
∪

◦ϕ ∧ ϕ ⊆ (G∗)
∪

∧ G∗ ⊆ (f◦ϕ)
∪

◦ ≥ ◦ f

has a solution with the additional properties that the solution is a closure oper-
ator (i.e. a delegate is its own delegate):

ϕ◦ϕ=ϕ ,

strongly connected nodes have the same delegate:

equiv.G ⊆ ϕ
∪

◦ϕ

and there is a path from each node to its delegate on which successive nodes
have the same delegate:

ϕ ⊆ (G
∪

∩ ϕ
∪

◦ϕ)∗ .

More precisely, there is a path from each node to its delegate on which all nodes
have the same delegate:

ϕ =
〈

µX :: ϕ∩ (I ∪ X ◦G
∪

)
〉

.



Moreover, a delegate has the largest f -value

ϕ ⊆ f
∪

◦ ≥ ◦ f .

If the function f is injective, the solution is unique; in this case, we call the
unique solution the delegate function on G according to f . Moreover, f is a
topological ordering of the nodes of the graph

ϕ ◦G
∪

◦ϕ
∪

∩ ¬I

(the graph obtained from G
∪ by coalescing all nodes with the same delegate

and removing self-loops). This graph is therefore acyclic.
✷

This paper is inspired by Cormen, Leiserson and Rivest’s account of the “fore-
father” function and its use in applying depth-first search to the computation
of strongly connected components [9, pp.488–494]. However, our presentation
is more general than theirs; in particular, we do not assume that the choice
function is injective.

The motivation for our more general presentation is primarily to kill two
birds with one stone. As do Cormen, Leiserson and Rivest, we apply the results
of this section to computing strongly connected components: see section 4. This
is one of the “birds”. The second “bird” is represented by the case that the choice
function is a constant function (for example, f.a=0 , for all nodes a ). In this
case, the choice of node a in the algorithm of fig. 1 reduces to the one condition
a◦seen=⊥⊥ (in words, a has not yet been seen) and the function f plays no
role whatsoever. Despite this high level of nondeterminism, the specification of
a delegate (see section 3.1) allows many solutions that are not computed by the
algorithm. (For example, the identity function satisfies the specification.) The
analysis of section 3.2 is therefore about the properties of a function that records
the history of repeated searches of a graph until all nodes have been seen: the
delegate function computed by repeated graph search records for each node b ,
the node a from which the search that sees b was initiated.

This analysis reveals many properties of graph searching that other accounts
may suggest are peculiar to depth-first search. Most notable is the property that
strongly connected nodes are assigned the same delegate. As shown in lemma 19,
this is a necessary property when the choice function is injective; otherwise, it is
not a necessary property but it is a property of the delegate function computed by
repeated graph search, whatever graph-searching algorithm is used. The second
notable property of repeated graph search is that there is a path from each node
to its delegate on which all nodes have the same delegate. This is closely related
to the property that Cormen, Leiserson and Rivest call the “white-path theorem”
[9, pp.482], which we discuss shortly. Our analysis shows that the property is a
generic property of repeated graph search and not specific to depth-first search.

In order to discuss the so-called “white-path theorem”, it is necessary to
give a preliminary explanation. Operational descriptions of graph-searching al-
gorithms often use the colours white, grey and black to describe nodes. A white
node is a node that has not been seen, a grey node is a node that has been seen



but not all edges from the node have been “processed”, and a black node is a
node that has been seen and all edges from the node have been “processed”. The
property “white”, “grey” or “black” is, of course, time-dependent since initially
all nodes are white and on termination all nodes are black.

Now lemmas 16 and 17 express subtley different versions of what is called the
“white-path theorem”. Suppose a search from node a is initiated in the outer

loop of a repeated graph search. The search finds nodes on paths starting from
a . There are three formally different properties of the paths that are found:

(i) The final node on the path is white at the time the search from a is initiated.

(ii) All nodes on the path are white at the time the search from a is initiated.

(iii) All nodes on the path are white at the time the search from their prede-
cessor on the path is initiated.

In general, if nodes are labelled arbitrarily white or non-white, the sets of
paths described by (i), (ii) and (iii) are different. (They are ordered by the
subset relation, with (i) being the largest and (iii) the smallest.) However, in a
repeated graph search, the sets of paths satisfying (i) and (ii) are equal. This is
the informal meaning of lemma 15. Moreover, the right side of the assignment
to s in fig. 1 is the set of nodes reached by paths satisfying (i); lemma 16 states
that, in a repeated graph search, the nodes that are added by a search initiated
from node a are the nodes that can be reached by a path satisfying (ii).

We claim —without formal proof— that it is also the case that, in a repeated
graph search, all three sets of paths are equal. That is, the set of paths described
by (iii) is also equal to the set of paths described by (i). We don’t give a proof
here because it is impossible to express formally without introducing additional
auxiliary variables. Informally, it is clear from the implementation shown in fig.
2, in particular the choice of nodes b and c . The introduction of timestamps
does allow us to prove the claim formally for depth-first search. See section 4.

Cormen, Leiserson and Rivest’s [9, pp.482] “white-path theorem” states that
it is a property of depth-first search that paths found satisfy (ii). Characteristic
of depth-first search is that the property is true for all nodes, and not just nodes
from which a search is initiated in the outer loop.

Finally, let us briefly remark on lemma 21. As we see later, not only can depth-
first search be used to calculate the strongly connected components of a graph,
in doing so it also computes a topological ordering of these components (more
precisely a topological ordering of the homomorphic-image graph discussed in
section 4). Lemma 21 is more general than this. It states that, if the choice
function is injective, it is a topological ordering of the converse of the graph
obtained by coalescing all the nodes with the same delegate and then omitting
self-loops. In fact, this is also true of the delegate function computed as above.
We leave its proof to the reader: remembering that during execution of the
algorithm ϕ is partial with right domain ϕ> , identify and verify an invariant
that states that f is a topological ordering on a subgraph of ϕ ◦G

∪

◦ϕ
∪

∩ ¬I .



4 Strongly Connected Components

Recall that if G is a relation, the relation equiv.G defined by

equiv.G = G∗ ∩ (G∗)
∪

is an equivalence relation; if G is a graph, two nodes related by equiv.G are
said to be in the same strongly connected component of G .

An equivalence relation R on a set A is typically represented by a so-called
representative function ρ of type A←A with the property that

R = ρ
∪

◦ ρ .

For each element a of A , the element ρ.a is called the representative of the
equivalence class containing a . In words, two values a and b are equivalent
(under R ) iff they have the same representative.

The calculation of (a representative-function representation of the) strongly
connected components of a given graph is best formulated as a two-stage process.
In the first stage, a repeated depth-first search of the graph is executed; the
output of this stage is a function f from nodes to numbers that records the
order in which the search from each node finishes; we call it the finish timestamp.
In the second stage a repeated search of the converse of the graph is executed
using the function f as choice function.
Aside on Sharir’s algorithmAs mentioned in the introduction, Aho, Hopcroft
and Ullman [1] attribute the algorithm to an unpublished 1978 document by
R.Kosaraju and to M.Sharir [16]. Sharir’s formulation of the algorithm supposes
that a forest of trees is computed in the first stage; the ordering of the nodes
is then given by a reverse postorder traversal of the trees in the forest. This is
non-deterministic since the ordering of the trees is arbitrary. However, a well-
known fact is that the use of the finish timestamp is equivalent to ordering the
trees according to the reverse of the order in which they are constructed in the
first stage; its use is also more efficient and much simpler to implement. Also,
contrary to the suggestion in [1, 9, 10] and apparently not well-known, Sharir’s
formulation of the algorithm demonstrates that is not necessary to use depth-
first search in the second stage: any graph searching algorithm will do. End of
Aside

In this section, we establish the correctness of the second stage assuming
certain properties of the first stage. Formally, we prove that the delegate function
on G according to the timestamp f is a representative function for the strongly
connected components of G .

The properties that we need involve the use of an additional function s from
nodes to numbers that records the order in which the search in the first stage
from each node starts. More precisely, the combination of the functions s and
f records the order in which searches start and finish; the functions s and f

are thus called the start and finish timestamps, respectively. Unlike f , which
is used as a choice function in the second stage, the role of s is purely as an
auxiliary variable. That is, the process of recording the start timestamp can be



omitted from the computation proper because it only serves to document the
properties of depth-first search.

The properties of repeated depth-first search that we assume are four-fold.
First, for all nodes a and b , if the search from a starts before the start of the
search from b , and the search from a finishes after the search from b finishes
there is a path from a to b :

s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f ⊆ G∗ .(27)

Second, for all nodes a and b , if the search from a starts strictly before the
start of the search from b and finishes strictly before the finish of the search
from b , the search from a finishes strictly before the search from b starts:

s
∪

◦< ◦ s ∩ f
∪

◦< ◦ f = f
∪

◦< ◦ s .(28)

Thirdly, if there is an edge from node a to node b in the graph, the search from
node a finishes after the search from b starts:

G ⊆ f
∪

◦≥ ◦ s .(29)

Finally, s and f are total, injective functions from the nodes to natural num-
bers.

Properties (27) and (28) are both consequences of the so-called “parenthesis
theorem” [9, p.480] and [10, p.606]. (The “parenthesis theorem” bundles together
the so-called “parenthesis structure” of the start and finish times with properties
of paths in the graph.) Property (29) is a consequence of the classification of edges
into tree/ancestor edges, fronds or vines [17]; see also [9, exercise 23.3-4, p.484]
(after correction to include self-loops as in [10, exercise 22.3-5, p.611]). (Property
(29) is sometimes stated in its contrapositive form: King and Launchbury [15],
for example, formulate it as there being no “left-right cross edges”.)

It may help to present further details of repeated depth-first search. The
outer loop —the repeated call of depth-first search— takes the following form:

f,s := ⊥⊥,⊥⊥ ;

while s> 6= INode do

begin

choose node a such that a ◦ s> = ⊥⊥

; dfs(a)

end

{ (27) ∧ (28) ∧ (29)

∧ s ◦ s
∪

⊆ IIN ∧ s
∪

◦ s = INode = f
∪

◦ f ∧ f ◦ f
∪

⊆ IIN }

The implementation of dfs(a) is as follows:



s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a

; while a ◦G ◦ s>• 6= ⊥⊥ do

begin

choose node b such that a◦⊤⊤◦b ⊆ a ◦G ◦ s>•

; dfs(b)

end

; f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a

In the above, the current “time” is given by MAX.s↑MAX.f (assuming that
MAX.⊥⊥ is 0 , by definition): the maximum value of the combined functions
s and f ; the overbar denotes the conversion of a number into a coreflexive
representing the singleton set containing that number. The assignment to s thus
increments the time by 1 and assigns to the node a the new time as starting
time; similarly, the assignment to f increments the time by 1 and assigns to
the node a the new time as finish time. The coreflexive s>• is the complement
of s> ; thus, it represents the set of nodes from which a search has not yet been
started. The body of the inner loop is repeatedly executed while there remain
edges in G from a to a node from which a search has not been started; the
chosen node b is then one such node.

It is a very substantial exercise to verify the postcondition of repeated depth-
first search since, in order to do so, additional invariant properties must be
identified and verified. We have identified 16 different conjuncts in the invariant
of depth-first search. Given that there are 5 components in its implementation
(two assignments, one test, one choice and one recursive call), this means that
there are at least 64 (sixteen times four) verification conditions that must be
checked in order to verify repeated depth-first search: the recursive call can be
ignored “by induction” but the repeated invocation of depth-first search also
incurs additional verification conditions. Although many of these verification
conditions are straight-forward, and might be taken for granted in an informal
account of the algorithm, there is still much to be done. For more information,
including a detailed comparison with [9], see [6].)

Suppose s and f are the start and finish timestamps computed by a re-
peated depth-first search of the graph G as detailed above. Suppose ϕ is the
delegate function on G according to the timestamp f . (Recall that, as re-
marked immediately following its definition in section 3.1, the function ϕ is
the function computed by the repeated search of G

∪

in the second stage of the
Kosaraju-Sharir algorithm.)

From theorem 26, we know that

equiv.G ⊆ ϕ
∪

◦ϕ .

It remains to show that

ϕ
∪

◦ϕ ⊆ equiv.G .



We do this by showing that ϕ⊆ equiv.G . That is, we show that the delegate
of a node according to f is strongly connected to the node. The key is to use
induction, the main difficulty being to identify a suitable induction hypothesis.
This is done in the following lemma. Its proof combines two properties of dele-
gates: (i) for each node, there is a path to its delegate on which all nodes have
the same delegate and (ii) the delegate has the largest f -value.

Lemma 30

ϕ ⊆
〈

µX :: f
∪

◦≥ ◦ f ∩ (I ∪ X ◦G
∪

)
〉

.

Proof

ϕ

= { lemma 25 }

〈µX :: ϕ∩ (I ∪ X ◦G
∪

)〉

⊆ { theorem 26 (specifically, ϕ ⊆ f
∪

◦≥ ◦f )

and monotonicity }

〈µX :: f
∪

◦≥ ◦ f ∩ (I ∪ X ◦G
∪

)〉 .

✷

Lemma 30 enables us to use fixed-point induction to establish a key lemma:

Lemma 31

ϕ ⊆ s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦f .

Proof

ϕ ⊆ s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f

⇐ { lemma 30 }

〈µX :: f
∪

◦≥ ◦ f ∩ (I ∪ X ◦G
∪

)〉 ⊆ s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦f

⇐ { fixed-point induction }

f
∪

◦≥ ◦ f ∩ (I ∪ (s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f) ◦G
∪

) ⊆ s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f

⇐ { distributivity and [ R∪S = R∪ (¬R∩S) ]

with R,S := I , (s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f) ◦G
∪

}

f
∪

◦≥ ◦f ∩ I ⊆ s
∪

◦≤ ◦ s

∧ f
∪

◦≥ ◦f ∩ ¬I ∩ (s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦f) ◦G
∪

⊆ s
∪

◦≤ ◦ s

= { ≤ is reflexive and s is total, so I ⊆ s
∪

◦≤ ◦ s

f is injective, so f
∪

◦≥ ◦ f ∩ ¬I = f
∪

◦> ◦f }

f
∪

◦> ◦ f ∩ (s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f) ◦G
∪

⊆ s
∪

◦≤ ◦ s .

We continue with the left-hand side of the inclusion.



f
∪

◦> ◦ f ∩ (s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦f) ◦G
∪

⊆ { assumption (29) and converse: G
∪

⊆ s
∪

◦≤ ◦ f }

f
∪

◦> ◦ f ∩ (s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦f) ◦ (s
∪

◦≤ ◦f)

⊆ { [ R∩S⊆R ] with R,S := s
∪

◦≤ ◦ s , f
∪

◦≥ ◦ f

and monotonicity }

f
∪

◦> ◦ f ∩ s
∪

◦≤ ◦ s ◦ s
∪

◦≤ ◦f

⊆ { s is functional, so s ◦ s
∪

⊆ I , ≤ is transitive }

f
∪

◦> ◦ f ∩ s
∪

◦≤ ◦ f

= { assumption : (28), i.e. (taking converse and complements)

s
∪

◦≤ ◦f = s
∪

◦≤ ◦ s ∪ f
∪

◦≤ ◦f }

f
∪

◦> ◦ f ∩ (s
∪

◦≤ ◦ s ∪ f
∪

◦≤ ◦f)

= { f
∪

◦> ◦f ∩ f
∪

◦≤ ◦f = ⊥⊥ }

f
∪

◦> ◦ f ∩ s
∪

◦≤ ◦ s

⊆ { monotonicity }

s
∪

◦≤ ◦ s .

Combining the two calculations, the proof is complete.
✷

Now we can proceed to show that every node is strongly connected to its
delegate.

Lemma 32 Suppose ϕ is the delegate function on G according to the
timestamp f . Then

ϕ⊆ equiv.G .

Proof

ϕ⊆ equiv.G

= { definition of equiv.G , distributivity }

ϕ⊆G∗ ∧ ϕ⊆ (G∗)
∪

= { by definition of delegate (see theorem 26), ϕ⊆ (G∗)
∪

}

ϕ⊆G∗

⇐ { (27) is a postcondition of repeated depth-first search }

ϕ ⊆ s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f

⇐ { lemma 31 }

true .



✷

Theorem 33 Suppose f is the finish timestamp computed by a repeated
depth-first search of a graph G. Then the delegate function on G according to
f is a representative function for strongly connected components of G . That
is, if ϕ denotes the delegate function,

ϕ
∪

◦ϕ = equiv.G .

Proof

ϕ
∪

◦ϕ = equiv.G

= { anti-symmetry }

equiv.G ⊆ ϕ
∪

◦ϕ ∧ ϕ
∪

◦ϕ ⊆ equiv.G

⇐ { theorem 26, lemma 32 }

true ∧ (equiv.G)
∪

◦ equiv.G ⊆ equiv.G

= { equiv.G is symmetric and transitive }

true .

✷

5 Conclusion

In one sense, this paper offers no new results. Graph-searching algorithms have
been studied extensively for decades and have long been a standard part of the
undergraduate curriculum in computing science. The driving force behind this
work has been to disentangle different elements of the correctness of the two-
stage algorithm for determining the strongly connected components of a graph:
our goal has been to clearly distinguish properties peculiar to depth-first search
that are vital to the first stage of the algorithm from properties of repeated
graph search that are exploited in its second stage. This is important because
an algorithm to determine strongly connected components of a graph does not
operate in a vacuum: the information that is gleaned is used to inform other
computations. For example, Sharir [16] shows how to combine his algorithm
with an iterative algorithm for data-flow analysis.

The primary contribution of the paper is, however, to show how the choice
of an appropriate algebraic framework enables precise, concise calculation of
algorithmic properties of graphs. Although with respect to graph algorithms
(as opposed to relation algebra in general) the distinction between “point-free”
and “pointwise” calculations has only been made relatively recently, this was
the driving force behind the author’s work on applying regular algebra to path-
finding problems [2, 3].



The difference between point-free and pointwise calculations can be appreci-
ated by noting that nowhere in our calculations is there an existential quantifica-
tion or a nested universal quantification. Typical accounts of depth-first search
make abundant use of such quantifications; the resulting formal statements are
long and unwieldy, and calculations become (in our view) much harder to check:
compare, for example, the concision of the three assumptions (27), (28) and (29)
with the three assumptions made by King and Launchbury [15].

Of course, our discussion of the two-stage algorithm is incomplete because
we have not formally established the properties of the first (depth-first search)
stage that we assume hold in the second stage. (The same criticism is true of
[15].) This we have done in [6]. Although the calculations are long — primarily
because there is a large number of verification conditions to be checked — we
expect that they would be substantially shorter and easier to check than formal
pointwise justifications of the properties of depth-first search.

Acknowledgements Many thanks to the referees for their careful and detailed cri-
tique of the submitted paper. Thanks also for pointing out that explicit mention
of the “forefather” function, studied in detail in [9], has been elided in [10].

References

1. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and

Algorithms. Addison-Wesley, 1982.
2. R.C. Backhouse. Closure algorithms and the star-height problem of

regular languages. PhD thesis, University of London, 1975. Avail-
able at https://spiral.imperial.ac.uk/bitstream/10044/1/22243/2

/Backhouse-RC-1976-PhD-Thesis.pdf.
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D. Pous, and G. Struth, editors, Relational and Algebraic Methods in Computer

Science – 16th International Conference, RAMiCS 2017, volume 10226 of Lecture
Notes in Computer Science, pages 109–126. Springer, May 15–18 2017.

14. Paul Hoogendijk and Roland C. Backhouse. Relational programming laws in the
tree, list, bag, set hierarchy. Science of Computer Programming, 22(1–2):67–105,
1994.

15. David J. King and John Launchbury. Structuring depth-first search algorithms in
Haskell. In POPL ’95. Proceedings of the 22nd ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programmming Languages, pages 344–354, 1995.
16. M. Sharir. A strong-connectivity algorithm and its application in data flow anal-

ysis. Computers and Mathematics with Applications, 7(1):67–72, 1981.
17. Robert Endre Tarjan. Depth first search and linear graph algorithms. SIAM J.

Computing, pages 146–160, 1972.


