
Difuntional and Blok-Ordered Relations

Roland Bakhouse

Deember 5, 2022

Abstract

Seventy years ago, in a series of publiations, Jaques Riguet introdued the

notions of a \relation difontionelle", the \di��erene" of a relation and \relations

de Ferrers". He also presented a number of properties of these notions, inluding

an \analogie frappante" between \relations de Ferrers" and the \di��erene" of a

relation. Riguet's de�nitions, partiularly of the entral onept of the \di��erene"

of a relation, use formulae involving nested omplements. Riguet's proofs make

extensive use of natural language making them diÆult to understand. The primary

purpose of this paper is to bring Riguet's work up to date using modern alulational

methods. Other goals are to doument and extend Riguet's work as fully as possible,

and to orret extant errors in the literature.

We all a \relation difontionelle" a \difuntional relation", the \di��erene" of

a relation we all the \diagonal" of a relation and a \relation de Ferrers" we all

a \stairase relation" | a speial ase of a \blok-ordered relation". We avoid as

muh as possible the use of nested omplements by exploiting the left and right fator

operators (aka division or residual operators) on relations.

We present omplete, alulational proofs of two fundamental properties of di-

funtional relations: a relation is difuntional if and only if it an be represented

by a pair of funtional relations and that a relation is difuntional if and only if it

is the union of a set of ompletely disjoint retangles. The diagonal of a relation

(Riguet's \di��erene") is a difuntion that plays a very signi�ant rôle in the study

of blok-ordered relations; aordingly, we study its properties in depth. For om-

pleteness, we also present a seond method for onstruting a difuntion from an

arbitrary relation: Riguet's \fermeture difontionelle".

Riguet used an informal, mental piture of a stairase-like struture to introdue

\relations de Ferrers" in the ase of �nite relations. Riguet also stated a neessary and

suÆient ondition for a \relation de Ferrers" to be the union of a totally ordered lass

of retangles, where the ordering has a property that we all \polar". By omitting

the totality requirement, we abstrat the more general notion of a blok-ordered

relation. We explore onditions under whih a given relation has a non-redundant,

polar overing and when it is blok-ordered. In doing so, we formulate and prove a
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theorem establishing an equivalene between the property of a relation being blok-

ordered and properties of the diagonal of a relation. Our theorem generalises Riguet's

\analogie frappante".

The primary novelty of our work is the introdution of the notion of the \ore"

of a relation. This is a notion that is of general appliability and not just in the

ontext of blok-ordered relations. For example, the ore of a difuntional relation

is a bijetion, the ore of a preorder is an ordering (a speial ase of the ore of a

blok-ordered relation, whih is also an ordering), and the ore of a �nite graph is an

ayli graph onneting its strongly onneted omponents. Our generalisation of

Riguet's \analogie frappante" shows how the ore of a relation in ombination with its

diagonal is used |under ertain onditions| to onstrut a non-redundant, injetive

polar overing of a given relation. The theorem may have pratial appliation in

the onise representation of very large databases.

Finally, we onsider the speial ase of stairase relations. We onsider di�erent

de�nitions that formalise Riguet's mental piture. Contrary to laims made in the

published literature, we show that the de�nitions are not equivalent in general. We

do prove their equivalene in the ase of (blok-)�nite relations, a fat that is often

taken for granted in the extant literature but of whih we have never seen a proof.



3

Contents

1 Introduction 6

1.1 Mental Pitures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 The Axiom System 13

2.1 Point-Free Relation Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Operator Preedene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Modularity Rule and Cone Rule . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Heterogeneous Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Basic Structures 21

3.1 Spei�ations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Fators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 The Domain Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Properties of Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Funtionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Isomorphi Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 Formulations of Power Transpose . . . . . . . . . . . . . . . . . . . . . . . 50

3.8 Pers and Per Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.9 Provisional Orderings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Squares and Rectangles 71

4.1 Inlusion and Intersetion . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Completely Disjoint Retangles . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Characterisations of Partial Equivalence Relations 83

5.1 Proof of the Charaterisation Theorem . . . . . . . . . . . . . . . . . . . . 83

5.2 Uniity of Charaterisations . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Deomposition of Provisional Preorders . . . . . . . . . . . . . . . . . . . 89

6 Difunctional Relations 92

6.1 Formal De�nition and Charaterisation . . . . . . . . . . . . . . . . . . . 92

6.2 Di�erent Proofs, Idential Charaterisations . . . . . . . . . . . . . . . . . 98

6.3 The Charaterisation Theorem . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.1 The Retangle Proof . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3.2 The Power-Transpose Constrution . . . . . . . . . . . . . . . . . . 104

6.3.3 The Per Constrution . . . . . . . . . . . . . . . . . . . . . . . . . 107



4

6.4 Difuntional Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 The Diagonal 113

7.1 De�nition and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Basi Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3 Redution to the Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8 Polar Coverings 131

8.1 Injetive Polar Coverings . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.2 Non-Redundant Polar Coverings . . . . . . . . . . . . . . . . . . . . . . . 140

9 Block-Ordered Relations 148

9.1 Pair Algebras and Galois Connetions . . . . . . . . . . . . . . . . . . . . 152

9.2 Analogie Frappante . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

10 Imperfect Block-Orderings 171

10.1 Grips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

10.2 Polar Covering and Properties . . . . . . . . . . . . . . . . . . . . . . . . . 173

10.3 Grips of Provisional Orderings . . . . . . . . . . . . . . . . . . . . . . . . 186

11 Staircase Relations 188

11.1 Formal De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

11.2 Equivalent Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

11.3 General Construtions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

11.4 Invariant Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

11.5 Linear Orderings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

11.6 Linear Blok Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

11.7 Riguet's Retangle Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 210

11.8 Finite Stairase Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

12 Discussion 215



5

List of Figures

1 Mental Piture of a Stairase Relation . . . . . . . . . . . . . . . . . . . . 7

2 Mental Piture of a Difuntional Relation . . . . . . . . . . . . . . . . . . 8

3 Riguet's \Di��erene" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 A Provisional Preorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Three Di�erent (but Isomorphi) Charaterisations . . . . . . . . . . . . . 101

6 Diagonal of an Instane of the Membership Relation . . . . . . . . . . . . 117

7 A Relation and Its Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8 A Relation of Type {A,B,C}∼{α,β,γ,δ} . . . . . . . . . . . . . . . . . . . . 134

9 Polar Covering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

10 A Small Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

11 Empty Diagonal and Non-Redundant Covering . . . . . . . . . . . . . . . 146

12 A Relation on Two Posets . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

13 A Blok-Ordered Membership Relation . . . . . . . . . . . . . . . . . . . . 167

14 Grips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

15 Grips of a Membership Relation . . . . . . . . . . . . . . . . . . . . . . . 186

16 Preordering De�ned By a Stairase Relation . . . . . . . . . . . . . . . . . 189

17 Stairase Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

18 Blok Struture of a Stairase Relation . . . . . . . . . . . . . . . . . . . . 199

19 Choies of Polar Covering . . . . . . . . . . . . . . . . . . . . . . . . . . . 212



6

1 Introduction

The interfae between requirements and spei�ations poses a major hallenge for pra-

tising programmers beause it is intrinsially a soial proess that is largely unsupported

by mathematial method: requirements are informal and ustomer-led whereas spei-

�ations are formal (even if, as is often the ase, the \spei�ation" is the atual im-

plementation of the requirements). There is no mathematially veri�able \orretness"

relation between requirements and spei�ations.

The hallenge of assuring the ustomer that their requirements have indeed been met

an be overome in di�erent ways. We would argue that one of the most important ways

is by deriving |by mathematial alulation| properties of the spei�ation whih are

then interpreted in a way that an be understood by the ustomer. This proess is vital

to the integrity of the siene of omputing.

Seventy years ago, in a series of publiations [Rig48, Rig50, Rig51℄, Jaques Riguet

introdued the notions of a \relation difontionelle", the \di��erene" of a relation and

\relations de Ferrers". In the ase of �nite relations, he provided an informal mental

piture of a \relation de Ferrers" in the form of a stairase-like struture. But his formal

de�nition of a \relation de Ferrers" bears little or no resemblane to the mental piture

and it is diÆult to see how the formal orresponds to the informal. The name \relation

de Ferrers" also gives little lue as to the pratial relevane of the notion. Riguet's def-

initions, partiularly of the \di��erene" of a relation, use (in our view) over-ompliated

and outdated formulae involving nested omplements that are better formulated using

the fator operators (aka division or residual operators). Riguet also relies heavily on

natural language justi�ations of important properties as well as asserting several prop-

erties without proof. More reent publiations, some of whih do not ite Riguet but

whih opy his de�nitions, introdue errors by failing to reognise the restritions that

Riguet made lear in his aount of the properties of the notions.

The writing of this paper initially began as an exerise in applying modern alu-

lational reasoning to bring Riguet's work up to date and more aessible to a wider

audiene. In view of the extant errors in relatively reent publiations and to try to

avoid introduing yet more errors, we deided to inlude full details of all proofs. In the

proess, we deided that some hanges in terminology were desirable: for reasons that

we explain later, we all the \di��erene" of a relation the \diagonal" of the relation and

we all \relations de Ferrers" stairase relations. We also realised that ertain generalisa-

tions of Riguet's work were desirable, the primary one being from \stairase" relations to

\blok-ordered relations": the property of being a \stairase" relation demands a ertain

total ordering on \bloks" (\retangles totalement ordonn�ees par inlusion" [Rig51℄), be-

ing \blok-ordered" does not require the ordering to be total. In summary, the goals of

this paper are as follows:
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1. To demonstrate the eÆay of modern alulational reasoning in developing a the-

ory of blok-ordered relations.

2. To doument as fully as possible the preise relation between difuntional relations

and blok-ordered relations (Riguet's \analogie frappante").

3. To set the reord straight with respet to the origin of the onepts and theorems

relating difuntional relations to blok-ordered relations.

4. To orret extant errors in the literature.

1.1 Mental Pictures

Partly as a onsequene of our deision to inlude all proofs, this doument has beome

quite long and it is inappropriate to introdue all parts in one go. In order to set the sene,

this setion gives a very informal aount of the priniple notions introdued. In doing

so, we use notation that will be introdued in later setions. Readers unfamiliar with

the notation are invited to read the setion nevertheless,postponing full understanding

until later.

For many, it is useful to have a \mental piture" of formal mathematial statements.

Fig. 1 is suh a mental piture of what we shall all a \stairase relation". (Riguet

[Rig51℄ presents a similar piture of a \relation de Ferrers".) The shaded area depits a

binary relation on sets A and B , the vertial axis depiting the set A , the horizontal

axis depiting the set B , and the shaded area depiting the set of pairs (a, b) for whih

the relation holds. Informally a stairase relation is any relation that an be depited in

suh a way.
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������������������
������������������
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B

Figure 1: Mental Piture of a Stairase Relation

One of the problems we address in this paper is how to formulate the notion of a

\stairase" relation in a way that is both amenable to mathematial alulation and
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aptures the very informal de�nition just given. In the proess of so doing, it is ne-

essary to resolve ambiguities and/or misoneptions that inevitably arise from informal

de�nitions.

Fig. 2 is a \mental piture" of a difuntional relation of type A∼B . Informally,

a difuntional relation is a (heterogeneous) relation that is the union of a olletion

of \ompletely disjoint retangles

1

". The relation shown in �g. 2 is what we all the

\diagonal" of the stairase relation shown in �g. 1.

���
���
���
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������
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�����
�����
�����A

B

Figure 2: Mental Piture of a Difuntional Relation

The mental piture of a difuntional relation suggests a seond property that appears

to be folklore: eah point a in the left domain and eah point b in the right domain of a

difuntional relation de�nes a retangle whereby related pairs de�ne the same retangle.

In this way, a difuntional relation is haraterised by a pair of funtional relations.

As mentioned earlier, Riguet [Rig51℄ uses the name \di��erene" for what we all the

\diagonal". Fig. 3 explains in piture-form the reasoning behind the naming as well as

how our formulation di�ers from Riguet's.

The four parts of �g. 3 depit in turn

(a) a relation R (oloured green),

(b) the fator R
∪

\R
∪

/R
∪

(in red, where R
∪

denotes the onverse of R ),

(c) the diagonal of R (in blue | more preisely, the relation R ∩ R∪

\R
∪

/R
∪

),

(d) the relation R ◦¬R∪
◦R .

Informally, the diagonal of R (shown in �g. 3()) is that part of the relation R (shown

in �g. 3(a)) that is ommon to the fator R
∪

\R
∪

/R
∪

(shown in �g. 3(b)).

Riguet formulated the diagonal as the \di��erene" between R and the relation

R ◦¬R
∪
◦R , i.e. as R∩¬(R ◦¬R

∪
◦R) . (Note the nested omplements, denoted by the

1

See de�nition 123 for a formal de�nition of \ompletely disjoint retangles".
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Figure 3: Riguet's \Di��erene"
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symbol \¬ ".) Fig. 3(d) shows the relation R ◦¬R
∪
◦R . It has two parts: the parts not

oloured red, i.e. the shaded part and the white part. The part oloured red is the \use-

ful" part R< ◦ R∪

\R∪ /R∪
◦ R>

of the relation depited in (b). Here R<
and R>

denote

the left and right \domains" of R (not to be onfused with the target and soure of

R ). The shaded part of �g. 3(d) depits the relation R•< ◦⊤⊤ ∪ ⊤⊤ ◦R>•
: the set of pairs

(a, b) suh that either a is not related by R to any element of B or no element of A

is related by R to b . Riguet's \di��erene" is the di�erene between the green part of

�g. 3(a) and the non-red part of �g. 3(d).

Hopefully, by way of these informal pitures, we an now give an overview of the

remainder of the paper.

1.2 Overview

To begin, we present the axiomati basis for our formal reasoning in setion 2. The basis

for the axiom system originated in the work of De Morgan, Piere, Shr�oder, Tarksi and,

no doubt, many others. This setion is an abbreviated version of the presentation in

[BDGv21℄ to whih the reader is referred for full details (inluding proofs of the stated

theorems).

Setion 3 goes into more detail on basi elements of relation algebra. At this point,

we adhere to our maxim of providing proofs of all stated properties. Whilst the topis in

this setion |in partiular fators (setion 3.2), the domain operators (de�nition 42) and

\provisional orderings" (de�nition 114)| all play a signi�ant rôle later, we reommend

that the reader skim the setion briey in the �rst instane, returning to it later as and

when neessary. (The notion of a \provisional ordering" is new but the motivation for

its introdution only beomes apparent later.)

Setion 4 is the beginning of topis spei� to blok-orderings. \Bloks" or \retan-

gles" are partiular sorts of relations that are pitured as retangles. As pitured in �g. 2,

a difuntional relation an be haraterised as a olletion of \ompletely disjoint retan-

gles". Setion 4.1 presents a number of elementary properties of squares and retangles

whilst setion 4.2 introdues some important de�nitions and properties: the notion of

an \indexed set" of retangles (de�nition 129), the notion of \ompletely disjoint ret-

angles" (de�nition 130) and the haraterisation of an indexed set of ompletely disjoint

retangles by a pair of funtional relations (theorem 141).

In setion 5 we formulate properties of partial equivalene relations that will be fa-

miliar to most readers. The main topi is a theorem haraterising a partial equivalene

relation as a olletion of disjoint squares. In more familiar terminology, a partial equiv-

alene relation partitions its domain into disjoint equivalene lasses. Note that we fous

on partial equivalene relations (of whih equivalene relations form a speial ase). In

general, we are obliged to reason about the left and right domains of relations, partiu-
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larly when reasoning about the diagonal of a relation (de�nition 183) | a topi that is

entral to this investigation. Reall our disussion of the shaded area of �g. 3(d).

We formulate several proofs of the per haraterisation theorem, theorem 143, in

setion 5. Later we do the same for the haraterisation of difuntional relations, theorem

161, one of the proofs being based on theorem 143. We do so in order to evaluate di�erent

alulational methods. In this ase, ontrary to the view we ourselves have propagated,

the alulations exploiting points and the saturation axiom are preferable to the point-

free alulations. Our formalism allows us to mitigate the negative aspets of pointwise

reasoning so that points appear in formulae only where this is desirable. This is disussed

further in setion 12.

The main results of this investigation are presented in setion 6 on difuntional rela-

tions, setion 7 on the \diagonal" of a relation and setions 9 and 11 on blok-ordered

and stairase relations, respetively.

Setion 6 is about the basis for the name \difuntion": a difuntional relation is

haraterised by a pair of funtional relations (theorem 161); moreover, suh a hara-

terisation is (essentially) unique (theorem 166). This is a well-known generalisation of

the properties of partial equivalene relations and, as mentioned above, is inluded in

order to evaluate di�erent alulational methods.

For ompleteness, setion 6.4 douments the properties of the \difuntional losure"

of a relation: the \fermeture difontionelle" introdued by Riguet [Rig50℄.

Setion 7 is a detailed examination of the properties of the diagonal of a relation.

Riguet's aount of \relations de Ferrers" inludes a theorem haraterising suh relations

as the \r�eunion" of \retangles" that have a very speial property. Referring to �g. 1,

eah individual \tread" of a stairase relation de�nes a unique retangle (exat details

of whih are given later) and the relation is the \r�eunion" of them all. With this as

motivation, we abstrat the notion of a \polar overing" and we prove a theorem that

every relation has a polar overing. See de�nition 209 and theorem 211 in setion 8. As

a step towards Riguet's haraterisation of \relations de Ferrers", we de�ne the notion of

a \non-redundant" polar overing. For �nite relations, it is straightforward to show that

a non-redundant polar overing an always be onstruted from a given polar overing of

the relation. The algorithm may, however, not be pratial; moreover, there are in�nite

relations that do not have a non-redundant polar overing. (The less-than relation on

real numbers is an example.) A fous of setion 7 is to investigate when the diagonal

of a relation de�nes a non-redundant polar overing of the relation. The main result in

this setion is thus theorem 222 (whih we believe to be original to this paper).

Blok-ordered relations are de�ned in setion 9. Although we don't disuss it in

any detail, the pratial appliation of blok-ordering a relation is eÆient storage and

reovery of information. Dividing the left and right domains of a relation into \bloks" is

an obvious �rst step. We take the opportunity in setion 9.1 to point out the pioneering
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ontribution to information siene made by Hartmanis and Stearns [HS64, HS66℄ in their

study of so-alled \pair algebras". The relevane to blok-ordered relations is that so-

alled \perfet" Galois onnetions provide a rih soure of examples. Setion 9.2 relates

blok-orderings to diagonals. The setion is entitled \analogie frappante" beause the

onluding theorem of the setion (theorem 262) is a neessary and suÆient ondition

for a relation to be blok-ordered expressed as a property of the diagonal of a relation,

thus generalising Riguet's \analogie frappante" between the properties of a \relation

de Ferrers" and difuntional relations. Theorem 234 proves that every blok-ordered

relation has a non-redundant polar overing, the non-redundany of whih is witnessed

by the relation's diagonal.

Setion 10 introdues a less-restritive notion of \(possibly) imperfet" blok-orderings.

Every relation has an imperfet blok-ordering as witnessed by the \grips" of the rela-

tion. The \grips" of a relation are \bloks" that are essentially the same as the so-alled

\Begri�en" (\onepts") of the relation [DP90℄.

Setion 11 was the starting point of this investigation: prinipally, how should the

informal mental piture of a \stairase" relation be made preise and what then are its

properties? Unsurprisingly (at least to us) it turns out that pitures an be deeiving.

We have been able to verify that all the laims made by Riguet are valid and muh of

the setion is devoted to that task; in partiular, theorem 334 establishes the (unproven)

theorem in [Rig51℄ that every stairase relation has a linear polar overing. On the other

hand, we provide examples showing that other laims in the extant literature are not

valid. In partiular, theorem 319 proves, by way of onrete examples, that not every

stairase relation is blok-ordered. It is the ase, however, as orretly stated by Riguet

[Rig51℄, that every �nite stairase relation is blok-ordered but we have been unable to

�nd a proof anywhere in the literature. Theorem 335 and its proof retify this launa.

Setion 12 onludes the paper with a summary and disussion of publiations in

the last thirty years. (We have been unable to �ll the forty-year gap |in respet of

non-�nite relations| from 1950 to 1990 and would welome reeiving information about

relevant publiations in that period.)
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2 The Axiom System

We assume familiarity with a number of basi onepts of relation algebra: omposition,

onverse, left and right domains, and left and right fators (aka \residuals"). Our pre-

sentation is based on the system of axioms formulated by Voermans [Voe99℄; full details

an be found in [BDGv21℄. In addition to the axioms we give a pointwise interpretation

of eah of the operators. That is, we say, for eah operator that we introdue, how the

operator de�nes a set of pairs. In giving the interpretation we use the notation [[E]] to

mean \the interpretation of E ". Thus we write x[[R]]y instead of xRy ; this enhanes

readability and also emphasises the di�erene between the objets of an abstrat relation

algebra and the interpretation of suh objets as binary relations.

2.1 Point-Free Relation Algebra

We begin with a point-free axiomatisation of homogeneous relations. Later we extend

the axiomatisation to heterogeneous relations (setion 2.4) and to points (setion 2.5).

The �rst unit is a lattie struture. Spei�ally, let (A ,⊆ ) be a partially-ordered set.

We postulate that A forms a omplete, universally distributive lattie. The in�mum

and supremum operators will be denoted by ∩ and ∪ , respetively. The top and bottom

elements of the lattie will be denoted by ⊤⊤ and ⊥⊥ , respetively. We all elements

of A relations and denote them by variables R , S and T . The interpretation of A is

the set of relations of some �xed type. The interpretation of a relation is a set; so A is

a powerset.

As suggested by the hoie of notation, the interpretation of ⊆ is the subset ordering,

the interpretation of ∩ is set intersetion, and the interpretation of ∪ is set union.

Formally,

[[R⊆S]] ≡ 〈∀x,y : x[[R]]y : x[[S]]y〉 ,

x [[R∩S]]y ≡ x[[R]]y ∧ x[[S]]y , and

x [[R∪S]]y ≡ x[[R]]y ∨ x[[S]]y .

The interpretation of ⊤⊤ is the universal relation and the interpretation of ⊥⊥ is the

empty relation. That is,

〈∀x,y :: x[[⊤⊤]]y≡ true〉 ∧ 〈∀x,y ::x[[⊥⊥]]y≡ false〉 ,

This is the most ompliated unit in the framework but one whih should be familiar to

the reader.
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Every binary relation has a onverse; the onverse operator, denoted by a post�x \

∪

"

symbol (pronouned \wok"), is interpreted by

x [[R
∪

]]y ≡ y[[R]]x

for all x and y . Axiomatially, we postulate the existene of a (total) unary funtion

from relations to relations suh that, for all relations R and S

R
∪⊆S ≡ R⊆S∪

.(1)

The Galois onnetion (1) is all that is neessary to de�ne the onverse operator and its

interfae with the lattie struture. Its being a Galois onnetion makes it so attrative.

The set of homogeneous binary relations over some universe inludes the identity

relation, I , with the interpretation

x[[I]]y ≡ x=y

for all x and y . Relations may also be omposed via the binary omposition operator,

◦
, de�ned at the point level by

x [[R◦S]] z ≡ 〈∃y ::x[[R]]y∧y[[S]]z〉 .

We apture these two notions axiomatially by demanding the existene of a relation I

and a binary operator,

◦
, mapping a pair of relations to a relation, suh that (A , ◦ , I )

is a monoid.

There are two interfaes to be spei�ed. The interfae with the onverse operator is

soon dealt with. Bearing in mind the intended relational interpretations of onverse and

omposition we postulate

(R◦S)
∪

= S
∪

◦R
∪

,(2)

for all relations R and S . For the interfae with the lattie struture we postulate that

a relation algebra is a regular algebra. In partiular, we postulate that for all relations R

the funtions (R◦
) and (

◦R ) are universally distributive. This is equivalent to postulating

the existene of two fator operators; these are disussed in detail in setion 3.2.

In the theory developed in this paper, the onverse operator plays a very signi�ant

rôle. Beause onverse has suh strong distributivity properties, it is frequently possible

to \dualise" a property by simply applying the onverse operator to obtain a property

that is the mirror image of the original. (See, for example, (3) and (4).) Also, operators

we de�ne frequently have left and right variants with mirror properties. (See, for example,

the domain operators introdued in de�nition 42.)
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2.2 Operator Precedence

We have now introdued quite a large number of operators. In order to redue the

number of parentheses in formulae we should agree on a preedene between the di�erent

operators.

A general rule we use throughout is that all pre�x and post�x operators as well as

subsripting and supersripting take preedene over in�x operators and in�x operators

in turn take preedene over multi�x operators. When both pre�x and post�x operators

are applied to an expression, we use parentheses to larify the order of evaluation. An

exeption is when a pre�x and post�x operator obey an \assoiative" law, in whih ase

we omit the parentheses. For example |as observed by De Morgan| omplement and

onverse \assoiate". So we an safely write ¬R
∪

, parsing it as ¬(R∪) or as (¬R)∪

depending on the alulational needs. Thus it remains to disuss the relative preedene

of the in�x operators.

For in�x operators, the general rule is that metaoperators (operators like ≡ and ∧ )

have the lowest preedene. Next ome relations like ≤ and ⊆ . The operators of relation

algebra have the next highest preedene, and funtion appliation (whih we denote by

an in�x dot) has the highest preedene of all. Among the in�x operators of relation

algebra the preedene is: intersetion and union have the same, lowest preedene, and

the highest preedene is given to omposition.

2.3 Modularity Rule and Cone Rule

Although omposition distributes through suprema, it does not distribute through in-

�ma. This reates diÆulties in alulations that ombine in�ma with omposition. The

rule we now introdue to overome this diÆulty ats as an interfae between all three

units of the framework. Riguet [Rig48℄ named the rule after the famous mathematiian

J.W.R. Dedekind (he alled it \la relation de Dedekind") beause of its resemblane to

the modular identity, a property of normal subgroups attributed to Dedekind. Shmidt

and Str�ohlein [SS93℄ have adopted Riguet's terminology (they refer to \the Dedekind

formula") whereas Freyd and

�

S�edrov [Fv90℄ all it the law of modularity (possibly for

the same reason as Riguet). We all it the modularity rule .

The modularity rule is that, for all relations R , S and T ,

R◦S∩T ⊆ R ◦ (S ∩ R
∪

◦ T) .(3)

The dual property, obtained by exploiting properties of the onverse operator, is, for all

relations R , S and T ,

S◦R∩T ⊆ (S ∩ T ◦R
∪

) ◦R .(4)
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(This the �rst of many examples of mirror-image duality that we forewarned of in setion

2.1.)

An additional rule, sometimes alled \Tarski's rule", is alled the one rule below:

for all relations R ,

〈∀R :: ⊤⊤◦R◦⊤⊤ = ⊤⊤ ≡ R 6=⊥⊥〉 .(5)

Axiom systems for relation algebra often inlude a omplementation (negation) operator

and, instead of the modularity rule, the so-alled Shr�oder rule is postulated. Our

formulation of Shr�oder's rule is slightly di�erent from standard aounts, as we now

explain.

Suppose we onsider an algebra that obeys all the axioms of relation algebra exept

for the modularity rule. Suppose that the algebra is omplemented (i.e. every relation

has a omplement); we denote the omplement of relation R by ¬R . Then the middle-

exhange rule : for all R , S , X and Y ,

R ◦¬X ◦S ⊆ ¬Y ≡ R
∪

◦Y ◦S
∪ ⊆ X(6)

is equivalent to the modularity rule. Oasionally, its equivalent, the rotation rule:

R◦S⊆¬T
∪ ≡ T ◦R ⊆ ¬S

∪

(7)

is used.

The middle-exhange rule gets its name from the fat that the middle term in a om-

position is exhanged with the right side of an inlusion. It has an attrative, symmetri

form, making it easy to remember in spite of having four free variables. The standard

rule, due to Shr�oder, is the onjuntion of the two equivalenes obtained by instantiat-

ing R and S to the identity relation. The rotation rule (so alled beause of the way

the variables are rotated) also has an attrative form.

This onludes our disussion of the point-free algebrai framework. In a few sen-

tenes, a relation algebra is a omplete, universally distributive lattie on whih is de-

�ned a monoid struture and a unary onverse operator. Composition on the left and

on the right are both universally distributive (with the impliation that they both have

upper adjoints: the fator operators to be introdued in setion 3.2). Converse is a lat-

tie isomorphism that preserves the unit of omposition and distributes ontravariantly

through omposition. Finally, the lattie struture, onverse and the monoid struture

are all interrelated via the modularity rule.

2.4 Heterogeneous Relations

A heterogeneous relation R has a type given by two sets A and B , whih we all the

target and soure of R . We use the notation A∼B to denote the type of a relation.
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Formally, a relation of type A∼B is a subset of A×B . (Equivalently, it is a funtion

with domain A×B and range Bool .) A homogeneous relation is a relation of type A∼A
for some A .

The operators in the algebra of heterogeneous relations are typed. For example, the

omposition of two relations R and S , denoted as always by R◦S , is only de�ned when

the soure of R equals the target of S . Moreover, the target of R◦S is the target of R

and the soure of R◦S is the soure of S . That is, if R has type A∼B and S has type

B∼C then R◦S has type A∼C . We assume the reader is familiar with suh rules.

The rules of the untyped alulus are appliable in the typed alulus, with some

restritions on types. Restritions are neessary on types for, for example, the middle-

exhange rule: (6).

Care must be taken with the overloading of notation. It is tempting, for example, to

state the rule:

⊤⊤∪

= ⊤⊤

without quali�ation. But, if R has type A∼B , its onverse R∪

has type B∼A . Thus

the notation \⊤⊤ " on the left side of the equation denotes the universal relation of type

A∼B , for some types A and B ; on the other hand, the notation \⊤⊤ " on the right

side of the equation denotes the universal relation of type B∼A . Rather than overload

the notation in this way, we ould deorate every ourrene of ⊤⊤ with its type. For

example, we ould rephrase the rule as

(A⊤⊤B)
∪

= B⊤⊤A .

The same applies to ⊥⊥ . We prefer not to do so beause the type information is usually

easy to infer. An exeption is that we oasionally deorate the identity relation I with

its type: IA denotes the identity relation of type A∼A .

Typed relation algebra, as briey summarised above, extends ategory theory to what

has been alled allegory theory . See Freyd and

�

S�edrov [Fv90℄ for more details.

2.5 Points

The relations of a given type form a powerset. A powerset forms a omplete, universally

distributive, omplemented lattie under the subset ordering. However, these properties

do not haraterise the properties of the elements of the sets in the powerset. For this,

we need the notion of a \saturated", \atomi" lattie: elements of a set are modelled by

so-alled \atoms".

Let us reall the appropriate de�nitions , �rst in an arbitrary lattie and later spe-

ialising to relations.
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Definition 8 (Atom and Atomicity) Consider an arbitrary poset ordered by the

relation ⊆ and with least element ⊥⊥ . Then the element p is an atom i�

〈∀q :: q⊆p ≡ q=p ∨ q=⊥⊥〉 .

Note that ⊥⊥ is an atom aording to this de�nition. If p is an atom that is di�erent

from ⊥⊥ we say that it is a proper atom. A lattie is said to be atomi if

〈∀q :: q 6=⊥⊥ ≡ 〈∃a : atom.a∧a 6=⊥⊥ : a⊆q〉〉 .

In words, a lattie is atomi if every proper element inludes a proper atom.

✷

Definition 9 (Saturated) A omplete lattie is saturated i�

〈∀p :: p = 〈∪a : atom.a ∧ a⊆p : a〉〉 .
✷

The following theorem is entral to the use of saturated latties as a model of pow-

ersets.

Theorem 10 Suppose A is a omplete, universally distributive lattie. Then the

following statements are equivalent.

(a) A is saturated,

(b) A is atomi and omplemented,

(c) A is isomorphi to the powerset of its atoms.

✷

Given a type A , the homogeneous relations of a given type A∼A form a powerset.

A oreexive relation is a relation of type A∼A , for some A , that is a subset of the

identity relation. (Coreexives are also alled partial identities, monotypes and tests.)

To our axiom system, we add the following postulates.

1. For eah type A , the poset of oreexives is a omplete, universally distributive,

saturated lattie.

2. The all-or-nothing rule [Gl�u17℄:

〈∀a,b,R : AC.a ∧ AC.b : a◦R◦b=⊥⊥ ∨ a◦R◦b=a◦⊤⊤◦b〉

where AC abbreviates \atomi and oreexive".
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The ombination of these two properties is equivalent to the postulate that the lattie

of relations of a given type is atomi and saturated. The proper atoms are events of the

form a◦⊤⊤◦b where a and b are proper atomi oreexives; suh an event models the

pair (a, b) in onventional pointwise formulations of relation algebra.

Theorem 11 Suppose that, for all types A , the lattie of oreexives of type A∼A
is a omplete, universally distributive, saturated lattie. Then, if the all-or-nothing rule

is universally valid, the lattie of relations of type A∼B (for arbitrary types A and B )

is also a saturated, atomi lattie; the atoms are elements of the form a◦⊤⊤◦b where a

and b are atoms of the lattie of oreexives of types A and B , respetively. It follows

that the lattie of relations is isomorphi to the powerset of the set of elements of the

form a◦⊤⊤◦b where a and b are atoms of the lattie of oreexives.

✷

(See Voermans [Voe99, setion 4.5℄ for further disussion of so-alled \extensional-

ity" properties of relations. Note that Voermans gives the name \singleton" to proper

atoms. Thus |perhaps onfusingly| what we have just referred to as \pairs" are, in

his terminology, also \singletons".)

In ommon with all oreexives, a point is a homogeneous relation of type A∼A .

However, in keeping with the idea that points represent elements of type A , we often

abbreviate the type A∼A to just A.

Definition 12 (Point) A point is a proper, atomi, oreexive relation.

✷

For the purposes of this paper, we don't need all the details of what is meant by

\atomi". If A is a type, we use a , a ′
et. to denote points of type A . Similarly for

points of type B . Properties we use of a point a of type A are:

a◦a = a = a
∪

,(13)

⊤⊤◦a◦⊤⊤ = ⊤⊤ ,(14)

a◦⊤⊤◦a = a ,(15)

〈∀p :: p⊆ IA ≡ p = 〈∪a :a⊆p :a〉〉 .(16)

Also, for points a and a ′
of the same type,

a=a ′ ∨ a◦a ′=⊥⊥ .(17)

Property (14) is equivalent to the property that a point is non-empty (\proper"). The

property is an instane of the rule we all the \one rule" introdued earlier. In general,
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if a is a point of type A and b is a point of type B , the relation a◦⊤⊤◦b represents

the pair (a, b) ; given a relation R of type A∼B and points a and b of type A and

B , respetively, the statement

a◦⊤⊤◦b ⊆ R

has the interpretation that the pair a and b are related by R . Spei�ally, for all

relations R and points a and b of appropriate type,

(a◦R◦b 6= ⊥⊥) = (a◦⊤⊤◦b ⊆ R) = (a◦⊤⊤◦b = a◦R◦b) .(18)

(In onformane with long-standing mathematial pratie, property (18) should be read

onjuntionally: that is as the equality of three terms. In this ase, eah term is boolean.)

The saturation property is that

〈∀R :: R = 〈∪a,b : a◦⊤⊤◦b⊆R : a◦⊤⊤◦b〉〉 .(19)

The irreduibility property is that, if R is a funtion with range relations of type A∼B
and soure K , then, for all points a and b of appropriate type,

a◦⊤⊤◦b ⊆ ∪R ≡ 〈∃k : k∈K : a◦⊤⊤◦b⊆R.k〉 .(20)

The identity relation IA of type A has the property that, for all points a and a ′
of

type A ,

a◦⊤⊤◦a ′ ⊆ IA ≡ a=a ′ .(21)

Relations of the form R◦b◦S , where b is a point, play a entral rôle in what follows.

The interpretation of R◦b◦S is a relation that holds between points a and c i� the

relation R holds between a and b , and the relation S holds between b and c . This

is expressed preisely by the property:

a◦⊤⊤◦c ⊆ R◦b◦S ≡ a◦⊤⊤◦b ⊆ R ∧ b◦⊤⊤◦c ⊆ S .(22)



21

3 Basic Structures

This setion ontains a misellany of topis that are referred to repeatedly in subsequent

setions. We reommend that the reader sans it briey in the �rst instane, postponing

a more detailed reading until later.

3.1 Specifications

Sometimes we want to de�ne funtions indiretly via a property relating input and output

values. The property is formalised and then it is shown that the formal spei�ation

relates eah input value to exatly one output value. That is, the formal spei�ation

relates eah input value to at most one and at least one output value. In order to reason

within our axiom system, we then want to onlude that output values are points. See,

for example, setion 3.5, where we de�ne the meaning of funtionality and exhibit an

expression that formulates, in very general terms, the result of applying a funtion to an

argument.

Although the proess seems to be obvious, we want to stik to our goal of validating

every step within our axiom system. For this reason, we now present the tehnial

justi�ation. As just mentioned, we refer the reader to setion 3.5 for a onrete example.

In the following lemmas, p is a oreexive relation and dummies a and a ′
are points

of the same type as p .

We begin with the onsequene of showing that spei�ation p has at least one

solution.

Lemma 23

p 6=⊥⊥ ≡ 〈∃a ::a⊆p〉 .

Proof

p 6=⊥⊥
= { one rule: (5) }

⊤⊤◦p◦⊤⊤ = ⊤⊤
= { saturation property: (19) }

⊤⊤ ◦ 〈∪a :a⊆p :a〉 ◦⊤⊤ = ⊤⊤
= { distributivity }

〈∪a :a⊆p :⊤⊤◦a◦⊤⊤〉 = ⊤⊤
= { a ranges over points: (15) }
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〈∪a :a⊆p :⊤⊤〉 = ⊤⊤
⇒ { 〈∪a : false :⊤⊤〉=⊥⊥ and ⊥⊥ 6=⊤⊤ }

〈∃a ::a⊆p〉
⇒ { a ranges over points: so ⊥⊥ 6=a

prediate alulus, (details left to the reader) }

p 6=⊥⊥ .

✷

Next we formulate the onsequene of showing that spei�ation p has at most one

solution.

Lemma 24

〈∀a : a⊆p : a=p〉 ≡ 〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=a ′〉 .

Proof

〈∀a : a⊆p : a=p〉
= { anti-symmetry }

〈∀a : a⊆p : a⊇p〉
= { saturation: (16) }

〈∀a : a⊆p : a ⊇ 〈∪a ′ :a ′⊆p :a ′〉〉
= { suprema }

〈∀a : a⊆p : 〈∀a ′ : a ′⊆p : a⊇a ′〉〉
⇐ { reexivity of the subset relation }

〈∀a : a⊆p : 〈∀a ′ : a ′⊆p : a=a ′〉〉
= { nesting of quanti�ations }

〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=a ′〉
⇐ { Leibniz and prediate alulus }

〈∀a : a⊆p : a=p〉 .
✷

Theorem 25 Suppose p is a oreexive relation. Then p is a point equivales

〈∃a ::a⊆p〉 ∧ 〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=a ′〉 .
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(As above, dummies a and a ′
range over points of the same type as p .)

In words, a spei�ation p de�nes a point i� it has at least one solution and at most

one solution.

Proof In the following dummy q ranges over oreexives of the same type as p and

a ranges over points of the same type as p .

p is atomi

= { de�nition 8 }

〈∀q : q⊆p : q=p ∨ q=⊥⊥〉
= { trading }

〈∀q : q⊆p∧q 6=⊥⊥ : q=p〉
= { lemma 23 }

〈∀q : q⊆p∧ 〈∃a ::a⊆q〉 : q=p〉
= { distributivity (of onjuntion over disjuntion),

range disjuntion }

〈∀q,a : a⊆q⊆p : q=p〉
⇐ { anti-symmetry }

〈∀a : a⊆p : a=p〉
= { lemma 24 }

〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=a ′〉 .

Also,

p is atomi

= { de�nition 8 }

〈∀q : q⊆p : q=p ∨ q=⊥⊥〉
⇒ { points a and a ′

are oreexives, weakening }

〈∀a,a ′ : a⊆p ∧ a ′⊆p : (a=p ∨ a=⊥⊥) ∧ (a ′=p ∨ a ′=⊥⊥)〉
= { points are proper (i.e. a 6=⊥⊥ and a ′ 6=⊥⊥ ) }

〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=p ∧ a ′=p〉
⇒ { transitivity of equality }

〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=a ′〉 .
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Combining the two alulations, we have established by mutual impliation that

p is atomi ≡ 〈∀a,a ′ : a⊆p∧a ′⊆p : a=a ′〉 .(26)

It follows that, for all oreexives p ,

p is a point

= { de�nitions 8 and 12, assumption: p is oreexive }

p 6=⊥⊥ ∧ p is atomi

= { lemma 23 and (26) }

〈∃a ::a⊆p〉 ∧ 〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=a ′〉 .
✷

3.2 Factors

If R is a relation of type A∼B and S is a relation of type A∼C , the relation R\S of

type B∼C is de�ned by the Galois onnetion, for all T (of type B∼C ),

R\S ⊇ T ≡ S ⊇ R◦T .

Similarly, if R is a relation of type A∼B and S is a relation of type C∼B , the relation
R/S of type A∼C is de�ned by the Galois onnetion, for all T ,

R/S ⊇ T ≡ R ⊇ T ◦S .

(The existene of these operators is equivalent to the universal distributivity of ompo-

sition over union.)

In relation algebra, fators are also known as \residuals". We prefer the term \fator"

beause it emphasises alulational properties whereas \residual" emphasises an opera-

tional understanding (what is left after taking something away). In partiular, fators

have the anellation properties:

T ◦T\U ⊆ U ∧ R/S ◦S ⊆ R .

The fator operators (whih we pronoune \under" and \over" respetively) are mutually

assoiative. That is

R\(S/T) = (R\S)/T .(27)

This means that it is unambiguous to write R\S/T | whih we shall do in order to

promote the assoiativity property by making its use invisible (in the same way that the

use of the assoiativity of omposition is made invisible).
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The relations R\R (of type B∼B if R has type A∼B ) and R/R (of type A∼A if

R has type A∼B ) play a entral rôle in what follows. As is easily veri�ed, both are

preorders. That is, both are transitive :

R\R ◦R\R ⊆ R\R ∧ R/R ◦R/R ⊆ R/R

and both are reexive :

I ⊆ R\R ∧ I ⊆ R/R .

(The notation \ I " is overloaded in the above equation. In the left onjunt, it denotes

the identity relation of type B∼B and, in the right onjunt, it denotes the identity

relation of type A∼A , assuming R has type A∼B . We often overload onstants in this

way. Note, however, that we do not attempt to ombine the two inlusions into one.) In

addition, for all R ,

R ◦R\R = R = R/R ◦R ,(28)

R/(R\R) = R = (R/R)\R ,(29)

(R\R)/(R\R) = R\R = (R\R)\(R\R) and(30)

(R/R)\(R/R) = R/R = (R/R)/(R/R) .(31)

In fat, we don't use (29) diretly; its relevane is as the initial step in proving the

leftmost equations of (30) and (31). We hoose not to exploit the assoiativity of the

over and under operators in (30) and (31) |by writing, for example, (R\R)/(R\R) as

R\R/(R\R)| in order to emphasise their rôle as properties of the preorders R\R and

R/R .

In relation algebra (as opposed to regular algebra) it is possible to eliminate the

fator operators altogether beause they an be expressed in terms of omplements and

onverse. The rule for doing so is given in lemma 32. Although the elimination of fators

is highly undesirable, we are obliged to introdue omplements and it is useful to exploit

the lemma oasionally.

Lemma 32 For all R , S and T ,

R\S/T = ¬(R
∪

◦¬S ◦T
∪

) .

Proof We have, for all X ,
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X ⊆ R\S/T

= { de�nition of fators }

R◦X◦T ⊆ S

= { middle-exhange: (6) }

R
∪
◦¬S ◦T

∪ ⊆ ¬X

= { omplements }

X ⊆ ¬(R∪
◦¬S ◦T

∪) .

The lemma follows by indiret equality (i.e. by instantiating X to the left and right

sides of the laimed equality and then using reexivity and anti-symmetry of the subset

ordering).

✷

For the purpose of providing examples, extreme ases are often the most illuminating.

Instantiating lemma 32 with R,S,T := ¬I ,¬I , I , and R,S,T := I ,¬I ,¬I (where I denotes

an identity relation of some unspei�ed type), we get

¬I\¬I = I = ¬I /¬I .(33)

Thus the equality relation on a type is the preorder of the form R\R (or R/R ) obtained

by the instantiation R :=¬I .

Let 11 denote the type with exatly one element. Then the universal relation 11⊤⊤11

equals the identity relation I11 . Thus the type 11 is an example of a �nite, non-empty

type suh that ¬I11 is the empty relation 11⊥⊥11 .

Property (28) exempli�es how muh easier alulations with fators an be ompared

to alulations that ombine omplements with onverses. The property is very easy to

spot and apply. Expressed using lemma 32, it is equivalent to

R ◦¬(R
∪

◦¬R) = R = ¬(¬R ◦R
∪

) ◦R .

In this form, the property is diÆult to spot and its orret appliation is diÆult to

hek.

It is useful to reord the distributivity properties of onverse over the fator operators:

Lemma 34 For all R and S ,

R
∪

\S
∪

= (S/R)
∪

= ¬R/¬S .(35)

Symmetrially,

R
∪

/S
∪

= (S\R)
∪

= ¬R \¬S .(36)

Also,

(R\S/T)
∪

= T
∪

\S
∪

/R
∪

.(37)
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Proof We prove the �rst equation of (35) using indiret equality. For any R , S and

T , we have:

T ⊆ (S/R)∪

= { onverse: (1) }

T
∪ ⊆ S/R

= { Galois onnetion de�ning fators }

T
∪
◦R ⊆ S

= { onverse: (1) and (2) }

R
∪
◦T ⊆ S

∪

= { Galois onnetion de�ning fators }

T ⊆ R
∪

\S
∪

.

The seond equation of (35) is proved using the property

R\S = ¬(R
∪

◦ ¬S) ∧ S/T = ¬(¬S ◦ T
∪

) .(38)

We have:

¬R/¬S

= { (38) with S,T := ¬R ,¬S ,

properties of negation and onverse }

¬(R ◦¬S
∪)

= { (38) with R,S := R∪

, S
∪

properties of negation and onverse }

R
∪

\S
∪

= { �rst equality }

(S/R)∪ .

Property (36) proved using symmetrial alulations and (37) is a ombination of (35)

and (36).

(Note how the assoiativity property ¬(R∪)= (¬R)∪ is used silently in the above

alulation.)

✷

The following orollary is relevant to setion 11 on stairase relations.
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Corollary 39 For all R ,

R\R∪ (R\R)
∪

= (R
∪

/R
∪

)
∪ ∪ R

∪

/R
∪

= ¬R \¬R ∪ (¬R \¬R)
∪

.

Proof

R\R ∪ (R\R)∪

= { onverse and lemma 34

(in partiular (35) with R,S := R∪

, R
∪

) }

(R∪

/R
∪)∪ ∪ R

∪

/R
∪

= { lemma 34

(in partiular (36) with R,S := ¬R ,¬R ) }

(¬R \¬R)∪ ∪ ¬R \¬R .

✷

When onsidering onrete examples, it is sometimes neessary to know the pointwise

de�nition of the fator operators. The following lemma is needed in theorem 319 where

we exhibit a onrete ounterexample to an error in the extant literature.

Lemma 40 For all relations R and points a and b (of appropriate type),

a◦⊤⊤◦b ⊆ (R\R/R)∪ ≡ 〈∀a ′,b ′ : a ′◦⊤⊤◦b ⊆ R ∧ a◦⊤⊤◦b ′ ⊆ R : a ′◦⊤⊤◦b ′ ⊆ R〉 .

Proof

a◦⊤⊤◦b ⊆ (R\R/R)∪

= { de�nition of onverse and fators }

R◦b◦⊤⊤◦a◦R ⊆ R

= { saturation property: (19) }

〈∀a ′,b ′ :: a ′◦R◦b◦⊤⊤◦a◦R◦b ′ ⊆ a ′◦R◦b ′〉
= { all-or-nothing: theorem 11 }

〈∀a ′,b ′ : a ′◦⊤⊤◦b ⊆ R ∧ a◦⊤⊤◦b ′ ⊆ R : a ′◦⊤⊤◦b◦⊤⊤◦a◦⊤⊤◦b ′ ⊆ R〉
= { one rule, a and b are points }

〈∀a ′,b ′ : a ′◦⊤⊤◦b ⊆ R ∧ a◦⊤⊤◦b ′ ⊆ R : a ′◦⊤⊤◦b ′ ⊆ R〉 .
✷
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3.3 The Domain Operators

Within relation algebra, there are various ways that sets an be represented as relations.

Shmidt and Str�ohlein [SS93℄ use \onditions" (relations of the form R◦⊤⊤ or ⊤⊤◦R |

alled \vetors" by Shmidt and Str�ohlein), Freyd and

�

S�edrov [Fv90℄ use oreexives.

A third possibility is to use \squares" (as suggested by Voermans [Voe99℄).

Definition 41 A (homogeneous) relation R is a square i� R = R ◦⊤⊤ ◦R
∪

.

✷

Points are squares. Also if a and b are points (of appropriate type), the relations

R
∪
◦a ◦R and R ◦b ◦R

∪

are squares. (This is an easy onsequene of the properties (13)

and (15).) We see later (lemma 57) that R
∪
◦a ◦R represents the set of all points b suh

that a and b are related by R , and similarly for R ◦b ◦R
∪

.

Formally, oreexives, onditionals and squares are isomorphi representations of sets.

Nevertheless, hoosing whih to use an make a onsiderable di�erene to onise alu-

lation. Squares have the disadvantage that they are not losed under union (although

squares are losed under intersetion); oreexives and onditionals are both losed un-

der union and intersetion. The only advantage of using onditionals over oreexives

and squares is that they are losed under negation but the advantage is not signi�-

ant. (Shmidt and Str�ohlein [SS93℄ make extensive use of negation but most an be

eliminated by the use of fators.) The overwhelming advantage of using oreexives is

their onveniene in expressing restritions on the left and right domain of relations,

in ombination with the assoiativity of omposition. So, if p is a oreexive, R◦p◦S

simultaneously restrits the right domain of R and the left domain of S to elements

in the set represented by p . If onditions are used, one must hoose between using a

right ondition to restrit the right domain of R and a left ondition to restrit the left

domain of S . Squares an also be used to restrit the left or right domain of a relation

|there are several instanes in setion 6.3.1| but annot be used to simultaneously

restrit the right and left domains of two relations. For this reason, we generally prefer

to use oreexives to represent sets, exept in very speial irumstanes.

Definition 42 (Domain Operators) Given relation R of type A∼B , the oreexive
representation R<

of the left domain of R is de�ned by the equation

R< = I ∩ R ◦R
∪

and the oreexive representation R>
of the right domain of R is de�ned by the

equation

R> = I ∩ R
∪

◦R .

✷
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The name \domain operator" is hosen beause of the fundamental properties: for

all R and all oreexives p ,

R=R◦p ≡ R>⊆p(43)

and

R=p◦R ≡ R<⊆p .(44)

A simple, often used onsequene of (43) and (44) is the property:

R< ◦R = R = R ◦R> .(45)

In words, R>
is the least oreexive p suh that restriting the \domain" of R on the

right has no e�et on R . It is in this sense that R<
and R>

represent the set of points

on the left and on the right on whih the relation R is \de�ned", i.e. its left and right

\domains".

Aside Freyd and

�

S�edrov [Fv90℄ all R<
the \domain" of R ; they do not appear to

give a name to R>
. Like us, they also use the names \soure" and \target". In their

aount a relation of type A∼B has soure A and target B ; we reverse the names. (See

the warning above.) Bird and De Moor [BdM97℄ all R>
the \domain" of R and R<

the

\range" of R . End of Aside

In our earlier work on relation algebra, the domain operators play a very signi�ant

rôle, and the same is true here. We regard knowledge of their properties as so funda-

mental that we often explain steps making use of domain alulus with the simple hint

\domains". The most fundamental property of the domain operators |monotoniity|

we use silently. Sometimes (for example in the proof of lemma 55) we state the properties

within everywhere brakets.

For readers unfamiliar with the domain operators, we summarise their properties

below. We restrit our attention here to the right-domain operator. The reader is

requested to dualise the results to the left-domain operator.

The intended interpretation of R>
(read R \right") for relation R is {x | 〈∃y ::y[[R]]x〉} .

Two ways we an reformulate this requirement without reourse to points are formulated

in the following theorem.

Theorem 46 (Right Domain) For all relations R and oreexives p ,

R>⊆p ≡ R⊆⊤⊤◦p(47)

and

R>⊆p ≡ R=R◦p .(48)

✷
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The haraterisations (47) and (48) predit a number of useful alulational properties

of the right domain operator. Some are immediate, some involve a little bit of work for

their veri�ation. Immediate from (47) |a Galois onnetion| is that the right domain

operator is universally ∪ -juntive, and (⊤⊤◦
) is universally distributive over in�ma of

oreexives. In partiular,

⊤⊤◦(p∩q) = (⊤⊤◦p)∩ (⊤⊤◦q) ,

(R∪S)> = R>∪S> ,

and

⊥⊥>=⊥⊥ .

The last of these an in fat be strengthened to

R>=⊥⊥ ≡ R=⊥⊥ .(49)

The proof is straightforward: use (47) in ombination with ⊤⊤◦⊥⊥=⊥⊥ .

From (47) we may also dedue a number of anellation properties. But, in ombina-

tion with the modularity rule, the anellation properties an be strengthened. We leave

their proofs together with a ouple of other interesting appliations of Galois onnetions

as exerises.

Theorem 50 For all relations R , S and T

(a) ⊤⊤ ◦R> = ⊤⊤◦R ,

(b) R ∩ S◦⊤⊤◦T = S< ◦R ◦T> ,

(c) (R∪)> = R< ,

(d) (R∩S◦T)> = (S∪
◦R ∩ T)> ,

(e) (R◦⊤⊤◦S)> = S> ⇐ R 6=⊥⊥ .

✷

We omplete this setion by doumenting the isomorphism between oreexives and

onditions. Reall that the right onditions are, by de�nition, the �xed points of the

funtion (⊤⊤◦
).

Theorem 51 The oreexives are the �xed points of the right domain operator. That

is, for all R ,

(a) R=R> ≡ R⊆ I .
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Also, for all oreexives p and all right onditions C ,

(b) (⊤⊤◦p)>=p , and

() ⊤⊤ ◦C> = C .

Moreover, for all relations R and S ,

(d) R>⊆S> ≡ ⊤⊤◦R⊆⊤⊤◦S .

Hene,

(e) R>=S> ≡ ⊤⊤◦R=⊤⊤◦S .

The right-domain operator is thus a poset isomorphism mapping the set of right

onditions to the set of oreexives and its inverse is the funtion (⊤⊤◦
).

✷

Some powerful and far from obvious theorems about oreexives are proved by map-

ping the theorems to statements about onditionals and then exploiting the harateristi

properties of ⊤⊤ | ⊤⊤⊇R for all R , and ⊤⊤=⊤⊤∪

| to prove these statements. An

illustration of the tehnique is a�orded by the proof of the following lemma.

(R◦S)>=(R> ◦S)> .(52)

We begin the proof by invoking theorem 51

(R◦S)> = (R> ◦S)>

= { theorem 51(e) }

⊤⊤◦R◦S = ⊤⊤ ◦R> ◦S

= { ⊤⊤ ◦R> = ⊤⊤◦R }

⊤⊤◦R◦S = ⊤⊤◦R◦S

= { reexivity }

true .

Another useful property is:

X=⊥⊥ ≡ X>=⊥⊥ .(53)

The proof is by mutual impliation. First,

X=⊥⊥ ⇒ {Leibniz } X>=⊥⊥> ⇒ {⊥⊥>=⊥⊥} X>=⊥⊥ .

Seond,
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X>=⊥⊥
= { ⊥⊥ is least relation }

X>⊆⊥⊥
= { theorem 46 }

I∩⊤⊤◦X ⊆ ⊥⊥
⇒ { monotoniity of omposition,

preparing for use of the modularity rule }

(I∩X◦⊤⊤)◦⊤⊤⊆⊥⊥
⇒ { modularity rule: (3), ⊤⊤=⊤⊤∪

}

⊤⊤∩X⊆⊥⊥
= { ⊤⊤ is greatest relation, ⊥⊥ is least relation }

X=⊥⊥ .

We onlude this setion with a basi property that beomes very obvious with a little

knowledge of the domain operators. Spei�ally, we have, for all relations R ,

R ⊆ R ◦R
∪

◦R(54)

The proof is easy:

R ⊆ R ◦R
∪
◦R

⇐ { R> ⊆ R
∪
◦R and monotoniity of omposition }

R = R ◦R>

= { domains }

true .

3.4 Properties of Points

This setion douments properties of points with respet to domains and fators.

Lemma 55 For all relations R and points a and b (of appropriate type),

a ⊆ R< ≡ (a◦R)> 6= ⊥⊥ , and

b ⊆ R> ≡ (R◦b)< 6= ⊥⊥ .

Proof We prove the seond equation.
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(R◦b)< 6= ⊥⊥
= { one rule: (5) }

⊤⊤ ◦ (R◦b)< ◦⊤⊤ = ⊤⊤
= { [ R< ◦⊤⊤ = R◦⊤⊤ ] with R :=R◦b }

⊤⊤◦R◦b◦⊤⊤ = ⊤⊤
= { [ ⊤⊤ ◦R> = ⊤⊤◦R ] }

⊤⊤ ◦R> ◦b ◦⊤⊤ = ⊤⊤
= { one rule: (5) }

R> ◦b 6= ⊥⊥
= { R> ◦b ⊆ b ;

so, by atomiity of b , R> ◦b = b ∨ R> ◦b = ⊥⊥ ;

also, b 6= ⊥⊥ }

R> ◦b = b

= { R> ◦b = R>∩b }

b ⊆ R> .

✷

For a point b the square R ◦b ◦R
∪

represents the set of all points a suh that a and

b are related by R . This is made preise in lemma 56 and its orollary, lemma 57.

Lemma 56 For all relations R of type A∼B , all oreexives p of type A∼A and

all points b of type B ,

p ⊆ R ◦b ◦R
∪ ≡ p◦⊤⊤◦b ⊆ R .

Symmetrially, for all relations R of type A∼B , all oreexives q of type B∼B and

all points a of type A ,

q ⊆ R
∪

◦a ◦R ≡ a◦⊤⊤◦q ⊆ R .

Proof By mutual impliation:

p ⊆ R ◦b ◦R
∪

⇒ { monotoniity }

p◦⊤⊤◦b ⊆ R ◦b ◦R
∪
◦⊤⊤ ◦b

⇒ { R
∪
◦⊤⊤ ⊆ ⊤⊤ ; b is a point: (15) and b⊆ I }
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p◦⊤⊤◦b ⊆ R

⇒ { onverse and monotoniity }

p ◦⊤⊤ ◦b ◦b ◦⊤⊤ ◦p
∪ ⊆ R ◦b ◦R

∪

⇒ { b is a point: (13) and (14)

p is a oreexive, so p
∪ =p ; monotoniity }

p◦⊤⊤◦p ⊆ R ◦b ◦R
∪

⇒ { I⊆⊤⊤ and p◦p=p }

p ⊆ R ◦b ◦R
∪

.

✷

Property (18) is the most basi formulation of membership of pairs in a relation. It

an also be formulated in terms of squares and in terms of domains:

Lemma 57 For all relations R and points a and b (of appropriate type),

(a ⊆ R ◦b ◦R
∪

) = (a◦⊤⊤◦b ⊆ R) = (b ⊆ R
∪

◦a ◦R) .

Proof Straightforward instantiation of lemma 56:

a ⊆ R ◦b ◦R
∪

= { lemma 56 with p :=a }

a◦⊤⊤◦b ⊆ R

= { lemma 56 with p :=b }

b ⊆ R
∪
◦b ◦R .

✷

Lemma 58 For all relations R and points a and b (of appropriate type),

(a ⊆ (R◦b)<) = (a◦⊤⊤◦b ⊆ R) = (b ⊆ (a◦R)>) .

Proof

a◦⊤⊤◦b ⊆ R

⇒ { monotoniity and a is a oreexive, so a◦a=a }

a◦⊤⊤◦b ⊆ a◦R

⇒ { monotoniity }

(a◦⊤⊤◦b)> ⊆ (a◦R)>
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= { domains: de�nition 42, a and b are points: (14) and (15) }

b ⊆ (a◦R)>

⇒ { monotoniity }

a◦⊤⊤◦b ⊆ a ◦⊤⊤ ◦ (a◦R)>

= { domains: [ ⊤⊤ ◦R> = ⊤⊤◦R ] with R :=a◦R }

a◦⊤⊤◦b ⊆ a◦⊤⊤◦a◦R

= { a is a point, so a◦⊤⊤◦a=a }

a◦⊤⊤◦b ⊆ a◦R

⇒ { a is a oreexive, monotoniity }

a◦⊤⊤◦b ⊆ R .

That is, we have shown by mutual impliation that

a◦⊤⊤◦b ⊆ R ≡ b ⊆ (a◦R)> .

A symmetri alulation establishes that

a◦⊤⊤◦b ⊆ R ≡ a ⊆ (R◦b)< .

✷

Combined with property (18), lemmas 57 and 58 give six alternative ways of formu-

lating the membership relation a◦⊤⊤◦b ⊆ R . All are useful.

Lemma 59 For all relations R and points a (of appropriate type),

a⊆R< ≡ 〈∃b : b⊆R> : a◦⊤⊤◦b ⊆ R〉 .

Also, for all relations R and points b (of appropriate type),

b⊆R> ≡ 〈∃a : a⊆R< : a◦⊤⊤◦b ⊆ R〉 .

Proof We prove the �rst equation:

a ⊆ R<

= { lemma 55 }

(a◦R)> 6= ⊥⊥
= { lemma 23 }

〈∃b :: b ⊆ (a◦R)>〉
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= { lemma 58 }

〈∃b :: a◦⊤⊤◦b ⊆ R〉
= { domains (spei�ally, a◦⊤⊤◦b ⊆ R⇒ b⊆R>

) }

〈∃b : b⊆R> : a◦⊤⊤◦b ⊆ R〉 .
✷

Lemma 60 gives a pointwise interpretations of the fator operators. Although we

typially try to avoid pointwise reasoning, the lemma is sometimes indispensable.

Lemma 60 For all relations R of type A∼C and S of type B∼C (for some A , B

and C ) and all points a and b ,

a◦⊤⊤◦b ⊆ R/S ≡ (b◦S)> ⊆ (a◦R)> .

Dually, for all relations R of type C∼A and S of type C∼B , and all points a and b ,

a◦⊤⊤◦b ⊆ R\S ≡ (R◦a)< ⊆ (S◦b)< .

Proof By mutual impliation:

a◦⊤⊤◦b ⊆ R/S

= { de�nition of fator }

a◦⊤⊤◦b◦S ⊆ R

⇒ { a and b are points, monotoniity and domains

(see initial steps in proof of lemma 58) }

(b◦S)> ⊆ (a◦R)>

⇒ { monotoniity }

a ◦⊤⊤ ◦ (b◦S)> ⊆ a ◦⊤⊤ ◦ (a◦R)>

= { domains }

a◦⊤⊤◦b◦S ⊆ a◦⊤⊤◦a◦R

= { a is a point (so a◦⊤⊤◦a=a ) }

a◦⊤⊤◦b◦S ⊆ a◦R

⇒ { a is a oreexive }

a◦⊤⊤◦b◦S ⊆ R

= { de�nition of fator }

a◦⊤⊤◦b ⊆ R/S .
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The seond equivalene is proved similarly.

a◦⊤⊤◦b ⊆ R\S

= { de�nition of fator }

R◦a◦⊤⊤◦b ⊆ S

⇒ { monotoniity and oreexives

(see initial steps in proof of lemma 58) }

(R◦a)< ⊆ (S◦b)<

⇒ { (as in above alulation) }

a◦⊤⊤◦b ⊆ R\S .

✷

For relations R and S with the same soure, the relation R/S∩ (S/R)∪ is the \sym-

metri left division" of R and S . Dually, for relations R and S with the same target,

the relation R\S∩ (S\R)∪ is their \symmetri right division". (See the disussion at

the beginning of setion 3.7.) The following orollary of lemma 60 gives a pointwise

interpretation of these \division" operators.

Corollary 61 For all relations R and S with the same soure, and all points a and

b (of appropriate type),

a◦⊤⊤◦b ⊆ R/S∩ (S/R)
∪ ≡ (a◦R)> = (b◦S)> .

Dually, for all relations R and S with the same target, and all points a and b (of

appropriate type),

a◦⊤⊤◦b ⊆ R\S∩ (S\R)
∪ ≡ (R◦a)< = (S◦b)< .

Proof Straightforward appliation of lemma 60 and anti-symmetry:

a◦⊤⊤◦b ⊆ R/S∩ (S/R)∪

= { in�ma and onverse }

a◦⊤⊤◦b ⊆ R/S ∧ b◦⊤⊤◦a ⊆ S/R

= { lemma 60 }

(b◦S)> ⊆ (a◦R)> ∧ (a◦R)> ⊆ (b◦S)>

= { anti-symmetry }

(a◦R)> = (b◦S)> .

✷
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3.5 Functionality

A relation R of type A∼B is said to be funtional if R ◦R
∪ ⊆ IA . A relation R of type

A∼B is said to be surjetive if R ◦R
∪ ⊇ IA . Equivalently, a relation R of type A∼B is

surjetive if R<= IA . A relation R of type A∼B that is both funtional and surjetive

is thus de�ned by the property R ◦R
∪ = IA .

(Other words used for funtional are \quasi-fontionelle" [Rig48℄, \simple" [Fv90,

BdM97℄ and \univalent" [SS93℄.)

Dual to funtionality and surjetivity are the notions of injetivity and totality, re-

spetively. A relation R of type A∼B is said to be injetive if R
∪
◦R ⊆ IB . A relation

R of type A∼B is said to be total if R
∪
◦R ⊇ IB . Equivalently, a relation R of type

A∼B is surjetive if R>= IB .

Typially, we use lowerase letters f , g , h to denote funtional relations. As the

terminology suggests, these point-free de�nitions orrespond to notions that are more

usually de�ned in terms of points. The pointwise interpretations are explained below,

beginning with the interpretation of a funtional relation as what others might all a

\partial funtion".

The standard notion of a partial funtion is a relation that de�nes a unique output

value for eah input value in its domain. In our axiom system we formulate this as

follows.

Suppose R of type A∼B is funtional and suppose b is a point of type B suh that

b⊆R>
. We assert that the equation

a: a∈A: a◦⊤⊤◦b⊆R(62)

has exatly one solution. Conversely, we assert that if equation (62) has exatly one

solution for all points b suh that b⊆R>
, the relation R is funtional. (In (62) the ex-

pression \a∈A " limits the range of the dummy a to points of type A ; this notation will

be used later where the range of a dummy annot be dedued from other onsiderations.)

Equation (62) is an example of the sort of indiret spei�ation antiipated in setion

2.5. (See in partiular theorem 25.) More formally, for funtional relation f and point

b suh that b⊆ f> , equation (62) de�nes f.b as the unique solution of the equation:

a:: point.a ∧ a◦⊤⊤◦b⊆ f .

Suppose we denote this unique solution by f.b . The de�ning property of f.b is thus

〈∀a,b : b⊆ f> : a◦⊤⊤◦b⊆ f ≡ a= f.b〉 .(63)

But it is not immediately obvious that f.b is well-de�ned in our axiom system. Theorem

64 provides a formal justi�ation.
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Theorem 64 Suppose relation R has type A∼B . Then
R ◦R

∪ ⊆ IA ≡
〈

∀b : b⊆R> : point.(R ◦b ◦R
∪

)
〉

.(65)

Moreover, if f is a relation of type A∼B and f ◦ f
∪ ⊆ IA , the relation f ◦b ◦ f

∪

is a point

of type A and

〈

∀a,b : b⊆ f> : a◦⊤⊤◦b⊆ f ≡ a = f ◦b ◦ f
∪
〉

.(66)

In words, f is funtional i�, for all points b in the right domain of f , the relation

f ◦b ◦ f
∪

de�nes a unique point of type A , whih point we denote by f.b .

Proof We prove (65) by mutual impliation. First,

R ◦R
∪ ⊆ IA

= { domains }

R ◦R> ◦R
∪ ⊆ IA

= { saturation axiom: (16) }

R ◦ 〈∪b : b⊆R> : b〉 ◦R∪ ⊆ IA

= { distributivity }

〈∀b : b⊆R> : R ◦b ◦R
∪ ⊆ IA〉

⇐ { de�nition 12 of a point }

〈∀b : b⊆R> : point.(R ◦b ◦R
∪)〉 .

Thus we have established the \if" part of the equivalene. Now, for the \only-if", assume

R ◦R
∪ ⊆ IA .

We �rst note that, for all b suh that b⊆R>
, equation (62) has at most one solution

sine, for all points a and a ′
of type A ,

a◦⊤⊤◦b ⊆ R ∧ a ′◦⊤⊤◦b ⊆ R

⇒ { onverse and monotoniity }

a◦⊤⊤◦b◦b◦⊤⊤◦a ′ ⊆ R ◦R
∪

= { b is a point, so ⊤⊤◦b◦b◦⊤⊤=⊤⊤ }

a◦⊤⊤◦a ′ ⊆ R ◦R
∪

⇒ { assumption: R ◦R
∪ ⊆ IA , transitivity of the subset relation }

a◦⊤⊤◦a ′ ⊆ IA

⇒ { a and a ′
are points: (21) }

a=a ′ .
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That is,

〈∀b : b⊆R> : 〈∀a,a ′ : a◦⊤⊤◦b ⊆ R ∧ a ′
◦⊤⊤◦b ⊆ R : a=a ′〉〉 .(67)

By lemma 55, equation (62) has at least one solution for all points b suh that b⊆R>
.

That is,

〈∀b : b⊆R> : 〈∃a :: a◦⊤⊤◦b ⊆ R〉〉 .(68)

Thus equation (62) has exatly one solution for all points b suh that b⊆ f> . So:

〈∀b : b⊆R> : point.(R ◦b ◦R
∪)〉

= { R ◦b ◦R
∪

⊆ { assumption: b⊆R>
, monotoniity }

R ◦R> ◦R
∪

= { domains }

R ◦R
∪

⊆ { assumption: R ◦R
∪ ⊆ IA }

IA ,

theorem 25 with p := R ◦b ◦R
∪

}

〈∀b : b⊆R> : 〈∃a :: a ⊆ R ◦b ◦R
∪〉〉

∧ 〈∀b : b⊆R> : 〈∀a,a ′ : a ⊆ R ◦b ◦R
∪

∧ a ′ ⊆ R ◦b ◦R
∪

: a=a ′〉〉
= { lemma 57 }

〈∀b : b⊆R> : 〈∃a :: a◦⊤⊤◦b ⊆ R〉〉
∧ 〈∀b : b⊆R> : 〈∀a,a ′ :a◦⊤⊤◦b ⊆ R ∧ a ′◦⊤⊤◦b ⊆ R :a=a ′〉〉

= { (67) and (68) }

true .

This onludes the proof of (65).

Now, assuming that f ◦ f∪ ⊆ I , it follows from (65) (with R := f ) that f ◦b ◦ f∪ is a

point. Also, for all points a and b (of types A and B , respetively),

b⊆ f> ∧ a◦⊤⊤◦b ⊆ f

= { lemma 58 (aiming to eliminate �rst onjunt) }

b⊆ f> ∧ b⊆ (a◦f)> ∧ a◦⊤⊤◦b ⊆ f

= { monotoniity and lemma 58 }
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a◦⊤⊤◦b ⊆ f

= { lemma 57 }

a ⊆ f ◦b ◦ f
∪

= { f ◦b ◦ f
∪

is a point, de�nitions 12 and 8 }

a = f ◦b ◦ f
∪

.

✷

Oasionally we need to de�ne a funtional relation. Sometimes we speify the re-

lation by means of an equation: \we de�ne f of type . . . by f.b= . . .". More often,

we use the notation 〈b :: . . .〉 to denote a total funtion, or 〈b : . . . : . . .〉 to denote a

(non-total) funtional, the range part being used to speify a restrition on the domain.

This is onsistent with our notation for suprema and in�ma (suh as in universal and

existential quanti�ations).

A onsequene of the uniity property expressed by (63) is the property that, for all

funtional relations f of type C∼A and g of type C∼B , and all points a and b ,

a◦⊤⊤◦b ⊆ f
∪

◦g ≡ a⊆ f> ∧ f.a=g.b ∧ b⊆g> .(69)

The proof exploits the irreduibility of points:

a◦⊤⊤◦b ⊆ f
∪
◦g

= { domains, saturation axiom: (16) and distributivity }

a◦⊤⊤◦b ⊆ 〈∪c : c∈C : f
∪
◦ c ◦g〉

= { points are irreduible: (20) }

〈∃c : c∈C : a◦⊤⊤◦b ⊆ f
∪
◦ c ◦g〉

= { (22) }

〈∃c : c∈C : a◦⊤⊤◦c ⊆ f
∪

∧ c◦⊤⊤◦b ⊆ g〉
= { onverse, lemma 58 and (63) }

〈∃c : c∈C : a⊆ f> ∧ c= f.a ∧ b⊆g> ∧ c=g.b〉
= { Leibniz and prediate alulus }

a⊆ f> ∧ f.a=g.b ∧ b⊆g> .

Now suppose R is a surjetive relation of type A∼B . In this ase, for all points a of

type A , the equation

b: b∈B: a◦⊤⊤◦b⊆R(70)

has at least one solution sine:
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IB ⊆ R
∪
◦R

= { saturation axiom: (16) and supremum }

〈∀b : b∈B : b ⊆ R
∪
◦R〉

= { saturation axiom: (16) and distributivity }

〈∀b : b∈B : b ⊆ 〈∪a : a∈A : R
∪
◦a ◦R〉〉

= { points are irreduible: (20) }

〈∀b : b∈B : 〈∃a : a∈A : b ⊆ R
∪
◦a ◦R〉〉

= { lemma 57 }

〈∀b : b∈B : 〈∃a : a∈A : a◦⊤⊤◦b⊆R〉〉 .
In the same way, pointwise formulations of the dual notions of injetivity and totality

an be derived. Our terminology reets a bias in the interpretation of relations as

having output on the left and input on the right. A more neutral terminology suh as

\left-funtional", \right-funtional", \left-total" and \right-total" would be preferable.

Care must be taken when using the above pointwise de�nitions in our axiom system.

The problem is the overloading of the symbol ⊤⊤ : sometimes the type information is

essential. For example, the left-domain operator (whih we denote by the post�x symbol

<
) de�nes a total funtion of type Cor.A← (A∼B) , for all types A and B , where Cor.A

denotes the set of oreexives of type A . Denoting this funtion by Ldom , we must be

areful to distinguish between Ldom.R and R<
. This is beause, aording to (62),

Ldom.R ◦⊤⊤ ◦R ⊆ Ldom ;(71)

on the other hand,

R< ◦⊤⊤ ◦R = R◦⊤⊤◦R(72)

and it doesn't make sense to write

R< ◦⊤⊤ ◦R ⊆ <
!

In equation (71), both R and Ldom.R are points of type A∼B and Cor.A , respetively,

and the symbol \⊤⊤ " has type Cor.A∼ (A∼B) whereas in equation (72) R<
is not a

point, the leftmost ourrene of the symbol \⊤⊤ " has type A∼A and its rightmost

ourrene has type A∼B .
We onlude this setion with a number of properties of funtional relations. The

properties stem from the observation that funtionality an be de�ned via a Galois

onnetion. Spei�ally, the relation f is funtional i�, for all relations R and S (of

appropriate type),

f◦R ⊆ S ≡ f> ◦R ⊆ f
∪

◦S .(73)
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It is a simple exerise to show that (73) is equivalent to the property f ◦ f
∪ ⊆ I . (Although

(73) doesn't immediately �t the standard de�nition of a Galois onnetion, it an be

turned into standard form by restriting the range of the dummy R to relations that

satisfy f> ◦R = R , i.e. relations R suh that R<⊆ f> .)
The onverse-dual of (73) is also used frequently: g is funtional i�, for all R and

S ,

R ◦g
∪ ⊆ S ≡ R ◦g> ⊆ S◦g .(74)

Comparing the Galois onnetions de�ning the over and under operators (see setion 3.2)

with the Galois onnetion de�ning funtionality (see (73)) suggests a formal relationship

between \division" by a funtional relation and omposition with the relation's onverse.

The preise form of this relationship is given by the following lemma.

Lemma 75 For all R and all funtional relations f ,

f> ◦ f\R = f
∪

◦R .

Proof We use the anti-symmetry of the subset relation. First,

f
∪
◦R ⊆ f> ◦ f\R

= { domains }

f> ◦ f
∪
◦R ⊆ f> ◦ f\R

⇐ { monotoniity }

f
∪
◦R ⊆ f\R

= { fators }

f ◦ f
∪
◦R ⊆ R

⇐ { de�nition and monotoniity }

f is funtional .

Seond,

f> ◦ f\R ⊆ f
∪
◦R

⇐ { f> ⊆ f
∪
◦ f ; monotoniity and transitivity }

f
∪
◦ f ◦ f\R ⊆ f

∪
◦R

⇐ { monotoniity }

f ◦ f\R ⊆ R

= { anellation }

true .
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✷

Two lemmas that will be needed later now follow. Lemma 76 allows the onverse of a

funtional relation (i.e. an injetive relation) to be anelled, whilst lemma 77 expresses

a distributivity property.

Lemma 76 For all R and all funtional relations f ,

f< ◦ f
∪

\ (f
∪

◦R) = f< ◦R .

Proof

f< ◦ f
∪

\ (f∪ ◦R)

= { assumption: f is funtional }

f ◦ f
∪

◦ f
∪

\ (f∪ ◦R)

⊆ { anellation }

f ◦ f
∪
◦R

= { assumption: f is funtional }

f< ◦R .

Also,

f< ◦R ⊆ f< ◦ f
∪

\ (f∪ ◦R)

⇐ { monotoniity }

R ⊆ f
∪

\ (f∪ ◦R)

= { fators }

true .

The lemma follows by anti-symmetry of the subset relation.

✷

Lemma 77 For all R and S and all funtional relations f ,

R\(S◦f) ◦ f> = R\S ◦ f .

Proof
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R\(S◦f) ◦ f> ⊆ R\S ◦ f

⇐ { f> ⊆ f
∪
◦ f , monotoniity }

R\(S◦f) ◦ f∪ ⊆ R\S

= { fators }

R ◦R\(S◦f) ◦ f∪ ⊆ S

⇐ { anellation }

S ◦ f ◦ f
∪ ⊆ S

= { assumption: f is funtional }

true .

Also,

R\S ◦ f ⊆ R\(S◦f) ◦ f>

⇐ { monotoniity, f = f ◦ f> }

R\S ◦ f ⊆ R\(S◦f)

= { fators and anellation }

true .

The lemma follows by anti-symmetry of the subset relation.

✷

The following lemma is ruial to fully understanding Riguet's \analogie frappante";

see lemma 248 in setion 9.2. (The lemma is ompliated by the fat that it has �ve free

variables. Simpler, possibly better known, instanes an be obtained by instantiating

one or more of f , g , U and W to the identity relation.)

Lemma 78 Suppose f and g are funtional. Then for all U , V and W ,

f
∪
◦ (g< ◦U)\V/(W ◦ f<) ◦g

= f> ◦ (g∪
◦U ◦ f)\(g∪

◦V ◦ f)/(g∪
◦W ◦ f) ◦g> .

Proof Guided by the assumed funtionality of f and g , we use the rule of indiret

equality. Spei�ally, we have, for all R , U , V and W ,

f> ◦R ◦g> ⊆ f
∪
◦ (g< ◦U)\V/(W ◦ f<) ◦g

= { assumption: f and g are funtional, (73) and (74) }

f ◦R ◦g
∪ ⊆ (g< ◦U)\V/(W ◦ f<)
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= { fators }

g< ◦U ◦ f ◦R ◦g
∪
◦W ◦ f< ⊆ V

= { assumption: f and g are funtional

i.e. f ◦ f
∪ = f< ∧ g ◦g

∪ = g< }

g ◦g
∪
◦U ◦ f ◦R ◦g

∪
◦W ◦ f ◦ f

∪ ⊆ V

= { assumption: f and g are funtional, (73) and (74) }

g> ◦g
∪
◦U ◦ f ◦R ◦g

∪
◦W ◦ f ◦ f> ⊆ g

∪
◦V ◦ f

= { domains (four times) }

g
∪
◦U ◦ f ◦ f> ◦R ◦g> ◦g

∪
◦W ◦ f ⊆ g

∪
◦V ◦ f

= { fators }

f> ◦R ◦g> ⊆ (g∪
◦U ◦ f)\(g∪

◦V ◦ f)/(g∪
◦W ◦ f)

= { f> and g>
are oreexives }

f> ◦R ◦g> ⊆ f> ◦ (g∪
◦U ◦ f)\(g∪

◦V ◦ f)/(g∪
◦W ◦ f) ◦g>

The lemma follows by instantiating R to the left and right sides of the laimed equation,

simplifying using domain alulus, and then applying the reexivity and anti-symmetry

of the subset relation.

✷

The �nal lemma in this setion antiipates the disussion of per domains in setion

3.8.

Lemma 79 Suppose relations R , f and g are suh that

f ◦ f
∪

= f< = R< ∧ g< = g ◦g
∪

.

Then, for all S ,

g> ◦ (f
∪

◦R ◦g)\(f
∪

◦S) = g
∪

◦R\S .(80)

It follows that

g> ◦ (f
∪

◦R ◦g)\(f
∪

◦R ◦g) ◦g> = g
∪

◦R\R ◦g .(81)

Proof The proof of (80) is as follows.

g> ◦ (f∪ ◦R ◦g)\(f∪ ◦S)

= { fators }

g> ◦g\((f∪ ◦R)\(f∪ ◦S))
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= { lemma 75 with f,R := g , (f∪ ◦R)\(f∪ ◦S) }

g
∪
◦ (f∪ ◦R)\(f∪ ◦S)

= { fators }

g
∪
◦R\(f∪ \ (f∪ ◦S))

= { [ R\S=R\(R< ◦S) ] with R,S := R , f
∪

\ (f∪ ◦S)

assumption: f<=R< }

g
∪
◦R\(f< ◦ f

∪

\ (f∪ ◦S))

= { lemma 76 with f,R := f,S }

g
∪
◦R\(f< ◦S)

= { assumption: f<=R<
, [ R\S=R\(R< ◦S) ] }

g
∪
◦R\S .

Now we prove (81).

g> ◦ (f∪ ◦R ◦g)\(f∪ ◦R ◦g) ◦g>

= { (80) with S :=R◦g }

g
∪
◦R\(R◦g) ◦g>

= { lemma 77 }

g
∪
◦R\R ◦g .

✷

3.6 Isomorphic Relations

Several theorems we present \haraterise" lasses of relations in terms of funtional

relations. Typially these haraterisations are not unique but unique \up to isomor-

phism". See, for example, setion 5.2. The de�nition of \isomorphi" relations and some

properties of the notion are given below.

Definition 82 Suppose R and S are two relations (not neessarily of the same type).

Then we say that R and S are isomorphi and write R∼=S i�

〈∃φ,ψ
: φ ◦φ

∪ = R< ∧ φ
∪
◦φ = S< ∧ ψ ◦ψ

∪ = R> ∧ ψ
∪
◦ψ = S>

: R = φ ◦S ◦ψ
∪

〉 .
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✷

Lemma 83 The relation

∼= is reexive, transitive and symmetri. That is,

∼= is an

equivalene relation.

Proof This is very straightforward. For example, here is how symmetry is proved.

R = φ ◦S ◦ψ
∪

⇒ { Leibniz }

φ
∪
◦R ◦ψ = φ

∪
◦φ ◦S ◦ψ

∪
◦ψ

= { assume: φ
∪
◦φ = S<

and ψ
∪
◦ψ = S>

, domains }

φ
∪
◦R ◦ψ = S

⇒ { Leibniz }

φ ◦φ
∪
◦R ◦ψ ◦ψ

∪ = φ ◦S ◦ψ
∪

= { ssume: φ ◦φ
∪ = R<

and ψ ◦ψ
∪ = R>

, domains }

R = φ ◦S ◦ψ∪ .

That is, for all φ , ψ , R and S ,

(R = φ ◦S ◦ψ
∪ ≡ φ

∪
◦R ◦ψ = S)

⇐ φ ◦φ
∪ = R< ∧ φ

∪
◦φ = S< ∧ ψ ◦ψ

∪ = R> ∧ ψ
∪
◦ψ = S> .

Symmetry of

∼= follows by de�nition of

∼= , properties of onverse, and Leibniz's rule.

✷

The task of proving that two relations are isomorphi involves onstruting φ and

ψ that satisfy the onditions of the existential quanti�ation in de�nition 82; we all the

onstruted values witnesses to the isomorphism.

Note that the requirement on φ in de�nition 82 is that it is both funtional and

injetive; thus it is required to \witness" a (1{1) orrespondene between the points in

the left domain of R and the points in the left domain of S . Similarly, the requirement on

ψ is that it \witnesses" a (1{1) orrespondene between the points in the right domain

of R and the points in the right domain of S . Formally, R<
and S<

are isomorphi as

\witnessed" by φ and R>
and S>

are isomorphi as \witnessed" by ψ :

Lemma 84 Suppose R and S are relations suh that R∼=S . Then R<∼=S<
and

R>∼=S>
.
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Proof Suppose φ and ψ are suh that

φ ◦φ
∪

= R< ∧ φ
∪

◦φ = S< ∧ ψ ◦ψ
∪

= R> ∧ ψ
∪

◦ψ = S> .

Then

R<

= { R<
is oreexive }

R< ◦R<

= { assumption }

φ ◦φ
∪
◦φ ◦φ

∪

= { assumption }

φ ◦S< ◦φ
∪

.

That is R< = φ ◦S< ◦φ
∪

. Similarly, R> = ψ ◦S> ◦ψ
∪

. But also (beause the domain

operators are losure operators),

φ ◦φ
∪

= (R<)< ∧ φ
∪

◦φ = (S<)< ∧ ψ ◦ψ
∪

= (R>)> ∧ ψ
∪

◦ψ = (S>)> .

Applying de�nition 82 with R,S,φ,ψ := R< , S< ,φ ,φ and R,S,φ,ψ := R> , S> ,ψ ,ψ , the

lemma is proved.

✷

3.7 Formulations of Power Transpose

Warning This setion makes use of the notion of \symmetri division" as de�ned in

[BdM97, Oli18℄ but not as de�ned in [Fv90℄. \Symmetri division" an be de�ned in

two non-equivalent ways whih we all symmetri left-division and symmetri right-

division. Given relations R of type A∼B and S of type A∼C , the symmetri right-

division is a relation of type B∼C de�ned in terms of right fators as

R\S ∩ (S\R)
∪

.

Dually, given relations R of type B∼A and S of type C∼A , the symmetri left-division

is a relation of type B∼C de�ned in terms of left fators as

R/S ∩ (S/R)
∪

.

Clearly, just from their types, neither the \symmetri" left-division nor the \symmetri"

right-division is a symmetri relation. Possibly the justi�ation for the use of the word

\symmetri" is that, for homogeneous relation R , R∩R∪

is a symmetri relation (indeed
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the largest symmetri relation inluded in R ). Both [BdM97, Oli18℄ and [Fv90℄ use

the notation

R
S
(in the ase of [BdM97, Oli18℄ to denote symmetri right-division and

in the ase of [Fv90℄ to denote symmetri left-division). The motivation for this is

that the notation suggests a number of anellation rules similar to the ones used in

ordinary arithmeti. Great are must be taken, however, beause |unlike in ordinary

arithmeti| the anellation rules are one-sided. For example, for symmetri right-

division, we have the rule

R = R◦
R

R

but this is not valid if

R
S

is de�ned to be symmetri left-division. Even worse, the

expression

R
R
◦R does not even make sense (if

R
S
is de�ned to be symmetri right-division)

if R is a truly heterogeneous relation |with unequal soure and target| purely on type

grounds! For this reason, the notation R\\S will be used here to denote the symmetri

right-division. The reader should take great are when omparing formulae with those

in [Fv90℄. End of Warning

Given a relation R of type A∼B , the (left) power transpose [Fv90, BdM97℄ of R is

a total funtion, denoted in this paper

2

by ΓR , of type 2A←B . A pointwise de�nition

of the (left) power transpose (using traditional set notation) is

ΓR.b = {a |a R b} .

As disussed in setion 3.3, there are three di�erent but isomorphi mehanisms for

representing sets in relation algebra: as oreexives, (left or right) onditionals and

squares. Using oreexives, the power transpose ΓR of R is represented by the funtion

〈b :: (R◦b)<〉 .

It has type Cor.A←B where Cor.A denotes the type of oreexives of type A∼A .

Rather than use oreexives to de�ne power transpose, Freyd and

�

S�edrov [Fv90℄

postulate a number of axioms that de�ne ΓR in terms of set membership. Their approah

is followed by Bird and De Moor [BdM97℄. For our purposes, only two properties are

needed. The �rst is that ΓR is a total funtion. That is, for all R , S and T of

appropriate type,

ΓR ◦S ⊆ T ≡ S ⊆ (ΓR)
∪

◦T .(85)

2

Freyd and

�

S�edrov [Fv90℄ use the symbol \Λ " rather than \ Γ ". In just the same way that we prefer

the symbols \ \\ " and \ // " for asymmetri, but dual, operators, we prefer to use an asymmetri symbol

for left power transpose, thus opening the possibility of using its mirror image for right power transpose.



52

This is the Galois onnetion (73) with f := ΓR and speialised to the ase that f>= I (i.e.

f is total); in line with our ommon poliy when using well-known Galois onnetions,

we refer to the rule as a \shunting rule". The seond property of ΓR that we use is

(ΓR)
∪

◦ ΓS = R\S ∩ (S\R)
∪

.(86)

From a alulational viewpoint, the two rules together enable reasoning about power

transpose on the smaller and larger side of a set inlusion, respetively.

The property (86) an be derived from the de�nition of ΓR in our axiom system.

Here is the proof.

Lemma 87 For all relations R and S ,

(ΓR)
∪

◦ ΓS = R\S ∩ (S\R)
∪

.

Proof We use indiret equality. For all relations X , R and S , we have

X ⊆ (ΓR)∪ ◦ ΓS

= { saturation property: (19) }

〈∀a,b : a◦⊤⊤◦b ⊆ X : a◦⊤⊤◦b ⊆ (ΓR)∪ ◦ ΓS〉
= { (69) with f,g := ΓR,ΓS and de�nition of Γ }

〈∀a,b : a◦⊤⊤◦b ⊆ X : (R◦a)< = (S◦b)<〉
= { orollary 61 }

〈∀a,b : a◦⊤⊤◦b ⊆ X : a◦⊤⊤◦b ⊆ R\S ∩ (S\R)∪〉
= { saturation property: (19) }

X ⊆ R\S ∩ (S\R)∪ .

Summarising, for all X , R and S ,

X ⊆ (ΓR)
∪

◦ ΓS ≡ X ⊆ R\S ∩ (S\R)
∪

.

That is, by indiret equality,

(ΓR)
∪

◦ ΓS = R\S ∩ (S\R)
∪

.

✷

Abbreviating the right side of lemma 87 to R\\S , viz.

R\\S = R\S ∩ (S\R)
∪

,(88)

the lemma beomes, for all R and S ,

(ΓR)
∪

◦ ΓS = R\\S .(89)

We use both forms of the lemma below.
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3.8 Pers and Per Domains

The relation R\\R is an equivalene relation

3

. Voermans [Voe99℄ alls it the \greatest

right domain" of R . Riguet [Rig48℄ alls R\\R the \noyau" of R (but de�nes it using

nested omplements). Others (see [Oli18℄ for referenes) all it the \kernel" of R .

As remarked elsewhere [Oli18℄, the symmetri left division inherits a number of

(left) anellation properties from the properties of fatorisation in terms of whih it

is de�ned. For our purposes, the only anellation property we use is the following

(inherited from the property R ◦R\R = R ).

Lemma 90 For all R ,

R ◦R\\R = R .

Proof By mutual inlusion:

R ◦ R\\R

= { de�nition: (88) with R,S :=R,R }

R ◦ (R\R∩ (R\R)∪)

⊆ { monotoniity }

R ◦ R\R

= { anellation [ R ◦ R\S ⊆ S ] (with R,S :=R,R ) and [ I⊆R\R ] }

R

⊆ { [ I⊆S\\S ] with S :=R }

R ◦ R\\R .

✷

Voermans [Voe99℄ emphasises the importane of the relation R> ◦R\\R , whih is a

partial equivalene relation that better reets the right (per-)domain of R . (In a-

ordane with his thesis, \domains" are pers rather than oreexives.) Unlike Riguet

and others, Voermans gives equal importane to the dual equivalene relation R//R and

the left (per-)domain R//R ◦R<
. The ombination of the two per-domains enables the

de�nition of what we all the \ore" of a relation. The \ore" of a relation is important

to understanding the nature of difuntional relations and blok-ordered relations. See

theorems 205 and 207 in setion 7.3. See also setion 12 for further disussion.

3

This is a well-known fat: the relation R\\R is the symmetri losure of the preorder R\R . The easy

proof is left to the reader.
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Definition 91 (Partial Equivalence Relation (per)) A relation is a partial equiv-

alene relation i� it is symmetri and transitive. That is, R is a partial equivalene

relation i�

R=R
∪

∧ R◦R⊆R .

Heneforth we abbreviate partial equivalene relation to per.

✷

An equivalene relation is a reexive, symmetri and transitive relation. Reexivity

means that the left domain, the right domain, the soure and the target of the relation are

all the same. A partial equivalene relation is not neessarily reexive;, the absene of

the reexivity property is, however, of no onsequene. Its rôle is taken by the following

lemma.

Lemma 92 Suppose R is a per. Then

R< = R> ⊆ R .

Proof The equality R< = R>
is immediate from the de�nition of the domain operators

and the fat that a per is symmetri. Also,

R> ⊆ R

⇐ { R> = I ∩ R∪
◦R , transitivity of subset relation }

R
∪
◦R ⊆ R

= { assumption: R is a per, de�nition 91 and Leibniz }

true .

✷

Beause the left and right domain of a per are equal, we refer to its domain, omitting

the adjetive left or right.

De�nition 91 is the standard de�nition of a partial equivalene relation. A better

de�nition |beause it is just one equation| is expressed by the following theorem.

Theorem 93 For all relations R , R is a per equivales R = R ◦R
∪

. Symmetrially, for

all relations R , R is a per equivales R = R∪
◦R .

Proof By mutual impliation. First, suppose R is a per. Then

R◦R

⊆ { assumption: R is transitive }

R
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= { domains }

R ◦R>

⊆ { assumption: R is a per, lemma 92 }

R◦R .

That is, by the anti-symmetry of the subset relation, R=R◦R . But R is symmetri.

That is, R=R∪

. So, by Leibniz's rule, R = R◦R
∪

.

For the follows-from, we have:

R = R◦R
∪

= { (R◦R
∪)∪ = R◦R

∪

}

R = R◦R
∪ = R∪

⇒ { subset relation is reexive, Leibniz }

R◦R⊆R ∧ R=R∪

= { de�nition }

per.R .

✷

The following lemma is a straightforward onsequene of theorem 93.

Lemma 94 Suppose f is a funtional relation. Then f
∪
◦ f is a per.

✷

Pers are studied in more detail in setion 5. In this setion the fous is on the left

and right \per-domains" introdued by Voermans [Voe99℄.

Definition 95 (Right and Left Per Domains) The right per-domain of relation

R , denoted R≻
, is de�ned by the equation

R≻ = R> ◦R\\R .(96)

Dually, the left per-domain of relation R , denoted R≺
, is de�ned by the equation

R≺ = R//R ◦R< .(97)

✷

Although the theorems below fous on the properties of R≻
, eah an, of ourse, be

dualised to properties of R≺
.

The left and right per-domains are alled \domains" beause, like the oreexive

domains, we have the properties:

R≺ ◦R = R = R ◦R≻ .(98)
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(The seond of these equalities is an immediate onsequene of lemma 90 and the prop-

erties of (oreexive-) domains; the �rst is symmetri.) Indeed, R≺
and R≻

are the

\least" pers that satisfy these equalities. (See [Voe99℄ for details of the ordering relation

on pers.)

That R≺
and R≻

are indeed pers is a diret onsequene of the symmetry and tran-

sitivity of R\\R . For example, the transitivity of R≻
is inherited from the transitivity of

R\\R :

R≻ ◦R≻

= { (96) and (100) }

R> ◦R\\R ◦R\\R ◦R>

⊆ { R\\R is transitive }

R> ◦R\\R ◦R>

= { lemma 99 and (96) }

R≻ .

The symmetry of R≻
(i.e. R≻=(R≻)∪ ) is a similar ombination of (96), (100) and the

symmetry of R\\R . Thus R≻
is a per. Dually R≺

is also a per.

In order to prove additional properties, it is useful to reord the left and right domains

of the relation R\\R ◦R>
:

Lemma 99 For all R ,

(R\\R ◦R>)> = R> = (R> ◦R\\R)< ,

(R\\R ◦R>)< = R> = (R> ◦R\\R)> ,

R\\R ◦R> = R> ◦R\\R ◦R> = R> ◦R\\R .

Proof The �rst two equations follow from the fat that

(R\\R)< = I = (R\\R)>

(beause I⊆R\R and R\\R is the symmetri losure of R\R ). For example:

(R> ◦R\\R)<

= { domains }

(R> ◦ (R\\R)<)<

= { (R\\R)< = I }
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(R>)<

= { R>
is a oreexive, domains }

R> .

The seond two equations follow from lemma 90.

(R\\R ◦R>)<

= { domains }

(R ◦ (R\\R)∪)>

= { R\\R is symmetri }

(R ◦R\\R)>

= { lemma 90 }

R> ,

and

(R> ◦R\\R)>

= { domains }

(R ◦R\\R)>

= { lemma 90 }

R> .

Combining the domain equations, we have

R\\R ◦R>

= { (R> ◦R\\R)< = R>
, domains }

R> ◦R\\R ◦R>

= { (R> ◦R\\R)> = R>
, domains }

R> ◦R\\R .
✷

Lemma 99 has the onsequene that R≻
an be de�ned equivalently by the equation

R≻ = R\\R ◦R>
(100)

and, moreover,

(R≻)< = R> = (R≻)> .(101)

A property that we need later is
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Lemma 102 For all relations R ,

R\R ◦R≻ = R\R ◦R> .

Proof By anti-symmetry of the subset relation:

R\R ◦R≻

⊆ { by (88), (100) and monotoniity, R≻ ⊆ R\R ◦R> }

R\R ◦R\R ◦R>

⊆ { by anellation, R\R ◦R\R ⊆ R\R }

R\R ◦R>

⊆ { I⊆R\\R , so by (100) and montoniity, R>⊆R≻ }

R\R ◦R≻ .
✷

The pointwise interpretations of the left and right per domains are given by the

following lemma.

Lemma 103 For all relations R of type A∼B and all points a and a ′
of type A ,

a◦⊤⊤◦a ′ ⊆ R≺ ≡ a⊆R< ∧ (a◦R)> = (a ′
◦R)> ∧ a ′⊆R< .

Dually, for all relations R of type A∼B and all points b and b ′
of type B ,

b◦⊤⊤◦b ′ ⊆ R≻ ≡ b⊆R> ∧ (R◦b)< = (R◦b ′)< ∧ b ′⊆R> .

Proof Assume that b and b ′
are points. Then

b◦⊤⊤◦b ′ ⊆ R≻

= { de�nition (96) and lemma 99 }

b◦⊤⊤◦b ′ ⊆ R> ◦R\\R ◦R>

= { domains (using mutual impliation) }

b⊆R> ∧ b◦⊤⊤◦b ′ ⊆ R\\R ∧ b ′⊆R>

= { orollary 61, with R,S :=R,R }

b⊆R> ∧ (R◦b)< = (R◦b ′)< ∧ b ′⊆R> .

The dual property follows from the distributivity properties of onverse.

✷

Given relation R , the relation R
∪
◦R is symmetri but not neessarily transitive.

However, it is an upper bound on the right per domain of R . That is,

R
∪

◦R ⊇ R≻ .(104)

The proof is as follows:
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R
∪
◦R ⊇ R≻

= { de�nition: (96) }

R
∪
◦R ⊇ R> ◦R\\R

= { anellation: (90) }

R
∪
◦R ◦R\\R ⊇ R> ◦R\\R

⇐ { monotoniity }

R
∪
◦R ⊇ R>

⇐ { de�nition 42 }

true .

Dually, of ourse, we have:

R ◦R
∪ ⊇ R≺ .(105)

It is useful to investigate the irumstanes in whih the inlusions in (104) and (105)

beome equalities.

Lemma 106 For all relations R ,

(R≺ = R ◦R
∪

) = (R = R ◦R
∪

◦R) = (R
∪

◦R = R≻) .

(As usual, we overload the equality symbol: its usage here alternates between equality

of relations and equality of booleans. As always, ontinued equalities should be read

onjuntionally.)

Proof We have:

R
∪
◦R = R≻

= { (104) and anti-symmetry }

R
∪
◦R ⊆ R≻

= { de�nition: (96) }

R
∪
◦R ⊆ R> ◦R\\R

⇐ { R> ◦R
∪ = R∪

and monotoniity }

R
∪
◦R ⊆ R\\R

= { R
∪
◦R is symmetri, R\\R = R\R∩ (R\R)∪ }

R
∪
◦R ⊆ R\R
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⇐ { fators }

R ◦R
∪
◦R ⊆ R

⇐ { (98) }

R
∪
◦R = R≻ .

We have thus proved (by mutual impliation), that

(R ◦R
∪

◦R ⊆ R) = (R
∪

◦R = R≻) .

But,

R ◦R
∪
◦R ⊆ R

= { (54) }

R ◦R
∪
◦R ⊆ R ∧ R ⊆ R ◦R

∪
◦R

= { anti-symmetry }

R = R ◦R
∪
◦R

Combining the two alulations (using the transitivity of boolean equality),

(R = R ◦R
∪

◦R) = (R
∪

◦R = R≻) .

The dual property,

(R≺ = R ◦R
∪

) = (R = R ◦R
∪

◦R)

follows by symmetry.

✷

Two speial ases of lemma 106:

Lemma 107 For all funtional relations f (that is, for all f suh that f ◦ f
∪ = f< ),

f≻ = f
∪

◦ f .

Proof

f≻ = f
∪
◦ f

= { lemma 106 with R := f }

f = f ◦ f
∪
◦ f

= { assumption: f is funtional, i.e. f ◦ f
∪ = f< }

f = f< ◦ f

= { domains }

true .



61

✷

The following lemma extends [Rig48, Corollaire, p.134℄ from equivalene relations to

pers.

Lemma 108 For all relations R , the following statements are all equivalent.

(i) R is a per (i.e. R=R∪

∧ R◦R⊆R ) ,

(ii) R = R∪
◦R ,

(iii) R=R≺
,

(iv) R=R≻
.

Proof The equivalene of (i) and (ii) was shown in theorem 93. It remains to prove the

equivalene of (ii) and (iii); the equivalene of (ii) and (iv) is the dual proposition.

R=R≻

= { [ R = R ◦R≻ ] and [ R≻=(R≻)∪ ] }

R = R ◦R
∪ = R≻

= { R = R ◦R
∪ ≡ R = R ◦R

∪ = R ◦R
∪
◦R

(by Leibniz and prediate alulus) }

R = R ◦R
∪ = R ◦R

∪
◦R = R≻

= { lemma 106 }

R = R ◦R
∪ = R ◦R

∪
◦R

= { see above }

R = R ◦R
∪

.

✷

Coreexives are, of ourse, pers. This implies that they are losed under the left and

right per-domain operators:

Lemma 109 For all oreexives p ,

p≺ = p = p≻ .

Proof The lemma follows from lemma 108 sine, for all oreexives p ,

p = p
∪

= p◦p .
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✷

The dual of lemma 107 is that, for all injetive relations f (that is, for all f suh

that f
∪
◦ f = f> ),

f≺ = f ◦ f
∪

.

Noting that f is injetive equivales f
∪

is funtional, we seek a onvenient way of om-

bining the two properties. Suh is the following.

Lemma 110 Suppose that f and g are funtional relations and R is an arbitrary

relation suh that

f ◦ f
∪

= f< = R< ∧ g ◦g
∪

= g< = R> .

Then

(f
∪

◦R ◦g)≺ = f ◦R≺ ◦ f
∪

∧ (f
∪

◦R ◦g)≻ = g
∪

◦R≻ ◦g

Proof First note that

((f∪ ◦R ◦g)≻)<

= { (101) }

(f∪ ◦R ◦g)>

= { assumption: f< = R<
, domains }

(R◦g)>

= { assumption: g< = R>
, domains }

g> .

That is,

((f
∪

◦R ◦g)≻)< = g> .(111)

Now,

g> ◦ (f∪ ◦R ◦g)\(f∪ ◦R ◦g) ◦g>

= { lemma 79 with S :=R◦g }

g
∪
◦R\(R◦g) ◦g>

= { lemma 77 with R,S,f :=R,R,g }

g
∪
◦R\R ◦g .
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That is

g> ◦ (f
∪

◦R ◦g)\(f
∪

◦R ◦g) ◦g> = g
∪

◦R\R ◦g .(112)

Thus

g> ◦ (f∪ ◦R ◦g)≻ ◦g>

= { de�nition 95, lemma 99 and (111) }

g> ◦ ((f∪ ◦R ◦g)\(f∪ ◦R ◦g) ∩ ((f∪ ◦R ◦g)\(f∪ ◦R ◦g))∪) ◦g>

= { distributivity of oreexives over intersetion }

g> ◦ (f∪ ◦R ◦g)\(f∪ ◦R ◦g) ◦g> ∩ (g> ◦ (f∪ ◦R ◦g)\(f∪ ◦R ◦g) ◦g>)∪

= { (112) }

g
∪
◦R\R ◦g ∩ (g∪

◦R\R ◦g)∪

= { distributivity (g is funtional) }

g
∪

◦ (R\R ∩ (R\R)∪) ◦ g

= { de�nition 95 }

g
∪
◦R≻ ◦g .

✷

Lemma 107 is an instane of lemma 110 (obtained by instantiating both R and g to

f< and using lemma 109 to eliminate R≺
). Similarly, the dual of lemma 107 is also an

instane. Another instane is:

Lemma 113 For all relations f and g suh that

f ◦ f
∪

= f< = g ◦g
∪

= g<

we have

(f
∪

◦g)≻ = g≻ ∧ (f
∪

◦g)≺ = f≻ .

Proof

(f∪ ◦g)≻

= { heading for lemma 110, domains }

(f∪ ◦g< ◦g)≻

= { domains and lemma 110 with R,f,g := g< , f , g }

g
∪
◦ (g<)≻ ◦g
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= { lemma 109 and domains }

g
∪
◦g

= { lemma 107 with f :=g }

g≻ .

The seond equality is now straightforward:

(f∪ ◦g)≺

= { onverse }

((g∪
◦ f)∪)≺

= { de�nitions : (100) and (97) }

(g∪
◦ f)≻

= { [ (f∪ ◦g)≻ = g≻ ⇐ f ◦ f
∪ = f< = g ◦g

∪ = g< ]

(just proved) with f,g :=g,f }

f≻ .

✷

3.9 Provisional Orderings

There are various well-known notions of ordering: preorder, partial and linear (aka total)

ordering. For our purposes all of these are too strit. So, in this setion, we introdue the

notion of a \provisional ordering". The adjetive \provisional" has been hosen beause

the notion \provides" just what we need.

The standard de�nition of an ordering is an anti-symmetri preorder whereby a pre-

order is required to be reexive and transitive. It is the reexivity requirement that is

too strit for our purposes. So, with the intention of weakening the standard de�nition

of a preorder to requiring reexivity of a relation over some superset of its left and right

domains, we propose the following de�nition.

Definition 114 Suppose T is a homogeneous relation. Then T is said to be a

provisional preorder if

T< ⊆ T ∧ T> ⊆ T ∧ T ◦T ⊆T .

✷

Fig. 4 depits a provisional preorder on a set of eight elements as a direted graph.

The blue squares should be ignored for the moment. (See the disussion following lemma
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Figure 4: A Provisional Preorder

120.) Note that the relation depited is not a preorder beause it is not reexive: the

top-right node depits an element that is not in the left or right domain of the relation.

An immediate onsequene of the de�nition is that the left and right domains of a

provisional preorder must be equal:

Lemma 115 If T is a provisional preorder then

T< = T> .

Proof Suppose T is a provisional preorder. Then

T> ⊆ T<

= { domains }

(T>)< ⊆ T<

⇐ { monotoniity }

T> ⊆ T

= { assumption: T> ⊆ T }

true .

That is, T> ⊆ T<
. Dually, T< ⊆ T>

. Thus, by anti-symmetry, T< = T>
.

✷

A trivial property that is nevertheless used frequently:
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Lemma 116 T is a provisional preorder equivales T
∪

is a provisional preorder.

Proof Immediate from the de�nition and properties of onverse.

✷

A preorder is a provisional preorder with left (equally right) domain equal to the

identity relation. In other words, a preorder is a total provisional preorder. It is easy

to show that, for any relation R , the relations R\R and R/R are preorders. It is also

easy to show that R is a preorder if and only if R=R\R (or equivalently if and only if

R=R/R ). These properties generalise to provisional preorders.

Lemma 117 For all relations R , the relations R> ◦R\R and R/R ◦R<
are provisional

preorders.

Proof The proof is very straightforward. First,

(R> ◦R\R)<

= { I⊆R\R , so (R\R)<= I ; domains }

(R>)<

= { R>
is a oreexive }

R>

⊆ { I⊆R\R , monotoniity }

R> ◦R\R .

Seond,

(R> ◦R\R)>

= { domains }

(R ◦R\R)>

= { anellation }

R>

⊆ { I⊆R\R , monotoniity }

R> ◦R\R .

Third,

R> ◦R\R ◦R> ◦R\R

⊆ { R>⊆ I , monotoniity }
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R> ◦R\R ◦R\R

⊆ { R\R ◦R\R ⊆ R\R

(easy use of de�nition of fators and anellation) }

R> ◦R\R .

Comparing the above properties with de�nition 114, we have shown that R> ◦R\R is a

provisional preorder. The dual property, R/R ◦R<
is a provisional preorder, is obtained

by the instantiation R :=R∪

and appliation of distributivity properties of onverse.

✷

Lemma 118 T is a provisional preorder equivales

T = T< ◦T\T = T/T ◦T> = T< ◦T\T/T ◦T> .

Proof Follows-from is a straightforward onsequene of the fat that T\T is a preorder

for arbitrary T .

Impliation is also straightforward. Assume that T is a provisional preorder. The

proof of the leftmost equality is by mutual inlusion. First

T ⊆ T< ◦T\T

⇐ { T = T< ◦T and monotoniity }

T ⊆ T\T

= { fators }

T ◦T ⊆ T
= { assumption: T is transitive }

true .

For the opposite inlusion we have

T< ◦ T\T ⊆ T

⇐ { assumption: T<⊆ T , monotoniity }

T ◦T\T ⊆ T

= { anellation }

true .

Thus T = T< ◦T\T by anti-symmetry. That T = T/T ◦ T>
follows from lemma 116 and

the properties of onverse. Finally,
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T

= { T = T ◦T>
and T = T< ◦T\T (proved above) }

T< ◦ T\T ◦T>

= { T = T/T ◦T>
(proved above) }

T< ◦ T\(T/T ◦ T>) ◦ T>

= { [ R\(S ◦R>) ◦R> = R\S ◦R> ] with R,S :=T,T }

T< ◦ T\T/T ◦ T> .

✷

Lemma 118 is sometimes used in a form where the domains are replaed by per

domains.

Lemma 119 Suppose T is a provisional preorder. Then

T = T≺ ◦T\T = T/T ◦T≻ = T≺ ◦T\T/T ◦T≻ .

Proof Immediate from lemma 118 and the per domain equations, for all R ,

R = R≺ ◦R = R≺ ◦R< ◦R = R ◦R≻ = R ◦R> ◦R≻ .

For example,

T

= { [ R = R≺ ◦R ] with R :=T }

T≺ ◦T

= { lemma 118 }

T≺ ◦T< ◦T\T

= { [ R≺ ◦R< = R≺ ] with R :=T }

T≺ ◦T\T .

✷

Lemma 120 Suppose T is a provisional preorder. Then

T≺ = T ∩ T∪

= T≻ .

Hene T ∩ T∪

is a per.

Proof We exploit lemma 118:
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T≻

= { de�nition: (96) and (88), lemma 99 }

T> ◦ (T\T ∩ (T\T)∪) ◦ T>

= { distributivity ( T>
is oreexive) }

T> ◦ T\T ◦T> ∩ (T∪)< ◦ T
∪

/ T
∪

◦ (T∪)<

= { lemma 115

(twie, one with T :=T∪

using lemma 116) }

T< ◦ T\T ◦T> ∩ (T∪)< ◦ T
∪

/ T
∪

◦ (T∪)>

= { lemma 118 }

T ◦T> ∩ (T∪)< ◦T
∪

= { domains }

T ∩T∪

.

The dual property T≺ = T ∩T∪

is immediate from the properties of onverse.

✷

Referring bak to �g. 4, the blue squares depit the equivalene lasses of the sym-

metri losure of a provisional preorder. As remarked earlier, the depited relation is not

a preorder; orrespondingly, the blue squares depit a truly partial equivalene relation.

We assume the reader is familiar with the notions of an ordering and a linear (or total)

ordering. We now extend these notions to provisional orderings. (The at-most relation

on the integers is both anti-symmetri and linear. The at-most relation restrited to some

arbitrary subset of the integers is an example of a linear provisional ordering aording

to the de�nition below.)

Definition 121 Suppose T is a homogeneous relation of type A∼A , for some A .

Then T is said to be provisionally anti-symmetri if

T ∩T∪ ⊆ IA .

Also, T is said to be a provisional ordering if T is provisionally anti-symmetri and T

is a provisional preorder. Finally, T is said to be a linear provisional ordering if T is

a provisional ordering and

T ∪T∪

= (T ∩ T∪

)◦⊤⊤◦(T ∩T∪

) .

✷
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De�nition 121 weakens the equality in the standard notion of anti-symmetry to an

inlusion. The standard de�nition of a partial ordering |an anti-symmetri preorder|

is weakened aordingly (as mentioned earlier, in order to \provide" for our needs).

The following lemma antiipates the use of provisional preorders/orderings in exam-

ples presented later.

Lemma 122 Suppose T is a provisional ordering. Then

T< = T ∩T∪

= T> .

Proof For the �rst equality, we have

T ∩T∪ ⊆ T<

= { I is unit of omposition, de�nition of T< }

(T ∩T∪)◦I ⊆ I∩ T ◦⊤⊤
= { assumption: T ∩T∪ ⊆ I ; in�mum and monotoniity }

true .

Also,

T< ⊆ T ∩T∪

= { in�mum }

T< ⊆ T ∧ T< ⊆ T
∪

= { T is a provisional preorder, so T<⊆ T ; (T<)∪= T< }

true .

The seond equality is obtained by instantiating T to T
∪

.

✷
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4 Squares and Rectangles

Squares are by de�nition homogeneous relations. We now introdue the notion of a

\retangle"; retangles are typially heterogeneous. Squares are retangles; properties

of squares are typially obtained by speialising properties of retangles. (For example,

lemma 127 shows that the intersetion of two retangles is a retangle by giving an

expliit onstrution; the same onstrution applies to squares from whih it is easily

shown that the intersetion of two squares is a square.)

Definition 123 (Rectangle) A relation R is a retangle i� R=R◦⊤⊤◦R .

✷

An example of a retangle is the \pair" a◦⊤⊤◦b where a and b are points. More

generally, we have:

Lemma 124 For all relations R and S , R◦⊤⊤◦S is a retangle. It follows that R◦T ◦S

is a retangle if T is a retangle. In partiular, if R has type A∼B , S has type B∼C ,

and b is a point of type B , the relation R◦b◦S is a retangle.

Proof Beause the proof is based on the one rule, a ase analysis is neessary. In the

ase that either R or S is the empty relation, the lemma learly holds (beause R◦⊤⊤◦S

is the empty relation, and the empty relation is a retangle). Suppose now that both R

and S are non-empty. Then

R◦⊤⊤◦S◦⊤⊤◦R◦⊤⊤◦S

= { one rule: (5) (applied twie), assumption: R 6=⊥⊥ and S 6=⊥⊥ }

R◦⊤⊤◦S .

If T is a retangle, R◦T ◦S=R◦T ◦⊤⊤◦T ◦S ; thus R◦T ◦S is a retangle. That R◦b◦S is a

retangle is an instane sine, by (15), b is a retangle if b is a point.

✷

The type information in the statement of lemma 124 provides a useful guide when

introduing de�nitions of partiular retangles.

4.1 Inclusion and Intersection

Using olloquial terminology, the left and right domain of a retangle are the \sides" of

the retangle. In general, a retangle is de�ned by its two sides. More preisely:
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Lemma 125 Suppose R and S are retangles of the same type. Then

R⊆S ≡ R< ⊆ S< ∧ R> ⊆ S> .

It follows that

R=S ≡ R< = S< ∧ R> = S> .

Proof By mutual impliation:

R⊆S
⇒ { monotoniity }

R< ⊆ S< ∧ R> ⊆ S>

⇒ { monotoniity }

R< ◦⊤⊤ ◦R> ⊆ S< ◦⊤⊤ ◦S>

= { domains }

R◦⊤⊤◦R ⊆ S◦⊤⊤◦S

= { assumption: R and S are retangles, de�nition 123 }

R⊆S .

The seond property follows straightforwardly from the anti-symmetry of the subset

relation.

✷

For squares R and S , lemma 125 simpli�es the hek for equality to heking that

their inluded points are the same:

Corollary 126 If R and S are both squares then

R=S ≡ 〈∀a :: a⊆R ≡ a⊆S〉 .

Proof

R=S

= { lemma 125 and assumption: R and S are squares }

R< = S<

⇐ { saturation axiom: (16) }

〈∀a :: a⊆R< ≡ a⊆S<〉
= { lemma 125 and assumption: R and S are squares }
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〈∀a :: a⊆R ≡ a⊆S〉
⇐ { Leibniz }

R=S .

✷

Lemma 127 The intersetion of two retangles is a retangle. Spei�ally, for all

retangles R and S ,

R∩S = (R<∩S<)◦⊤⊤◦(R>∩S>) .

Proof We have, for all R , S , T and U ,

R◦⊤⊤◦S ∩ T ◦⊤⊤◦U

= { property of onditionals }

R◦⊤⊤ ∩ ⊤⊤◦S ∩ T ◦⊤⊤ ∩ ⊤⊤◦U

= { property of onditionals }

(R∩T)◦⊤⊤ ∩ ⊤⊤◦(S∩U)
= { property of onditionals }

(R∩T)◦⊤⊤◦(S∩U) .

(The properties of onditionals used above are not shown in this paper but easily proven.

Hint: use the modularity rule (3).) Also, for all R and S , R◦⊤⊤◦S = R< ◦⊤⊤ ◦S>
. So

R∩S
= { assumption: R and S are retangles }

R◦⊤⊤◦R ∩ S◦⊤⊤◦S

= { [ R◦⊤⊤◦S = R< ◦⊤⊤ ◦S> ] with R,S :=R,R and R,S :=S,S }

R< ◦⊤⊤ ◦R> ∩ S< ◦⊤⊤ ◦S>

= { above with R,S,T ,U := R< , R> , S< , S> }

(R<∩S<)◦⊤⊤◦(R>∩S>) .

✷

Lemma 128 If U is a retangle then, for all points b (of appropriate type)

(U◦b)< = U< ∨ (U◦b)< = ⊥⊥ .

Proof
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(U◦b)<

= { assumption: U is a retangle }

(U◦⊤⊤◦U◦b)<

= { domains }

(U ◦⊤⊤ ◦U> ◦b)<

= { assumption: b is a point. So U> ◦b = b ∨ U> ◦b = ⊥⊥ }

if U> ◦b = b → (U◦⊤⊤◦b)< ✷ U> ◦b = ⊥⊥ → ⊥⊥ fi

= { assumption: b is a point. So (⊤⊤◦b)<= I }

if U> ◦b = b → U< ✷ U> ◦b = ⊥⊥ → ⊥⊥ fi .

✷

4.2 Completely Disjoint Rectangles

As is well-known, an equivalene relation partitions its domain into a set of disjoint

lasses. Also well-known is that the existene of suh a partitioning is preisely formu-

lated by the funtion that maps an element of the domain to its equivalene lass : two

elements are equivalent if and only if their equivalene lasses are equal. When repre-

sented by relations, equivalene lasses are squares. The theory of difuntional relations

generalises this partitioning property to \ompletely disjoint" retangles. This setion

lays the foundations for this theory. Spei�ally, theorem 141 formulates a orrespon-

dene between pairs of funtional relations and sets of ompletely disjoint retangles.

Definition 129 (Indexed Bag/Set) Suppose R is a funtion with soure K . Then

R is said to be a bag indexed by K . The values R.k , where k ranges over K , are said

to be the elements of R . In the ase that R is injetive, it is said to be an indexed

set.

✷

The distintion between \bag" and \set" in de�nition 129 emphasises the fat that

the same element may our repeatedly in an indexed bag whereas eah element ours

exatly one in an indexed set. That is, an indexed set R has the property that, for all

j and k in K ,

R.j = R.k ≡ j=k .

We normally apply de�nition 129 to bags/sets of retangles. Spei�ally, suppose A , B

and K are types and R is a funtion with soure K and target retangles of type A∼B .
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Then R is said to be an indexed bag of retangles ; it is an indexed set of retangles

if it is injetive.

Two relations R and S are disjoint if R∩S=⊥⊥ . One an show that, for all retan-

gles R and S ,

R∩S=⊥⊥ ≡ R<∩S< = ⊥⊥ ∨ R>∩S> = ⊥⊥ .

(This is a onsequene of lemma 127.) The de�nition of \ompletely" disjoint strengthens

the disjuntion to a onjuntion. Note that we don't use ontinued equality beause the

symbol \⊥⊥ " is overloaded.

Definition 130 (Completely Disjoint) Two retangles R and S are said to be

ompletely disjoint i�

R<∩S< = ⊥⊥ ∧ R>∩S> = ⊥⊥ .

Suppose R is an indexed bag of retangles. Then R is said to be a ompletely disjoint

bag of retangles i�, for all j and k in the index set of R ,

R.j 6=R.k ≡ (R.j)<∩ (R.k)< = ⊥⊥ ∧ (R.j)>∩ (R.k)> = ⊥⊥ .

R is said to be a ompletely disjoint set of retangles i� in addition it is injetive. That

is, R is a ompletely disjoint set of retangles i�, for all j and k in the index set of

R ,

j 6=k ≡ (R.j)<∩ (R.k)< = ⊥⊥ ∧ (R.j)>∩ (R.k)> = ⊥⊥ .

✷

We give several onstrutions of bags/sets of retangles. When we do so, the ver-

i�ation that the bag/sets are ompletely disjoint is ahieved by mutual impliation.

The \if" part is established by proving its ontrapositive. That is, the proof obligation

beomes to show that, for all indies j and k ,

R.j=R.k ⇒ (R.j)<∩ (R.k)< 6= ⊥⊥ ∧ (R.j)>∩ (R.k)> 6= ⊥⊥

whih simpli�es to, for all j ,

R.j 6=⊥⊥ .

(The same simpli�ation is valid whether the onstrution yields a bag or a set.) Thus

the �rst step is to show that the onstrution yields non-empty elements. The \only-if"

part is to show that, for all indies j and k ,

R.j 6=R.k ⇒ (R.j)<∩ (R.k)< = ⊥⊥ ∧ (R.j)>∩ (R.k)> = ⊥⊥ .

For this part, the following lemma is exploited.
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Lemma 131 For all relations R and S ,

R<∩S< = ⊥⊥ ≡ R
∪

◦S = ⊥⊥ .

Symmetrially,

R>∩S> = ⊥⊥ ≡ R ◦S
∪

= ⊥⊥ .

Proof First note that

R<∩S< = ⊥⊥ ≡ R< ◦S< = ⊥⊥

sine the intersetion of oreexives is the same as their omposition. Then

R< ◦S< = ⊥⊥
⇒ { ⊥⊥ is zero of omposition }

R
∪
◦R< ◦S< ◦S = ⊥⊥

= { domains: (45) }

R∪
◦S = ⊥⊥

⇒ { ⊥⊥ is zero of omposition }

R ◦R
∪
◦S ◦S

∪ = ⊥⊥
⇒ { monotoniity, [ R=⊥⊥≡R⊆⊥⊥ ] (applied twie) }

(I ∩ R ◦R
∪) ◦ (I ∩ S ◦S

∪) = ⊥⊥
= { domains: de�nition 42 }

R< ◦S< = ⊥⊥ .

The lemma follows by mutual impliation.

✷

The foregoing disussion is formalised in the following lemma.

Lemma 132 Suppose R is an indexed bag of retangles. Then R is ompletely

disjoint i�

〈∀j :: R.j 6=⊥⊥〉
∧ 〈∀ j,k :: R.j 6=R.k ⇒ (R.j)∪ ◦R.k = ⊥⊥ ∧ R.j ◦ (R.k)∪ = ⊥⊥〉 .

Also, R is ompletely disjoint and injetive |i.e. an indexed set| i�

〈∀j :: R.j 6=⊥⊥〉
∧ 〈∀ j,k :: j 6=k ⇒ (R.j)∪ ◦R.k = ⊥⊥ ∧ R.j ◦ (R.k)∪ = ⊥⊥〉 .
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Proof

R is ompletely disjoint

= { de�nition 130 }

〈∀ j,k :: R.j 6=R.k ≡ (R.j)<∩ (R.k)< = ⊥⊥ ∧ (R.j)>∩ (R.k)> = ⊥⊥〉
= { mutual impliation }

〈∀ j,k :: R.j 6=R.k ⇐ (R.j)<∩ (R.k)< = ⊥⊥ ∧ (R.j)>∩ (R.k)> = ⊥⊥〉
∧ 〈∀ j,k :: R.j 6=R.k ⇒ (R.j)<∩ (R.k)< = ⊥⊥ ∧ (R.j)>∩ (R.k)> = ⊥⊥〉

= { ontrapositive; lemma 131 }

〈∀ j,k :: R.j=R.k ⇒ (R.j)<∩ (R.k)< 6= ⊥⊥ ∨ (R.j)>∩ (R.k)> 6= ⊥⊥〉
∧ 〈∀ j,k :: R.j 6=R.k ⇒ R.j ◦ (R.k)∪ = ⊥⊥ ∧ (R.j)∪ ◦R.k = ⊥⊥〉

= { Leibniz, reexivity of equality, idempotene of intersetion }

〈∀j :: (R.j)< 6=⊥⊥ ∨ (R.j)> 6=⊥⊥〉
∧ 〈∀ j,k :: R.j 6=R.k ⇒ R.j ◦ (R.k)∪ = ⊥⊥ ∧ (R.j)∪ ◦R.k = ⊥⊥〉

= { domains

( [ (R<=⊥⊥)= (R=⊥⊥)= (R>=⊥⊥) ] with R :=R.j )) }

〈∀j :: R.j 6=⊥⊥〉
∧ 〈∀ j,k :: R.j 6=R.k ⇒ R.j ◦ (R.k)∪ = ⊥⊥ ∧ (R.j)∪ ◦R.k = ⊥⊥〉 .

Injetivity of R is the property that 〈∀ j,k :: R.j=R.k ≡ j=k〉 . The haraterisation

of ompletely disjoint and injetive thus follows by the use of Leibniz's rule.

✷

Here is the �rst example of suh a onstrution.

Lemma 133 Suppose f and g are relations with ommon target C suh that

f ◦ f
∪

= f< = g ◦g
∪

= g< .

Then the relation f
∪
◦g is the supremum of an indexed set of ompletely disjoint ret-

angles. Spei�ally, with dummy c ranging over points of type C ,

f
∪
◦g =

〈

∪c : c⊆g< : f
∪
◦ c ◦g

〉

.

Proof As remarked in lemma 124, the relation R◦c◦S is a retangle, for all points c

and all relations R and S ; so this is also true of f
∪
◦ c ◦g . This olletion of retangles

overs f
∪
◦g sine
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f
∪
◦g

= { g = g< ◦g and saturation axiom: (16) }

f
∪
◦ 〈∪c : c⊆g< : c〉 ◦g

= { distributivity }

〈∪c : c⊆g< : f
∪
◦ c ◦g〉 .

To show that the funtion 〈c : c⊆g< : f
∪
◦ c ◦g〉 is an indexed set of ompletely disjoint

retangles, we apply lemma 132. First, if c⊆g<
, the retangle f

∪
◦ c ◦g is non-empty

sine

f
∪
◦ c ◦g = ⊥⊥

⇒ { monotoniity }

(f∪ ◦ c ◦g)> = ⊥⊥
= { domains }

(f< ◦ c ◦g)> = ⊥⊥
= { f<=g<

and c⊆g< }

(c◦g)> = ⊥⊥
⇒ { monotoniity }

((c◦g)> ◦g
∪)> = ⊥⊥

= { domains }

(c ◦g ◦g
∪)> = ⊥⊥

= { g ◦g
∪ = g<

and c⊆g< }

c = ⊥⊥
= { c is a point }

false .

That is,

〈

∀c : c⊆g< : f
∪

◦ c ◦g 6= ⊥⊥
〉

.(134)

Also, assuming that c⊆g<
and c 6=c ′ , we have:

(f∪ ◦ c ◦g)∪ ◦ (f∪ ◦ c ′ ◦g)

= { distributivity, c= c∪ }
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g
∪
◦ c ◦ f ◦ f

∪
◦ c ′ ◦g

= { assumption: f ◦ f
∪ = g< }

g
∪
◦ c ◦g< ◦ c ′ ◦g

= { c⊆g< }

g
∪
◦ c ◦ c ′ ◦g

= { assumption: c 6= c ′ , (17) with a,a ′ := c,c ′ }

⊥⊥ .

That is,

〈

∀ c,c ′ : c⊆g< : c 6= c ′ ⇒ (f
∪

◦ c ◦g)
∪

◦ (f
∪

◦ c ′ ◦g)=⊥⊥
〉

.(135)

An almost idential argument shows that

〈

∀ c,c ′ : c⊆g< : c 6= c ′ ⇒ (f
∪

◦ c ◦g) ◦ (f
∪

◦ c ′ ◦g)
∪

=⊥⊥
〉

.(136)

Applying lemma 132 with R := 〈c : c⊆g< : f
∪
◦ c ◦g〉 , properties (134), (135) and (136)

establish that f
∪
◦g is indeed an indexed set of ompletely disjoint retangles.

✷

We now establish the onverse of lemma 133. (The proof is quite long beause of all

the details that need to be heked.)

Lemma 137 Suppose relation R is the supremum of a ompletely disjoint set of

retangles. Then

〈

∃ f,g : f ◦ f
∪

= f< = g ◦g
∪

= g< : R = f
∪
◦g

〉

.

Proof Suppose R is a ompletely disjoint set of retangles indexed by the set K .

Suppose also that R=∪R . De�ne the relations f and g by, for all k in K and all

points a suh that a⊆R<
,

k◦⊤⊤◦a ⊆ f ≡ a ◦ (R.k)< = a ,(138)

and, for all k in K and all points b suh that b⊆R>

k◦⊤⊤◦b ⊆ g ≡ (R.k)> ◦b = b .(139)

Both f and g are funtional. For example, here is the proof that f is funtional: for

all j and k in K ,
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j◦⊤⊤◦k ⊆ f ◦ f
∪

= { saturation axiom: (16) and irreduibility: (20) }

〈∃a :: j◦⊤⊤◦a ⊆ f ∧ a◦⊤⊤◦j ⊆ f
∪〉

= { (138) and onverse }

〈∃a :: a ◦ (R.j)< = a ∧ a ◦ (R.k)< = a〉
⇒ { oreexives }

(R.j)< ∩ (R.k)< 6= ⊥⊥ .

So

j◦⊤⊤◦k ⊆ f ◦ f
∪

= { f ◦ f
∪

is symmetri (i.e. j◦⊤⊤◦k ⊆ f ◦ f
∪ ≡ k◦⊤⊤◦j ⊆ f ◦ f

∪

) }

j◦⊤⊤◦k ⊆ f ◦ f
∪

∧ k◦⊤⊤◦j ⊆ f ◦ f
∪

⇒ { above (applied twie, one with j,k :=k,j ) }

(R.j)< ∩ (R.k)< 6= ⊥⊥ ∧ (R.k)< ∩ (R.j)< 6= ⊥⊥
= { R is a ompletely disjoint set of retangles, de�nition 130 }

j=k .

That is, by the saturation axiom and the de�nition of IK , f ◦ f
∪ ⊆ IK .

Both f and g are also surjetive. For suppose k is in K . Then

true

= { de�nition 130 with j :=k }

R.k 6=⊥⊥
= { saturation axiom: (16) }

〈∃a :: a ◦ (R.k)< = a〉
= { (138) }

〈∃a :: k◦⊤⊤◦a ⊆ f〉
⇒ { a and k are points, so k=k◦⊤⊤◦k=k◦⊤⊤◦a◦⊤⊤◦k }

k ⊆ f ◦ f
∪

.

That is, by the saturation axiom, IK ⊆ f ◦ f
∪

.

Combining the funtionality of f with its surjetivity, we onlude that f ◦ f
∪ = IK .

Similarly, g ◦g
∪ = IK . So we have onstruted relations f and g suh that

f ◦ f
∪

= f< = IK = g ◦g
∪

= g< .(140)



81

We now have to show that R = f∪ ◦g . A �rst step is to show that f>=R<
and g>=R>

.

We have, for all points a ,

a⊆R<

= { R=∪R }

a ⊆ (∪R)<

= { distributivity }

a ⊆ 〈∪k :: (R.k)<〉
= { irreduibility of points }

〈∃k :: a⊆ (R.k)<〉
= { oreexives }

〈∃k :: a ◦ (R.k)< = a〉
= { (138) }

〈∃k :: k◦⊤⊤◦a ⊆ f〉
= { domains }

a⊆ f< .

We onlude by the saturation axiom (16) that f>=R<
. Again, the property g>=R>

is

proved similarly. It follows that

(f∪ ◦g)>

= { domains }

(f< ◦g)>

= { (140) (spei�ally, f<=g<
) }

g>

= { above }

R> .

Similarly, (f∪ ◦g)<=R<
. So, for all points a and b suh that a⊆R<

and b⊆R>
,

a ◦ f
∪
◦g ◦b

= { saturation axiom: (16) and distributivity }

〈∪k : k⊆ f< ∧ k⊆g< : a ◦ f
∪
◦k ◦g ◦b〉

= { (140) }
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〈∪k : k∈K : a ◦ f
∪
◦k ◦g ◦b〉

= { all-or-nothing: theorem 11 }

〈∪k : a◦⊤⊤◦k⊆ f∪ ∧ k◦⊤⊤◦b⊆g : a◦⊤⊤◦k◦k◦⊤⊤◦b〉
= { assumption: a⊆R<

and b⊆R>
; (138) and (139), and k is a point }

〈∪k : a ◦ (R.k)< = a ∧ (R.k)> ◦b = b : a◦⊤⊤◦b〉
= { a is a point, so a ◦ (R.k)< = a ∨ a ◦ (R.k)< = ⊥⊥

b is a point, so (R.k)> ◦b = b ∨ (R.k)> ◦b = ⊥⊥
range disjuntion and ⊥⊥ is least }

〈∪k :: a ◦ (R.k)< ◦⊤⊤ ◦ (R.k)> ◦b〉
= { domains and R.k is a retangle: de�nition 123 }

〈∪k :: a ◦R.k ◦b〉
= { R= 〈∪k ::R.k〉 and distributivity }

a◦R◦b .

We onlude that R = f∪ ◦g by the saturation property (19).

✷

Theorem 141 A relation R is the supremum of a set of ompletely disjoint retangles

if and only if

〈

∃ f,g : f ◦ f
∪

= f< = g ◦g
∪

= g< : R = f
∪

◦g
〉

.

Proof \If" is lemma 133 and \only-if" is lemma 137.

✷

In terms of the mental piture of a relation R as the supremum of a set of ompletely

disjoint retangles, the set of vertial and the set of horizontal sides eah de�nes a per

on the soure and target of the relation. These two pers are the relations R≺
and R≻

(de�ned by (96) and (97)). Formally, we have:

Lemma 142 Suppose R , f and g are relations suh that

f ◦ f
∪

= f< = g ◦g
∪

= g< ∧ R = f
∪

◦g .

Then

R≺ = f≻ = f
∪

◦ f = R ◦R
∪

∧ R≻ = g≻ = g
∪

◦g = R
∪

◦R .

Proof Immediate appliation of lemmas 113 and 107.

✷
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5 Characterisations of Partial Equivalence Relations

The theorem we prove in this setion is that every partial equivalene relation is the

supremum of a set of disjoint squares. Spei�ally, the goal of this setion is the proof

of the following haraterisation of pers:

Theorem 143 For all relations R , the following statements are equivalent:

(i) R is a per,

(ii) R is the supremum of an indexed set of disjoint squares,

(iii) 〈∃f : f ◦ f
∪ = f< : R = f∪ ◦ f〉 .

✷

An informal understanding of theorem 143 is that a per partitions its domain into

disjoint sets | ommonly alled equivalene lasses. Two ways of representing the

equivalene lasses are given by either |theorem 143(ii)| a set of disjoint squares or

|theorem 143(iii)| a funtional relation f whereby two points in the domain of a per

are in the same equivalene lass i� they are mapped to the same value by f . (There

are, of ourse, other ways of representing the lasses.)

The proof that 143(iii) implies 143(i) is straightforward. See lemma 94. The onverse

(143(i) implies 143(iii)) is also easy to prove. Thus 143(i) is equivalent to 143(iii). See

theorem 144.

To prove that both 143(i) and 143(iii) are equivalent to 143(ii), we �rst show that

143(ii) implies 143(i). See lemma 145. We omplete the proof by showing that 143(iii)

implies 143(ii). See lemma 150. (The equivalene then follows from the equivalene of

143(i) and 143(iii).)

5.1 Proof of the Characterisation Theorem

As outlined above, we begin with the proof that 143(i) is equivalent to 143(iii). Note

that ΓR ◦R>
is a funtional relation and thus witnesses the existential quanti�ation in

143(iii).

Theorem 144 A relation R is a per i� R = (ΓR ◦R>)∪ ◦ (ΓR ◦R>) .

Proof By mutual impliation. First, assume that R is a per. Then

R

= { assumption: R=R∪

, domains }
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R> ◦R

= { assumption: R is a per; theorem 108 and de�nition 95 }

R> ◦R\\R ◦R>

= { (89) with R,S :=R,R }

R> ◦ (ΓR)∪ ◦ ΓR ◦R>

= { onverse }

(ΓR ◦R>)∪ ◦ (ΓR ◦R>) .

The onverse is immediate from lemma 94.

✷

The next step is to show that 143(ii) implies 143(i).

Lemma 145 Suppose R is a bag of disjoint squares. Then ∪R is a per.

Proof We aim to apply theorem 93 with R :=∪R .

∪R ◦ (∪R)∪

= { distributivity }

〈∪ j,k :: R.j ◦ (R.k)∪〉
= { R is a bag of disjoint squares, so

R.j ◦ (R.k)∪ = ⊥⊥ ≡ R.j 6=R.k }

〈∪j :: R.j ◦ (R.j)∪〉
= { for all j , R.j is a square }

〈∪j :: R.j ◦⊤⊤ ◦ (R.j)∪ ◦R.j ◦⊤⊤ ◦ (R.j)∪〉
= { for all j , R.j 6=⊥⊥ ; one rule }

〈∪j :: R.j ◦⊤⊤ ◦ (R.j)∪〉
= { for all j , R.j is a square }

〈∪j ::R.j〉
= { de�nition }

∪R .

That is, ∪R = ∪R ◦ (∪R)∪ . Applying theorem 93, we onlude that ∪R is a per.

✷

The �nal step is to show that 143(iii) implies 143(ii). We aim to use lemma 133. In

order to do so, we make use of the fat that 143(iii) and 143(i) are equivalent.
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Lemma 146 Suppose R is a per and suppose f and g are suh that

f ◦ f
∪

= f< = g ◦g
∪

= g< ∧ R = f
∪

◦g .

Then f
∪
◦ f = R = g∪

◦g .

Proof

f
∪
◦ f

= { domains }

f
∪
◦ f< ◦ f

= { assumption: f< = g ◦g∪

}

f
∪
◦g ◦g

∪
◦ f

= { onverse }

f
∪
◦g ◦ (f∪ ◦g)∪

= { assumption: R = f∪ ◦g }

R ◦R
∪

= { assumption: R is a per, theorem 93 }

R .

Thus f
∪
◦ f = R . The dual statement R = g∪

◦g is proved similarly.

✷

Lemma 147 Suppose R=∪R where R is an indexed bag of ompletely disjoint

retangles and suppose R is a per. Then R is an indexed bag of disjoint squares.

Proof We exploit theorem 93. That is, we assume that R = R∪
◦R . Then

R
∪
◦R

= { R=∪R }

(∪R)∪ ◦∪R
= { distributivity }

〈∪ j,k :: (R.j)∪ ◦R.k〉
= { domains }

〈∪ j,k :: (R.j)∪ ◦ (R.j)< ◦ (R.k)< ◦R.k〉
= { R is a bag of ompletely disjoint retangles
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so (R.j)< ◦ (R.k)< = ⊥⊥ ⇐ R.j 6=R.k ;
range splitting (on R.j=R.k and R.j 6=R.k ) }

〈∪ j,k : R.j=R.k : (R.j)∪ ◦ (R.j)< ◦ (R.k)< ◦R.k〉
= { Leibniz, idempoteny of set union }

〈∪k :: (R.k)∪ ◦ (R.k)< ◦ (R.k)< ◦R.k〉
= { domains }

〈∪k :: (R.k)∪ ◦R.k〉 .

That is,

R
∪

◦R =
〈

∪k :: (R.k)∪ ◦R.k
〉

.(148)

Also, for all k ,

(R.k)< ◦R

= { R=∪R and distributivity }

〈∪j :: (R.k)< ◦R.j〉
= { (R.k)< ◦ (R.j)< = ⊥⊥ ⇐ R.j 6=R.k

range splitting (see above) }

(R.k)< ◦R.k
= { domains }

R.k .

Together with its dual, we thus have, for all k ,

(R.k)< ◦R = R.k = R ◦ (R.k)> .(149)

Hene, for all k ,

R.k
= { (149) }

R ◦ (R.k)>

= { R = R∪
◦R }

R
∪
◦R ◦ (R.k)>

= { (148) }

〈∪j :: (R.j)∪ ◦R.j〉 ◦ (R.k)>
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= { distributivity, (R.k)< ◦ (R.j)< = ⊥⊥ ⇐ R.j 6=R.k
range splitting (see above) }

(R.k)∪ ◦R.k ◦ (R.k)>

= { domains }

(R.k)∪ ◦R.k .

That is, for all k , R.k = (R.k)∪ ◦R.k . Applying theorem 93, for all k , R.k is a per,

and hene symmetri. It is also a retangle and a symmetri retangle is a square. We

onlude that R is a bag of disjoint squares.

✷

Lemma 150 Suppose f is suh that

f ◦ f
∪

= f< .

Then the relation f
∪
◦ f is the supremum of an indexed set of disjoint squares.

Proof This an instane of lemmas 133 and 147. From lemma 133 (with g := f ), f∪ ◦ f is

the supremum of a set of ompletely disjoint retangles. But f
∪
◦ f is a per. (See lemma

94.) So, by lemma 147, f
∪
◦ f is the supremum of a set of ompletely disjoint squares.

✷

This ompletes the proof of theorem 143. We have shown that 143(i) and 143(iii) are

equivalent (theorem 144), that 143(ii) implies 143(i) (lemma 145) and 143(iii) implies

143(ii) (lemma 150).

5.2 Unicity of Characterisations

The haraterisation of a per in the form f
∪
◦ f where f is a funtional relation is not

unique. The haraterisation is sometimes desribed as being \essentially" unique or

sometimes as unique \up to isomorphism". This is made preise by theorem 151:

Theorem 151 Suppose R is a per and suppose f and g are funtional relations suh

that R = f
∪
◦ f = g

∪
◦g . Then f∼=g .

Proof We have

f ◦g
∪
◦ (f ◦g∪)∪

= { onverse }

f ◦g
∪
◦g ◦ f

∪



88

= { assumption: f
∪
◦ f = g

∪
◦g }

f ◦ f
∪
◦ f ◦ f

∪

= { assumption: f is funtional, i.e. f ◦ f
∪ = f< }

f< .

That is,

f ◦g
∪

◦ (f ◦g
∪

)
∪

= f< .(152)

Similarly,

(f ◦g
∪

)
∪
◦ f ◦g

∪

= g< .(153)

Also,

g>

= { domains }

(g∪
◦g)>

= { assumption: f
∪
◦ f = g

∪
◦g }

(f∪ ◦ f)>

= { domains }

f> .

That is,

f> = g> .(154)

Hene,

f

= { domains }

f< ◦ f

= { (152) }

f ◦g
∪
◦ (f ◦g∪)∪ ◦ f

= { properties of onverse }

f ◦g
∪
◦g ◦ f

∪
◦ f

= { assumption: f
∪
◦ f = g

∪
◦g }
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f ◦g
∪
◦g ◦g

∪
◦g

= { assumption: g is funtional, i.e. g ◦g
∪ = g< }

f ◦g
∪
◦g .

Applying de�nition 82 with R,S,φ,ψ := f , g , f ◦g
∪

, g>
, we onlude that f ∼= g . (Prop-

erties (152) and (153) are the required properties of φ ; property (154) together with

straightforward properties of the right-domain operator establish the required properties

of ψ .)

✷

It is important to note that theorem 151 assumes that there is at least one harater-

isation of per R by a funtional relation; it thus establishes that there is at most one

suh haraterisation (\up to isomorphism").

Uniqueness \up to isomorphism" is a ommon phenomenon. We see it again, for

example, in the haraterisation of difuntional relations by means of a pair of funtional

relations: setion 6.2 shows that there is at most one haraterisation whilst setion 6.3

shows that there is at least one (in fat, that there are several). Dealing with this

phenomenon an be awkward. See the de�nition of the \ore" of a relation in setion

7.3.

5.3 Decomposition of Provisional Preorders

In this setion, we exploit the haraterisation of pers, in partiular the equivalene of

theorem 143(i) and 143(iii), to show how a provisional preorder is deomposed into a

per and a provisional ordering of the per's equivalene lasses. (This generalises the

well-known deomposition of a preorder into an equivalene relation and an ordering on

the equivalene lasses.)

We assume that T is a provisional preorder. That is, by de�nition 114 and lemma

118,

T< = T> ∧ T< ⊆ T ∧ T> ⊆ T ∧ T ◦T ⊆ T .(155)

Also, by lemma 120,

T ∩T∪

= T≺ = T≻ .(156)

Theorem 157 Suppose T is a provisional preorder and assume that f partitions

T ∩T∪

as presribed by theorem 143(iii). ( T ∩T∪

is a per by (156).) That is,

f ◦ f
∪

= f< ∧ f
∪

◦ f = T ∩T∪

.(158)

Then the relation f ◦T ◦ f
∪

is a provisional ordering and T = f∪ ◦ (f ◦T ◦ f
∪) ◦ f .
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Proof The equation T = f∪ ◦ (f ◦T ◦ f
∪) ◦ f is easily proved:

T

= { per domains }

T≺ ◦T ◦T≻

= { (156) }

(T ∩T∪) ◦T ◦ (T ∩ T∪)

= { (158) }

f
∪
◦ f ◦T ◦ f

∪
◦ f .

We now prove that f ◦T ◦ f
∪

is a provisional ordering. It is transitive:

f ◦T ◦ f
∪
◦ f ◦T ◦ f

∪

= { (156), (158) and per domains }

f ◦T ◦T ◦ f
∪

⊆ { assumption: T is transitive; monotoniity }

f ◦T ◦ f
∪

.

It is provisionally reexive:

(f ◦T ◦ f
∪)< ⊆ f ◦T ◦ f

∪

⇐ { [ (R◦S)< ⊆ R< ] with R,S := f , T ◦ f
∪

}

f< ⊆ f ◦T ◦ f
∪

= { (158) }

f ◦ f
∪ ⊆ f ◦T ◦ f

∪

= { domains }

f ◦ f> ◦ f
∪ ⊆ f ◦T ◦ f

∪

⇐ { monotoniity }

f> ⊆ T

⇐ { [ R> = I ∩ R∪
◦R ] }

f
∪
◦ f ⊆ T

= { by (158), f
∪
◦ f = T ∩T∪

; in�ma }

true .
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Finally, it is anti-symmetri:

f ◦T ◦ f
∪ ∩ (f ◦T ◦ f

∪)∪

= { onverse }

f ◦T ◦ f
∪ ∩ f ◦T∪

◦ f
∪

⊆ { modularity rules: (3) and (4) }

f ◦ (f∪ ◦ f ◦T ◦ f
∪
◦ f ∩ T

∪) ◦ f∪

= { (156), (158) and per domains }

f ◦ (T ∩T∪) ◦ f∪

= { (158) }

f ◦ f
∪
◦ f ◦ f

∪

⊆ { (158) and domains }

I .

✷

Fig. 4 (page 65) illustrates theorem 157: as mentioned earlier, the square boxes

depit the equivalene lasses and the arrows onneting the boxes depit the provisional

ordering.

As we shall see, theorem 157 establishes that all provisional preorders are \blok-

ordered". See example 228.
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6 Difunctional Relations

This setion is where our study of difuntional relations and blok-ordered relations

begins.

As Riguet remarked, difuntional relations generalise both funtional relations [Rig48℄

and pers [Rig50, \quasi-equivalenes"℄ in the sense that a difuntional relation is hara-

terised by a pair of funtional relations whilst a per is haraterised by a single funtional

relation (theorem 143); equivalently, a difuntional relation is a union of ompletely dis-

joint retangles whilst a per is the union of disjoint squares (theorem 143). See theorems

161 and 163. We present several di�erent alulational proofs of theorem 161 in setion

6.3 using both point-free and pointwise alulations, with a view to gaining insight into

the eÆay and aesthetis of the alulational method. Note that, although the proofs

are quite di�erent, the onstruted haraterisations are essentially the same, as is made

preise in setion 6.2. Theorem 163 is a straightforward ombination of theorem 161 and

the (already-proven) theorem 141.

The \difuntional losure" of a relation is the smallest difuntional relation that is a

superset of a given relation. Its de�nition and properties, given in setion 6.4, involve

the appliation of standard tehniques of Galois onnetions and �xed-point alulus; as

suh, it is inluded here for ompleteness.

Whereas the \difuntional losure" of a relation is a superset of the relation, the

\diagonal" of a relation is a subset of the relation. The \diagonal" of a relation is

introdued in setion 7. (Reall the mental piture, depited in �g. 2, of the \diagonal"

of the \stairase" relation depited in �g. 1.)

Both the \diagonal" and the \difuntional losure" (\fermeture difontionelle") are

due to Riguet [Rig50, Rig51℄; our ontribution is partly historial |giving true redit to

the original publiations| , partly to make the onstrutions more aessible to modern

readers, but primarily as an appliation of the alulational method.

6.1 Formal Definition and Characterisation

In this subsetion we give the formal de�nition of a \difuntional relation" and state the

theorem (theorem 161) that we prove in subsetion 6.3. Theorem 161 uses the notion

of a \haraterisation" of a difuntional relation; this notion is also introdued in this

subsetion.

Formally, relation R is difuntional equivales

R ◦R
∪

◦R ⊆ R .(159)

As for pers, there are several equivalent de�nitions of \difuntional". We begin with the

simplest:
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Theorem 160 For all R , the following statements are all equivalent.

(i) R is difuntional (i.e. R ◦R
∪
◦R ⊆ R ) ,

(ii) R = R ◦R
∪
◦R ,

(iii) R≻ = R
∪
◦R ,

(iv) R≺ = R ◦R
∪

,

(v) R = R∩ (R\R/R)∪ .

Proof For the equivalene of (i) and (ii), we �rst observe that, for all R ,

R ⊆ R ◦R
∪

◦R

sine

R ⊆ R ◦R
∪
◦R

⇐ { R> ⊆ R
∪
◦R and monotoniity }

R = R ◦R>

= { domains }

true .

That (i) and (ii) are equivalent thus follows from the anti-symmetry of the subset relation.

For the equivalene of (i) and (iii), we again begin by observing a property that holds

for all R , namely

R
∪

◦R ⊇ R≻ .

The proof is as follows:

R
∪
◦R ⊇ R≻

= { de�nition: (96) }

R
∪
◦R ⊇ R> ◦R\\R

= { anellation: (90) }

R
∪
◦R ◦R\\R ⊇ R> ◦R\\R

⇐ { monotoniity }

R
∪
◦R ⊇ R>

⇐ { de�nition 42 }

true .
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We now prove that the opposite inlusion follows from (i).

R
∪
◦R ⊆ R≻

= { de�nition: (96) }

R
∪
◦R ⊆ R> ◦R\\R

⇐ { R> ◦R
∪ = R∪

and monotoniity }

R
∪
◦R ⊆ R\\R

= { R
∪
◦R is symmetri, R\\R = R\R∩ (R\R)∪ }

R
∪
◦R ⊆ R\R

⇐ { fators }

R ◦R
∪
◦R ⊆ R .

Thus, by anti-symmetry, (iii) follows from (i). But

R≻ = R
∪
◦R

⇒ { Leibniz }

R ◦R≻ = R ◦R
∪
◦R

= { per domains }

R = R ◦R
∪
◦R .

That is, (iii) implies (ii) whih, as we have shown, is equivalent to (i). We onlude, by

mutual impliation, that (iii) and (i) are equivalent.

The equivalene of (i) and (iv) is obtained by instantiating R to R
∪

.

The proof that (v) is equivalent to (159) is straightforward:

R = R∩ (R\R/R)∪

= { de�nition of in�mum }

R ⊆ (R\R/R)∪

= { onverse and fators }

R ◦R
∪
◦R ⊆ R .

✷

The equivalene of 160(i) and 160(ii) is well-known and due to Riguet [Rig48℄; the

equivalene of 160(i), (iii) and (iv) is due to Voermans [Voe99℄. De�nition (159) is the

most useful when it is required to establish that a partiular relation is difuntional,

whereas properties 160(ii)-(iv) are more useful when it is required to exploit the fat

that a partiular relation is difuntional.
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In order to relate this formal de�nition to the informal mental piture, an important

step on the way is to haraterise difuntional relations via a pair of funtional relations.

Reall that a relation R is said to be funtional i� R ◦R∪ = R<
(where R<

denotes the

left domain of R : see de�nition 42). We use lower ase letters f , g , h and k to denote

funtional relations. The theorem is the following.

Theorem 161 (Characterisation Theorem) For all relations R ,

R is difuntional ≡
〈

∃ f,g : f ◦ f
∪

= f< = g ◦g
∪

= g< : R = f
∪

◦g
〉

.

✷

Theorem 161 |whih is due to Riguet [Rig50℄| is key to establishing the property

that difuntional relations are exatly the relations that �t the mental piture shown in

�g. 2 of a olletion of ompletely disjoint retangles. Later, we say that difuntional

relations are \haraterised" by a pair of funtional relations. The formal de�nition is

as follows.

Definition 162 A haraterisation (of a difuntional relation) is a pair of funtional

relations with the same target (but possibly di�erent soures). A minimal harateri-

sation (of a difuntional relation) is a pair of relations f and g with the same target

suh that

f ◦ f
∪

= f< = g ◦g
∪

= g< .

That is, a minimal haraterisation is a pair of funtional relations with equal left do-

mains.

✷

The mental piture of a difuntional relation (�g. 2) is a set of ompletely disjoint

retangles. We an now make the piture preise.

Reall the de�nition of minimal haraterisations, de�nition 162. Theorem 141 ex-

presses the equivalene of minimal haraterisations with sets of ompletely disjoint

retangles. So, by ombining theorems 161 and 141, we have:

Theorem 163 A relation R is difuntional if and only if it is the supremum of a set

of ompletely disjoint retangles.

✷

The \minimality" requirement |the domain restritions on f and g| may be

omitted (\without loss of generality" in mathematial jargon). It is neessary, however,

to establishing the \essential" uniqueness of the haraterisation. (See theorem 166.)

Formally we have:



96

Lemma 164 Suppose f and g are funtional relations with the same target. Then

f
∪

◦g = (g< ◦ f)
∪

◦ (f< ◦g) .

Moreover, g< ◦ f and f< ◦g are funtional relations and

(g< ◦ f) ◦ (g< ◦ f)
∪

= (g< ◦ f)< = (f< ◦g) ◦ (f< ◦g)
∪

= (f< ◦g)< .

That is, the pair g< ◦ f and f< ◦g is a minimal haraterisation.

Proof We show that g< ◦ f is funtional as follows.

(g< ◦ f) ◦ (g< ◦ f)∪

= { assoiativity and onverse }

g< ◦ f ◦ f
∪
◦g<

= { f is funtional, so f ◦ f
∪ = f< }

g< ◦ f< ◦g<

= { oreexives ommute and are idempotent }

f< ◦g< .

Symmetrially,

(f< ◦g) ◦ (f< ◦g)
∪

= g< ◦ f< .

That is, f< ◦g is funtional. The lemma follows immediately from the fat that ompo-

sition of oreexives is symmetri and yields a oreexive.

✷

The haraterisation theorem for difuntional relations (theorem 161) has the on-

sequene that a difuntional relation divides its left and right domains into lasses that

are in (1{1) orrespondene.

Lemma 165 Suppose f and g are relations with ommon target C suh that

f ◦ f
∪

= f< = g ◦g
∪

= g< .

Then the funtions 〈X :: g
∪
◦ f ◦X ◦ f

∪
◦g〉 and 〈Y :: f

∪
◦g ◦Y ◦g

∪
◦ f〉 de�ne a (1{1) orre-

spondene between the lasses of the partial equivalene relations f
∪
◦ f and g

∪
◦g . That

is, for all c ,

〈

X :: g
∪

◦ f ◦X ◦ f
∪

◦g
〉

. (f
∪

◦ c ◦ f) = g
∪

◦ c ◦g

and

〈

Y :: f
∪

◦g ◦Y ◦g
∪

◦ f
〉

. (g
∪

◦ c ◦g) = f
∪

◦ c ◦ f .
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Proof The veri�ation of the �rst equality is as follows.

〈X :: g
∪
◦ f ◦X ◦ f

∪
◦g〉 . (f∪ ◦ c ◦ f)

= { de�nition of funtion appliation }

g∪
◦ f ◦ f∪ ◦ c ◦ f ◦ f∪ ◦g

= { assumption: f ◦ f
∪ = f< = g ◦g

∪ = g< }

g
∪
◦g< ◦ c ◦g< ◦g

= { domains }

true .

The seond equality is veri�ed in the same way.

✷

See also setion 7.3 for a more expliit formulation of lemma 165.

Warning Symmetry plaes a major rôle in reasoning about difuntional relations. (Obvi-

ously, R is difuntional equivales R
∪

is difuntional.) But our de�nition of \funtional"

is asymmetri and reets a right-to-left bias in our interpretation of relations as having

inputs and outputs. Jaoua et al [JMBD91℄ hoose a left-to-right interpretation: they

use the term \deterministi" to mean R
∪
◦R ⊆ I . Their formulation of theorem 161 is

orrespondingly di�erent. See also our earlier warning on \symmetri division". End of

Warning

The name \difuntional" is suggestive of theorem 161; Riguet's 1948 paper [Rig48,

Proposition 11℄ introdues the notion and gives a (natural-language-based) proof. Riguet's

1950 paper [Rig50℄ states that it is a generalisation of the theorem that a relation R is

a partial equivalene relation equivales R = f∪ ◦ f for some funtional relation f . Sine

then it appears to have beome a folklore theorem. Hutton and Voermans [GE92, lemma

39℄, for example, state the theorem but do not provide a proof nor an attribution. The

English text of [SS93, p.75℄ suggests that Shmidt and Str�ohlein may be aware of the the-

orem but they also do not provide a proof. (They prove the easy \if" part of the theorem

but not the onverse; [SS93, Proposition 4.4.10℄ states that the haraterisation \may

be ahieved in essentially one fashion" (their emphasis) but the aompanying proof

atually establishes that the haraterisation an be ahieved in at most one fashion.

That is, if suh a haraterisation exists, it is unique \up to a bijetion".)

A theme of this setion is how to formalise di�erent proofs of theorem 161. One issue

is whether or not the so-alled \power transpose" of a relation, espoused by Freyd and

�

S�edrov [Fv90℄ and Bird and De Moor [BdM97℄, is suÆiently expressive. A seond issue

is the extent to whih pointwise (as opposed to point-free) reasoning is desirable.

Setion 6.2 sets the sene. The proof of theorem 161 is an \if-and-only-if" proof and

the setion begins with the (trivial) proof of the \if" part. The main task is thus to give
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an expliit onstrution of a haraterisation of a given difuntion (the \only-if" part).

A formal theorem |theorem 166| states that although the details of the proof may

be di�erent, the onstruted haraterisations are formally equivalent (in a way made

preise by the theorem). A very informal outline of several di�erent ways of making the

onstrution is then given.

The informal aount in setion 6.2 is made preise in setions 6.3.1 and 6.3.2; the

former proves theorem 161 by showing how to onstrut a set of \retangles" that \ov-

ers" a given difuntional relation whilst the latter presents a onstrution in terms of the

\power transpose" of the given relation. Setion 6.3.3 gives a third method of proving

theorem 161 that exploits theorem 143. As already remarked |see theorem 163| no

matter how a haraterisation is onstruted, it de�nes a \ompletely disjoint overing"

of the given difuntion.

6.2 Different Proofs, Identical Characterisations

The proof of theorem 161 is by mutual impliation. Follows-from is straightforward.

Assume

〈

∃ f,g : f ◦ f
∪

= f< = g ◦g
∪

= g< : R = f
∪

◦g
〉

.

Then

R ◦R
∪
◦R

= { assumption and onverse }

f
∪
◦g ◦g

∪
◦ f ◦ f

∪
◦g

= { assumption: f ◦ f
∪ = g< = g ◦g

∪

}

f
∪
◦g< ◦g< ◦g

= { g< ◦g = g , and R = f∪ ◦g }

R .

The muh more demanding task |whih oupies all of subsetion 6.3| is to establish

the existene of a (minimal) haraterisation of a given difuntion. The theorem that

there is at most one (up to isomorphism) is the following.

Theorem 166 Suppose f and g are relations suh that

f ◦ f
∪

= f< = g ◦g
∪

= g< .

Suppose also that h and k are relations suh that

h ◦h
∪

= h< = k ◦k
∪

= k< .
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Suppose further that

f
∪

◦g = h
∪

◦k .

Then

f∼=h ∧ g∼=k .

Proof Our task is to onstrut witnesses φ and ψ satisfying de�nition 82 (with

R,S := f,h and R,S :=g,k ). De�ne φ by φ = f ◦h∪

. We prove that

φ ◦φ
∪

= f< ∧ φ
∪

◦φ = h< .(167)

(In words, φ is a bijetion with left domain the ommon left domain of f and g , and

right domain the ommon left domain of h and k .) The proof is as follows.

φ ◦φ
∪

= { de�nition, onverse }

f ◦h∪
◦h ◦ f∪

= { assumption: h< = k ◦k
∪

}

f ◦h
∪
◦k ◦k

∪
◦h ◦ f

∪

= { assumption: f
∪
◦g = h

∪
◦k }

f ◦ f
∪
◦g ◦g

∪
◦ f ◦ f

∪

= { assumption: f ◦ f
∪ = f< = g ◦g

∪

}

f<

and

φ
∪
◦φ

= { de�nition, onverse }

h ◦ f
∪
◦ f ◦h

∪

= { assumption: f< = g ◦g
∪

}

h ◦ f
∪
◦g ◦g

∪
◦ f ◦h

∪

= { assumption: f
∪
◦g = h

∪
◦k (used twie) }

h ◦h
∪
◦k ◦k

∪
◦h ◦h

∪

= { assumption: h ◦h
∪ = h< = k ◦k

∪

}

h< .
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We now prove that f=φ◦h .

φ◦h

= { de�nition }

f ◦h
∪
◦h

= { assumption: h< = k ◦k
∪

}

f ◦h
∪
◦k ◦k

∪
◦h

= { assumption: f
∪
◦g = h

∪
◦k (used twie) }

f ◦ f
∪
◦g ◦g

∪
◦ f

= { assumption: f ◦ f
∪ = f< = g ◦g

∪

}

f .

It follows that

f = φ ◦h ◦h> ∧ h> = f> .(168)

The ombination of (167) and (168) (together with straightforward properties of h>
)

establishes that φ and h>
witness the isomorphism f∼=h . The property g∼=k is

proved similarly.

✷

As the name \funtional" suggests, the only-if part of theorem 161 is established by

de�ning a type C , for eah a in the left domain of R , a point f.a in C , and, for eah

point b in the right domain of R , a point g.b in C . The requirement is that, f.a and

g.b are equal exatly when a and b are related by R . Fig. 5 shows three di�erent but

isomorphi (in the sense of theorem 166) haraterisations of the relation depited in �g.

2.

In the top-left �gure, the type C is the set of retangles (relations of type A∼B )
de�ned by the relation R : the funtional relation f maps a point a in the left domain

of R to the retangle de�ned by a and, similarly, the funtional relation g maps a

point b in the right domain of R to the retangle de�ned by b . If a and b are points

related by R , the retangles f.a and g.b are equal; if a and b are not related by R ,

the retangles f.a and g.b are not equal (and, in fat, they are \ompletely disjoint"

in the sense that there are no points ommon to their sides).

In the top-right �gure, the type C is a set of squares of type B∼B and, in the

bottom-left �gure the type C is a set of squares of type A∼A . In the ase of the top-

right �gure, the funtional relation g maps point b to the square de�ned by b . The

de�nition of f is more ompliated: for a point a in the left domain of R , the value

of f.a is the square de�ned by some point b suh that a and b are points related by
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Figure 5: Three Di�erent (but Isomorphi) Charaterisations

R . The de�nitions of f and g are similar in the ase of the bottom-left �gure. (Just

interhange the rôles of a and b .)

Of ourse, a \square" is de�ned by a \side" of the square. So there is a fourth and a

�fth way of representing a difuntional relation as a pair of funtional relations: the type

C an be de�ned to be the set of subsets of the left domain of R or the set of subsets

of the right domain of R and, in eah ase, appropriate de�nitions of f and g must be

onstruted.

As mentioned earlier, all of these haraterisations are the same | in the sense made

preise by theorem 166.

6.3 The Characterisation Theorem

As illustrated by �g. 5, there are three di�erent ways to approah the proof

4

of theorem

161. The top-right and bottom-left �gures are \dual" in the sense that one depits

a homogeneous relation on the target of the given relation whilst the other depits a

homogeneous relation on the soure of the given relation. The top-left �gure is more

attrative beause it does not exhibit any bias towards the soure or target of the given

relation. Setion 6.3.1 presents suh an unbiased proof of theorem 161 whilst setion

4

Stritly, the \only-if" part of the proof. Reall from setion 6.2 that the \if" part is trivial.
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6.3.2 presents the dual proofs. Setion 6.3.3 gives yet another proof based on exploiting

theorem 143.

6.3.1 The Rectangle Proof

A relation R is a partial equivalene relation exatly when R ◦R
∪ = R ; the \lasses" of R

are the squares R ◦a ◦R
∪

where a is a point suh that a⊆R . A relation R is a difuntion

exatly when R ◦R
∪
◦R = R . By analogy and type onsiderations, this suggests that, if

a⊆R<
, the retangle de�ned by a is given by R ◦R

∪
◦a ◦R ; similarly, if b⊆R>

, the

retangle de�ned by b is given by R ◦b ◦R
∪
◦R . This is the key to the proof.

Lemma 169 Suppose R of type A∼B is difuntional. Then, for all points a and b ,

a◦⊤⊤◦b ⊆ R ⇒ R ◦R
∪

◦a ◦R = R ◦b ◦R
∪

◦a ◦R = R ◦b ◦R
∪

◦R .

Proof Assume R is difuntional. Assume also that a◦⊤⊤◦b ⊆ R . Then

R ◦b ◦R
∪
◦R

= { b is a point }

R ◦b ◦b ◦R
∪
◦R

⊆ { assumption: a◦⊤⊤◦b ⊆ R , lemma 57 }

R ◦b ◦R
∪
◦a ◦R ◦R

∪
◦R

⊆ { R is difuntional }

R ◦b ◦R∪
◦a ◦R .

That is,

R ◦b ◦R
∪

◦R ⊆ R ◦b ◦R
∪

◦a ◦R .

By a symmetri argument

R ◦R
∪

◦a ◦R ⊆ R ◦b ◦R
∪

◦a ◦R .

But, sine a is a point (and thus oreexive),

R ◦b ◦R
∪

◦a ◦R ⊆ R ◦b ◦R
∪

◦R .

Symmetrially,

R ◦b ◦R
∪

◦a ◦R ⊆ R ◦R
∪

◦a ◦R .

The lemma follows by the anti-symmetry of equality.

✷
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The \only-if" part of theorem 161 is a onsequene of lemma 169. Spei�ally, suppose

R is difuntional. Let C be the set of subsets of the relation R de�ned as follows:

C =
{
a : a⊆R< : R ◦R

∪

◦a ◦R
}
.

(The dummy a ranges over points.) Note that C=C ′
where

C ′ =
{
b : b⊆R> : R ◦b ◦R

∪

◦R
}

sine

{a : a⊆R< : R ◦R
∪
◦a ◦R}

= { domains }

{a : 〈∃b :: a◦R◦b = a◦⊤⊤◦b〉 : R ◦R
∪
◦a ◦R}

= { range disjuntion }

{a,b : a◦R◦b = a◦⊤⊤◦b : R ◦R
∪
◦a ◦R}

= { assumption: R is difuntional; lemma 169 }

{a,b : a◦R◦b = a◦⊤⊤◦b : R ◦b ◦R
∪
◦R}

= { range disjuntion and domains (as in �rst two steps) }

{b : b⊆R> : R ◦b ◦R
∪
◦R} .

De�ne f and g by, for all points a suh that a⊆R<
and all points b suh that b⊆R>

,

f.a = R ◦R
∪

◦a ◦R ∧ g.b = R ◦b ◦R
∪

◦R .(170)

Then, by de�nition, f and g are both funtional, and surjetive onto C and C ′
,

respetively. That is |exploiting the fat that C and C ′
are equal|

f ◦ f
∪

= IC = g ◦g
∪

.

We must now show that R = f∪ ◦g . Guided by the de�nitions of f and g , we alulate

that:

R ◦R
∪
◦a ◦R = R ◦b ◦R

∪
◦R

⇒ { Leibniz }

R ◦R
∪
◦a ◦R ◦R

∪ = R ◦b ◦R
∪
◦R ◦R

∪

⇒ { assumption: R is difuntional (thus so too is R
∪

),

R< ⊆ R ◦R
∪

}

R< ◦a ◦R< ⊆ R ◦b ◦R
∪
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= { assumption: a⊆R< }

a ⊆ R ◦b ◦R
∪

= { lemma 57 }

a◦⊤⊤◦b ⊆ R

⇒ { assumption: R is difuntional; lemma 169 }

R ◦R
∪
◦a ◦R = R ◦b ◦R

∪
◦R .

We onlude (by mutual impliation) that

R ◦R
∪
◦a ◦R = R ◦b ◦R

∪
◦R ≡ a◦⊤⊤◦b ⊆ R .

But, by the de�nitions of f and g and the de�nition of funtion appliation,

R ◦R
∪

◦a ◦R = R ◦b ◦R
∪

◦R ≡ a◦⊤⊤◦b ⊆ f
∪

◦g .

Thus R = f∪ ◦g by the saturation axiom: (16).

6.3.2 The Power-Transpose Construction

Realling �g. 5 one again, two alternative |but dual| ways of proving theorem 161

are to onstrut funtional relations that return square relations. Equivalently, one

an onstrut funtional relations that return the \side" of suh a square, i.e. a subset

of the soure or, dually, a subset of the target of the given difuntional relation. In

this setion, we present suh a onstrution using the power transpose funtion. The

proof was obtained by revising the proof given by Jaoua et al [JMBD91℄ in a way that

eliminated the unneessary assumption that R is homogeneous. One omponent of the

haraterisation is the relation ΓR ◦R
∪

. Sine this is not obviously funtional, we need a

lemma to show that it is.

Lemma 171 For all relations R ,

R is difuntional ≡ ΓR ◦R
∪ ⊆ Γ(R ◦R

∪

) ◦R< .

Proof

ΓR ◦ R
∪ ⊆ Γ(R ◦R

∪) ◦R<

= { domains (spei�ally, R
∪
◦R< = R∪

) }

ΓR ◦ R
∪ ⊆ Γ(R ◦R

∪)

= { ΓR is a total funtion; shunting rule }

R
∪ ⊆ (ΓR)∪ ◦ Γ(R ◦R

∪)
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= { lemma 87 }

R
∪ ⊆ R\(R ◦R

∪) ∩ ((R ◦R
∪)\R)∪

= { onverse is an order isomorphism, fators }

R ◦R
∪ ⊆ R ◦R

∪

∧ R ◦R
∪
◦R ⊆ R

= { de�nition }

R is difuntional .
✷

Corollary 172 For all difuntional relations R ,

(ΓR ◦R
∪

) ◦ (ΓR ◦R
∪

)
∪

= ΓR ◦ R> ◦ (ΓR)
∪

.

In partiular, if R is difuntional, ΓR ◦R
∪

is funtional.

Proof The proof is by mutual inlusion. First, for all relations R ,

(ΓR ◦R
∪) ◦ (ΓR ◦R

∪)∪

= { onverse }

ΓR ◦ R
∪
◦R ◦ (ΓR)∪

⊇ { R
∪
◦R ⊇ R>

, monotoniity }

ΓR ◦ R> ◦ (ΓR)∪ .

Seond, for all difuntional relations R ,

ΓR ◦ R
∪
◦R ◦ (ΓR)∪ ⊆ ΓR ◦ R> ◦ (ΓR)∪

⇐ { assumption: R is difuntional; lemma 171 }

Γ(R ◦R
∪) ◦R< ◦ (Γ(R ◦R

∪))∪ ⊆ ΓR ◦ R> ◦ (ΓR)∪

= { Γ(R ◦R
∪) is a total funtion, shunting : (85), and (89) }

R< ⊆ (R ◦R
∪)\\R ◦ R> ◦ ((R ◦R

∪)\\R)∪

⇐ { domains (spei�ally R< ⊆ R ◦R
∪

and R = R ◦R>
) }

R ◦R> ◦R
∪ ⊆ (R ◦R

∪)\\R ◦ R> ◦ ((R ◦R
∪)\\R)∪

⇐ { monotoniity and onverse }

R ⊆ (R ◦R
∪)\\R

= { assumption: R is difuntional

as in last two steps of proof of lemma 171 }

true .
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✷

Theorem 173 Suppose R is a difuntional relation. Then the relations ΓR ◦ R
∪

and

ΓR ◦ R>
are both funtional. Moreover,

(ΓR ◦R
∪

) ◦ (ΓR ◦R
∪

)
∪

= (ΓR ◦R>) ◦ (ΓR ◦R>)
∪

and

R = (ΓR ◦R
∪

)
∪

◦ (ΓR ◦R>) .

That is, these two relations ful�ll the requirements of f and g in theorem 161.

Dually, the relations Γ(R∪) ◦R and Γ(R∪) ◦R<
are both funtional. Moroever,

(Γ(R
∪

) ◦R<) ◦ (Γ(R
∪

) ◦R<)
∪

= (Γ(R
∪

)◦R) ◦ (Γ(R
∪

)◦R)
∪

and

R = (Γ(R
∪

) ◦R<)
∪

◦ (Γ(R
∪

) ◦R) .

That is, these two funtions also ful�ll the requirements of f and g theorem 161.

Proof That ΓR ◦ R>
is funtional is immediate from the fat that ΓR is a total funtion

(by de�nition) and R>
is a subset of the identity relation. That ΓR ◦R

∪

is funtional

was shown in orollary 172. It remains to prove the �nal equation.

(ΓR ◦R
∪)∪ ◦ (ΓR ◦R>)

= { onverse }

R ◦ (ΓR)∪ ◦ ΓR ◦R>

= { (89) }

R ◦R\\R ◦R>

= { lemma 90 }

R ◦R>

= { domains }

R .

The dual theorem is obtained by instantiating R to R
∪

(and noting that R is difuntional

equivales R
∪

is difuntional) and simplifying.

✷
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Theorem 144 is an instane of theorem 173. In order to show that this is the ase, it

is neessary to prove that, for a per R ,

ΓR ◦ R
∪

= ΓR ◦ R> .

This is done as follows:

ΓR ◦ R
∪ = ΓR ◦ R>

= { R is a per, so R
∪=R ; lemma 92 }

ΓR ◦R ⊆ ΓR ◦ R>

⇐ { ΓR is funtional }

R ⊆ (ΓR)∪ ◦ ΓR ◦ R>

= { lemma 87 }

R ⊆ R\\R ◦ R>

= { de�nition 95 and theorem 108 }

true .

6.3.3 The Per Construction

The third method of proving theorem 161 exploits theorem 144. We owe the onstrution

to Winter [Win04℄.

The basis for the onstrution is the onstrution of a per from a difuntional relation:

Lemma 174 For all relations R , R ◦R
∪

is a per if R is difuntional.

Proof Suppose R is difuntional. We exploit theorem 93:

R ◦R
∪

is a per

= { theorem 93 with R := R ◦R
∪

and onverse }

R ◦R
∪ = R ◦R

∪
◦R ◦R

∪

⇐ { Leibniz }

R = R ◦R
∪
◦R

= { theorem 160 }

R is difuntional.

✷
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Suppose now that R is difuntional. Exploiting lemma 174 ombined with theorem

143,

〈

∃f : f ◦ f
∪

= f< : R ◦R
∪

= f
∪

◦ f
〉

.(175)

Suppose therefore that f ◦ f
∪ = f< and R ◦R

∪ = f∪ ◦ f . De�ne the relation g by

g = f◦R .(176)

Then

g ◦g
∪

= { (176) and onverse }

f ◦R ◦R
∪
◦ f

∪

= { (175) }

f ◦ f
∪
◦ f ◦ f

∪

= { (175) }

f< ◦ f<

= { f< is a oreexive }

f< .

It follows that g< = g ◦g
∪

. Thus

f ◦ f
∪

= f< = g< = g ◦g
∪

.(177)

Moreover,

f
∪
◦g

= { (176) }

f
∪
◦ f ◦R

= { R ◦R
∪ = f∪ ◦ f }

R ◦R
∪
◦R

= { R is difuntional: theorem 160 }

R .

Combined with (177), we have thus shown that

〈

∃ f,g : f ◦ f
∪

= f< = g ◦g
∪

= g< : R = f
∪

◦g
〉

(178)
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as required to prove the only-if part of theorem 161.

Winter does not prove theorem 144; instead he assumes the theorem is valid. It

is interesting to ompare the details of Winter's onstrution with the funtionals on-

struted in theorem 173. Applying the instantiation R := R ◦R
∪

in theorem 144 and

simplifying, Winter's onstrution yields

R = (Γ(R ◦R
∪

) ◦R<)
∪

◦ (Γ(R ◦R
∪

) ◦R) .

This is, of ourse, an isomorphi haraterisation of R in the sense of theorem 166.

Realling our earlier informal aount of how to prove the theorem, the onstrution

orresponds in essene to the bottom-left �gure of �g. 5.

6.4 Difunctional Closure

Beause a difuntional relation is a pre�x point of a monotoni funtion (the funtion

〈X :: X ◦X
∪
◦X〉 ) �xed-point alulus predits that the least pre�x point

〈

µX :: R ∪ X ◦X
∪

◦X
〉

is the least difuntional relation that inludes R | the difuntional losure of R . More

preisely,

〈

µX :: R ∪ X ◦X
∪

◦X
〉

is difuntional

and

〈

∀S : S ◦S
∪

◦S ⊆ S : R⊆S ≡
〈

µX :: R ∪ X ◦X
∪

◦X
〉

⊆ S
〉

.

(The general theorem is that, if f is a monotoni endofuntion on a omplete lattie,

the funtion f⋆ de�ned by

f⋆.x = 〈µy :: x⊔ f.y〉

has the property that

〈∀y : f.y⊑y : x⊑y ≡ f⋆.x ⊑ y〉 .

The straightforward proof is left to the reader. Examples inlude the transitive losure

and the reexive-transitive losure of a relation. See [Ba02℄ for an exposition of the

tehniques involved.)

In this setion, we explore simpli�ations of the de�nition of difuntional losure.

The following theorem expresses the same result but in more familiar terms (spei�-

ally in terms of the reexive-transitive losure operator).
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Theorem 179 (Difunctional Closure) For all relations R ,

〈

µX :: R ∪ X ◦X
∪

◦X
〉

=
〈

µX :: R ∪ X ◦R
∪

◦X
〉

.

Hene,

〈

µX :: R ∪ X ◦X
∪

◦X
〉

= R ◦ (R
∪

◦R)∗ .

Also,

R ◦ (R
∪

◦R)∗ is difuntional

and

〈

∀S : S ◦S
∪

◦S ⊆ S : R⊆S ≡ R ◦ (R
∪

◦R)∗ ⊆ S
〉

.

(Thus 〈R :: R ◦ (R∪
◦R)∗〉 is the upper adjoint in a Galois onnetion (of the relations of a

given type and the difuntional relations of the same type) of the funtion that \forgets"

that a difuntional relation is indeed difuntional.)

Proof We establish the equality by mutual inlusion. We begin by noting that the

equality

〈

µX :: R ∪ X ◦R
∪

◦X
〉

= R ◦ (R
∪

◦R)∗

is an instane of (the possibly little known) exerise 67() in [Ba02℄. Also

〈µX :: R ∪ X ◦X
∪
◦X〉

= { diagonal rule of �xed-point alulus }

〈µX :: 〈µY :: R ∪ Y ◦X
∪
◦Y〉〉

= { [Ba02, exerise 67()℄ }

〈µX :: R ◦ (X∪
◦R)∗〉 .

So

〈µX :: R ∪ X ◦X
∪
◦X〉 ⊆ 〈µX :: R ∪ X ◦R

∪
◦X〉

= { above }

〈µX :: R ◦ (X∪
◦R)∗〉 ⊆ R ◦ (R∪

◦R)∗

⇐ { �xed-point indution }

R ◦ ((R ◦ (R∪
◦R)∗)∪ ◦R)∗ ⊆ R ◦ (R∪

◦R)∗

= { properties of onverse }
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R ◦ ((R∪
◦R)∗ ◦R

∪
◦R)∗ ⊆ R ◦ (R∪

◦R)∗

⇐ { Leibniz and reexivity of the subset relation }

((R∪
◦R)∗ ◦R

∪
◦R)∗ = (R∪

◦R)∗

= { properties of reexive-transitive losure }

true .

For the onverse, we have:

〈µX :: R ∪ X ◦R
∪
◦X〉 ⊆ 〈µX :: R ∪ X ◦X

∪
◦X〉

= { for brevity, let rhs denote 〈µX :: R ∪ X ◦X
∪
◦X〉 }

〈µX :: R ∪ X ◦R
∪
◦X〉 ⊆ rhs

⇐ { �xed-point indution }

R ∪ rhs ◦R∪
◦ rhs ⊆ rhs

= { �xed-point omputation and de�nition of rhs }

R ∪ rhs ◦R∪
◦ rhs ⊆ R ∪ rhs ◦ rhs∪ ◦ rhs

⇐ { monotoniity }

R ⊆ rhs

= { �xed-point omputation and de�nition of rhs }

true .

✷

Theorem is observed by Jaoua et al [JMBD91, Proposition 4.12℄ but is expressed

using the de�nition of S∗ as the sum of powers of S . Their (inomplete) proof uses

indution over the natural numbers. Just as the notion of the \di��erene" of a relation

is due to Riguet [Rig51℄, theorem 179 is also due to Riguet [Rig50℄. He alls the relation

R ◦ (R∪
◦R)+ the \difuntional losure" (\fermeture difontionelle") of R . Note the dif-

ferene. This suggests that there is a mistake in Riguet's de�nition or in theorem 179.

In fat, both are orret:

Lemma 180 For arbitrary relation R ,

R ⊆ R ◦R
∪

◦R .

It follows that, for all relations R ,

R ◦ (R
∪
◦R)+ = R ◦ (R

∪
◦R)∗ .

Proof We have:
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R ◦R
∪
◦R

⊇ { monotoniity }

R ◦ (I ∩ R∪
◦R)

⊇ { modularity rule: (3) }

R◦I ∩ R
= { I is identity of omposition, in�mum is idempotent }

R .

So,

R ◦ (R∪
◦R)+ = R ◦ (R∪

◦R)∗

= { �xed-point omputation and distributivity }

R ◦ (R∪
◦R)+ = R ◦ (R∪

◦R)+ ∪ R
= { supremum }

R ⊆ R ◦ (R∪
◦R)+

⇐ { �xed-point omputation and distributivity }

R ⊆ R ◦R∪
◦R

= { above }

true .

✷
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7 The Diagonal

This setion antiipates the study of blok-ordered relations in setion 9. We intro-

due the notion of the \diagonal" of a relation in setion 7.1 and formulate some basi

properties in setion 7.2. We then introdue the notion of a \non-redundant", \polar"

overing of a relation by retangles in setion 8. We prove that every relation has a polar

overing but that not every relation has a non-redundant polar overing. Our de�nition

of \non-redundany" does not prelude the possibility that elements of a overing are

dupliated: a \polar overing" is a bag of retangles, and not neessarily a set, in the

sense of de�nition 129. This is remedied in setion 8.1 where we show that every relation

has an injetive polar overing. The key to doing so is the notion of the \ore" of a

relation introdued in setion 7.3. Finally, in setion 8.2, we explore onditions under

whih the diagonal of the relation guarantees the non-redundany of the overing.

The prinipal driving fore behind the investigation reported in this setion was to

gain a full understanding of Riguet's \analogie frappante" (theorem 262) whih exploits

polar overings to link the notion of the diagonal of a relation with the notion of being

blok-ordered. However, on the way, several results were obtained that are independent of

Riguet's \analogie". The idea of reduing a relation to its \ore" disussed in setion 7.3

stands out. The germs of this idea were sown by Voermans' [Voe99℄ introdution of the

left-per-domain

≺
and right-per-domain

≻
operators. (See de�nition 95.) Some of the

theorems in this setion, for example theorem 205, have their origins in Riguet's study

of difuntional relations [Rig50℄. (See the referene to an \appliation biunivoque".)

However, we have to admit to being too lazy to try to properly understand Riguet's

theorems and so are unable to give a preise orrespondene.

7.1 Definition and Examples

Straightforwardly from the de�nition of fators, properties of onverse and set interse-

tion,

R is difuntional ≡ R = R∩ (R\R/R)
∪

.(181)

More generally, we have:

Lemma 182 For all R , R∩ (R\R/R)∪ is difuntional.

Proof Let S denote R∩ (R\R/R)∪ . We have to prove that S is difuntional. That is,

by de�nition,

S ◦S
∪

◦S ⊆ S .
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Sine the right side is an intersetion, this is equivalent to

S ◦S
∪

◦S ⊆ R ∧ S ◦S
∪

◦S ⊆ (R\R/R)
∪

.

The �rst is (almost) trivial:

S ◦S
∪
◦S

⊆ { S⊆R , S⊆ (R\R/R)∪ ,

onverse, monotoniity }

R ◦R\R/R ◦R

⊆ { anellation }

R .

In the above alulation, the trik was to replae the outer ourrenes of S on the

left side by R and the middle ourrene by (R\R/R)∪ . The replaement is done the

opposite way around in the seond alulation.

S ◦S
∪
◦S ⊆ (R\R/R)∪

⇐ { S⊆ (R\R/R)∪ , S⊆R , monotoniity and transitivity }

(R\R/R)∪ ◦R
∪
◦ (R\R/R)∪ ⊆ (R\R/R)∪

= { onverse }

R\R/R ◦R ◦R\R/R ⊆ R\R/R

= { Galois onnetion }

R ◦R\R/R ◦R ◦R\R/R ◦R ⊆ R

= { anellation, monotoniity and transitivity }

true .

✷

In order to reet the mental piture of a difuntional relation, we all the relation

R∩ (R\R/R)∪ the diagonal of R ; Riguet [Rig51℄ alls it the \di��erene" of the relation.

(Riguet's de�nition does not use fators but is equivalent.)

Definition 183 (Diagonal) The diagonal of relation R is the relation R∩ (R\R/R)∪ .

For brevity, R∩ (R\R/R)∪ will sometimes be denoted by ∆R .

✷

Many readers will be familiar with the deomposition of a preorder into a partial

ordering on a set of equivalene lasses. The diagonal of a preorder T is the equivalene

relation T ∩T∪

. More generally:
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Example 184 The diagonal of a provisional preorder T is T ∩ T∪

. This is beause,

for an arbitrary relation T ,

T ∩ (T\T/T)
∪

= T ∩ T< ◦ (T\T/T)
∪

◦T> .

But, if T is a provisional preorder,

T< ◦ (T\T/T)
∪

◦T> = T
∪

.

(See lemmas 115 and 118.)

✷

For readers familiar with algorithmi graph theory (ayli graphs, topologial or-

derings, strongly onneted omponents), we inlude a running example. (See examples

185, 229.) Briey, a �nite graph an be represented by a homogeneous relation G on its

nodes: the relation holds between nodes a and b if there is an edge from a to b . The

(reexive, transitive) relation G∗
holds between nodes a and b if there is a path from

a to b . See [BDGv22, BDGv21℄ for full details.

Example 185 A partiular instane of example 184 is if G is the edge relation of a

�nite graph. Then ∆(G∗) is G∗∩ (G∪)∗ , the relation that holds between nodes a and b

if there is a path from a to b and a path from b to a in the graph. Thus ∆(G∗) is the

equivalene relation that holds between nodes that are in the same strongly onneted

omponent of G.

✷

Example 186 In this example, we onsider three versions of the less-than relation: the

homogeneous less-than relation on integers, whih we denote by <ZZ , the homogeneous

less-than relation on real numbers, whih we denote by <IR , and the heterogeneous less-

than relation on integers and real numbers, whih we denote by ZZ<IR . Spei�ally, the

relation ZZ<IR relates integer m to real number x when m<x (using the onventional

over-loaded notation). We also subsript the at-most symbol ≤ in the same way in order

to indiate the type of the relation in question.

The diagonal of the less-than relation on integers is the predeessor relation (i.e. it

relates integer m to integer n exatly when n=m+1 ). This is beause <ZZ\<ZZ = ≤ZZ ,

and ≤ZZ/<ZZ relates integer m to integer n exatly when m≤ZZn+1 (where the sub-

sript ZZ indiates the type of the ordering). The diagonal is thus funtional and inje-

tive.

The diagonal of the less-than relation on real numbers is the empty relation. This

is beause <IR\<IR = ≤IR , ≤IR/<IR = ≤IR and <IR∩≥IR=⊥⊥IR . (Again, the subsript

indiates the type of the ordering.)
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The diagonal of the heterogeneous less-than relation ZZ<IR relates integer m to real

number x when m<x≤m+1 . This is equivalent to ⌈x⌉=m+1 . The diagonal is thus a

difuntional relation haraterised by |in the sense of theorem 161| the eiling funtion

〈x :: ⌈x⌉〉 and the suessor funtion 〈m :: m+1〉 .
We leave the reader to hek the details of this example. See also examples 212, 244

and 315, and theorem 319.

✷

The following example introdues a general mehanism for onstruting illustrative

examples of the onepts introdued later. The example exploits the observation that

∆R is injetive if the preorder R\R is anti-symmetri; that is, ∆R is injetive if R\R is a

partial ordering. (Equivalently, ∆R is funtional if R/R is a partial ordering.) We leave

the straightforward proof to the reader. (See setion 3.5 for the point-free de�nitions of

funtionality and injetivity.)

Example 187 Suppose X is a �nite type. We use dummy x to range over elements

of type X . Let S denote a subset of 2X . Let in denote the membership relation of

type X∼S . That is, if S is a subset of S , x◦⊤⊤◦S⊆ in exatly when x is an element

of the set S . The relation in\in is the subset relation of type S∼S .

(Conventionally, in is denoted by the symbol \∈ " and one writes x∈S instead of

x◦⊤⊤◦S⊆ in . Also, the relation in\in is onventionally denoted by the symbol \⊆ ". That

is, if S and S ′
are both elements of S , S◦⊤⊤◦S ′⊆ in\in exatly when S⊆S ′

. Were we

to adopt onventional pratie, the overloading of the notation that ours is likely to

ause onfusion, so we hoose to avoid it.)

The relation in\in is anti-symmetri. As a onsequene, ∆in is injetive. (Equiva-

lently, (∆in)∪ is funtional.) Spei�ally, for all x of type X and S of type S ,

x◦⊤⊤◦S ⊆ ∆in ≡ x◦⊤⊤◦S⊆ in ∧ 〈∀S ′ : x◦⊤⊤◦S ′⊆ in : S◦⊤⊤◦S ′⊆ in\in〉 ,
where dummy S ′

ranges over elements of S . Using onventional notation, the right side

of this equation is reognised as the de�nition of a minimum, and one might write

x [[∆in]] S ≡ S 〈MINS ′ :x∈S ′ :S ′〉
where the venturi tube \ " indiates an equality assuming the well-de�nedness of the

expression on its right side.

Fig. 6 shows a partiular instane. The set X is the set of numbers from 0 to 3 .

The set S is a subset of 2{0,1,2,3} ; the hosen subset and the relation in\in for this hoie

are depited by the direted graph forming the entral portion of �g. 6. The relation ∆in

of type X ∼S is depited by the undireted graph whereby the atoms of the relation

are depited as retangles. Note that the numbers 0 and 3 are not related by ∆in to

any of the elements of S . See example 264 for further disussion of this example.

✷
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1 2{0,1} {0,2}

{0,1,3} {0,2,3}

Figure 6: Diagonal of an Instane of the Membership Relation

7.2 Basic Properties

Primarily for notational onveniene, we note a simple property of the diagonal:

Lemma 188

(∆R)
∪

= ∆(R
∪

) .

Proof

(∆R)∪

= { de�nition and distributivity }

R
∪∩R\R/R

= { fators }

R
∪∩ (R∪

\R
∪

/R
∪)∪

= { de�nition }

∆(R∪) .

✷

A onsequene of lemma 188 is that we an write ∆R
∪

without ambiguity. This we

do from now on.

Very straightforwardly, the relation R ◦R
∪

is a per if R is difuntional. For a difun-

tional relation R , the relation R ◦R
∪

is the per representation of the left domain of R .

Symmetrially, R
∪
◦R is the per representation of the right domain of R . (See theorem

160, parts (iii) and (iv).) Thus ∆R ◦ (∆R)∪ is the per representation of the left domain

of the diagonal of R . The following lemma is the basis of the onstrution, in ertain

ases, of an eonomi representation of the diagonal of R and, hene, of R itself. See

de�nition 209 and theorems 218 and 222.
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Lemma 189 For all relations R ,

(∆R)≺ = (∆R)< ◦R≺ .

Dually,

(∆R)≻ = (∆R)> ◦R≻ .

Proof We prove the �rst equation by mutual inlusion. First,

(∆R)≺ ⊆ (∆R)< ◦R≺

= { ∆R is difuntional, theorem 160; de�nition: (96) }

∆R ◦∆R
∪ ⊆ (∆R)< ◦R//R

⇐ { domains and monotoniity }

∆R ◦∆R
∪ ⊆ R//R

= { de�nition of R//R , onverse and fators }

∆R ◦∆R
∪
◦R ⊆ R

= { ∆R⊆R ; ∆R∪⊆R\R/R and anellation }

true .

Seond,

(∆R)< ◦R≺ ⊆ (∆R)≺

= { ∆R is difuntional, theorem 160 }

(∆R)< ◦R≺ ⊆ ∆R ◦∆R
∪

⇐ { domains and de�nition: (96) }

∆R ◦∆R
∪
◦R//R ⊆ ∆R ◦∆R

∪

⇐ { monotoniity and onverse }

R//R ◦∆R ⊆ ∆R

= { de�nition of diagonal }

R//R ◦∆R ⊆ R ∧ R//R ◦∆R ⊆ (R\R/R)∪

⇐ { ∆R⊆R ; onverse }

R//R ◦R ⊆ R ∧ ∆R
∪
◦R//R ⊆ R\R/R

= { anellation; fators }

true ∧ R ◦∆R
∪
◦R//R ◦R ⊆ R
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⇐ { anellation and ∆R
∪ ⊆R\R/R }

R ◦R\R/R ◦R ⊆ R

= { anellation }

true .

The dual properties are obtained by instantiating R to R
∪

and simplifying using prop-

erties of onverse.

✷

The following orollary of lemma 189 proves to be ruial later: see the disussion

following lemma 259.

Lemma 190 For all relations R ,

(∆R)≺ = R≺ ≡ (∆R)< = R< .

Dually,

(∆R)≻ = R≻ ≡ (∆R)> = R> .

Proof The proof is by mutual impliation:

(∆R)< = R<

⇒ { lemma 189 and Leibniz }

(∆R)≺ = R< ◦R≺

= { dual of (101) }

(∆R)≺ = R≺

⇒ { Leibniz }

((∆R)≺)< = (R≺)<

= { dual of (101) with R :=∆R and R :=R }

(∆R)< = R< .

✷

7.3 Reduction to the Core

Suppose R is an arbitrary relation. Both R≺
and R≻

are pers so an be haraterised

by their equivalene lasses. Spei�ally, for a given R , suppose

R≺ = λ
∪

◦λ ∧ R≻ = ρ
∪

◦ρ
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where λ and ρ are funtional relations. (The existene of λ and ρ is guaranteed by

theorem 143.) Then

R = λ
∪

◦λ ◦R ◦ρ
∪

◦ρ .

The relation λ ◦R ◦ρ
∪

, whih we denote by |R| , is a relation on the equivalene lasses.

For a mental piture of suh a relation, refer to �g. 18 (page 199): the individual bloks

of the relation R beome points of the relation |R| .

Definition 191 (Core) Suppose R is an arbitrary relation and suppose

R≺ = λ
∪

◦λ ∧ R≻ = ρ
∪

◦ρ

where λ and ρ are funtional relations. Then the ore of R , whih is denoted by |R| ,

is de�ned by

|R| = λ ◦R ◦ρ
∪

.

✷

Example 192 Fig. 7 depits a relation (on the left) and its ore (on the right). Both

are depited as bipartite graphs. The relation R is a relation on blue and red nodes. Its

ore |R| is depited as a relation on squares of blue nodes and squares of red nodes, eah

square being an equivalene lass of R≺
(on the left) or of R≻

(on the right).

Figure 7: A Relation and Its Core

✷

Generally, in order to avoid the lutter that is evident in �g. 7, examples from now

on will almost invariably be of relations that are isomorphi to their ores. However,

this is not the ase for example 224 beause it has been hosen to illustrate some of the

limitations of the theory we develop.
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Lemma 193 Suppose R , λ and ρ are as in de�nition 191. Then

R = λ
∪

◦ |R| ◦ρ .

Proof

R

= { per domains: (98) }

R≺ ◦R ◦R≻

= { R≺ = λ∪
◦λ and R≻ = ρ∪

◦ρ }

λ
∪
◦λ ◦R ◦ρ

∪
◦ρ

= { de�nition 191 }

λ
∪
◦ |R| ◦ρ .

✷

As previously observed, there are several di�erent ways in whih a per an be written

as f
∪
◦ f for some funtional relation f . However, all are \isomorphi". (See theorem

151.) Correspondingly, there are several di�erent ways to onstrut a ore of a relation,

but all are \isomorphi" in the sense of de�nition 82:

Theorem 194 Suppose S0 and S1 are both ores of R . Then S0∼=S1 .

Proof Suppose, for i= 0 and i=1 , Si = λi ◦R ◦ρ
∪

i where R≺ = λ
∪

i
◦λi and R≻ = ρ

∪

i
◦ρi .

(That is, S0 and S1 are both ores of R .) Then

S0

= { assumption }

λ0 ◦R ◦ρ
∪

0

= { lemma 193 }

λ0 ◦λ
∪

1
◦S1 ◦ρ1 ◦ρ

∪

0 .

Applying de�nition 82 with f,g := λ0 ◦λ
∪

1 , ρ1 ◦ρ
∪

0 in ombination with theorem 151, we

onlude that S0∼=S1 .
✷

For later use, we alulate the left and right domains of the ore of a relation.

Lemma 195 Suppose R , λ and ρ are as in de�nition 191. Then

R< = λ> ∧ |R|< = λ< ∧ R> = ρ> ∧ |R|> = ρ< .

Proof We prove the middle two equations. First,
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R>

= { (101) }

(R≻)<

= { de�nition 191 }

(ρ∪
◦ρ)<

= { domains }

ρ> .

The dual equation, R< = λ>
, is proved similarly. Seond,

|R|<

= { de�nition 191 }

(λ ◦R ◦ρ
∪)<

= { R> = ρ>
(just proved) }

(λ ◦R ◦R>)<

= { domains }

(λ ◦R<)<

= { R< = λ>
(see above) }

λ< .

The �nal equation is also proved similarly.

✷

A distinguishing feature of the ore of a relation is that its left and right per-domains

equal its left and right domains, respetively.

Theorem 196 Suppose R , λ and ρ are as in de�nition 191. Then

|R|≻ = |R|> .(197)

Also,

|R|≺ = |R|< .(198)

Proof The proof of (197) has several (non-trivial) steps. First, we show that

|R|≻ = S∩S∪

(199)

where

S = ρ< ◦ (λ ◦R ◦ρ
∪

)\(λ ◦R ◦ρ
∪

) ◦ρ< .(200)

Then we simplify several subomponents of S . We have
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|R|≻

= { (96) and (101) }

|R|> ◦ |R|\\|R| ◦ |R|>

= { lemma 195 and de�nition 191 }

ρ< ◦ (λ ◦R ◦ρ
∪)\\(λ ◦R ◦ρ

∪) ◦ρ<

= { (88), onverse and distributivity of oreexives over in�ma }

ρ< ◦ (λ ◦R ◦ρ
∪)\(λ ◦R ◦ρ

∪) ◦ρ< ∩ (ρ< ◦ (λ ◦R ◦ρ
∪)\(λ ◦R ◦ρ

∪) ◦ρ<)∪

= { (200) }

S∩S∪

.

Next we show that

(λ ◦R ◦ρ
∪

)\(λ ◦R ◦ρ
∪

) = (R ◦ρ
∪

)\(R ◦ρ
∪

) .(201)

We have

(λ ◦R ◦ρ
∪)\(λ ◦R ◦ρ

∪)

= { fators }

(R ◦ρ
∪)\(λ\(λ ◦R ◦ρ

∪))

= { in order to anel the two ourrenes of λ ,

we aim to apply lemma 75

[ R\S = R\(R< ◦S) ] with R,S := R ◦ρ
∪

, λ\(λ ◦R ◦ρ
∪) }

(R ◦ρ
∪)\((R ◦ρ

∪)< ◦ λ\(λ ◦R ◦ρ
∪))

= { by lemma 195, (R ◦ρ
∪)< = R< = λ> }

(R ◦ρ
∪)\(λ> ◦ λ\(λ ◦R ◦ρ

∪))

= { lemma 75 with f,R := λ , λ ◦R ◦ρ
∪

}

(R ◦ρ
∪)\(λ∪

◦λ ◦R ◦ρ
∪)

= { λ
∪
◦λ = R≺

and R≺ ◦R = R }

(R ◦ρ
∪)\(R ◦ρ

∪) .

The next step is to show that

ρ< ◦ (R ◦ρ
∪

)\(R ◦ρ
∪

) = ρ ◦R\(R ◦ρ
∪

) .(202)

We have
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ρ< ◦ (R ◦ρ
∪)\(R ◦ρ

∪)

= { ρ< = ρ ◦ρ
∪

}

ρ ◦ρ
∪
◦ (R ◦ρ

∪)\(R ◦ρ
∪)

= { lemma 75 with f,R := ρ , (R ◦ρ
∪)\(R ◦ρ

∪) }

ρ ◦ρ> ◦ρ\((R ◦ρ
∪)\(R ◦ρ

∪))

= { domains and fators }

ρ ◦ (R ◦ρ
∪
◦ρ)\(R ◦ρ

∪)

= { ρ
∪
◦ρ = R≻

and R ◦R≻ = R }

ρ ◦R\(R ◦ρ
∪) .

We have thus proven (202). Now we show that

R\(R ◦ρ
∪

) ◦ρ< = R\R ◦ρ
∪

.(203)

We have

R\(R ◦ρ
∪) ◦ρ<

= { ρ< = ρ ◦ρ
∪

}

R\(R ◦ρ
∪) ◦ρ ◦ρ

∪

= { lemma 77 with R,S,f := R , R ◦ρ
∪

, ρ }

R\(R ◦ρ
∪
◦ρ) ◦ρ> ◦ρ

∪

= { ρ
∪
◦ρ = R≻

,

[ R ◦R≻ = R ] and [ R> ◦R
∪ = R∪

] with R :=ρ }

R\R ◦ρ
∪

.

We have thus proven (203). Now we put the above steps together:

ρ< ◦ (λ ◦R ◦ρ
∪)\(λ ◦R ◦ρ

∪) ◦ρ<

= { (201) }

ρ< ◦ (R ◦ρ
∪)\(R ◦ρ

∪) ◦ρ<

= { (202) }

ρ ◦R\(R ◦ρ
∪) ◦ρ<

= { (203) }

ρ ◦R\R ◦ρ
∪

.
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That is,

ρ< ◦ (λ ◦R ◦ρ
∪

)\(λ ◦R ◦ρ
∪

) ◦ρ< = ρ ◦R\R ◦ρ
∪

.(204)

So

|R|≻

= { (199) and (200) }

ρ< ◦ (λ ◦R ◦ρ
∪)\(λ ◦R ◦ρ

∪) ◦ρ< ∩ (ρ< ◦ (λ ◦R ◦ρ
∪)\(λ ◦R ◦ρ

∪) ◦ρ<)∪

= { (204) }

ρ ◦R\R ◦ρ
∪ ∩ (ρ ◦R\R ◦ρ

∪)∪

= { onverse }

ρ ◦R\R ◦ρ
∪ ∩ ρ ◦ (R\R)∪ ◦ρ

∪

= { see below }

ρ ◦R≻ ◦ρ
∪

= { R≻ = ρ∪
◦ρ }

ρ ◦ρ
∪
◦ρ ◦ρ

∪

= { ρ ◦ρ
∪ = ρ< = |R|> , oreexives }

|R|> .

The unproven middle step asserts that

ρ ◦R\R ◦ρ
∪ ∩ ρ ◦ (R\R)

∪

◦ρ
∪

= ρ ◦R≻ ◦ρ
∪

.

This is proved using the anti-symmetry of the subset relation. Note �rst that

ρ ◦R≻ ◦ρ
∪

= ρ ◦ (R\R∩ (R\R)
∪

) ◦ρ
∪

sine

ρ ◦R≻ ◦ρ∪

= { de�nition 95, (96) and (101) }

ρ ◦R> ◦ (R\R∩ (R\R)∪) ◦R> ◦ρ
∪

= { lemma 195 (in partiular, R>=ρ>
) }

ρ ◦ (R\R∩ (R\R)∪) ◦ρ∪

.
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So our task is to prove that

ρ ◦R\R ◦ρ
∪ ∩ ρ ◦ (R\R)

∪

◦ρ
∪

= ρ ◦ (R\R∩ (R\R)
∪

) ◦ρ
∪

.

We begin with the right side beause its inlusion in the left side is easy.

ρ ◦ (R\R∩ (R\R)∪) ◦ρ∪

⊆ { in�ma and monotoniity }

ρ ◦R\R ◦ρ
∪ ∩ ρ ◦ (R\R)∪ ◦ρ

∪

⊆ { modularity rules: (3) and (4) }

ρ ◦ (ρ∪
◦ρ ◦R\R ◦ρ

∪
◦ρ ∩ (R\R)∪) ◦ρ∪

= { R≻ = ρ∪
◦ρ }

ρ ◦ (R≻ ◦R\R ◦R≻ ∩ (R\R)∪) ◦ρ∪

⊆ { by de�nition 95 and monotoniity, R≻⊆R\R }

ρ ◦ (R\R ◦R\R ◦R\R ∩ (R\R)∪) ◦ρ∪

⊆ { R\R ◦R\R ◦R\R ⊆ R\R and monotoniity }

ρ ◦ (R\R∩ (R\R)∪) ◦ρ∪

.

This ompletes the proof of the middle step and, hene, of (197).

The proof of (198) involves instantiating (197). Sine R≺=(R∪)≻ and R≻=(R∪)≺ , we

an de�ne |R
∪

| to be ρ ◦R
∪
◦λ

∪

. Then

true

= { (197) }

|R
∪

|≻ = |R
∪

|>

= { de�nition of |R
∪

| }

(ρ ◦R
∪
◦λ

∪)≻ = (ρ ◦R
∪
◦λ

∪)>

= { onverse }

(λ ◦R ◦ρ
∪)≺ = (λ ◦R ◦ρ

∪)<

= { de�nition of |R| }

|R|≺ = |R|< .

✷

The diagonal of a relation is difuntional. A general property of the ore of a difun-

tion is the following.
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Theorem 205 Suppose R is difuntional. Then the ore of R is funtional and

injetive. Spei�ally, if R = f∪ ◦g where f ◦ f
∪ = f< = g ◦g

∪ = g<
, then

|R| ◦ |R|
∪

= f< ∧ |R|
∪

◦ |R| = g< .

Thus, if R is difuntional, its ore |R| de�nes a (1{1) orrespondene between the equiv-

alene lasses of R≺
and the equivalene lasses of R≻

.

Proof If R is difuntional, the haraterisation of difuntional relations given by

theorem 161 allows us to assume that R = f∪ ◦g where f ◦ f
∪ = f< = g ◦g

∪ = g<
. Then,

by lemma 142,

R≺ = f
∪

◦ f = R ◦R
∪

∧ R≻ = g
∪

◦g = R
∪

◦R .

So

|R| ◦ |R|
∪

= { de�nition 191 }

f ◦R ◦g
∪
◦g ◦R

∪
◦ f

∪

= { de�nition 191 }

f ◦R ◦R≻ ◦R
∪
◦ f

∪

= { per domains: (98) }

f ◦R ◦R
∪
◦ f

∪

= { f
∪
◦ f = R ◦R

∪

}

f ◦ f
∪
◦ f ◦ f

∪

= { f ◦ f
∪ = f< }

f< .

That is, |R| is funtional with left domain f< , (the oreexive representation of) the set

of equivalene lasses of R≺
. By symmetry, |R| is injetive with right domain g<

, (the

oreexive representation of) the set of equivalene lasses of R≻
.

✷

A relation that is both injetive and funtional establishes a (1{1) orrespondene

between the points of its left and right domains. If these points are ordered arbitrarily

but in suh a way that the ordering respets the orrespondene, and the relation is

depited by a graph whose axes depit the orderings of the domains, the relation will

form a subdiagonal of the graph. Thus the mental piture of the ore |R| of a difuntional

relation R is a subdiagonal of a graph; the mental piture of the (difuntional) relation
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R itself is a olletion of ompletely disjoint retanges arranged along the diagonal of a

graph. It follows from theorem 205 that the ore |∆R| of the diagonal of an arbitrary

relation R is funtional and injetive. The mental piture we have just skethed thus

applies to the diagonal ∆R ; this is the motivation for our hosen terminology.

Now we turn to properties of the diagonal of the ore of a relation.

Lemma 206 Suppose R , λ and ρ are as in de�nition 191. Then

R> ◦R\R/R ◦R< = ρ
∪

◦ |R|\|R|/|R| ◦λ .

Proof For brevity, the alulation introdues the abbreviation S for |R| .

R> ◦R\R/R ◦R<

= { (101) }

(R≻)> ◦R\R/R ◦ (R≺)<

= { R≺ = λ
∪
◦λ , R≻ = ρ

∪
◦ρ , and domains }

ρ> ◦R\R/R ◦λ>

= { lemma 193, S= |R| }

ρ> ◦ (λ∪
◦S ◦ρ)\(λ∪

◦S ◦ρ)/(λ∪
◦S ◦ρ) ◦λ>

= { lemma 78 with f,g,U,V,W :=ρ,λ,S,S,S }

ρ
∪
◦ (λ< ◦S)\S/(S ◦ρ<) ◦λ

= { S= |R| }

ρ
∪
◦ (λ< ◦ |R|)\|R|/(|R| ◦ρ<) ◦λ

= { |R| = λ ◦R ◦ρ
∪

; so λ< ◦ |R| = |R| = |R| ◦ρ< }

ρ
∪
◦ |R|\|R|/|R| ◦λ .

✷

Theorem 207 Suppose R , λ and ρ are as in de�nition 191. Then

∆R = λ
∪
◦∆|R| ◦ρ ∧ ∆|R| = λ ◦∆R ◦ρ

∪

.

Proof As in lemma 206, we abbreviate |R| to S .

∆R

= { de�nition }

R∩ (R\R/R)∪
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= { domains and onverse }

R ∩ (R> ◦R\R/R ◦R<)∪

= { S= |R| , lemma 206 }

R ∩ (ρ∪
◦S\S/S ◦λ)∪

= { S= |R| , lemma 193 }

λ
∪
◦S ◦ρ ∩ (ρ∪

◦S\S/S ◦λ)∪

= { distributivity of onverse and funtional relations }

λ
∪
◦ (S∩ (S\S/S)∪) ◦ρ

= { de�nition 183, S= |R| }

λ
∪
◦∆|R| ◦ρ .

Hene

λ ◦∆R ◦ρ
∪

= { above }

λ ◦λ
∪
◦∆|R| ◦ρ ◦ρ

∪

= { λ and ρ are funtional }

λ< ◦∆|R| ◦ρ<

= { ∆|R|⊆ |R| ; so (∆|R|)< ⊆ |R|< and (∆|R|)> ⊆ |R|>

lemma 195 and domains }

∆|R| .
✷

Theorem 207 may have pratial importane for very large datasets. In appliations

where omputing the diagonal of a relation R is required it may be more eÆient to

�rst redue it to its ore |R| instead of omputing the diagonal diretly. This of ourse

requires omputing partitionings of R≺
and R≻

. The task of determining whether or

not a given relation an be blok-ordered is an example: see theorem 265.

Small examples that one enounters in the literature typially have the property that

R= |R| , in order to avoid unneessary lutter. The same is true for the onrete examples

that we present here. See the disussion following theorem 265.

The �nal theorem in this setion is motivated by theorem 205. The diagonal of an

arbitrary relation R is difuntional, so theorem 205 (with R :=∆R ) states that |∆R|

|the ore of the diagonal of R| de�nes a (1{1) onnetion between the equivalene

lasses of (∆R)≺ and (∆R)≻ . Theorem 208 is a slightly weaker property of ∆|R| |the

diagonal of the ore of R| in relation to the per domains R≺
and R≻

.
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Theorem 208 Suppose R , λ and ρ are as in de�nition 191. Then

∆|R| ◦∆|R|
∪ ⊆ λ< ∧ ∆|R|

∪

◦∆|R| ⊆ ρ< .

That is, ∆|R| de�nes a (1{1) orrespondene between a subset of the equivalene lasses

of R≺
(spei�ally, the points in |R|< ) and a subset of the equivalene lasses of R≻

(the

points in |R|> ).

Proof

∆|R| ◦∆|R|
∪

= { theorem 207 and onverse }

λ ◦∆R ◦ρ
∪
◦ρ ◦∆R

∪
◦λ

∪

= { de�nition 191 }

λ ◦∆R ◦R≻ ◦∆R
∪
◦λ

∪

= { domains }

λ ◦∆R ◦ (∆R)> ◦R≻ ◦∆R
∪
◦λ

∪

= { lemma 189 and per domains: (98) }

λ ◦∆R ◦∆R
∪
◦λ

∪

= { ∆R is difuntional, theorem 160 with R :=∆R }

λ ◦ (∆R)≺ ◦λ
∪

⊆ { lemma 189 }

λ ◦R≺ ◦λ
∪

= { de�nition 191 }

λ ◦λ
∪
◦λ ◦λ

∪

= { λ is funtional, i.e. λ ◦λ
∪ = λ<

, domains }

λ< .

The fat that ∆|R| is funtional follows from the fat that λ is funtional (and, of

ourse, the transitivity of the subset relation). The property that ∆|R|
∪

is injetive is

the onverse dual.

✷
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8 Polar Coverings

This setion is, at �rst sight, a detour from the study of the diagonal of a relation. We

introdue the notion of a \polar overing" of a relation R and show that every relation

has suh a overing. See theorem 211. In a sense, theorem 211 is a generalisation of

theorem 163 (the theorem that every difuntional relation is the supremum of a set of

ompletely disjoint retangles). The relevane to the diagonal of a relation beomes

learer when we study \non-redundant" polar overings in setion 8.2.

Definition 209 (Polar Covering) Suppose R is an indexed bag of retangles. (See

de�nition 129.) Then R is said to be polar if, for all elements U and V of R ,

U< ⊆ V< ≡ U> ⊇ V> .

Also, R is said to be linear if, for all elements U and V of R ,

U< ⊆ V< ∨ V< ⊆ U< .

(Equivalently,

U> ⊆ V> ∨ V> ⊆ U>
.)

A relation R is overed by R if R=∪R . The overing R is non-redundant if there

is a total funtion D from indies of R to a set of ompletely disjoint subretangles of

∪R that \de�nes" the elements of R . To be preise, the overing R is non-redundant

if there is a funtion D with the same soure as R suh that

〈∀k :: rectangle.(D.k) ∧ D.k⊆R.k〉
∧ 〈∀ j,k :: D.j 6=D.k ≡ (D.j)<∩ (D.k)< = ⊥⊥ ∧ (D.j)>∩ (D.k)> = ⊥⊥〉
∧ 〈∀ j,k :: D.j=D.k ≡ R.j=R.k〉 .

In suh a ase, we all the indexed bag D a de�niens of R .

✷

Definition 210 Suppose R is a polar overing of relation R . The polar ordering of

the elements of R , denoted heneforth by the symbol ⊑ , is de�ned by, for all indies j

and k of R ,

R.j ⊑ R.k ≡ (R.j)< ⊆ (R.k)< .

Equivalently,

R.j ⊑ R.k ≡ (R.k)> ⊆ (R.j)> .

✷
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As suggested by the notation, the relation ⊑ is a provisional ordering on the elements

of any indexed bag of relations; it is anti-symmetri whenever R is an indexed bag of

polar retangles by virtue of lemma 125 and de�nition 209 of \polar".

De�nition 209 de�nes an indexed bag of retangles rather than an indexed set of

retangles. (Reall that a set is an injetive bag: see de�nition 129.) This is beause it is

easier to onstrut a bag rather than a set of polar retangles that over a given relation.

Nevertheless, (indexed) sets are more desirable than (indexed) bags. The proess we use

to onstrut suh sets is to �rst onstrut a bag and then show how to redue the bag

to a set. See theorem 215. Note that a de�niens D of an indexed set R is also a set

(beause R.j=R.k equivales j=k ).

The adjetive \polar" alludes to the property that the left and right domains of a

overing are \polar" opposites: the larger the one, the smaller the other. The notion was

introdued by Riguet [Rig51℄ in the ontext of a theorem on \relations de Ferrers". More

preisely, Riguet introdued the notion of a linear polar overing. For further details of

Riguet's theorem see setion 11.

As we shall see, Riguet's theorem is straightforward. The following, equally straight-

forward theorem, is a generalisation of the \only-if" part of the theorem.

Theorem 211 Suppose R is a relation of type A∼B . De�ne the funtion R by

R = 〈b : b⊆R> : R ◦b ◦R\R〉 .

Then R is a polar overing of R .

Proof The elements of R are obviously retangles beause its index set is a set of

points. (See lemma 124.) The property

R = 〈∪b : b⊆R> : R ◦b ◦R\R〉

is immediate from the saturation axiom (16), distributivity and anellation.

The \polar" property is established as follows. For all b , b ′
suh that b⊆R>

and

b ′⊆R>
,

(R ◦b ′ ◦R\R)> ⊆ (R ◦b ◦R\R)>

= { assumption: b⊆R>
and b ′⊆R>

, domains }

(b ′ ◦R\R)> ⊆ (b ◦R\R)>

= { lemma 60 with R,a,a ′ := R\R ,b ,b ′ }

b◦⊤⊤◦b ′ ⊆ (R\R)/(R\R)

= { (30) }

b◦⊤⊤◦b ′ ⊆ R\R
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= { lemma 60 }

(R◦b)< ⊆ (R◦b ′)<

= { I⊆R\R , domains }

(R ◦b ◦R\R)< ⊆ (R ◦b ′ ◦R\R)< .

✷

Example 212 The less-than relation on real numbers has a polar overing. Speif-

ially, suppose x is a real number. Let lt.x denote {y :y∈IR :y<x} and al.x denote

{y :y∈IR :x≤y} . Theorem 211 predits that

{x : x∈IR : lt.x ◦⊤⊤ ◦al.x}

is a polar overing of the less-than relation. (The only non-trivial part is to hek that

the at-most relation ≤ equals <\< .)

This overing is, of ourse, not unique. More signi�antly, it is not non-redundant

sine

〈

∀u,v : u<x≤ v : x 6= 1
2
(u+x) ∧ u< 1

2
(u+x)≤ v

〉

.

For any real number x , it is possible to remove the retangle de�ned by x without

a�eting the supremum.

✷

Given the straightforwardness of theorem 211, it is inevitable that our fous is not

on the polarity of overings but on the existene of non-redundant overings. The

adjetive \non-redundant" is meant to express the property that removal of any element

from a overing R will have the e�et of stritly reduing ∪R . (Removal of an element

may involve removing several elements of K sine there is no requirement that R is

injetive.) Example 212 demonstrates that the less-than relation on real numbers has a

polar overing but, as we shall see, the less-than relation on real numbers is an example

of a relation for whih there is no non-redundant overing.

The notation \D " in de�nition 209 is hosen primarily to express the property that

D.k uniquely \de�nes" (or \identi�es") R.k . Conveniently, it also expresses the prop-

erty that the relation overed by a de�niens (the relation ∪D ) is always difuntional:

see theorem 163.

A polar overing is not obviously redundant in the sense that, for all elements U

and V of R ,

U⊆V ≡ U=V .
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(The easy proof is left to the reader.) That is, it is not possible to identify two elements

U and V suh that U is a proper subset of V and, thus, U an be removed from R
without a�eting ∪R . Example 212 shows that the less-than relation on real numbers

has a polar overing that has non-obvious redundanies. Example 213 is an example of a

�nite relation for whih the polar overing onstruted by theorem 211 has a non-obvious

redundany.

Example 213 Fig. 8 shows a relation R of type {A,B,C}∼{α,β,γ,δ} . The four re-

lations depited in �g. 9 are retangles of type {A,B,C}∼{α,β,γ,δ} (as indiated by the

surrounding retangular boxes); for greater larity only edges onneting nodes in their

left and right domains have been displayed.

A B C

α β γ

δ

Figure 8: A Relation of Type {A,B,C}∼{α,β,γ,δ}

These four retangles are the elements of the polar overing onstruted by theorem

211. The (reexive-transitive redution of the) ordering on the elements of the overing

is depited by arrowed brown lines. Take are to note how the depited edges orrespond

to the ordering of the left domains of the retangles:

{B}⊆ {A,B} ∧ {B}⊆ {B,C} ∧ {A,B}⊆ {A,B,C} ∧ {B,C}⊆ {A,B,C} ,

and to the \polar" ordering of their right domains:

{α,β,γ,δ}⊇ {α,δ} ∧ {α,β,γ,δ}⊇ {β,δ} ∧ {α,δ}⊇ {δ} ∧ {β,δ}⊇ {δ} .

The top retangle is redundant (but not \obviously" so). By removing this retangle,

one obtains a non-redundant polar overing: this is the polar overing that is the dual of

the overing detailed in theorem 211 (thus indexed by {A,B,C} rather than {α,β,γ,δ} ).

The de�niens of this overing is depited by the bold green edges in �g. 9.

The red and blue squares surrounding instanes of the elements of {A,B,C} and

{α,β,γ,δ} should be ignored for the moment. We return to this example later; see

example 284.

✷
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A B C

δ

B

δ

α

A

γ

B C

δ

B

β

δ

γα

Figure 9: Polar Covering
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8.1 Injective Polar Coverings

Separate from the issue of non-redundany is the issue of dupliations: our de�nition of

a polar overing does not exlude the possibility of there being distint indies j and

k suh that R.j=R.k . In general, this will be the ase for the onstrution given in

theorem 211. This an be remedied by taking as index set the equivalene lasses of the

per R≻
. With ρ being a funtional relation suh that R≻ = ρ∪

◦ρ as in de�nition 191

(so, for all b suh that b⊆R>
, ρ.b is the equivalene lass of b aording to the right

per-domain R≻
), the funtion R de�ned by

R =
〈

c : c⊆ρ< : R ◦ρ
∪

◦ c ◦ρ ◦R\R
〉

is a polar overing of R with the property that all elements are distint. This is formalised

in theorem 215. The ruial property is that, when applied to the ore of a relation, the

onstrution of theorem 211 yields an injetive overing.

(Dupliations are not evident in small examples beause, as mentioned earlier, when

onstruting small examples, it is ommon to onstrut a relation that is isomorphi to

its ore. This is the ase, for instane, for example 213.)

Lemma 214 The overing 〈∪c : c⊆ |R|> : |R| ◦ c ◦ |R|\|R|〉 of the ore |R| of a relation

R is injetive.

Proof By the (pointwise) de�nition of injetivity, we have to prove that

〈∀ c,c ′ : c⊆ |R|> ∧ c ′⊆ |R|> : |R| ◦ c ◦ |R|\|R| = |R| ◦ c ′ ◦ |R|\|R| ≡ c=c ′〉

where c and c ′ range over points in |R|> . We have

|R| ◦ c ◦ |R|\|R| = |R| ◦ c ′ ◦ |R|\|R|

= { both terms are retangles, lemma 125 }

(|R| ◦ c)< = (|R| ◦ c ′)< ∧ (c ◦ |R|\|R|)> = (c ′ ◦ |R|\|R|)>

= { the overing is polar: theorem 211 }

(|R|◦c)< = (|R|◦c ′)<

= { c and c ′ are points in |R|> , lemma 103 }

c◦⊤⊤◦c ′ ⊆ |R|≻

= { lemma 197 }

c◦⊤⊤◦c ′ ⊆ |R|>

= { c and c ′ are points, (21) }

c = c ′ .
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✷

Theorem 215 Suppose R , λ and ρ are as in de�nition 191. De�ne the funtion C
by

C =
〈

c : c⊆ρ< : λ ◦R ◦ρ
∪

◦ c ◦ρ ◦R\R ◦ρ
∪
〉

,

where the dummy c ranges over points. Then C is a polar overing of |R| . It follows

that the funtion R de�ned by

R =
〈

c : c⊆ρ< : R ◦ρ
∪

◦ c ◦ρ ◦R\R
〉

is a polar overing of R . Moreover, both C and R are injetive.

Proof First let us show that C is the same as the overing of |R| de�ned by theorem

211.

C
= { de�nition of C }

〈c : c⊆ρ< : λ ◦R ◦ρ
∪
◦ c ◦ρ ◦R\R ◦ρ

∪〉
= { (204) }

〈c : c⊆ρ< : λ ◦R ◦ρ
∪
◦ c ◦ρ< ◦ (λ ◦R ◦ρ

∪)\(λ ◦R ◦ρ
∪) ◦ρ<〉

= { lemma 195 and domains }

〈c : c⊆ |R|> : λ ◦R ◦ρ
∪
◦ c ◦ (λ ◦R ◦ρ

∪)\(λ ◦R ◦ρ
∪)〉

= { de�nition 191 of |R| }

〈c : c⊆ |R|> : |R| ◦ c ◦ |R|\|R|〉 .

It follows, by theorem 211 that C is a polar overing of |R| .

Now we show that R is a polar overing of R . It is a overing of R sine

R

= { lemma 193 }

λ
∪
◦ |R| ◦ρ

= { C is a overing of |R| }

λ
∪
◦ 〈∪c : c⊆ρ< : λ ◦R ◦ρ

∪
◦ c ◦ρ ◦R\R ◦ρ

∪〉 ◦ρ

= { distributivity }
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〈∪c : c⊆ρ< : λ
∪
◦λ ◦R ◦ρ

∪
◦ c ◦ρ ◦R\R ◦ρ

∪
◦ρ〉

= { by de�nition 191, λ
∪
◦λ = R≺

and ρ
∪
◦ρ = R≻

,

R≺ ◦R = R = R ◦R≻ }

〈∪c : c⊆ρ< : R ◦ρ
∪
◦ c ◦ρ ◦R\R ◦R≻〉

= { (102) }

〈∪c : c⊆ρ< : R ◦ρ
∪
◦ c ◦ρ ◦R\R ◦R>〉

= { using properties of domains, lemma 195 and anellation,

(ρ ◦R\R)> = R> }

〈∪c : c⊆ρ< : R ◦ρ
∪
◦ c ◦ρ ◦R\R〉 .

We onlude that the funtion R is a overing of R .

In order to prove that R is polar, we �rst note that

(R ◦ρ
∪

◦ c)< ⊆ (R ◦ρ
∪

◦ c ′)< ≡ (λ ◦R ◦ρ
∪

◦ c)< ⊆ (λ ◦R ◦ρ
∪

◦ c ′)<(216)

and

(c ◦ρ ◦R\R)> ⊇ (c ′ ◦ρ ◦R\R)> ≡ (c ◦ρ ◦R\R ◦ρ
∪

)> ⊇ (c ′ ◦ρ ◦R\R ◦ρ
∪

)>(217)

sine

(R ◦ρ
∪
◦ c)< ⊆ (R ◦ρ

∪
◦ c ′)<

⇒ { domains and monotoniity }

(λ ◦R ◦ρ
∪
◦ c)< ⊆ (λ ◦R ◦ρ

∪
◦ c ′)<

⇒ { domains and monotoniity }

(λ∪
◦λ ◦R ◦ρ

∪
◦ c)< ⊆ (λ∪

◦λ ◦R ◦ρ
∪
◦ c ′)<

= { λ
∪
◦λ = R≺

and R≺ ◦R = R }

(R ◦ρ
∪
◦ c)< ⊆ (R ◦ρ

∪
◦ c ′)<

and

(c ◦ρ ◦R\R)> ⊇ (c ′ ◦ρ ◦R\R)>

⇒ { domains and monotoniity }

(c ◦ρ ◦R\R ◦ρ
∪)> ⊇ (c ′ ◦ρ ◦R\R ◦ρ

∪)>

⇒ { domains and monotoniity }

(c ◦ρ ◦R\R ◦ρ
∪
◦ρ)> ⊇ (c ′ ◦ρ ◦R\R ◦ρ

∪
◦ρ)>
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= { ρ
∪
◦ρ = R≻

and (102) }

(c ◦ρ ◦R\R ◦R>)> ⊇ (c ′ ◦ρ ◦R\R ◦R>)>

= { (ρ ◦R\R)> = (R ◦R\R)> = R> }

(c ◦ρ ◦R\R)> ⊇ (c ′ ◦ρ ◦R\R)> .

We are now in a position to prove that R is polar:

(R ◦ρ
∪
◦ c ◦ρ ◦R\R)< ⊆ (R ◦ρ

∪
◦ c ◦ρ ◦R\R)<

= { c and c ′ are points, domains of retangles }

(R ◦ρ
∪
◦ c)< ⊆ (R ◦ρ

∪
◦ c ′)<

= { (216) }

(λ ◦R ◦ρ
∪
◦ c)< ⊆ (λ ◦R ◦ρ

∪
◦ c ′)<

= { C is a polar overing of |R| }

(c ◦ρ ◦R\R ◦ρ
∪)> ⊇ (c ′ ◦ρ ◦R\R ◦ρ

∪)>

= { (217) }

(c ◦ρ ◦R\R)> ⊇ (c ′ ◦ρ ◦R\R)>

= { c and c ′ are points, domains of retangles }

(R ◦ρ
∪
◦ c ◦ρ ◦R\R)> ⊇ (R ◦ρ

∪
◦ c ′ ◦ρ ◦R\R)> .

Thus, by de�nition, the funtion R is polar.

Now we turn to the injetivity of C and R . Lemma 214 establishes that C is

injetive. In order to show that R is injetive, assume c and c ′ are points suh that

c⊆ρ<
and c ′⊆ρ<

. Then

R ◦ρ
∪
◦ c ◦ρ ◦R\R = R ◦ρ

∪
◦ c ′ ◦ρ ◦R\R

⇒ { Leibniz }

λ ◦R ◦ρ
∪
◦ c ◦ρ ◦R\R ◦ρ

∪ = λ ◦R ◦ρ
∪
◦ c ′ ◦ρ ◦R\R ◦ρ

∪

= { C is injetive }

c=c ′ .

Sine the onverse follows from Leibniz's rule, we have thus proved that R is injetive.

We onlude that R is an injetive, polar overing of R .

✷

Our de�nition of a de�niens does not inlude any maximality requirement. (In gen-

eral, given a de�niens D of a overing R , a minimal de�niens an be onstruted by
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hoosing exatly one point of eah element of D . On the other hand, maximality means

that no additional points an be added without invalidating the de�niens property.) It

is possible that the de�niens that we onstrut are indeed maximal but this is something

we have not investigated.

If R is a �nite relation, the onstrution of theorem 211 an be used to onstrut a

non-redundant, injetive, polar overing and its de�niens. The overing is initialised to

R as onstruted by theorem 211 and the index set K of R is initialised to all points

b in R>
. The index set K ′

of D is initialised to the empty set. Then eah point b

in K is examined, one by one. If R ◦b ◦R\R is redundant (i.e. b an be removed from

K without a�eting ∪R ) then b is removed from K . If not, b is retained in K and

added to K ′
. Also D.b is de�ned by

D.b = R ◦b ◦R\R ∩ ¬〈∪b ′ : b ′∈K∧b 6=b ′ : R ◦b ′
◦R\R〉 .

(So D.b is that part of the overing identi�ed by b .) Assuming R>
is �nite, this proess

will terminate with a non-redundant, injetive, polar overing of R indexed by K .

8.2 Non-Redundant Polar Coverings

We have shown in theorem 215 how to onstrut an injetive polar overing of a given

relation R . Now we onsider irumstanes in whih the overing is non-redundant. In

the ase that R is difuntional, it is straightforward to show that the overing onstruted

in theorem 211 is non-redundant and is its own de�niens. (It is in this sense that theorem

211 generalises theorem 163.) This suggests that, in general, a overing of the diagonal

of a relation R an be used as the de�niens of a overing of R . This is indeed true

so long as the diagonal is suÆiently large

5

. Spei�ally, we prove below that, for all

relations R , if (∆R)>=R>
, the overing R de�ned by theorem 215 is non-redundant as

witnessed by the funtion D de�ned by

D.c = ∆R ◦ρ
∪

◦ c ◦ρ .

First, we show that it is a overing of ∆R .

Theorem 218 Suppose R is a relation and R≻ = ρ∪
◦ρ where ρ ◦ρ

∪ = ρ<
. Then the

funtion D de�ned by

D =
〈

c : c⊆ρ< : ∆R ◦ρ
∪

◦ c ◦ρ
〉

is a overing of ∆R . That is,

∆R =
〈

∪c : c⊆ρ< : ∆R ◦ρ
∪

◦ c ◦ρ
〉

.

5

But note example 224 below.



141

Moreover, if (∆R)>=R>
, for all points c and c ′ suh that c⊆ρ<

and c ′⊆ρ<
,

c 6= c ′ ≡ (∆R ◦ρ
∪

◦ c ◦ρ)< ◦ (∆R ◦ρ
∪

◦ c ′ ◦ρ)< = ⊥⊥

and

c 6= c ′ ≡ (∆R ◦ρ
∪

◦ c ◦ρ)> ◦ (∆R ◦ρ
∪

◦ c ′ ◦ρ)> = ⊥⊥ .

It follows that, if (∆R)>=R>
, D is a ompletely disjoint, injetive overing of ∆R .

Proof That eah element of D is a retangle is a onsequene of lemma 124. Now we

show that D overs ∆R :

〈∪c : c⊆ρ< : ∆R ◦ρ
∪
◦ c ◦ρ〉

= { distributivity }

∆R ◦ρ
∪
◦ 〈∪c : c⊆ρ< : c〉 ◦ρ

= { saturation axiom: (16) }

∆R ◦ρ
∪
◦ρ< ◦ρ

= { domains, R≻ = ρ∪
◦ρ }

∆R ◦ R≻

= { domains }

∆R ◦ (∆R)> ◦R≻

= { lemma 189 }

∆R ◦ (∆R)≻

= { (96) with R :=∆R }

∆R .

We use lemma 132 to show that D is ompletely disjoint and injetive. First, we show

that the elements are non-empty.

∆R ◦ρ
∪
◦ c ◦ρ = ⊥⊥

⇒ { monotoniity }

(∆R ◦ρ
∪
◦ c ◦ρ)> = ⊥⊥

= { domains }

((∆R)> ◦ ρ
∪

◦ c ◦ ρ)> = ⊥⊥
= { assumption: (∆R)>=R> }
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(R> ◦ ρ
∪

◦ c ◦ ρ)> = ⊥⊥
= { R> = (R≻)> = (ρ∪

◦ρ)> = ρ>
, (ρ> ◦ ρ

∪)> = ρ< }

(ρ< ◦ c ◦ ρ)> = ⊥⊥
= { c⊆ρ< }

(c◦ρ)> = ⊥⊥
⇒ { domains: (45) and ⊥⊥ is zero of omposition }

c◦ρ = ⊥⊥
⇒ { ⊥⊥ is zero of omposition }

c ◦ρ ◦ρ
∪
◦ c = ⊥⊥

= { ρ ◦ρ
∪ = ρ<

and c⊆ρ< }

c = ⊥⊥
= { c is a point }

false .

That is,

〈

∀c : c⊆ρ< : ∆R ◦ρ
∪

◦ c ◦ρ 6= ⊥⊥
〉

.(219)

For the seond proof obligation (see lemma 132), assume that c 6= c ′ . Beause the

alulation is easier, we begin with the right domains. We have:

∆R ◦ρ∪
◦ c ◦ρ ◦ρ∪

◦ c ′ ◦ρ ◦∆R∪

= { c⊆ρ<
and ρ ◦ρ

∪ = ρ< }

∆R ◦ρ
∪
◦ c ◦ c ′ ◦ρ ◦∆R

∪

= { assumption: c 6= c ′ , (17) }

⊥⊥ .

That is, applying properties of onverse,

〈

∀ c,c ′ : c⊆ρ< ∧ c 6=c ′ : (∆R ◦ρ
∪

◦ c ◦ρ) ◦ (∆R ◦ρ
∪

◦ c ′ ◦ρ)
∪

= ⊥⊥
〉

.(220)

The alulation for the left domains is similar but slightly more omplex. We have:

ρ
∪
◦ c ◦ρ ◦ (∆R)∪ ◦∆R ◦ρ

∪
◦ c ′ ◦ρ

= { ∆R is difuntional, theorem 160 (with R :=∆R ) }

ρ
∪
◦ c ◦ρ ◦ (∆R)≻ ◦ρ

∪
◦ c ′ ◦ρ
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= { assumption: (∆R)>=R>
, lemma 190 }

ρ
∪
◦ c ◦ρ ◦R≻ ◦ρ

∪
◦ c ′ ◦ρ

= { R≻ = ρ∪
◦ρ , ρ ◦ρ

∪ = ρ< = ρ< ◦ρ<
and c⊆ρ< }

ρ
∪
◦ c ◦ c ′ ◦ρ

= { assumption: c 6= c ′ , (17) }

⊥⊥ .

That is, again applying properties of onverse,

〈

∀ c,c ′ : c⊆ρ< ∧ c 6=c ′ : (∆R ◦ρ
∪

◦ c ◦ρ)
∪

◦ (∆R ◦ρ
∪

◦ c ′ ◦ρ) = ⊥⊥
〉

.(221)

The ombination of (219), (220) and (221) together with lemma 132 establishes that D
is ompletely disjoint and injetive.

✷

It is now easy to see that D is a de�niens of the injetive polar overing of R de�ned

in theorem 215:

Theorem 222 Suppose R is a relation suh that (∆R)>=R>
. Suppose also that

R≻ = ρ∪
◦ρ where ρ ◦ρ

∪ = ρ<
. Then the indexed bag R of retangles de�ned by

R =
〈

c : c⊆ρ< : R ◦ρ
∪
◦ c ◦ρ ◦R\R

〉

is a non-redundant, injetive polar overing of R . (In partiular, R is an indexed set.)

A de�niens of the overing is the indexed set D de�ned by

D =
〈

c : c⊆ρ< : ∆R ◦ρ
∪

◦ c ◦ρ
〉

.

Moreover, by theorem 218, D is a overing of ∆R .

Proof Theorem 215 shows that R is an injetive polar overing of R. It remains to

show that it is non-redundant as witnessed by the funtion D .

For all c suh that c⊆ρ<
, the property D.c⊆R.c is immediate from ∆R⊆R ,

I⊆R\R and monotoniity of omposition. That the elements of D form a ompletely

disjoint set of retangles was shown in theorem 218. It remains to show that D \de�nes"

R . We have, for all c and c ′ suh that c⊆ρ<
and c ′⊆ρ<

,

R.c = R.c ′

= { theorem 215 }

c = c ′

= { theorem 218 }

D.c = D.c ′ .
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✷

Example 223

Fig. 10 pitures a small example of the theorems in this setion. Fig. 10(a) depits a

relation R of type {α,β,γ}∼{A,B} ; other parts of the �gure depit the result of applying

di�erent funtions to the relation R . (Heterogeneous relations are depited as bipartite

graphs whereas homogeneous relations are depited as direted graphs.) Spei�ally,

these are as follows.

(a) R , (b) ∆R ,

() R\R , (d) R/R ,

(e) R ◦A ◦R\R , (f) R ◦B ◦R\R ,

(g) ∆R ◦A ◦R≻
, (h) ∆R ◦B ◦R≻

,

(i) R/R ◦α ◦R , (j) R/R ◦β ◦R , (k) R/R ◦γ ◦R .

We have hosen to depit the relation as a graph (rather than a boolean matrix)

beause |for very small examples suh as this| it is muh easier for a human being to

perform the neessary alulations by manipulating the graphs. For example, omputing

the omposition of two relations is exeuted by hasing edges. Also |again for suh very

small examples| the de�nition of fators in terms of nested omplements is muh easier

to use. This said, we leave the reader to hek our alulations.

The example has been hosen deliberately to illustrate a number of aspets simulta-

neously. Note partiularly that, for the relation depited, (∆R)>=R>
but (∆R)< 6=R<

.

This means that theorem 222 is appliable but its dual is not.

Note that (as forewarned: see example 192) the relation R is isomorphi to its own

ore. So the funtional ρ in theorem 222 is e�etively the identity funtion and the

onstrution given there is idential to the onstrution in theorem 211.

Considering the appliation of theorem 211, note that the ombination of �gs. 10(e)

and 10(f) overs the relation R ; also the relation depited by 10(g) uniquely identi�es

the retangle R ◦A ◦R\R shown in �g. 10(e) whilst 10(h) uniquely identi�es the retangle

R ◦A ◦R\R shown in �g. 10(f). In ontrast, �gs. 10(i), (j) and (k) depit the relations

R/R ◦α ◦R , R/R ◦β ◦R and R/R ◦γ ◦R but none of these is identi�ed by any subretangle:

the retangles depited by �gs. 10(i) and (k) are disjoint but both have a non-empty

intersetion with the retangle depited by �g. 10(j).

✷
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α β γ

BA

α γ

BA

βα β γ

BA

α β γ

BA

α β γ

BA

A B α β γ

α β γ

BA

α β γ

BA

α β γ

BA

(a) (b)

(e) (f)

(g) (h)

(i) (j) (k)

(c) (d)

α β γ

BA

Figure 10: A Small Example
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Example 223 is an example of a relation R suh that (∆R)>=R>
but (∆R)< 6=R<

. It

is thus the ase that, for this example,

R = 〈∪b : b⊆ (∆R)> : R ◦b ◦R\R〉 .

(Note the range restrition on the dummy b .) Curiously, in spite of the fat that

(∆R)< 6=R<
, it is also the ase that

R = 〈∪a : a⊆ (∆R)< : R/R ◦a ◦R〉 .

(Again, note the range restrition on the dummy a . To hek the validity of the equation,

it suÆes to observe that the relation R is the union of the relations depited by �gs.

10(i) and (k).) This is also a non-redundant polar overing of R . One might thus

onjeture that, in general, the diagonal ∆R is the key to �nding a non-redundant polar

overing of a given relation R . However, this is not always the ase, as evidened by the

following example.

Example 224

A B C

α γ

C DBD

β

A

γ

C DB

α β

A

A

β

D

α

B

γ

C

(a)  Relation 

(b) Non−redundant covering

(c) A Definiens

Figure 11: Empty Diagonal and Non-Redundant Covering
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The top diagram of �g. 11 pitures a relation R of type {α,β,γ}∼{A,B,C,D} suh

that ∆R is the empty relation. The example is a simpli�ation of the example on p.161

of [KGJ00℄.

The three omponents of the polar overing predited by the dual of theorem 211 are

depited in the seond row. (The index set of the overing is {α,β,γ} .) Note that the

overing is non-redundant: the third row pitures a funtion that satis�es the de�nition

of a de�niens of the overing. (Again, the index set is {α,β,γ} .)

Note that, although the de�niens shown in �g. 11 is maximal, it is not unique: the

edges from α to B and from γ to C may be replaed by edges from α to C and from

γ to B . Other hoies are also possible.

Note also that the relation R is not isomorphi to its ore sine {B,C} is an equiv-

alene lass of R≻
. Conating B and C to one node in �gs. 11(a) and (b) does give a

non-redundant overing of the ore but this is not witnessed by the graph obtained by

onating B and C in �g. 11().

✷
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9 Block-Ordered Relations

In general, dividing a subset of a set A into bloks is formulated by speifying a fun-

tional relation f , say, with soure

6

the set A ; elements a0 and a1 are in the same

blok equivales f.a0 and f.a1 are both de�ned and f.a0= f.a1 . In mathematial ter-

minology, a funtional relation f de�nes the partial equivalene relation f
∪
◦ f and the

\bloks" are the equivalene lasses of f
∪
◦ f . (Partiality means that some elements may

not be in an equivalene lass.)

Given funtional relations f and g with soures A and B , respetively, and equal

left domains, relation R of type A∼B is said to be blok-strutured by f and g if there

is a relation S suh that R = f∪ ◦S ◦g . Informally, whether or not a and b are related

by R depends entirely on the \blok" (f.a , g.b) to whih they belong. Note that it is

not required that f and g be total funtions: it suÆes that f>=R<
and g>=R>

. The

type of S is C∼C where C inludes {a: a ◦ f> = a: f.a} (equally {b: b ◦ f> = b: g.b} ).

Definition 225 (Block-Ordered Relation) Suppose T is a relation of type C∼C ,

f is a relation of type C∼A and g is a relation of type C∼B . Suppose further that T
is a provisional ordering, i.e. that

T ∩T∪ ⊆ I ∧ T = (T ∩T∪

) ◦T ◦ (T ∩ T∪

) ∧ T ◦T ⊆ T .(226)

Suppose also that f and g are funtional and onto the domain of T . That is, suppose

f ◦ f
∪

= f< = T ∩T∪

= g< = g ◦g
∪

.(227)

Then we say that the relation f
∪
◦ T ◦g is a blok-ordered relation. A relation R of

type A∼B is said to be blok-ordered by f , g and T if R = f∪ ◦T ◦g and f
∪
◦T ◦g is

a blok-ordered relation.

✷

Example 228 The arhetypial example of a blok-ordered relation is a preorder.

Informally, if R is a preorder, its symmetri losure R∩R∪

is an equivalene relation,

and the relation R de�nes a partial ordering on the equivalene lasses. Theorem 157

is a preise statement of the more general theorem that a provisional preorder is blok-

ordered. Briey, if R is a provisional preorder, R∩R∪

is a partial equivalene relation;

so, by theorem 143, there is a funtional relation f suh that

R∩R∪

= f
∪

◦ f .

Sine R = (R∩R∪) ◦R ◦ (R∩R∪) (when R is a provisional preorder), it follows that

R = f
∪

◦ (f ◦R ◦ f
∪

) ◦ f .

6

In the terminology we use, a relation of type A∼B has target A and soure B .
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The parenthesised relation is a provisional ordering of the equivalene lasses of R∩R∪

.

Thus a provisional preorder R is blok-ordered by f , f and f ◦R ◦ f
∪

.

✷

Identifying a blok-ordering of a relation |if it exists| is important for eÆieny.

Although a relation is de�ned to be a set of pairs, relations |even relations on �nite

sets| are rarely stored as suh; instead some base set of pairs is stored and an algo-

rithm used to generate, on demand, additional information about the relation. This is

partiularly so of ordering relations. For example, a test m<n on integers m and n

in a omputer program is never implemented as a table lookup; instead an algorithm

is used to infer from the basi relations 0<1 together with the internal representation

of m and n what the value of the test is. In the ase of blok-strutured relations,

funtional relations f and g de�ne partial equivalene relations f
∪
◦ f and g

∪
◦g on

their respetive soures. (The relations f
∪
◦ f and g

∪
◦g are partial beause f and g are

not required to be total.) Combining the funtional relations with an ordering relation

on their (ommon) target is an e�etive way of implementing a relation (assuming the

ordering relation is also implemented e�etively).

Example 229 Suppose G is the edge relation of a �nite graph. The relation G∗

is, of ourse, a preorder and so is blok-ordered. The blok-ordering of G∗
given by

theorem 157 |see example 228| is, however, not very useful. For pratial purposes a

blok-ordering onstruted from G (rather than G∗
) is preferable. Here we outline how

this is done.

Reall from example 185, that the diagonal ∆(G∗) is the relation G∗∩ (G∪)∗ and that

this is an equivalene relation on the nodes of G , whereby the equivalene lasses are

the strongly onneted omponents of G . Let N denote the nodes of G and C denote

the set of strongly onneted omponents of G. By theorem 143, there is a funtion sc

of type C←N suh that

G∗∩ (G
∪

)∗ = sc
∪

◦ sc .(230)

The relation A de�ned by

sc ◦G ◦ sc
∪ ∩ ¬IC

is a homogeneous relation on the strongly onneted omponents of G , i.e. a relation of

type C∼C . Informally, it is a graph obtained from the graph G by oalesing the nodes

in a strongly onneted omponent of G into a single node whilst retaining the edges

of G that onnet nodes in distint strongly onneted omponents

7

. A fundamental

theorem is that

G∗ = sc
∪

◦A∗
◦ sc .(231)

7

Although we don't go into details, for any funtion f of appropriate type, the graph f ◦G ◦ f
∪

is

\pathwise homomorphi" [MN67℄ to G .
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Moreover, A is ayli. That is,

IC ∩ A+ = ⊥⊥ .(232)

(See [BDGv22, BDGv21℄ for the details of the proof of (231) and (232). In fat the

theorem is valid for all relations G ; �niteness is not required.)

The relation A∗
is, of ourse, transitive. It is also reexive; ombined with its

ayliity, it follows that

A∗∩ (A∗)
∪

= IC .(233)

That is, A∗
is a (total) provisional ordering on C. The onlusion is that G∗

is blok-

ordered by sc , sc and A∗
.

Informally, a �nite graph an always be deomposed into its strongly onneted om-

ponents together with an ayli graph onneting the omponents.

Although the informal interpretation of this theorem is well-known, the formal proof

is non-trivial. Although not formulated in the same way, it is essentially the \transitive

redution" of an arbitrary (not neessarily ayli) graph formulated by Aho, Garey and

Ullman [AGU72, Theorem 2℄.

The deomposition (231) is (impliitly) exploited when omputing the inverse A−1

of a real matrix A in order to minimise storage requirements: using an elimination teh-

nique, a so-alled \produt form" is omputed for eah strongly onneted omponent,

whilst the proess of \forward substitution" is applied to the ayli-graph struture.

✷

It is important to note the very strit requirement (227) on the funtionals f and

g . Note its similarity with the requirement on funtionals f and g in the de�nition of

the haraterisation of a difuntional relation: de�nition 162. Were this requirement to

be omitted (retaining only that f and g are funtional relations into |not onto| the

domain of T ), there would be no guarantee of non-redundany. As we shall see, our def-

inition of blok-ordering does guarantee the existene of a non-redundant polar overing

(theorem 255) but not vie-versa (orollary 258). This suggests that the requirement

may be too strong. See setion 10 and the onlusions for further disussion.

Theorem 234 makes preise the statement that blok orderings |where they exist|

are unique \up to isomorphism".

Theorem 234 Suppose T is a provisional ordering. That is, suppose

T ∩T∪ ⊆ I ∧ T = (T ∩T∪

) ◦T ◦ (T ∩ T∪

) ∧ T ◦T ⊆ T .

Suppose also that f and g are funtional and onto the domain of T . That is, suppose

f ◦ f
∪

= f< = T ∩T∪

= g< = g ◦g
∪

.
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Suppose further

8

that S , h and k satisfy the same properties as T , f and g (respe-

tively) and that

f
∪

◦T ◦g = h
∪

◦S ◦k .(235)

Then

f>=h> ∧ g>=k> ,(236)

f
∪

◦g = h
∪

◦k ,(237)

f
∪

◦T
∪

◦g = h
∪

◦S
∪

◦k , and(238)

f ◦h
∪

= g ◦k
∪

.(239)

Also, letting φ denote f ◦h
∪

(equally, by (239), g ◦k
∪

),

φ ◦φ
∪

= T ∩ T∪

∧ φ
∪

◦φ = S∩S∪

∧ φ◦T =S◦φ .(240)

In words, φ is an order isomorphism of the domains of T and S .

Proof In ombination with the assumption (235), properties (236), (238) and (237) are

immediate from (249), (250) and (251), respetively.

Proof of (239) is a step on the way to proving (240). From symmetry onsiderations,

it is an obvious �rst step.

f ◦h
∪

= { assumption: k ◦k
∪ = h< }

f ◦h
∪
◦k ◦k

∪

= { (237) }

f ◦ f
∪
◦g ◦k

∪

= { assumption: f ◦ f
∪ = g< }

g ◦k
∪

.

Now,

8

The types of T and S may be di�erent. The types of f and h , and of g and k will then also be

di�erent. As in lemma 248, the requirement is that the types are ompatible with the type restritions on

the operators in all assumed properties. The symbol \ I " in (240) is overloaded: if the type of T is A∼A
and the type of S is B∼B , φ ◦φ

∪

has type A∼A and φ
∪

◦φ has type B∼B .
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φ ◦φ
∪

= { de�nition of φ , onverse }

f ◦h
∪
◦h ◦ f

∪

= { (239) }

g ◦k
∪
◦h ◦ f

∪

= { (237) and onverse }

g ◦g
∪
◦ f ◦ f

∪

= { assumption: f ◦ f
∪ = T ∩T∪ = g ◦g

∪

}

T ∩T∪

.

Symmetrially, φ
∪
◦φ = T ∩ T∪

. Finally,

T ◦φ

= { de�nition of φ }

T ◦ f ◦h
∪

= { assumptions: f ◦ f
∪ = T ∩ T∪ = g ◦g

∪

T = (T ∩T∪) ◦T ◦ (T ∩ T∪) }

f ◦ f
∪
◦T ◦g ◦g

∪
◦ f ◦h

∪

= { assumption: f
∪
◦T ◦g = h

∪
◦S ◦k , (237) and onverse }

f ◦h
∪
◦S ◦k ◦k

∪
◦h ◦h

∪

= { assumption: h ◦h
∪ = S∩S∪ = k ◦k

∪

}

f ◦h
∪
◦S

= { de�nition of φ }

φ◦S .

✷

9.1 Pair Algebras and Galois Connections

In order to �nd lots of examples of blok-ordered relations one need look no further than

the theory of Galois onnetions (whih are, of ourse, ubiquitous). In this setion, we

briey review the notion of a \pair algebra" |due to Hartmanis and Stearns [HS64,

HS66℄| and its relation to Galois onnetions.
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Hartmanis and Stearns studied a partiular pratial problem: the so-alled \state

assignment problem". This is the problem of how to enode the states and inputs of a

sequential mahine in suh a way that state transitions an be implemented eonomially

using logi iruits. However, as they made lear in the prefae of their book [HS66℄,

their ontribution was to \information siene" in general:

It should be stressed, however, that although many struture theory results

desribe possible physial realizations of mahines, the theory itself is in-

dependent of the partiular physial omponents of tehnology used in the

realization.

. . .

The mathematial foundations of this struture theory rest on an algebraiza-

tion of the onept of \information" in a mahine and supply the algebrai

formalism neessary to study problems about the ow of this information.

Hartmanis and Stearns limited their analysis to �nite, omplete posets, and their

analysis was less general than is possible. This work was extended in [Ba98℄ to non-

�nite posets and the urrent setion is a short extrat.

A Galois onnetion involves two posets (A,⊑) and (B ,� ) and two funtions,

F∈A←B and G∈B←A . These four omponents together form a Galois onnetion

i� for all b∈B and a∈A

F.b⊑a ≡ b�G.a .(241)

We refer to F as the lower adjoint and to G as the upper adjoint.

A Galois onnetion is thus a onnetion between two funtions between posets.

Typial aounts of the properties of Galois onnetions (for e.g. [GHK

+
80℄) fous on

the properties of these funtions. For example, given a funtion F , one may ask whether

F is a lower adjoint in a Galois onnetion. The question posed by Hartmanis and Stearns

was, however, rather di�erent.

To motivate their question, note that the statement F.b⊑a de�nes a relation be-

tween B and A . So too does b�G.a . The existene of a Galois onnetion states

that these two relations are equal. A natural question is therefore: under whih ondi-

tions does an arbitrary (binary) relation between two posets de�ne a Galois onnetion

between the sets?

Exploring the question in more detail leads to two separate questions. The �rst is:

suppose R is a relation between posets (A,⊑) and (B ,� ). What is a neessary and

suÆient ondition that there exist a funtion F suh that

(a, b)∈R ≡ F.b⊑a ?
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The seond is the dual of the �rst: given relation R , what is a neessary and suÆient

ondition that there exist a funtion G suh that

(a, b)∈R ≡ b�G.a ?

The onjuntion of these two onditions is a neessary and suÆient ondition for a

relation R to de�ne a Galois onnetion. Suh a relation is alled a pair algebra .

Example 242 It is easy to demonstrate that the two questions are separate. To

this end, �g. 12 depits two posets and a relation between them. The posets are {α,β}

and {A,B} ; both are ordered lexiographially: the reexive-transitive redution of the

lexiographi ordering is depited by the direted edges. The relation of type {α,β}∼{A,B}

is depited by the undireted edges.

α

β

A

B

Figure 12: A Relation on Two Posets

Let the relation be denoted by R . De�ne the funtion F of type {α,β}← {A,B} by

F.B=α and F.A=β . Then it is easy to hek that. for a∈{α,β} and b∈{A,B} ,

(a, b)∈R ≡ F.b⊑a .

(There are just four ases to be onsidered.) On the other hand, there is no funtion G

of type {A,B}← {α,β} suh that

(a, b)∈R ≡ b�G.a .

To hek that this is indeed the ase, it suÆes to hek that the assignment G.A=α

is invalid (beause α⊑α but (α,A) 6∈R ) and the assignment G.A=β is also invalid

(beause α⊑β but (α,A) 6∈R ).
✷

Example 243 A less arti�ial, general way to demonstrate that the two questions

are separate is to onsider the membership relation. Spei�ally, suppose S is a set.

Then the membership relation, denoted as usual by the |overloaded| symbol \∈ ", is
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a heterogeneous relation of type S ∼2S (where 2S denotes the type of subsets of S ).

Now, for all x of type S and X of type 2S ,

x∈X ≡ {x}⊆X .

The right side of this equation has the form F.b⊑a where F is the funtion that maps

an element into a singleton set and the ordering is the subset ordering. Also, its left side

has the form (a, b)∈R , where the relation R is the membership relation and a and

b are x and X , respetively. (This is where the overloading of notation an beome

onfusing, for whih our apologies!) It is, however, not possible to express x∈X in the

form x�G.X (exept in the trivial ases where S has ardinality at most one). We

leave the proof to the reader.

✷

Example 244 An example of a Galois onnetion is the de�nition of the eiling

funtion on real numbers: for all real numbers x , ⌈x⌉ is an integer suh that, for all

integers m ,

x≤m ≡ ⌈x⌉≤m .

To properly �t the de�nition of a Galois onnetion, it is neessary to make expliit

the impliit oerion from integers to real numbers in the left side of this equation.

Spei�ally, we have, for all real numbers x and integers m ,

x ≤IR real.m ≡ ⌈x⌉ ≤ZZ m

where real denotes the funtion that \oeres" an integer to a real, and ≤IR and ≤ZZ

denote the (homogeneous) at-most relations on, respetively, real numbers and integers.

If, however, we onsider the symbol \≤ " on the left side of the equation to denote the

heterogeneous at-most relation of type IR∼ZZ , the fat that

x≤m ≡ ⌈x⌉ ≤ZZ m

gives a representation of the (heterogeneous) \≤ " relation of type IR∼ZZ as a blok-

ordered relation: referring to de�nition 225, the provisional ordering is ≤ZZ , f is the

eiling funtion and g is the identity funtion.

More interesting is if we take the ontrapositive. We have, for all real numbers x and

integers m ,

m<x ≡ m≤⌈x⌉−1 .

On the right of this equation is the (homogeneous) at-most relation on integers. On the

left is the (heterogeneous) less-than relation of type ZZ∼ IR . The equation demonstrates
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that this relation is blok-ordered; the \bloks" of real numbers being all the numbers

that have the same eiling. (The funtional f is the identity funtion, the funtional g

maps real number x to ⌈x⌉−1 and the provisional ordering is the ordering ≤ZZ .) The

example is interesting beause we show in theorem 319 that the (homogeneous) less-than

relation on real numbers is not blok-ordered.

✷

Returning to the disussion immediately preeding example 242, the two separate

questions are eah of interest in their own right: a positive answer to either question

may predit that a given relation has a blok-ordering of a spei� form: in the ase

of the �rst question, where the funtional g in de�nition 225 is the identity funtion,

and, in the ase of the seond question, where the funtional f in de�nition 225 is the

identity funtion. In both ases, a further step is to hek the requirement on f and g :

in the �rst ase, one has to hek that the funtion F is surjetive and in the seond ase

that the funtion G is surjetive. (A Galois onnetion is said to be \perfet" if both F

and G are surjetive.) For example, the fat that

x≤m ≡ x ≤IR real.m

does not de�ne a blok-ordering beause the funtion real is not surjetive.

The relevant theory prediting exatly when the �rst of the two questions has a

positive answer is as follows. Suppose (B,⊑) is a omplete poset. Let ⊓ denote the

in�mum operator for B and suppose p is a prediate on B . Then we de�ne inf-

preserving by

p is inf-preserving ≡ 〈∀g :: p.(⊓g) ≡ 〈∀x :: p.(g.x)〉〉 .(245)

So, for a given a , the prediate 〈b:: (a, b)∈R〉 is inf-preserving equivales

〈∀g :: (a , ⊓g)∈R ≡ 〈∀x :: (a , g.x)∈R〉〉 .

Then we have:

Theorem 246 Suppose A is a set and (B,⊑) is a omplete poset. Suppose R⊆A×B
is a relation between the two sets. De�ne F by

F.a = 〈⊓b : (a, b)∈R : b〉 .(247)

Then the following two statements are equivalent.

� 〈∀a,b : a∈A∧b∈B : (a, b)∈R ≡ F.a⊑b〉 .

� For all a , the prediate 〈b:: (a, b)∈R〉 is inf-preserving.
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✷

The answer to the seond question is, of ourse, obtained by formulating the dual of

theorem 246.

In general, for most relations ourring in pratial information systems the answer

to the pair-algebra questions will be negative: the required inf- and sup-preserving prop-

erties just do not hold. However, a ommon way to de�ne a pair algebra is to extend a

given relation to a relation between sets in suh a way that the in�mum and supremum

preserving properties are automatially satis�ed. Hartmanis and Stearns' [HS64, HS66℄

solution to the state assignment problem was to onsider the lattie of partitions of a

given set; in so-alled \onept analysis", the tehnique is to extend a given relation to

a relation between retangles. For more detail of the latter, see setion 10.

An important property of Galois onnetions is the (well-known) theorem we all the

\unity of opposites": if F and G are the adjoint funtions in a Galois onnetion of the

posets (A,⊑) and (B,� ), then there is an isomorphism between the posets (F.B , ⊑)

and (G.A ,� ). ( F.B denotes the \image" of the funtion F , and similarly for G.A .)

Knowledge of the unity-of-opposites theorem suggests theorem 234, whih expresses an

isomorphism between di�erent representations of blok-ordered relations.

9.2 Analogie Frappante

In this setion, we relate blok-orderings to diagonals. The main results are theorems 255

and 262. We have named theorem 262 the \analogie frappante" beause it generalises

Riguet's \analogie frappante" onneting \relation de Ferrers" to diagonals.

Lemma 248 Suppose T is a provisional ordering of type C∼C . That is, suppose

T ∩T∪ ⊆ IC ∧ T = (T ∩ T∪

) ◦ T ◦ (T ∩T∪

) ∧ T ◦T ⊆T .

Suppose also that f and g are funtional and onto the domain of T . That is, suppose9

that

f ◦ f
∪

= f< = T ∩T∪

= g< = g ◦g
∪

.

Let R denote f
∪
◦T ◦g . Then

R< = f> ∧ R>=g> ,(249)

f
∪

◦T
∪

◦g = R< ◦ (R\R/R)
∪

◦R>
, and(250)

9

The ordering T must be homogeneous but f and g may be heterogeneous and of di�erent type, so

long as both have target C .
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f
∪

◦g = ∆R ,(251)

R< = (∆R)< ∧ R> = (∆R)> ,(252)

R≺ = ∆R ◦∆R
∪

= f
∪

◦ f ∧ R≻ = ∆R
∪

◦∆R = g
∪

◦g .(253)

Proof Property (249) is a straightforward appliation of domain alulus:

R>

= { de�nition: R = f∪ ◦ T ◦g }

(f∪ ◦T ◦g)>

= { domains (spei�ally, [ (U◦V)>=(U> ◦V)> ] and [ (U∪)>=U< ] ) }

(f< ◦T ◦g)>

= { assumption: T = f< ◦T ◦g<
(so T = f< ◦T ) }

(T ◦g)>

= { domains (spei�ally, [ (U◦V)>=(U> ◦V)> ] ) }

(T> ◦g)>

= { lemma 122 and assumption: T ∩ T∪ = g< }

g> .

By a symmetri argument, (f∪ ◦T ◦g)< = f> .

Now we onsider (250). The raison d'être of (250) is that it expresses the left side as a

funtion of f
∪
◦T ◦g . In a pointwise alulation a natural step is to use indiret ordering.

In a point-free alulation, this orresponds to using fators. That is, we exploit lemma

119:

f
∪
◦T

∪
◦g

= { assumption: T is a provisional ordering

lemmas 116, 120 and 119 }

f
∪

◦ (T ∩ T∪) ◦ T
∪

\ T
∪

/ T
∪

◦ (T ∩T∪) ◦ g

= { assumption: f< = T ∩T∪ = g< }

f
∪

◦ T
∪

\ T
∪

/ T
∪

◦ g

= { lemma 78 and assumption: T = f< ◦T ◦g< }

f> ◦ (g∪
◦ T

∪
◦ f) \ (g∪

◦ T
∪
◦ f) / (g∪

◦T
∪
◦ f) ◦ g>

= { (249) and de�nition of R }
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R< ◦ R
∪

\R
∪

/R
∪

◦ R>

= { fators }

R< ◦ (R\R/R)∪ ◦R> .

Note the use of lemma 78. The disovery of this lemma is driven by the goal of the

alulation.

The pointwise interpretation of f∪ ◦g is a relation expressing equality between values

of f and g . This suggests that, in order to prove (251), we begin by exploiting the

anti-symmetry of T :

f
∪
◦g

= { f< = T ∩ T∪ = g<
and domains }

f
∪
◦ (T ∩ T∪) ◦g

= { distributivity (valid beause f and g are funtional) }

f
∪
◦T ◦g ∩ f

∪
◦T

∪
◦g

= { de�nition of R and (250) }

f∪ ◦T ◦g ∩ f> ◦ ((f∪ ◦T ◦g) \ (f∪ ◦T ◦g) / (f∪ ◦T ◦g))∪ ◦g>

= { (254) (see below) }

f> ◦ f
∪
◦T ◦g ◦g> ∩ ((f∪ ◦T ◦g) \ (f∪ ◦T ◦g) / (f∪ ◦ T ◦g))∪

= { domains (spei�ally, f> ◦ f
∪ = f∪ and g ◦g> = g ) }

f
∪
◦T ◦g ∩ ((f∪ ◦T ◦g) \ (f∪ ◦T ◦g) / (f∪ ◦ T ◦g))∪

= { de�nition of R and ∆R }

∆R .

A ruial step in the above alulation is the use of the property

U ∩ p◦V◦q = p◦(U∩V)◦q = p◦U◦q ∩ V(254)

for all relations U and V and oreexive relations p and q . This is a frequently used

property of domain restrition.

The remaining equations (252) and (253) are straightforward. First

(∆R)<

= { (251) }

(f∪ ◦g)<
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= { domains and assumption: f< = g< }

f>

= { assumption: f< = T ∩ T∪

}

((T ∩T∪) ◦ f)>

= { domains and onverse }

(f∪ ◦ (T ∩ T∪))<

= { lemma 122 and domains }

(f∪ ◦T)<

= { domains and assumption: g< = T ∩T∪

and lemma 122 }

(f∪ ◦T ◦g)< .

That is (∆R)< = R<
. The dual equation (∆R)> = R>

is immediate from the fat that

(∆R)∪=∆(R∪) and properties of the domain operators. For the per domains, we have:

R≺

= { R< = (∆R)< and R> = (∆R)> (above); lemma 190 }

(∆R)≺

= { ∆R is difuntional, theorem 160 (with R :=∆R ) }

∆R ◦∆R
∪

= { lemma 248 and de�nition of ∆R }

f
∪
◦g ◦ (f∪ ◦g)∪

= { onverse and f< = g< = g ◦g
∪

}

f
∪
◦ f .

Again, the dual equation is immediate.

✷

Theorem 255 Suppose R = f∪ ◦T ◦g where f , g and T have the properties stated

in de�nition 225. Then the funtion R de�ned by

R =
〈

c : c ⊆ T ∩T∪

: f
∪

◦T ◦ c ◦T ◦g
〉

(256)

is a non-redundant, injetive, polar overing of R , and the funtion D de�ned by

D =
〈

c : c ⊆ T ∩ T∪

: f
∪

◦ c ◦g
〉

(257)
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is a de�niens of R suh that ∪D=∆R . That is, a blok-ordered relation has a non-

redundant, injetive, polar overing suh that the de�niens of the overing is a overing

of the diagonal of R .

Proof The theorem is a onsequene of lemma 248, theorem 222 and theorem 218.

Spei�ally, lemma 248 (in partiular (253) and (252)) states that the onditions required

to apply theorem 222 are met with ρ instantiated to g . Thus,

R =
〈

c : c⊆g< : R ◦g
∪

◦ c ◦g ◦R\R
〉

is a non-redundant, injetive polar overing of R . The de�nition of R is simpli�ed as

follows. First,

g ◦R\R

= { R = f∪ ◦T ◦g }

g ◦ (f∪ ◦T ◦g)\(f∪ ◦ T ◦g)

= { lemma 79 with R,S,f,g := T , T ◦g , f , g }

g ◦g
∪
◦T\(T ◦g)

= { g ◦g
∪ = g< }

g< ◦T\(T ◦g) .

So, for all c suh that c⊆g<
,

R ◦g
∪
◦ c ◦g ◦R\R

= { R overs R , so (R ◦g
∪
◦ c ◦g ◦R\R)>⊆R>

; R>=g>

(in preparation for lemma 77) }

R ◦g
∪
◦ c ◦g ◦R\R ◦g>

= { R = f∪ ◦T ◦g and g ◦R\R = g< ◦T\(T ◦g) (see above) }

f
∪
◦T ◦g ◦g

∪
◦ c ◦g< ◦T\(T ◦g) ◦g>

= { g ◦g
∪ = g<

, assumption: c⊆g<
, lemma 77 with R,f :=T,g }

f
∪
◦T ◦ c ◦T\T ◦g

= { T is a provisional ordering, T ∩T∪ = g<
,

lemma 118 }

f
∪
◦T ◦ c ◦T ◦g .
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Sine g< = T ∩T∪

by assumption, we have established (256).

Theorem 222 de�nes the de�niens of the overing as the indexed set D where

D =
〈

c : c⊆g< : ∆R ◦g
∪

◦ c ◦g ◦R≻

〉

.

But, for all c suh that c⊆g<
,

∆R ◦g
∪
◦ c ◦g ◦R≻

= { (253) and (251) }

f
∪
◦g ◦g

∪
◦ c ◦g ◦g

∪
◦g

= { g ◦g
∪ = g<

, assumption: c⊆g< }

f
∪
◦ c ◦g .

Using the assumption that g< = T ∩T∪

one again, we have established (257). That

∪D = f∪ ◦g = ∆R follows from f
∪
◦g = ∆R and the saturation axiom.

✷

Lemma 248 has as immediate orollary that the onverse of theorem 255 is invalid.

Corollary 258 There are relations that have a non-redundant polar overing but are

not blok-ordered.

Proof Examples 223 and 224 are both examples of �nite relations that have non-

redundant polar overings. Example 223 has the property that (∆R)< 6=R<
; however,

(∆R)>=R>
. Example 224 has an empty diagonal; that is, (∆R)< 6=R<

(and (∆R)> 6=R>
).

So by (the onverse of) lemma 248 (spei�ally, (252)), neither relation is blok-ordered.

✷

We now prove the onverse of lemma 248.

Lemma 259 A relation R is blok-ordered if R< = (∆R)< and R> = (∆R)> .

Proof Suppose R< = (∆R)< and R> = (∆R)> . Our task is to onstrut relations f , g

and T suh that

R = f
∪

◦ T ◦g ,

T ∩T∪ ⊆ I ∧ T = (T ∩T∪

) ◦T ◦ (T ∩ T∪

) ∧ T ◦T ⊆ T and

f ◦ f
∪

= f< = T ∩T∪

= g< = g ◦g
∪

.

Sine ∆R is difuntional, theorem 161 is the obvious plae to start. Applying the

theorem, we an onstrut f and g suh that ∆R = f∪ ◦g and

∆R = f
∪

◦g ∧ f ◦ f
∪

= f< = g ◦g
∪

= g< .
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(The proof of theorem 161 gives several ways of doing this.) Using standard properties of

the domain operators together with the assumption that R< = (∆R)< and R> = (∆R)> ,

it follows that

R< = f> ∧ R> = g> .

It remains to onstrut the provisional ordering T . The appropriate onstrution is

suggested by lemma 248, in partiular (250). Spei�ally, we de�ne T by the equation

T = g ◦R\R/R ◦ f
∪

.(260)

The proof that R = f∪ ◦T ◦g is by mutual inlusion. First note that

f
∪

◦T ◦g = ∆R ◦R\R/R ◦∆R(261)

sine

f
∪
◦T ◦g

= { (260) }

f
∪
◦g ◦R\R/R ◦ f

∪
◦g

= { ∆R = f∪ ◦g }

∆R ◦R\R/R ◦∆R .

So

f
∪
◦T ◦g

⊆ { (261) and ∆R⊆R }

R ◦R\R/R ◦R

⊆ { anellation }

R .

Also,

R ⊆ f
∪
◦T ◦g

= { (261) }

R ⊆ ∆R ◦R\R/R ◦∆R

= { per domains: (98) }

R≺ ◦R ◦R≻ ⊆ ∆R ◦R\R/R ◦∆R

= { assumption: R< = (∆R)< and R> = (∆R)> , lemma 190 }
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(∆R)≺ ◦R ◦ (∆R)≻ ⊆ ∆R ◦R\R/R ◦∆R

= { ∆R is difuntional, theorem 160 (with R :=∆R ) }

∆R ◦∆R
∪
◦R ◦∆R

∪
◦∆R ⊆ ∆R ◦R\R/R ◦∆R

⇐ { monotoniity }

∆R
∪
◦R ◦∆R

∪ ⊆ R\R/R

⇐ { ∆R
∪⊆R\R/R , monotoniity }

R\R/R ◦R ◦R\R/R ⊆ R\R/R

= { fators }

R ◦R\R/R ◦R ◦R\R/R ◦R ⊆ R

= { anellation }

true .

Combining the two inlusions we onlude that indeed R = f∪ ◦ T ◦g .

We now establish the requirements on T . First,

T ∩T∪

= { de�nition and onverse }

g ◦R\R/R ◦ f
∪ ∩ f ◦ (R\R/R)∪ ◦g

∪

⊆ { modular law }

f ◦ (f∪ ◦g ◦R\R/R ◦ f
∪
◦g ∩ (R\R/R)∪) ◦g∪

= { ∆R = f∪ ◦g }

f ◦ (∆R ◦R\R/R ◦∆R ∩ (R\R/R)∪) ◦g∪

⊆ { ∆R⊆R , monotoniity and anellation }

f ◦ (R ∩ (R\R/R)∪) ◦g∪

= { ∆R = R ∩ (R\R/R)∪ }

f ◦∆R ◦g
∪

= { ∆R = f∪ ◦g }

f ◦ f
∪
◦g ◦g

∪

= { f ◦ f
∪ = f< = g ◦g

∪ = g< }

f< .

Thus T ∩ T∪ ⊆ f< . So T ∩T∪ ⊆ I . Now
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f< ⊆ T ∩T∪

= { in�ma and f< is oreexive }

f< ⊆ T

⇐ { domains }

f ◦ f
∪ ⊆ T

⇐ { de�nition of T and monotoniity }

f ⊆ g ◦R\R/R

⇐ { f< = g ◦g
∪

, domains and monotoniity }

g
∪
◦ f ⊆ R\R/R

= { f
∪
◦g = ∆R }

∆R
∪ ⊆ R\R/R

= { ∆R = R ∩ (R\R/R)∪ , onverse }

true .

So, by anti-symmetry we have established that T ∩T∪ = f< . Sine also f<=g<
, we

onlude from the de�nition of T and properties of domains that

T = (T ∩ T∪

) ◦T ◦ (T ∩T∪

) .

The �nal task is to show that T is transitive:

T ◦T

= { de�nition }

g ◦R\R/R ◦ f
∪
◦g ◦R\R/R ◦ f

∪

= { ∆R = f∪ ◦g }

g ◦R\R/R ◦∆R ◦R\R/R ◦ f
∪

⊆ { ∆R⊆R }

g ◦R\R/R ◦R ◦R\R/R ◦ f∪

⊆ { fators }

g ◦R\R/R ◦ f
∪

= { de�nition }

T .
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✷

It is interesting to reet on the proof of lemma 259. The hardest part is to �nd

appropriate de�nitions of f , g and T suh that R = f∪ ◦ T ◦g . The key to onstruting

f and g is Riguet's \analogie frappante" [Rig51℄ whereby he introdued the \di��erene"

|the diagonal ∆R| of the relation R . Expressing the diagonal in terms of fators as

we have done makes many parts of the alulations very straightforward. One muh less

straightforward step is the use of lemma 190 in the proof that R ⊆ f
∪
◦T ◦g . Note how

alulational needs drive the searh for the lemma: in order to simplify the inlusion it

is neessary to expose the term R\R/R on the right side, and that is preisely what the

lemma enables.

We onlude with the theorem that we all the \analogie frappante". It is not the

theorem that Riguet presented but we have hosen to give it this name in order to

reognise Riguet's ontribution.

Theorem 262 (Analogie Frappante) A relation R is blok-ordered if and only if

R< = (∆R)< and R> = (∆R)> .

Proof Lemma 248 establishes \only-if" and lemma 259 establishes \if".

✷

Example 263 Reall that example 223 is of a relation R suh that R< = (∆R)<

but R> 6= (∆R)> . Beause of the simpliity of the example, it is possible to hek,

by exhausting all possible assignments to f and g , that the relation is not blok-

ordered. For suppose, on the ontrary, that R = f∪ ◦T ◦g , where f , T and g satisfy

the onditions for a blok-ordering. Then it must be the ase that g.A 6=g.B (sine

(R◦A)< 6=(R◦B)< ). But also it must be the ase that f.α , f.β and f.γ are distint (be-

ause, eg., (α◦R)> 6=(β◦R)> ). This has the onsequene that f< 6=g<
. But, by de�ning

f.α=x , f.β=y , f.γ= z , g.A=x , g.B= z and y⊑x and y⊑ z , it is the ase that

R = f∪ ◦⊑ ◦g . We say that the relation has an \imperfet" blok-ordering. See setion

10.

✷

Example 264 A generi way to onstrut examples of relations that are not blok-

ordered is to exploit example 187. In order to avoid unneessary repetition, we refer the

reader to that example for the de�nition of the relation in given a �nite set X and a

set S of subsets of X .

(Example 263 is a slightly disguised instane of the generi onstrution: the nodes

A and B an be identi�ed with, respetively, {α,β} and {β,γ} .)

Reall that the diagonal ∆in of type X∼S is injetive. It follows that the size of

(∆in)< is at most the size of S . If, however, the set S has X as one of its elements, the
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size of in<
equals the size of X . Theorem 262 thus predits that, if X is an element of

S , a neessary ondition for in to be blok-ordered is that the sizes of X and S must

be equal; onversely, if X is an element of S , in is not blok-ordered if the sizes of X
and S are di�erent.

Fig. 6 (example 187) shows that, even if the sizes of X and S are equal, the relation

in may not be blok-ordered: as remarked then, for the hoie of S shown in �g. 6, in<

and (∆in)< are di�erent sine 0 and 3 are elements of the former but not the latter.

It is straightforward to onstrut instanes of X and S suh that the relation in is

blok-ordered. It suÆes to ensure that three onditions are satis�ed: X is an element of

S , the sizes of X and S are equal, and, for eah x in X , the set of sets represented by

(x◦in)> is totally ordered. Fig. 13 is one suh. Referring to de�nition 225, the funtional

f is ∆in
∪

(depited by retangles) and the funtional g is IS ; the ordering relation is

the subset relation in\in (depited by the direted graph).

{0,1,2,3,4}

{0,1}

{0}

{3,4}1

2

0

4

{3} 3

Figure 13: A Blok-Ordered Membership Relation

✷

The following theorem is a orollary of theorem 207. In ombination with theorem

262 it states that a relation is blok-ordered i� its ore is blok-ordered. Testing whether

or not a given relation is blok-ordered an thus be deomposed into omputing the ore

of the relation and then testing whether or not that is blok-ordered.

Theorem 265 Suppose R is an arbitrary relation. Then

R< = (∆R)< ≡ |R|< = (∆|R|)< .

Dually,

R> = (∆R)> ≡ |R|> = (∆|R|)> .
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Proof Suppose R , λ and ρ are as in de�nition 191. Then

|R|< = (∆|R|)<

= { de�nition 191 and theorem 207 }

(λ ◦R ◦ρ
∪)< = (λ ◦∆R ◦ρ

∪)<

⇒ { Leibniz }

(λ∪
◦ (λ ◦R ◦ρ

∪)<)< = (λ∪
◦ (λ ◦∆R ◦ρ

∪)<)<

= { domains }

(λ∪
◦λ ◦R ◦ρ

∪)< = (λ∪
◦λ ◦∆R ◦ρ

∪)<

= { λ
∪
◦λ ◦R = R≺ ◦R = R ,

(ρ∪)< = (ρ∪
◦ρ)< = (R≻)< = R>

, and domains }

R< = (λ∪
◦λ ◦∆R ◦ρ

∪)<

= { (ρ∪)< = (ρ∪
◦ρ)< and domains }

R< = (λ∪
◦λ ◦∆R ◦ρ

∪
◦ρ)<

= { theorem 207 }

R< = (λ∪
◦∆|R| ◦ρ)<

= { theorem 207 }

R< = (∆R)< .

Similarly,

R< = (∆R)<

= { de�nition 191, theorem 207 and Leibniz }

(λ∪
◦ |R| ◦ρ)< = (λ∪

◦∆|R| ◦ρ)<

⇒ { Leibniz and domains }

(λ ◦λ
∪
◦ |R| ◦ρ)< = (λ ◦λ

∪
◦∆|R| ◦ρ)<

= { ρ< = (ρ ◦ρ
∪)< and domains }

(λ ◦λ
∪
◦ |R| ◦ρ ◦ρ

∪)< = (λ ◦λ
∪
◦∆|R| ◦ρ ◦ρ

∪)<

= { theorem 207 (applied twie) }

|R|< = (∆|R|)< .

The property

R< = (∆R)< ≡ |R|< = (∆|R|)<
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follows by mutual impliation. The dual follows by instantiating R to R
∪

and applying

the properties of onverse.

✷

By ombining the de�nition of blok-ordering with theorem 207, it is immediately

lear that R is blok-ordered if |R| is a provisional ordering. In general, a ore of a

blok-ordered relation will not be a provisional ordering. This is beause the types of

the targets of the omponents λ and ρ in the de�nition of a ore are not required to

be the same; on the other hand, orderings are required to be homogeneous relations.

However by arefully restriting the hoie of ore, it is possible to onstrut a ore that

is indeed a provisional ordering.

Theorem 266 Suppose R is an arbitrary relation. Then if R is blok-ordered it has

a ore that is a provisional ordering.

Proof Suppose R is blok-ordered. That is, suppose that f , g and T are relations

suh that T is a provisional ordering,

R = f
∪

◦ T ◦g

and

f ◦ f
∪

= f< = T ∩T∪

= g< = g ◦g
∪

.

Then, by lemma 248, R≺ = f∪ ◦ f and , R≻ = g∪
◦g . Thus f and g satisfy the onditions

for de�ning |R| . (See de�nition 191.) Consequently,

|R|

= { de�nition 191 }

f ◦R ◦g
∪

= { R = f∪ ◦T ◦g }

f ◦ f
∪
◦T ◦g ◦g

∪

= { f ◦ f
∪ = f< = T ∩T∪ = g< = g ◦g

∪

}

(T ∩T∪) ◦T ◦ (T ∩ T∪)

= { T is a provisional ordering, lemma 122 and domains }

T .

We onlude that |R| is the provisional ordering T .

✷

Combining theorem 266 with theorem 194, we onlude that any ore of a blok-

ordered relation is isomorphi to a provisional ordering. Loosely speaking, blok-ordered

relations are provisional orderings up to isomorphism and redution to the ore.
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Example 267 From the Galois onnetion, for all reals x and integers m ,

⌈x⌉≤m ≡ x≤m

de�ning the eiling funtion, we dedue that the heterogeneous relation IR≤ZZ has ore

the provisional ordering ≤ZZ . This is beause the eiling funtion is surjetive. Its ore

in not the ordering ≤IR beause the oerion real from integers to reals is not surjetive.

(See also example 244.)

On the other hand, if a Galois onnetion

F.b⊑a ≡ b�G.a

of posets (A,⊑) and (B ,� ) is \perfet" (i.e. both F and G are surjetive), both the

orderings ⊑ and � are ores of the de�ned heterogeneous relation. That the orderings

are isomorphi is an instane of the unity-of-opposites theorem [Ba02℄.

✷
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10 Imperfect Block-Orderings

Following de�nition 225 we remarked that the ondition on the funtional relations f

and g in a blok-ordering is very strit. Later we remarked that a Galois onnetion

satis�es the ondition if it is so-alled \perfet". (See the disussion following example

244 and also example 267.) In this setion we study what might be alled \(possibly)

imperfet" blok-orderings. The results presented here are used later to show that �nite

\stairase relations" are indeed blok-ordered.

Some of the results presented in this setion are inspired by what has been alled

\onept analysis" (the English translation of the German \Begri�enanalyse"). \Conept

analysis" was briey mentioned in setion 9.1 as an example of how Hartmanis and

Stearns' theory of pair algebras leads to the identi�ation of Galois onnetions. As

we shall see, the fundamental notion in \onept analysis" is losely related to Riguet's

polar overings.

Aside The researh presented here was undertaken under the restritions of the

oronavirus pandemi an unfortunate onsequene of whih has been that aess to

library failities has been impossible. This means that I have not been able to investigate

the original (or, indeed, subsequent) literature in order to determine to what extent the

relationship between Riguet's work and \onept analysis" is already known. The sole

soure of my knowedge of \onept analysis" is the text by Davey and Priestley [DP90,

hapter 11℄. End of Aside

10.1 Grips

Suppose R is a relation of type A∼B and suppose U is a retangle suh that U⊆R .
Then, beause U=U◦⊤⊤◦U (by de�nition of a retangle), we have

(U ⊆ R/(⊤⊤◦U)) = (U⊆R) = (U ⊆ (U◦⊤⊤)\R) .(268)

The equality between the outer two terms immediately suggests the identi�ation of a

Galois onnetion, whih possibility we now explore.

It is easy to hek that, for all relations R and S ,

R/(⊤⊤◦S) = R/(⊤⊤◦S) ◦⊤⊤ .

(For ompleteness, the proof is given in setion 10.2.) That is, R/(⊤⊤◦S) is a left ondi-

tion

10

for all relations R and S . Also, for all relations R and S ,

(S◦⊤⊤)\R = ⊤⊤ ◦ (S◦⊤⊤)\R .

10

Reall that a left ondition is a relation R suh that R= R◦⊤⊤ . Dually, a right ondition is a relation

R suh that R=⊤⊤◦R .
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That is, (S◦⊤⊤)\R is a right ondition for all relations R and S .

Returning to (268), we reognise the equality between the outer two terms as an

instane of the equality, for all X and Y suh that X = R< ◦X ◦⊤⊤ and Y = ⊤⊤ ◦Y ◦R>
,

X ⊆ R/Y ≡ X\R ⊇ Y .(269)

The relation R< ◦X ◦⊤⊤ is a left ondition representing a subset of the left domain of

R , and the relation ⊤⊤ ◦Y ◦R>
is a right ondition representing a subset of the right

domain of R . Conversely, if U is suh that U⊆R , U◦⊤⊤ = R< ◦ (U◦⊤⊤) ◦⊤⊤ and

⊤⊤◦U = ⊤⊤ ◦ (⊤⊤◦U) ◦R>
. Thus the equality between the outer two terms of (268) is

the Galois onnetion (269) between the (left ondition representation of the) subsets of

the left domain of R and the (right ondition representation of the) subsets of the right

domain of R , where in one ase the ordering relation is the subset relation and in the

other ase the ordering relation is the superset relation.

One of the most important harateristis of a Galois onnetion is the theorem

that we have dubbed the unity-of-opposites theorem [Ba02℄ and whih we have already

mentioned several times. Spei�ally, if

F.b⊑a ≡ b�G.a

is a Galois onnetion of posets (A,⊑) and (B ,� ), elements a and b are opposites if

F.b=a ∧ b=G.a .

The unity-of-opposites theorem states that opposites form isomorphi sub-posets of

(A,⊑) and (B ,� ) and, moreover, ompleteness properties of A and/or B are inherited

by these sub-posets.

Guided by (268), it is onvenient to pakage two \opposites" into one retangle. Suh

retangles we all \grips":

Definition 270 (Grip) A retangle U is said to be a grip of relation R if

U◦⊤⊤ = R/(⊤⊤◦U) ∧ ⊤⊤◦U = (U◦⊤⊤)\R .

✷

The word \grip" is an abbreviation of the Duth word \begrip" whih has the same

meaning as the German word \Begri�". One meaning of the word \grip" in both Duth

and English is \handle"; the same is true of the German word \Gri�". In Amerian-

English, the word \grip" also means \bag" or \holder". Thus our notion of a \grip" is

a \handle" or \holder" for two opposites in the Galois onnetion de�ned by (269).

We have hosen to introdue new terminology partly in order to emphasise a subtle

but important di�erene between our use of retangles as holders of opposites and the
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way suh holders are de�ned in \Begri�enanalyse". In the �eld of \Begri�enanalyse",

the opposites of a relation of type A∼B are elements of 2A and 2B (the sets of subsets

of A and B ) and a \Begri�" is a pair (U,V) where U and V are opposites of eah

other. Typially, although not always, ∅A (the empty subset of A ) and B are opposites,

as are A and ∅B (the empty subset of B ). In suh ases, (∅A, B) and (A, ∅B) are by

de�nition \Begri�en". Our de�nition of a grip exludes this possibility beause a grip

of a relation R is always a non-empty retangle. (A disadvantage of our de�nition is

that greater are needs to be exerised when applying the unity-of-opposites theorem.

Fortunately this is not relevant here.)

Note how the subset ordering on the left side of (269) is ipped to beome the superset

ordering on the right side. The \opposites" are thus \polar" opposites in the sense that

if U and V are grips of relation R then

U◦⊤⊤ ⊆ V◦⊤⊤ ≡ ⊤⊤◦U ⊇ ⊤⊤◦V .

Example 271 Fig. 14 shows the grips of a relation of type {V,E,P,J,U}∼ {x,n,s,y,f,l,m} .

The example is a simpli�ation

11

of one presented by Davey and Priestley [DP90, table

11.1 and �gure 11.1℄.

The grips are depited by (larger blak) retangles, the left domain of eah retangle

being formed by the set of upper-ase letters listed vertially and the right domain of

eah retangle being formed by the set of lower-ase letters listed horizontally. The

graph struture antiipates results presented in setion 10.2, namely that the grips of a

relation form a polar overing. The signi�ane of the blue and red squares is explained

in example 285. For the moment, it suÆes to note that there is no least and no greatest

grip whereas the relation does have a least and greatest \Begri�", the least \Begri�"

having the empty set as its left omponent and the greatest \Begri�" having the empty

set as its right omponent.

✷

10.2 Polar Covering and Properties

In this setion we show that the set of grips of a relation R is a polar overing of R . (See

de�nition 209.) Simultaneously we show that the grips of a relation de�ne a \(possibly)

imperfet" blok-ordering of the relation.

11

The upper-ase letters V , E , et. stand for planets: Venus, Earth, et. The lower-ase letters stand

for attributes of the planets: for example, y stands for \has a moon" whilst x stands for \does not have a

moon". The simpli�ation that has been made is to redue the relation presented by Davey and Priestley

to its ore. The letter V , for example, represents the equivalene lass {Venus,Mercury} in Davey and

Priestley's presentation.
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Figure 14: Grips

An important insight is that the polar overings indexed by points in the left and

right domain of a given relation that formed the basis of theorem 211 de�ne a subset

of the grips of the relation. It is this subset that de�nes the \(possibly) imperfet"

blok-ordering; it also enables one to onstrut the diagonal of the relation.

We begin with a ouple of lemmas that are needed later.

Lemma 272 For all R and S of the same type,

R/(⊤⊤◦S) = R/(⊤⊤◦S) ◦⊤⊤ .

Proof

R/(⊤⊤◦S) = R/(⊤⊤◦S) ◦⊤⊤
= { anti-symmetry of the subset relation

assumption: R and S have the same type, so I⊆⊤⊤ }

R/(⊤⊤◦S) ⊇ R/(⊤⊤◦S) ◦⊤⊤
= { fators }

R ⊇ R/(⊤⊤◦S) ◦⊤⊤ ◦⊤⊤ ◦S

= { by one rule, ⊤⊤◦⊤⊤=⊤⊤ }

R ⊇ R/(⊤⊤◦S) ◦⊤⊤ ◦S

= { anellation }
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true .

✷

Lemma 273 For all relations R and all points b (of appropriate type),

R/(⊤⊤◦b) = R◦b◦⊤⊤ .

Proof The proof is by indiret equality. Suppose U is a left ondition (i.e. U=U◦⊤⊤ ).

Then

U◦⊤⊤◦b ⊆ R

⇒ { b is oreexive, so b=b◦b ; monotoniity }

U◦⊤⊤◦b◦⊤⊤ ⊆ R◦b◦⊤⊤
= { b 6=⊥⊥ , one rule }

U◦⊤⊤ ⊆ R◦b◦⊤⊤
⇒ { I⊆⊤⊤ }

U ⊆ R◦b◦⊤⊤
⇒ { monotoniity }

U◦⊤⊤◦b ⊆ R◦b◦⊤⊤◦b

= { b is a point, so b◦⊤⊤◦b=b }

U◦⊤⊤◦b ⊆ R◦b

⇒ { b is oreexive, i.e. b⊆ I }

U◦⊤⊤◦b ⊆ R .

We have thus shown (by mutual impliation) that, for all left onditions U ,

U◦⊤⊤◦b ⊆ R ≡ U ⊆ R◦b◦⊤⊤ .

But U◦⊤⊤◦b ⊆ R ≡ U ⊆ R/(⊤⊤◦b) . That is, for all left onditions U ,

U ⊆ R/(⊤⊤◦b) ≡ U ⊆ R◦b◦⊤⊤ .

The lemma follows by applying lemma 272 and the rule of indiret equality.

✷

We now turn to the proof that the grips of a relation form a polar overing of the

relation.

Lemma 274 For all relations R and all retangles U of the same type as R , if U is

a grip of R then U⊆R .
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Proof Suppose U is a grip of R . Then

U

= { U is a retangle, de�nition 123 }

U◦⊤⊤◦U

= { de�nition 270 }

R/(⊤⊤◦U) ◦U

= { lemma 272 }

R/(⊤⊤◦U) ◦⊤⊤ ◦U

⊆ { anellation }

R .

✷

Lemma 275 Suppose U and V are grips of R . Then

U< ⊆ V< ≡ U>⊇V> .

Proof

U< ⊆ V<

= { ondition-oreexive isomorphism }

U◦⊤⊤ ⊆ V◦⊤⊤
= { U and V are grips of R , de�nition 270 and Leibniz }

R/(⊤⊤◦U) ⊆ R/(⊤⊤◦V)

⇐ { fators }

⊤⊤◦U ⊇ ⊤⊤◦V

= { ondition-oreexive isomorphism }

U>⊇V> .

That is, U<⊆V< ⇐ U>⊇V>
for all grips U and V of R .

Dually, U>⊆V> ⇐ U<⊇V<
. Sine the latter property holds for all grips U and V of

R , we an interhange U and V to get V>⊆U> ⇐ V<⊇U<
. That is, U>⊇V> ⇐ U<⊆V<

for all grips U and V of R .

Combining the two impliations, we onlude that, for all grips U and V of R ,

U<⊆V< ≡ U>⊇V> .
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✷

Lemma 275 is the �rst step in showing that the grips satisfy de�nition 209 of a polar

overing. Spei�ally, the lemma allows us to introdue an ordering on grips as per the

de�nition. For future referene, here is the de�nition.

Definition 276 Suppose U and V are grips of a relation R . Then we de�ne the

relation ⊑ by

U⊑V ≡ U<⊆V< .

Equivalently (in view of lemma 275)

U⊑V ≡ U>⊇V> .

✷

Lemma 277 The relation ⊑ of de�nition 276 is a provisional ordering of grips.

Proof That ⊑ is reexive and transitivity is a straightforward onseqene of the reex-

ivity and transitivity of the subset relation. That it is anti-symmetri is a onsequene

of the fat that grips are retangles, lemma 275 and lemma 125.

✷

Theorem 211 showed how to onstrut a polar overing of a given relation R , in-

dexed by points b in R>
. Dually, one an onstrut a polar overing of R indexed by

points a in R<
. The elements of these two overings are partiularly speial grips of

R . Spei�ally |see lemma 279| omparing the grip with index a with the grip with

index b enables the determination of whether or not a and b are related by R .

First, we show that both overings de�ne grips.

Lemma 278 For all relations R and all points b suh that b⊆R>
, the retangle

R ◦b ◦R\R is a grip of R . Dually, for all relations R and all points a suh that a⊆R<
,

the retangle R/R ◦a ◦R is a grip of R .

Proof Assume that b is a point suh that b⊆R>
. Then

R/(⊤⊤ ◦R ◦b ◦R\R)

= { [ ⊤⊤◦R = ⊤⊤ ◦R> ] ; assumption: b⊆R>
, so R> ◦b = b }

R/(⊤⊤ ◦b ◦R\R)

= { fators, spei�ally [ R/(S◦T)= (R/T)/S ] }

(R/(R\R))/(⊤⊤◦b)
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= { fators, spei�ally (29) }

R/(⊤⊤◦b)

= { assumption: b is a point; lemma 273 }

R◦b◦⊤⊤
= { (R\R)< = I }

R ◦b ◦R\R ◦⊤⊤ .

Also

(R ◦b ◦R\R ◦⊤⊤)\R

= { R\R⊇ I , so (R\R)>= I }

(R◦b◦⊤⊤)\R

= { fators, spei�ally [ (S◦T)\R=T\(S\R) ] with R,S,T := R ,R ,b◦⊤⊤ }

(b◦⊤⊤)\(R\R)

= { dual of lemma 273 with R :=R\R }

⊤⊤ ◦b ◦R\R

= { [ ⊤⊤◦R = ⊤⊤ ◦R> ] ; assumption: b⊆R>
, so R> ◦b = b }

⊤⊤ ◦R ◦b ◦R\R .

Combining the two alulations, we have shown that R ◦b ◦R\R satis�es the ondition

on U in de�nition 270.

✷

Now we show how to use the two polar overings to determine whether or not points

are related. Realling de�nition 276 of the ordering ⊑ on grips, we have:

Lemma 279 For all relations R and all points a and b suh that a⊆R<
,

a◦⊤⊤◦b ⊆ R ≡ R/R ◦a ◦R ⊑ R ◦b ◦R\R .(280)

That is,

a◦⊤⊤◦b ⊆ R ≡ (R/R ◦a)< ⊆ (R◦b)< .(281)

Dually, for all relations R and all points a and b suh that b⊆R>
,

a◦⊤⊤◦b ⊆ R ≡ (b ◦R\R)> ⊆ (a◦R)> .(282)

Proof We begin by proving (281) by mutual impliation. Note that, by lemma 58, the

left side of (281) is equivalent to a⊆ (R◦b)< . This fat is exploited below.
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(R/R ◦a)< ⊆ (R◦b)<

⇒ { I⊆R/R , monotoniity and transitivity }

a ⊆ (R◦b)<

⇒ { monotoniity }

(R/R ◦a)< ⊆ (R/R ◦ (R◦b)<)<

= { domains }

(R/R ◦a)< ⊆ (R/R ◦R ◦b)<

= { anellation: (28) }

(R/R ◦a)< ⊆ (R◦b)< .

Applying lemma 58, we have proved (281). Property (280) now follows easily:

R/R ◦a ◦R ⊑ R ◦b ◦R\R

= { de�nition 276 of ⊑ }

(R/R ◦a ◦R)< ⊆ (R ◦b ◦R\R)<

= { domains and assumption: a⊆R<
; (R\R)<= I }

(R/R ◦a)< ⊆ (R◦b)<

= { (281) and lemma 58 }

a◦⊤⊤◦b ⊆ R .

✷

Theorem 283 For all relations R , the set of grips of R is a polar overing of R . That

is,

R = 〈∪U : grip.U.R : U〉

where the grips of R are ordered by the relation ⊑ introdued in de�nition 276. More-

over,

R = f
∪

◦⊑ ◦g

where the funtional f mapping points a in R<
to grips of R is de�ned by

f.a = R/R ◦a ◦R ,

the funtional g mapping points b in R>
to grips of R is de�ned by

g.b = R ◦b ◦R\R .
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Proof We have

〈∪U : grip.U.R : U〉
⊇ { lemma 278 and monotoniity }

〈∪b : b⊆R> : R ◦b ◦R\R〉
= { theorem 211 }

R

⊇ { lemma 274 }

〈∪U : grip.U.R : U〉 .

Thus, by anti-symmetry of the subset relation, , R = 〈∪U : grip.U.R : U〉 .
That R = f

∪
◦⊑ ◦g is immediate from lemma 279 and the de�nition of funtion

appliation (as disussed in setion 3.5).

✷

Note that theorem 283 does not prove that every relation is blok-ordered: the

funtionals f and g are not surjetive onto the domain of the provisional ordering as

required by de�nition 225. The equation

R = f
∪

◦⊑ ◦g

in theorem 283 expresses a (possibly) imperfet blok-ordering of R .

Example 284 As disussed in example 213, �g. 8 (page 134) shows a relation R of

type {A,B,C}∼{α,β,γ,δ} and �g. 9 (page 135) shows the (reexive-transitive redution

of the) provisional ordering de�ned by theorem 211 .

Reall that the four relations depited in �g. 9 are retangles of the same type as R .

These four retangles are the values of the funtional relation g . Spei�ally, the topmost

retangle depits the relation g.δ , the middle-left retangle depits g.α , the middle-right

retangle depits g.γ and the bottom retangle depits g.β . This is indiated by the

small red squares.

The bottom three retangles are also the values of the funtional relation f . Speif-

ially, the bottom-most retangle depits the relation f.B , the middle-left retangle

depits f.A and the middle-right retangle depits f.C . This is indiated by the small

blue squares.

The provisional ordering ⊑ on the retangles is depited by the brown arrowed edges.

We leave the reader to hek that R = f∪ ◦⊑ ◦g .

These four retangles are the only grips of the relation. (This is not generally the

ase.) The ordering shown is thus also the ordering of grips introdued in de�nition 276.
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Note that we have not onstruted a blok-ordering of the relation R beause f< 6= g<
.

(That is, f is not surjetive.) The diagonal ∆R is the relation depited by the three

edges that onnet red and blue squares. (Theorem 292 establishes that this is a general

property of the diagonal.) Thus it is the ase that R< 6= (∆R)< but R> = (∆R)> .

✷

Several lemmas and theorems we present (inluding theorem 283 and lemma 279)

require points a and b to be elements of the left and right domain, respetively, of the

relation R . This is very important to note sine many authors assume, often without

mention, that relations are \total", i.e. that their soure and targets equal their right

and left domains.

Assuming this requirement is met, for �nite relations whether or not points are related

an be determined by a graph searhing algorithm. The nodes of the graph are the grips

of the relation and the edges of the graph are de�ned by the reexive-transitive redution

of the polar ordering of grips. (Borrowing terminology from ordered-set theory, the graph

might sometimes be alled the \Hasse diagram" of the polar ordering of grips.) Example

285 provides further explanation.

Example 285 As explained in example 271, the blak retangles in �g. 14 depit the

grips of a relation; the edges onneting these retangles depit the polar ordering on

the grips in a way that should be self-explanatory. The olletion of retangles marked

by small blue squares depits the polar overing of the relation indexed by elements of

its left domain, whilst the olletion of retangles marked by small red squares depits

the polar overing of the relation indexed by elements of its right domain; the squares

identify the point de�ning the enlosing retangle. (Cf. lemma 278.) For example, the

bottom-left grip orresponds to V and to x .

Taken together, theorem 283 and lemma 279 state formally how the blue and red

squares enable one to alulate whether or not the orresponding points are related. The

blue squares depit a funtion f whose soure is the left domain of the relation and whose

target is the set of grips; similarly, the red squares depit a funtion g whose soure is

the right domain of the relation and whose target is also the set of grips. The ordering

⊑ on grips is the reexive-transitive losure G∗
of the graph G and the relation R is

f
∪
◦G∗ ◦g . That is, for points a and b , a◦⊤⊤◦b⊆R i� there is a path in the graph G

from the grip enlosing the blue square labelled a to the grip enlosing the red square

labelled b . For example, V and y are not related by R beause there is not a path from

the bottom-left grip to the topmost grip whereas E and y are related by R beause

there is suh a path.

As in example 284, the blue and red squares also enable the identi�ation of the

diagonal of the relation. Spei�ally, onsider the retangles that have both a blue and

a red square; then the pairs of points identi�ed by the squares form the diagonal of the
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relation. That is, the diagonal is the set of pairs {(V, x) , (J, l) , (U,m)} . (See theorem

292.)

✷

The �nal task in this setion is to formulate and prove the assertion mentioned in

examples 284 and 285 that the diagonal of a relation is determined by oinident blue

and red squares. The property we prove |see theorem 292| is, in fat, muh stronger,

although diÆult to put in words.

Lemma 286 Suppose R is an arbitrary relation. Suppose a and b are points suh

that a◦⊤⊤◦b ⊆ R . Then the following properties of a , b and R are all equivalent.

(a◦R)> = (b ◦R\R)> ,(287)

(a◦R)> ⊆ (b ◦R\R)> ,(288)

R/R ◦a ◦R = R ◦b ◦R\R ,(289)

(R◦b)< ⊆ (R/R ◦a)< .(290)

(R/R ◦a)< = (R◦b)< ,(291)

Proof The equivalene of (287), (288) and (289) is proved as follows.

(a◦R)> = (b ◦R\R)>

= { anti-symmetry of the subset relation }

(a◦R)> ⊆ (b ◦R\R)> ∧ (b ◦R\R)> ⊆ (a◦R)>

= { assumption: a◦⊤⊤◦b ⊆ R (so a⊆R<
and b⊆R>

) ; (282) }

(a◦R)> ⊆ (b ◦R\R)>

= { de�nition 276 of ⊒ and domains }

R/R ◦a ◦R ⊒ R ◦b ◦R\R

= { assumption: a◦⊤⊤◦b ⊆ R (so a⊆R<
and b⊆R>

);

(280) and anti-symmetry of ⊑ }

R/R ◦a ◦R = R ◦b ◦R\R .

The equivalene of (290) and (291) with (289) is the onverse dual.

✷



183

Theorem 292 Suppose R is an arbitrary relation. Suppose a and b are points suh

that a◦⊤⊤◦b ⊆ R . Then the following three properties of a , b and R are all equivalent.

〈∀a ′ : a ′
◦⊤⊤◦b ⊆ R : R/R ◦a ′

◦R ⊑ R/R ◦a ◦R〉 ,(293)

R/R ◦a ◦R = R ◦b ◦R\R ,(294)

〈∀b ′ : a◦⊤⊤◦b ′ ⊆ R : R ◦b ◦R\R ⊑ R ◦b ′
◦R\R〉 .(295)

It follows that all three properties are also equivalent to the property

a◦⊤⊤◦b ⊆ ∆R .(296)

Proof We prove the equivalene of (294) and (295) by mutual impliation. The equiv-

alene of (293) and (294) is the onverse-dual.

For the \if" part we exploit the fat that the two sides of the equation to be proved

are grips of R and the grips of R form a polar overing of R . Spei�ally, assuming a

and b are points suh that a◦⊤⊤◦b ⊆ R ,

R/R ◦a ◦R = R ◦b ◦R\R

= { assumption: a◦⊤⊤◦b ⊆ R (so b⊆R>
) ; lemma 286 }

(a◦R)> ⊆ (b ◦R\R)>

= { saturation axiom: (16) }

〈∀b ′ : b ′⊆ (a◦R)> : b ′ ⊆ (b ◦R\R)>〉
⇐ { [ b ′ ⊆ (b ′ ◦R\R)> ] , transitivity of the subset relation }

〈∀b ′ : b ′⊆ (a◦R)> : (b ′ ◦R\R)> ⊆ (b ◦R\R)>〉
= { lemma 58 }

〈∀b ′ : a◦⊤⊤◦b ′ ⊆ R : (b ′ ◦R\R)> ⊆ (b ◦R\R)>〉 .

Also

R/R ◦a ◦R = R ◦b ◦R\R

= { assumption: a◦⊤⊤◦b ⊆ R , (so b⊆R>
); lemma 286 }

(a◦R)> = (b ◦R\R)>

= { saturation axiom: (16) }

〈∀b ′ :: b ′⊆ (a◦R)> ≡ b ′⊆ (b ◦R\R)>〉
⇒ { weakening equivalene to impliation and lemma 58 }



184

〈∀b ′ : a◦⊤⊤◦b ′ ⊆ R : b ′⊆ (b ◦R\R)>〉
⇒ { monotoniity }

〈∀b ′ : a◦⊤⊤◦b ′ ⊆ R : (b ′ ◦R\R)> ⊆ ((b ◦R\R)> ◦R\R)>〉
⇒ { domains and R\R ◦R\R ⊆ R\R }

〈∀b ′ : a◦⊤⊤◦b ′ ⊆ R : (b ′ ◦R\R)> ⊆ (b ◦R\R)>〉 .

Putting the two alulations together we have shown that (294) is equivalent to

〈∀b ′ : a◦⊤⊤◦b ′ ⊆ R : (b ′
◦R\R)> ⊆ (b ◦R\R)>〉 .(297)

That (297) is equivalent to (295) is an immediate onsequene of the de�nition of ⊑ and

properties of the domain operator. (Take are with applying de�nition 276.)

The dual of (297) is

〈∀a ′ : a ′
◦⊤⊤◦b ⊆ R : (R/R ◦a ′)< ⊆ (R/R ◦a)<〉 .(298)

That (298) is equivalent to (295) is also an immediate onsequene of the de�nition of ⊑
and properties of the domain operator. (Again, take are with applying de�nition 276.)

The proof of (296) is now straightforward:

b◦⊤⊤◦a◦R ⊆ R\R

⇒ { b is a point so b=b◦b ; monotoniity }

b◦⊤⊤◦a◦R ⊆ b ◦R\R

⇒ { monotoniity and domains }

(a◦R)> ⊆ (b ◦R\R)>

⇒ { monotoniity and domains }

b◦⊤⊤◦a◦R ⊆ b ◦⊤⊤ ◦b ◦R\R

⇒ { b is a point so b=b◦⊤⊤◦b }

b◦⊤⊤◦a◦R ⊆ R\R .

So

a◦⊤⊤◦b ⊆ ∆R

= { ∆R = R∩ (R\R/R)∪ }

a◦⊤⊤◦b ⊆ R ∧ a◦⊤⊤◦b ⊆ (R\R/R)∪

= { assumption: a◦⊤⊤◦b ⊆ R ; onverse and fators }

b◦⊤⊤◦a◦R ⊆ R\R
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= { monotoniity and domains }

(a◦R)> ⊆ (b ◦R\R)>

= { lemma 286 }

R/R ◦a ◦R = R ◦b ◦R\R .

✷

Theorem 292 is diÆult to express preisely in words. Informally (and very impre-

isely), it haraterises the diagonal ∆R of a relation R as the olletion of retangles

eah of whih is simultaneously the in�mum of the grips indexed by points a in the left

domain of R and the supremum of the grips indexed by points b in the right domain of

R . Careful study of examples 284 and 271, as outlined below, will hopefully make this

lear. (Example 271 is not suh a good example beause the duality between left and

right domains is not evident.)

Example 299 We refer to example 284 (page 180). As remarked, the diagonal ∆R is

the olletion of retangles having both a blue and a red square.

Note arefully how the retangles making up the diagonal ∆R are eah the in�ma of a

subset of the ordered set of grips indexed by points in the left domain of R . For example

the retangle de�ned by the pair (A, α) is the in�mum of itself and the topmost retangle;

these are the grips indexed by A . The same is true with \left" replaed by \right" and

\in�mum" replaed by \supremum": the retangle de�ned by the pair (A, α) is the

supremum of itself and the bottom-most retangle, these being the retangles indexed

by α .

✷

Example 300 We return again to example 271, in partiular �g. 14 on page 174.

As in example 284, the blue and red squares enable the identi�ation of the diagonal of

the relation. Spei�ally, onsider the retangles that have both a blue and a red square;

then the pairs of points identi�ed by the squares form the diagonal of the relation. That

is, the diagonal is the set of pairs {(V, x) , (J, l) , (U,m)} .

Note arefully how the retangles making up the diagonal ∆R are eah the in�ma of

the subset of the ordered set of grips indexed by points in the left domain of R . For

example the retangle de�ned by the pair (V, x) is the in�mum of the three retangles

with the point V in their left domains. The same is true with \left" replaed by \right"

and \in�mum" replaed by \supremum" but the sets of grips degenerates to a singleton

set.

✷



186

Example 301 Fig. 15 shows the grips of the onverse

12 in
∪

of the membership relation

in de�ned in example 187. The blue and red squares have the same funtion as in

examples 299 and 300. As in those examples, the diagonal of the relation is identi�ed

by the retangles that have both a blue and a red square.

1 3

{0,1,3}

0 30 2

{0,2,3}

{0,2,3}

{0,1,3}

{0,2}

{0,1}
0

0

{0,2,3}

3

{0,1,3}

0

{0,2,3}

{0,2}

{0,1,3}

0 1

{0,1}

2

Figure 15: Grips of a Membership Relation

✷

10.3 Grips of Provisional Orderings

If grips are to be used to represent membership of a relation, a pratial question is just

how many grips might a relation have (as a funtion of the sizes of its left and right

domains). Some insight into this question an be obtained by onsidering an interesting

speial ase: when the relation is a provisional ordering.

Suppose T is a provisional ordering and x is a point suh that x ⊆ T ∩T∪

. Then

T ◦x◦T is a grip of T . Indeed, by lemma 118,

T ◦x ◦ T\T = T ◦x ◦ T = T/T ◦x ◦ T .

This raises the question whether every grip of T is of this form.

The answer is no and a very instrutive ounterexample is given by the provisional

at-most ordering on rational numbers, whih we denote by ≤Q . For a given rational

12

The onverse in
∪

has been used simply beause the �gure would have been too wide if in had been

used.
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number q , the grip ≤Q◦q◦≤Q is a retangle that relates rational number p to rational

number r whenever p≤q≤ r (using the onventional overloaded notation). An easily

proved property is that, for all rational numbers q and q ′
,

≤Q◦q◦≤Q = ≤Q◦q ′
◦≤Q ≡ q=q ′

so eah grip of ≤Q equals ≤Q◦q◦≤Q for at most one rational number q .

To see that not every grip of ≤Q is of the form ≤Q◦q◦≤Q , onsider all the rational

numbers p and r suh that p2≤2≤ r2 (again using the onventional overloaded nota-

tion). We leave it to the reader to hek that the orresponding retangle is a grip of

≤Q . However, it annot be expressed in the form ≤Q◦q◦≤Q for any rational number q

sine, as is well-known,

√
2 is an irrational number.

The so-alled \Dedekind-MaNeille ompletion" of the rationals Q de�nes IR , the set

of real numbers, to be the grips of ≤Q ; in so doing, the rational number q is identi�ed

with the grip ≤Q◦q◦≤Q and the irrational numbers (suh as

√
2 ) are identi�ed with the

grips that are di�erent from ≤Q◦q◦≤Q for all rational numbers q .

We see from this example that the ardinality of the grips of a relation may be greater

than the ardinality of the relation. This suggests that the number of grips of a �nite

relation may, in the worst ase, be an exponential funtion of the size of the relation. If

so, representing a �nite relation by the transitive-reexive redution of the polar ordering

of its grips and testing membership of the relation via a graph-searhing algorithm may

not be pratial. However, this is not something I have investigated.



188

11 Staircase Relations

As mentioned immediately after its de�nition, the notion of a polar overing was intro-

dued by Riguet in onnetion with what he alled \relations de Ferrers". Riguet [Rig51℄

states the following theorem:

Pour que R soit une relation de Ferrers, il faut et il suÆt que R soit r�eunion

de retangles dont les projetions de même nom sont totalement ordonn�ees

par inlusion et tels que si la premi�ere projetion de l'un des retangles est

ontenue dans la premi�ere projetion d'un autre retangle, la seonde proje-

tion du seond est ontenue dans la seonde projetion du premier.

(For those unable to read Frenh, the theorem states a neessary and suÆient on-

dition for a relation to be \de Ferrers". The formal statement and proof of the theorem

is given below: see theorem 334. The theorem learly begs the question what is the

de�nition of a \relation de Ferrers". We postpone answering this question until later.

The reason for doing so is that Riguet gives both a formal de�nition and a mental piture

|the piture shown in �g. 1 of what we all a \stairase relation"| but it is far from

obvious how Riguet's de�nition and the mental piture are related.)

Riguet does not give a proof of the theorem. He also states that there is a striking

analogy (\analogie frappante") between the de�nitions and properties of \relations de

Ferrers" and difuntional relations but leaves the analogy unlear. In this setion, we

formalise the mental piture of a \stairase relation" (�g. 1) in several di�erent but

equivalent ways, one of whih is Riguet's orginal de�nition. We then prove Riguet's

theorem. This is quite straightforward. However, larifying the \analogie frappante" is

more diÆult. To this end, we formulate the notion of a \polar overing" of a stairase

relation and a \non-redundant" polar overing. We show how Riguet's theorem predits

that the less-than relation on real numbers has a polar overing but not a non-redundant

polar overing. The non-redundany property is the vital link between difuntional

relations and (a proper sublass of) stairase relations. It is also the link between (a

proper sublass of) stairase relations and blok-ordered relations.

11.1 Formal Definition

Let us now turn to the formalisation of the mental piture of a \stairase" relation.

Suppose the relation R of type A∼B an be depited as a \stairase". Then, for any

element b of B , the set of elements a of A suh that a and b are related by R is

depited by the region where a vertial line drawn at the point that depits b intersets

with the shaded area in the stairase depition of R . See �g. 16. (Conversely, the set of
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elements b of B that are related to a given element a of A is depited by drawing a

horizontal line at the point depited by a .)
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elements of A related to b

A

Figure 16: Preordering De�ned By a Stairase Relation

The harateristi property of a \stairase" is that suh lines inrease in length |of

ourse, not stritly| as one proeeds from the left to the right of the piture. But

\length" and \left" and \right" are features of pitures and not properties of relations.

A better haraterisation that is not spei� to drawing pitures is suggested by fousing

on the subset of A omprising elements related by R to a given element b of B . In

relation algebra, this is denoted by (R◦b)< and the harateristi property of a \stairase"

is that, for any two elements b0 and b1 of B , either (R◦b0)< is a subset of (R◦b1)< or,

vie-versa, (R◦b1)< is a subset of (R◦b0)< . In terms of the mental piture, b0 is to the

left or to the right of b1 .

At this point, ertain onepts entral to relation algebra spring to mind. First, the

subset relation is an ordering relation. This immediately leads to the observation that

the relation S de�ned by

b0[[S]]b1 ≡ (R◦b0)< ⊆ (R◦b1)<

is a preorder. Then the \vie-versa" statement also looks familiar: it is the statement

that S∪S∪

is total (i.e. equal to the universal relation).

Those familiar with fators will immediately spot a muh better haraterisation.

For any binary relation R , the relations R\R and R/R are preorders. That is, both are

transitive and reexive. (If R has type A∼B then R\R has type B∼B and R/R has

type A∼A .) If R is itself a preorder, then R=R\R=R/R=R\R/R . (Transitivity of R

is equivalent to R⊆R\R and reexivity of R implies R\R⊆R ; similarly for R/R .) This

fat underlies the use of the rule alled indiret ordering.
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The pointwise formulation of the relation R\R is

b0[[R\R]]b1 ≡ 〈∀a : a[[R]]b0 : a[[R]]b1〉 .

That is R\R is the relation S de�ned above. This is the eureka moment in this pre-

liminary investigation: that relation R is a \stairase" relation means formally that the

preorder R\R is linear

13

. (Later we show that this is equivalent to R/R being linear.)

For brevity, we denote this property by SC . That is:

Definition 302 The prediate SC on (binary) relations is de�ned by, for all R ,

SC.R ≡ R\R∪ (R\R)
∪

= ⊤⊤ .

✷

The boolean SC.R should be read as \R is a stairase relation". This setion is

thus about the properties of R\R , for arbitrary relation R , when R\R is linear. The

properties we investigate are driven by the need to provide further justi�ation for the

\orretness" of the formal de�nition with respet to the informal mental piture of suh

a relation.

Inevitably, we sometimes need to exploit pointwise de�nitions of \stairase" relations.

Suh a de�nition is formulated in lemma 303. Informally, the lemma states that there

is a linear ordering on the depths of the \stairs" of a \stairase" relation. (Later we see

that this is equivalent to there being a linear ordering on the heights of the \stairs".)

Lemma 303 The property SC.R is equivalent to:

〈∀b,b ′ : b⊆R> ∧ b ′⊆R> : (R◦b)< ⊆ (R◦b ′)< ∨ (R◦b ′)< ⊆ (R◦b)<〉 .

(Dummies b and b ′
range over points of the appropriate type.)

Proof

SC.R

= { de�nition 302 }

R\R∪ (R\R)∪ = ⊤⊤
= { saturation axiom: (16) }

〈∀b,b ′ :: b◦⊤⊤◦b ′ ⊆ R\R∪ (R\R)∪〉
= { b◦⊤⊤◦b ′

is an (irreduible) atom, and onverse }

13

An ordering S |of any sort| is said to be linear if S∪ S∪

= ⊤⊤ . Sometimes the word \total" is

used instead of linear. For example, Riguet [Rig51℄ uses the term \totalement ordonn�ees".
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〈∀b,b ′ :: b◦⊤⊤◦b ′ ⊆ R\R ∨ b ′◦⊤⊤◦b ⊆ R\R〉
= { lemma 60 }

〈∀b,b ′ :: (R◦b)< ⊆ (R◦b ′)< ∨ (R◦b ′)< ⊆ (R◦b)<〉
= { b and b ′

are points;

hene, (b⊆R> ∧ b ′⊆R>) ∨ (R◦b)<=⊥⊥ ∨ (R◦b ′)<=⊥⊥
ase analysis (further details omitted) }

〈∀b,b ′ : b⊆R> ∧ b ′⊆R> : (R◦b)< ⊆ (R◦b ′)< ∨ (R◦b ′)< ⊆ (R◦b)<〉 .
✷

The �nal step in the proof of lemma 303 restrits the range of the dummies b and

b ′
. This is an indiation that our de�nition of SC demands re�nement: the relation

R\R typially inludes irrelevant information. We return to this topi in setion 11.6.

11.2 Equivalent Formulations

Lemma 34 enables a simple proof that linearity of R\R is equivalent to linearity of R/R .

Spei�ally:

Lemma 304 The following are all equivalent formulations of SC.R :

R\R ∪ (R\R)
∪

= ⊤⊤ ,(305)

R/R ∪ (R/R)
∪

= ⊤⊤ ,(306)

R ∪ (R\R/R)
∪

= ⊤⊤ ,(307)

R ◦¬R
∪

◦R ⊆ R .(308)

Proof We prove �rst that (306) and (308) are equivalent:

R ◦¬R
∪
◦R ⊆ R

= { fators }

R ◦¬R
∪ ⊆ R/R

= { omplements }

⊤⊤ ⊆ R/R ∪ ¬(R ◦¬R
∪)

= { (38) with R,S := R∪

, R
∪

(and R=(R∪)∪ ) }

⊤⊤ ⊆ R/R ∪ R
∪

\R
∪
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= { (35) with R,S :=R,R }

⊤⊤ ⊆ R/R ∪ (R/R)∪

= { [S⊆⊤⊤ ] with S := R/R ∪ (R/R)∪ and anti-symmetry }

⊤⊤ = R/R ∪ (R/R)∪ .

A symmetri argument establishes the equivalene of (305) and (308):

R ◦¬R
∪
◦R ⊆ R

= { fators }

¬R
∪
◦R ⊆ R\R

= { omplements }

⊤⊤ ⊆ R\R ∪ ¬(¬R∪
◦R)

= { (38) with S,T := R∪

, R
∪

}

⊤⊤ ⊆ R\R ∪ R
∪

/R
∪

= { (36) with R,S :=R,R (and R=(R∪)∪ ) }

⊤⊤ ⊆ R\R ∪ (R\R)∪

= { [S⊆⊤⊤ ] with S := R\R ∪ (R\R)∪ and anti-symmetry }

⊤⊤ = R\R ∪ (R\R)∪ .

Finally,

R ◦¬R
∪
◦R ⊆ R

= { fators }

¬R
∪ ⊆ R\R/R

= { onverse and omplements }

⊤⊤ ⊆ R ∪ (R\R/R)∪

= { [S⊆⊤⊤ ] with S := R ∪ (R\R/R)∪ and anti-symmetry }

⊤⊤ = R ∪ (R\R/R)∪ .

✷

Note that, in lemma 304, the symbol \⊤⊤ " denoting the universal relation is over-

loaded: if R has type A∼B , its ourrene in (305) has type B∼B , its ourrene in

(306) has type A∼A and its ourrene in (307) has type A∼B . This means that any

attempt to prove, for example, that

R ∪ (R\R/R)
∪

= R/R ∪ (R/R)
∪



193

is doomed to fail. One might onjeture that it is possible to establish the equivalene of

(305) and (306) without introduing omplements by showing that both are equivalent

to (307). However, the use of (308) is inevitable beause of the algebrai properties of

set union: when a set union is on the greater side of a set inlusion, there is no other

hoie but to introdue set negation.

11.3 General Constructions

Two general methods for identifying examples of stairase relations are given in lemmas

309 and 310.

Lemma 309 A linear preorder is a stairase relation. That is, for all (homogeneous)

R ,

SC.R ⇐ R◦R⊆R ∧ I⊆R ∧ R∪R∪

= ⊤⊤ .

Proof We have

R=R\R/R ⇐ R◦R⊆R ∧ I⊆R

sine

R ⊆ R\R/R

= { fators }

R◦R◦R ⊆ R

⇐ { monontoniity and transitivity }

R◦R⊆R

and

R\R/R ⊆ R

= { [ R= I\R/I ] }

R\R/R ⊆ I\R/I

⇐ { (anti)monotoniity }

I⊆R .

Also,

R
∪

◦R
∪ ⊆ R

∪

∧ I⊆R∪ ≡ R◦R⊆R ∧ I⊆R .

(The onverse of a preorder is a preorder.) So
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SC.R

= { lemma 304, in partiular (307) }

R ∪ (R\R/R)∪ = ⊤⊤
= { assumption: R is a preorder

(hene, R
∪

is a preorder and R
∪ = R∪

\R
∪

/R
∪

)

lemma 34, in partiular (37) }

R ∪ R∪ = ⊤⊤
= { assumption: R is linear (i.e. R∪R∪ = ⊤⊤ ) }

true .

✷

An example of a stairase relation predited by lemma 309 is the at-most relation |

on natural numbers, integers, rational numbers or reals.

The seond way of onstruting a stairase relation is to redue a linear preorder by

eliminating its reexive part (making it so-alled \strit"). For example, the less-than

relation (on natural numbers, integers, rational numbers or reals) is a stairase relation.

(Lemma 311 is an alternative way of establishing that the less-than relation is a stairase

relation. See example 315.) Formally, we have:

Lemma 310 For all (homogeneous) R ,

SC.R ⇐ R◦R⊆R ∧ R∪ I∪R∪

= ⊤⊤ .

Proof

SC.R

= { (307) }

R ∪ (R\R/R)∪ = ⊤⊤
= { [X⊆⊤⊤ ] and antisymmetry }

⊤⊤ ⊆ R ∪ (R\R/R)∪

⇐ { assumption: R∪ I∪R∪ = ⊤⊤ , so ⊤⊤ ⊆ R∪ I∪R∪

monotoniity and transitivity }

I∪R∪ ⊆ (R\R/R)∪

= { onverse, fators and distributivity }

R◦I◦R∪R◦R◦R ⊆ R
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= { supremum and monotoniity }

R◦R ⊆ R

= { assumption }

true .

✷

11.4 Invariant Properties

In this setion, we prove that the lass of linear preorders haraterised by the prediate

SC is invariant under a variety of operators. Lemma 311 is supported by the mental

piture shown in �g. 17.
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Figure 17: Stairase Invariants

Lemma 311 For all R ,

SC.R = SC .¬R = SC . R
∪

.

(As always, equality is used onjuntionally.)

Proof

SC.R

= { de�nition 302 }

R\R∪ (R\R)∪ = ⊤⊤
= { orollary 39 }
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¬R \¬R ∪ (¬R \¬R)∪ = ⊤⊤
= { de�nition 302 }

SC .¬R .

Also,

SC.R

= { de�nition 302 }

R\R∪ (R\R)∪ = ⊤⊤
= { lemma 304 (in partiular (308)) }

R ◦¬R
∪
◦R ⊆ R

= { properties of onverse }

R
∪
◦¬R ◦R

∪ ⊆ R
∪

= { lemma 304 (in partiular (308)) with R :=R∪

}

SC . R
∪

.

✷

Lemma 312 The funtions 〈R ::R\R〉 and 〈R ::R/R〉 are losure operators. That is

(R\R)\(R\R) = R\R ∧ (R/R)/(R/R) = R/R .

Proof This is a straightforward appliation of standard properties of fators:

(R\R)\(R\R)

= { [ R\(S\T)= (S◦R)\T ] with R,S,T :=R,R,R }

(R ◦R\R)\R

= { (28): [ R ◦R\R = R ] }

R\R .

The seond equation is proved in the same way.

✷

Lemma 313 For all R ,

SC.R = SC.(R\R) = SC.(R/R) .

Proof Straightforward appliation of de�nition 302 and lemma 312.

✷
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Lemma 314 For all S , R and T (of appropriate type),

SC.(S◦R◦T) ⇐ SC.R .

Proof

SC.(S◦R◦T)

= { lemma 304, in partiular (308) with R :=S◦R◦T }

S ◦ R ◦ T ◦ ¬(S◦R◦T)∪ ◦ S ◦ R ◦ T ⊆ S ◦R ◦T

⇐ { monotoniity of omposition }

R ◦ T ◦ ¬(S◦R◦T)∪ ◦ S ◦ R ⊆ R

= { middle-exhange rule (and double negation) }

(R◦T)∪ ◦ ¬R ◦ (S◦R)∪ ⊆ (S◦R◦T)∪

= { onverse }

T
∪

◦ R
∪

◦ ¬R ◦ R
∪

◦ S
∪ ⊆ T

∪
◦ R

∪
◦ S

∪

⇐ { monotoniity of omposition }

R
∪

◦ ¬R ◦ R
∪ ⊆ R

∪

= { R=(R∪)∪ and lemma 304 with R :=R∪

}

SC . R
∪

= { lemma 311 }

SC.R .

✷

Example 315 The above properties allow us to identify a number of examples of

stairase relations that prove to be signi�ant later.

The at-most relation (ommonly denoted by the symbol \≤ ") is a linear ordering

relation | on the integers, on the rationals and on the real numbers. By lemma 309 all

three relations are stairase relations. By applying lemma 311 it is thus the ase that

the greater-than relation (ommonly denoted by \> "), the less-than relation (ommonly

denoted by the symbol \< ") and the at-least relation (ommonly denoted by the symbol

\≥ ") are all stairase relations | again, on the integers, on the rationals and on the

real numbers. This is beause the greater-than relation is the omplement of the at-most

relation, the less-than relation is the onverse of the greater-than relation, and, in turn,

the at-least relation is the omplement of the less-than relation.
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Note that the less-than relation is not a preorder. (It is transitive but not reexive.)

Thus it is an example of a relation R suh that R 6=R\R (and R 6=R/R ) but is nevertheless
a stairase relation aording to de�nition 302.

The reader is invited to piture the less-than relation on the integers as a \stairase".

Pituring the less-than relation on the rational numbers (or on the real numbers) as

a \stairase" is, however, more diÆult | in fat impossible in a formal sense to be

made preise later. This raises doubts as to whether de�nition 302 is the appropriate

abstration from the mental piture of a \stairase".

✷

We onlude this setion with a property due to Riguet [Rig51℄. (See the disussion

following the lemma.)

Lemma 316 For all R , the relation R\R/R is a stairase relation if R is a stairase

relation.

Proof For brevity, let S denote R\R/R . Then

SC.S

= { lemma 304 }

S ◦¬S
∪
◦S ⊆ S

= { lemma 32 and de�nition of S }

R\R/R ◦R ◦¬R
∪
◦R ◦R\R/R ⊆ R\R/R

= { de�nition of fators }

R ◦R\R/R ◦R ◦¬R
∪
◦R ◦R\R/R ◦R ⊆ R

⇐ { anellation }

R ◦¬R
∪
◦R

= { lemma 304 }

SC.R .

✷

The ombination of lemmas 182 and 316 is the seond of two theorems stated by

Riguet [Rig51℄. More preisely, he states that R ◦¬R
∪
◦R is a \relation de Ferrers" if

R is a \relation de Ferrers" (f. lemma 316) and their \di��erene" R∩¬(R ◦¬R
∪
◦R)

(i.e. ∆R ) is a difuntional relation (f. lemma 182). This explains his use of the term

\di��erene" for what we all the \diagonal" of a relation.
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11.5 Linear Orderings

In this setion and the next we return to the mental piture of \stairases" as illustrated

by �g. 1. An alternative perspetive on a stairase relation of type A∼B is that it

divides the elements of A into \bloks"; similarly the elements of B are also divided

into \bloks". Fig. 18 is an example where A and B are eah divided into �ve bloks.

The e�et is to divide the \stairase" into �fteen ( 1+2+3+4+5 ) bloks. A pair (a, b)

is related by the stairase relation if the number assigned to a is at most the number

assigned to b . Note that the at-most relation on numbers is a linear ordering.
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Figure 18: Blok Struture of a Stairase Relation

In setion 11.6, we show that every linearly blok-ordered relation is a stairase

relation. However, as we show in this setion, a stairase relation does not neessarily

have a blok-ordering. See theorem 319. Thus, ontrary to laims made in the literature

|see setion 12| it is not the ase that these two onepts are equivalent.

Lemma 317 Suppose R has type A∼B and f and g are relations with targets A

and B , respetively, suh that f ◦ f
∪ = R<

and g ◦g
∪ = R>

. Then

SC.(f
∪

◦R ◦g) ≡ SC.R .

Proof The equivalene is proved by mutual impliation.

SC.R

= { assumption: f ◦ f
∪ = R<

and g ◦g
∪ = R>

; domains }

SC.(f ◦ f∪ ◦R ◦g ◦g
∪)

⇐ { lemma 314 with S,T := f , g∪

}
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SC.(f∪ ◦R ◦g)

⇐ { lemma 314 with S,T := f∪ , g }

SC.R .

✷

Corollary 318 Suppose T of type C∼C is a linear ordering and suppose f and g are

funtional and surjetive relations of types C∼A and C∼B , respetively. Then f∪ ◦T ◦g

is a stairase relation.

Proof An ordering is also a preorder (and a linear ordering is a linear preorder). So

the orollary follows immediately from the ombination of lemmas 309 and 317.

✷

Theorem 319 Not every stairase relation is blok-ordered. Spei�ally, the less-than

relation on the real numbers (or the rational numbers) is a stairase relation but is not

blok-ordered.

Proof We remarked in example 315 that the less-than relation on the real numbers is

a stairase relation. To show that it is not blok-ordered, we exploit lemma 248.

Suppose that the less-than relation on the real numbers is blok-ordered by the fun-

tions f and g and the provisional ordering T . That is, suppose

R = f
∪

◦T ◦g ,

where f and g are funtionals of type A←IR , for some A , and

f ◦ f
∪

= T ∩T∪

= g ◦g
∪

∧ IIR ⊆ f
∪

◦ f ∩ g∪

◦g ,

T is a provisional ordering of type A∼A and for all x and y of type IR , and

x◦⊤⊤◦y ⊆ R ≡ x<y .

We begin by showing that f
∪
◦g is the empty relation. Inevitably, we need to exploit

the pointwise de�nition of the diagonal, as formulated in lemma 40.

x◦⊤⊤◦y ⊆ f
∪
◦g

= { lemma 248, in partiular (251) }

x◦⊤⊤◦y ⊆ R ∩ R∪

\R
∪

/R
∪

= { de�nition of intersetion and lemma 40 }

x◦⊤⊤◦y ⊆ R ∧ 〈∀u,v : u◦⊤⊤◦y ⊆ R ∧ x◦⊤⊤◦v ⊆ R : u◦⊤⊤◦v ⊆ R〉



201

= { de�nition of R }

x<y ∧ 〈∀u,v : u<y ∧ x<v : u<v〉
⇒ { u,v := y− (y−x)× 2

3
, x+ (y−x)× 1

3

(Note that x<y ⇒ y− (y−x)× 2
3
< y ∧ x < x+ (y−x)× 1

3
) }

y− (y−x)×2
3
< x+ (y−x)×1

3

= { arithmeti }

y−x < y−x

= { the less-than relation is irreexive }

false .

That is, by the saturation axiom (16), f
∪
◦g = ⊥⊥IR . This ontradits theorem 262 sine

the left (and right) domain of the empty relation is the empty relation and the left and

right domains of the less-than relation are both non-empty.

✷

A brief, informal summary of the proof of theorem 319 is that the less-than relation

on real numbers is indeed a stairase relation but has no \diagonal" (more formally its

\diagonal" is the empty relation) and no suh stairase relation an be blok-ordered.

The informal ontrapositive is that a neessary step in the proess of blok-ordering a

stairase relation is to begin by identifying its diagonal; this is a difuntional relation

and an be represented by f
∪
◦g where f and g are funtional. If the right domain of g

equals the right domain, and the right domain of f equals the left domain of the given

relation, the proess is ompleted by identifying the ordering relation T .

For example, the less-than relation on the integers is blok-ordered. Indeed, for all

integers m and n

m<n ≡ m+1≤n .

The relation f is thus the suessor funtion, the relation T is the at-most relation and

the relation g is the identity funtion (on the integers). The \diagonal" is the set of

pairs (m, m+1) .

The less-than relation on the natural numbers is also blok-ordered but more are

needs to be taken in the de�nition of the blok-ordering. The relation f is the suessor

funtion; its soure is the natural numbers and its target is the stritly positive natu-

ral numbers. The provisional ordering T is a subset of the at-most relation on natural

numbers (spei�ally, the at-most relation restrited to the stritly positive natural num-

bers) and g is the partial identity relation on the natural numbers with left (and right)

domain the stritly positive natural numbers. (Thus no number is related by g to the

number 0 .)
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That the less-than relation on the real numbers is not blok-ordered is a onsequene

of the fat that if x<y the interval between x and y an always be subdivided at will.

(That is, it is always possible to �nd a real number z suh that x<z and z<y .) The

same is also true of the rationals and the proof of theorem 319 is equally valid in this

ase. Abstrating from the details of the less-than relation, we get the following theorem.

Theorem 320 Suppose R is a homogeneous relation suh that

R 6=⊥⊥ ∧ I∩R=⊥⊥ ∧ R=R◦R ∧ R∪ I∪R∪

= ⊤⊤ .

Then R is a stairase relation and ∆R=⊥⊥ .

It follows that any suh relation is not blok-ordered.

Proof Lemma 310 proves that R is a stairase relation.

Comparing the above onditions on R with those in lemma 310, the additions are the

non-emptiness property R 6=⊥⊥ , the \stritness" property I∩R=⊥⊥ and the \subdivi-

sion" property R ⊆ R◦R . (The less-than relation on real numbers has the subdivision

property whereas the less-than relation on the integers does not.) Applying lemma 321

(below), the subdivision and stritness properties imply that ∆R=⊥⊥ . That R is not

blok-ordered follows from theorem 262 and the assumption that R 6=⊥⊥ .

✷

The lemma used to prove theorem 320 is the following:

Lemma 321

R⊆R◦R⇒ (∆R=⊥⊥ ≡ I∩R⊆⊥⊥) .

Proof

R ⊆ R ◦¬R
∪
◦R

⇒ { monotoniity }

I∩R ⊆ I ∩ R ◦¬R
∪
◦R

⇒ { modular law }

I∩R ⊆ R◦(R∪
◦R

∪ ∩ ¬R
∪)◦R

= { assumption: R⊆R◦R }

I∩R ⊆ R◦(R∪ ∩ ¬R
∪)◦R

= { omplements }

I∩R⊆⊥⊥
= { I= I∪ , onverse and shunting }
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I ⊆ ¬R
∪

⇒ { monotoniity }

R◦R ⊆ R ◦¬R
∪
◦R

⇒ { assumption: R⊆R◦R and transitivity }

R ⊆ R ◦¬R
∪
◦R .

That is,

R⊆R◦R ⇒ (R ⊆ R ◦¬R
∪

◦R ≡ I∩R⊆⊥⊥) .(322)

So

∆R=⊥⊥
= { [⊥⊥⊆X ] and antisymmetry, de�nition of ∆R }

R ∩ (R\R/R)∪ ⊆ ⊥⊥
= { shunting }

R ⊆ ¬(R\R/R)∪

= { (32) }

R ⊆ R ◦¬R
∪
◦R

= { assumption: R⊆R◦R , (322) }

I∩R⊆⊥⊥ .

✷

The assumption that R 6=⊥⊥ in theorem 320 is neessary. The relation ¬I11 (see

(33)) is the empty relation; it is also a blok-ordered stairase relation on a �nite type

that satis�es all the assumptions of theorem 320 exept for the assumption that it is

non-empty.

Note that, if R is a homogeneous relation suh that

R 6=⊥⊥ ∧ R=R◦R ∧ I∩R=⊥⊥ ,

the left and right domains of R annot be �nite. (The easy proof involves onstruting

an in�nite sequene of points 〈i : i∈IN :ai〉 suh that,

〈∀i :: ai◦⊤⊤◦ai+1 ⊆ R〉 ∧ 〈∀ i,j :: ai=aj ≡ i= j〉 .

This raises the question whether all �nite stairase relations are linearly blok-ordered.
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11.6 Linear Block Ordering

Reall that, immediately following lemma 303, we remarked that the de�nition of SC

demands re�nement. This is more evident from the limitations of orollary 318: the

orollary assumes a linear ordering |and not a provisional linear ordering| and, more

importantly, that f and g are surjetive. In pratie, one might be tempted to fudge

the appliation of the orollary by restriting a given ordering to a subset of the elements

on whih it is de�ned (for example, restriting the at-most ordering on integers to the

at-most ordering on even integers). Rather than resort to suh measures, we prefer to

make the proess preise within our axiom system. Indeed, it is neessary for us to

do so in order to establish a suÆient ondition for a stairase relation to be linearly

blok-ordered. See theorem 333 below.

In the following lemmas R>•
denotes the omplement of R>

in the lattie of oreex-

ives. That is, for arbitrary relation R , we have

R>∪R>• = I ∧ R>∩R>• = ⊥⊥(323)

(where I and ⊥⊥ denote the identity and empty relations of appropriate type). Similarly

R•<
denotes the omplement of R<

That is

R<∪R•< = I ∧ R<∩R•< = ⊥⊥ .(324)

Domain alulus enables the proof of the following:

R ◦R>• = ⊥⊥ ∧ R•< ◦R = ⊥⊥ .(325)

Given a relation R , the points in R•<
(or, dually R>•

) are arguably irrelevant sine they

are preisely the points that are not related to any other point by R . Similar statements

an be made about fators. In general, for arbitrary relations R and S , the fator R\S

is arguably too big beause its left domain inludes R>•
. Similarly, the fator R/S is too

big beause its right domain inludes S•< , as is shown in the following lemma.

Lemma 326 For all R and S ,

R>• ◦R\S = R>• ◦⊤⊤ ∧ R/S ◦S•< = ⊤⊤ ◦S•< .

Proof We prove the �rst equation:

R>• ◦⊤⊤
= { omplements }

R>• ◦ (R\S ∪ ¬(R\S))

= { distributivity }
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R>• ◦R\S ∪ R>• ◦¬(R\S)

= { (38) }

R>• ◦R\S ∪ R>• ◦R
∪

◦ ¬S

= { (325) and onverse }

R>• ◦R\S ∪ ⊥⊥ ◦¬S

= { ⊥⊥ is zero of omposition and unit of union }

R>• ◦R\S .

✷

The argument that fators typially inlude irrelevant information extends to the

preorders R\R and R/R . In partiular, note the terms involving R>•
in the following

lemma.

Lemma 327 For all R ,

R\R∪ (R\R)
∪

= R> ◦ (R\R∪ (R\R)
∪

) ◦R> ∪ R>• ◦⊤⊤ ∪ ⊤⊤ ◦R>• .

Proof

R\R∪ (R\R)∪

= { (323) }

(R>∪R>•) ◦ R\R ∪ (R\R)∪ ◦ (R>∪R>•)

= { distributivity }

R> ◦ R\R ∪ R>• ◦ R\R

∪ (R\R)∪ ◦ R> ∪ (R\R)∪ ◦ R>•

= { lemma 326 and rearranging }

R> ◦ R\R ∪ ⊤⊤ ◦R>•

∪ (R\R)∪ ◦ R> ∪ R>• ◦⊤⊤
= { (323) and distributivity (as in �rst two steps) }

R> ◦R\R ◦R> ∪ R> ◦R\R ◦R>• ∪ ⊤⊤ ◦R>•

∪ R> ◦ (R\R)∪ ◦R> ∪ R>• ◦ (R\R)∪ ◦R> ∪ R>• ◦⊤⊤
= { R> ◦ R\R ⊆ ⊤⊤ and (R\R)∪ ◦R> ⊆ ⊤⊤

and de�nition of subset relation }

R> ◦R\R ◦R> ∪ ⊤⊤ ◦R>•
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∪ R> ◦ (R\R)∪ ◦R> ∪ R>• ◦⊤⊤
= { rearranging and distributivity }

R> ◦ (R\R∪ (R\R)∪) ◦R> ∪ ⊤⊤ ◦R>• ∪ R>• ◦⊤⊤ .

✷

(Lemma 327 is essentially the ase analysis that was omitted in the proof of lemma

303.) Avoiding the useless information introdued by the fator operators was the moti-

vation for our introduing the notion of \provisional" (pre)orders. The following lemma

enables the onventional notion of a linear ordering to be extended to provisional order-

ings.

Lemma 328 For all R ,

R\R∪ (R\R)
∪

= ⊤⊤ ≡ R> ◦ (R\R∪ (R\R)
∪

) ◦R> = R> ◦⊤⊤ ◦R> .

Proof By mutual impliation. First,

R\R∪ (R\R)∪ = ⊤⊤
⇒ { Leibniz }

R> ◦ (R\R∪ (R\R)∪) ◦R> = R> ◦⊤⊤ ◦R> .

Seond,

R\R∪ (R\R)∪

= { lemma 327 }

R> ◦ (R\R∪ (R\R)∪) ◦R> ∪ R>• ◦⊤⊤ ∪ ⊤⊤ ◦R>•

= { assume: R> ◦ (R\R∪ (R\R)∪) ◦R> = R> ◦⊤⊤ ◦R> }

R> ◦⊤⊤ ◦R> ∪ R>• ◦⊤⊤ ∪ ⊤⊤ ◦R>•

= { (323), distributivity and rearranging

(as in proof of lemma 327) }

R> ◦⊤⊤ ◦R> ∪ R>• ◦⊤⊤ ◦R> ∪ R>• ◦⊤⊤
∪ R> ◦⊤⊤ ◦R> ∪ R> ◦⊤⊤ ◦R>• ∪ ⊤⊤ ◦R>•

= { (323), distributivity and rearranging }

⊤⊤ ◦R> ∪ R>• ◦⊤⊤
∪ R> ◦⊤⊤ ∪ ⊤⊤ ◦R>•

= { (323), distributivity and rearranging }

⊤⊤ .
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(Note the assumption in the seond step.) That is,

R> ◦ (R\R∪ (R\R)
∪

) ◦R> = R> ◦⊤⊤ ◦R> ⇒ R\R∪ (R\R)
∪

= ⊤⊤ .

✷

As always, for pratial purposes it is preferable to express properties in terms of

the ore of a relation rather than the relation itself. Lemma 328 is easily rewritten

aordingly:

Theorem 329 Suppose |R| is a ore of relation R as determined by the funtionals

λ and ρ . (See de�nition 191.) Then R is a stairase relation i�

|R|< ◦ (|R|\|R| ∪ (|R|\|R|)
∪

) ◦ |R|< = |R|> ◦⊤⊤ ◦ |R|> .

Proof

R> ◦ (R\R∪ (R\R)∪) ◦R> = R> ◦⊤⊤ ◦R>

= { lemma 195 }

ρ> ◦ (R\R∪ (R\R)∪) ◦ρ> = ρ> ◦⊤⊤ ◦ρ>

= { by lemma 193, R = λ
∪
◦ |R| ◦ρ , (81) with f,g :=λ,ρ }

ρ
∪
◦ (|R|\|R| ∪ (|R|\|R|)∪) ◦ρ = ρ> ◦⊤⊤ ◦ρ>

= { (⇒ ) monotoniity and domains; (⇐ ) ditto and ρ
∪
◦ρ = ρ< }

ρ ◦ρ
∪
◦ (|R|\|R| ∪ (|R|\|R|)∪) ◦ρ ◦ρ

∪ = ρ< ◦⊤⊤ ◦ρ<

= { by lemma 195, ρ ◦ρ
∪ = ρ< = |R|> }

|R|> ◦ (|R|\|R| ∪ (|R|\|R|)∪) ◦ |R|> = |R|> ◦⊤⊤ ◦ |R|> .

The theorem follows by ombining lemma 328 with de�nition 302.

✷

Lemma 330 A linear provisional ordering is a stairase relation.

Proof Suppose T is a linear provisional ordering. Then

SC.T

= { de�nition 302 }

T\T ∪ (T\T)∪ = ⊤⊤
= { lemma 328 }

T> ◦ (T\T ∪ (T\T)∪) ◦T> = T> ◦⊤⊤ ◦T>
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= { lemma 122 }

(T ∩T∪) ◦ (T\T ∪ (T\T)∪) ◦ (T ∩T∪) = (T ∩ T∪) ◦⊤⊤ ◦ (T ∩ T∪)

= { assumption: T is a provisional ordering

lemma 119 and de�nition 121 }

(T ∩T∪) ◦ (T ∪T∪) ◦ (T ∩ T∪) = (T ∩T∪) ◦⊤⊤ ◦ (T ∩ T∪)

= { assumption: T is linear, de�nition 121 }

true .

✷

Lemma 331 Suppose R is a linearly blok-ordered relation. Then R is a stairase

relation.

Proof This is an immediate onsequene of lemmas 317 and 330. Spei�ally, by

de�nition 225, R is a blok-ordered relation if R = f∪ ◦T ◦g where f and g satisfy (227)

and T is a provisional ordering (i.e. satis�es (226)). It is a linearly blok-ordered relation

if, in addition, T is a linear provisional ordering. Applying lemma 317 (with R :=T ), R

is a stairase relation if T is a stairase relation. But this is indeed the ase by lemma

330.

✷

Lemma 332 Suppose R is a stairase relation. Then

R is linearly blok-ordered ⇐ (∆R)< = R< ∧ (∆R)> = R> .

Proof By lemma 259, R is blok-ordered. Spei�ally, lemma 259 shows how to

onstrut funtionals f and g and a provisional ordering T satisfying the properties

(227) and (226) suh that R = f∪ ◦T ◦g . The task is thus to prove that T is linear if R

is a stairase relation.

We have:

R< ◦ (R\R/R)∪ ◦R>

= { R = f∪ ◦T ◦g and (227) }

f> ◦ ((f∪ ◦T ◦g)\(f∪ ◦T ◦g)/(f∪ ◦T ◦g))∪ ◦ g>

= { onverse and fators: (37) }

f> ◦ (g∪
◦ T

∪
◦ f)\(g∪

◦T
∪
◦ f)/(g∪

◦T
∪
◦ f) ◦ g>

= { lemma 78 with U,V,W := T∪

, T
∪

, T
∪

}
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f
∪
◦ (T\T/T)∪ ◦g

= { domains and (227) }

f
∪
◦ (T ∩ T∪) ◦ (T\T/T)∪ ◦ (T ∩ T∪) ◦g

= { T is a provisional ordering, lemmas 116 and 118 }

f
∪
◦T

∪
◦g .

So

SC.R

= { (307) }

R ∪ (R\R/R)∪ = ⊤⊤
⇒ { [S⊆⊤⊤ ] , domains and monotoniity }

R ∪ R< ◦ (R\R/R)∪ ◦R> = R< ◦⊤⊤ ◦R>

= { R = f∪ ◦T ◦g and above alulation }

f
∪
◦T ◦g ∪ f

∪
◦T

∪
◦g = f> ◦⊤⊤ ◦g>

= { distributivity }

f∪ ◦ (T ∪ T∪) ◦g = f> ◦⊤⊤ ◦g>

⇒ { Leibniz }

f ◦ f
∪
◦ (T ∪ T∪) ◦g ◦g

∪ ⊇ f ◦ f> ◦⊤⊤ ◦g> ◦g
∪

= { de�nition 225 of blok-ordered

in partiular (227); domains }

(T ∩T∪) ◦ (T ∪ T∪) ◦ (T ∩ T∪) = (T ∩T∪) ◦⊤⊤ ◦ (T ∩ T∪)

= { lemma 122 and de�nition 121 }

T is linear .

✷

Theorem 333 Suppose R is a stairase relation. Then

R is linearly blok-ordered ≡ (∆R)< = R< ∧ (∆R)> = R> .

Proof By mutual impliation. \Only-if" is an instane of theorem 262. \If" is lemma

332.

✷
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11.7 Riguet’s Rectangle Theorem

As mentioned earlier, the purpose of undertaking this exerise was to demonstrate how

reasoning with fators is so muh more straightforward than reasoning with nested nega-

tions. It was a surprise to disover an error in the extant literature. This setion is about

our attempt to trae the soure of the material on difuntional and stairase relations

and, in partiular, the soure of the error.

Riguet introdues the notion of a difuntional relation in [Rig48℄ and the notion of

a stairase relation in [Rig51℄ | but uses the name \relation de Ferrers". His de�nition

orresponds to property (308). He lists a number of properties related to the ones stated

above. Diret omparison is slightly ompliated by the fat that he does not make use

of fators. For example, he states that R is a \relation de Ferrers" if and only if R ◦¬R
∪

is a \relation de Ferrers". This is a ombination of lemma 304 (in partiular (305)) and

lemma 311.

Riguet does not give a proof of the theorem. Riguet [Rig51℄ states that there is a

striking analogy (\une analogie frappante") between the de�nitions and properties of

\relations de Ferrers" and difuntional relations. He states that the analogy is lari�ed

by

14

a theorem similar to our lemma 182 but does not go into further details. As

mentioned earlier, his theorem is that, if R is a stairase relation (a \relation de Ferrers"),

then so too is R ◦¬R
∪
◦R and their \di��erene" R∩¬(R ◦¬R

∪
◦R) is difuntional. Lemma

182 is stronger than Riguet's difuntionality property beause it does not require R to

be a stairase relation.

Note that in the ase that R is the less-than relation on real numbers, R ◦¬R
∪
◦R

is also the less-than relation and R∩¬(R ◦¬R
∪
◦R) is trivially difuntional (sine it is

the empty relation). This observation leads one to wonder preisely how the \analogie

frappante" is lari�ed by Riguet's theorem. (We invite the reader to verify the laims

we have just made and then work out the di�erene when \real number" is replaed by

\integer".)

As announed earlier, the proof of Riguet's theorem is straightforward

15

:

Theorem 334 (Riguet’s theorem) A relation is a stairase relation if and only if it

has a linear polar overing.

Proof By mutual impliation.

For the \only-if" part, theorem 211 establishes that every relation has a polar over-

ing. So it suÆes to show that if R is a stairase relation the overing is linear. Reall

the onstrution of R in theorem 211. If R is a stairase relation, that the set R<
is

linearly ordered by inlusion is immediate from lemma 303.

14

\Cette analogie s'�elaire par"

15

This may explain why he didn't provide a proof.
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For the \if" part, suppose R of type A∼B has a linear polar overing R . Our task

is to show that R is a stairase relation. Aiming to apply lemma 303, we onsider points

b and b ′
suh that b⊆R>

and b ′⊆R>
. Our task beomes to show that

(R◦b)< ⊆ (R◦b ′)< ∨ (R◦b ′)< ⊆ (R◦b)< .

This is ahieved as follows:

(R◦b)< ⊆ (R◦b ′)< ∨ (R◦b ′)< ⊆ (R◦b)<

= { R=∪R }

(∪R ◦b)< ⊆ (R◦b ′)< ∨ (∪R ◦b ′)< ⊆ (R◦b)<

= { distributivity properties }

〈∀U : U∈R : (U◦b)< ⊆ (R◦b ′)<〉 ∨ 〈∀U : U∈R : (U◦b ′)< ⊆ (R◦b)<〉
= { lemma 128,

ase analyses on (b ′⊆U> ∧ (U◦b ′)<=U<) ∨ (U◦b ′)<=⊥⊥
and (b⊆U> ∧ (U◦b)<=U<) ∨ (U◦b)<=⊥⊥ }

〈∀U : U∈R ∧ b⊆U> : U< ⊆ (R◦b ′)<〉
∨ 〈∀U : U∈R ∧ b ′⊆U> : U< ⊆ (R◦b)<〉

⇐ { R=∪R , monotoniity and lemma 128 }

〈∀U : U∈R ∧ b⊆U> : 〈∃V : V∈R ∧ b ′⊆V> : U< ⊆ V<〉〉
∨ 〈∀U : U∈R ∧ b ′⊆U> : 〈∃V : V∈R ∧ b⊆V> : U< ⊆ V<〉〉

= { assumption: R is a polar overing

so U< ⊆ V< ≡ U> ⊇ V> }

〈∀U : U∈R ∧ b⊆U> : 〈∃V : V∈R ∧ b ′⊆V> : U> ⊇ V>〉〉
∨ 〈∀U : U∈R ∧ b ′⊆U> : 〈∃V : V∈R ∧ b⊆V> : U> ⊇ V>〉〉

= { [ p∨q ≡ (¬q⇒p) ] together with the alulation below }

true .

The justi�ation of the �nal step is as follows.

¬〈∀U : U∈R ∧ b ′⊆U> : 〈∃V : V∈R ∧ b⊆V> : U> ⊇ V>〉〉
= { prediate alulus (and dummy hange: U,V :=V,U ) }

〈∃V : V∈R ∧ b ′⊆V> : 〈∀U : U∈R ∧ b⊆U> : ¬(V> ⊇ U>)〉〉
= { assumption: R is a linear polar overing
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in partiular, the inlusion ordering on left domains is linear }

〈∃V : V∈R ∧ b ′⊆V> : 〈∀U : U∈R ∧ b⊆U> : V> ⊂ U>〉〉
⇒ { prediate alulus and V> ⊂ U> ⇒ U>⊇V> }

〈∀U : U∈R ∧ b⊆U> : 〈∃V : V∈R ∧ b ′⊆V> : U> ⊇ V>〉〉 .
✷

In the proof of theorem 334 we have hosen a overing that is indexed by points in

the soure of the given relation R . We ould, of ourse, have hosen a overing that is

indexed by points in the relation's target. Fig. 19 is a mental piture of the di�erent

hoies.

����������������������������������������

A

B

a

b

Figure 19: Choies of Polar Covering

Highlighted in �g. 19 are a point |the point a◦⊤⊤◦b in our formalism| and two

retangles. The (highlighted) long, low retangle depits the relation

R/R ◦a ◦R ,

whilst the (highlighted) short, tall retangle depits the relation

R ◦b ◦R\R .

Rather than hoosing the latter as the elements of the polar overing |as we did| , we

ould have hosen the former. The (highlighted) orner retangle depits the relation

R/R ◦a ◦⊤⊤ ◦b ◦R\R .

Indeed, for all relations R ,

R/R ◦a ◦R ∩ R ◦b ◦R\R = R/R ◦a ◦⊤⊤ ◦b ◦R\R

⇐ a◦⊤⊤◦b ⊆ R .

We leave the proof of this property to the reader. (Hint: use lemma 125.)
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11.8 Finite Staircase Relations

As we have seen in theorems 319 and 320, not every stairase relation is blok-ordered.

However, for a relation to satisfy the assumptions made in theorem 320 it must be in�nite.

In this setion we show that every �nite stairase relation is indeed blok-ordered.

Theorem 335 Suppose R is a �nite relation. (That is, the sets represented by R<

and R>
are �nite.) Then R is a stairase relation equivales R is a linear blok-ordered

relation.

Proof Lemma 331 shows that R is a stairase relation if it is a linear blok-ordered

relation (whether or not R is �nite). It remains to show that, if R is �nite and a stairase

relation then it is a linear blok-ordered relation.

Given a �nite, stairase relation R , our task is to ostrut funtionals f and g and

a provisional ordering T satisfying de�nition 225. The key is a ombination of theorems

283, 334 and 292.

Theorem 283 states that R = f∪ ◦⊑ ◦g , where the ordering ⊑ is as in de�nition 276,

and

f>=R< ∧ 〈∀a : a⊆R< : f.a = R/R ◦a ◦R〉

and

g>=R> ∧ 〈∀b : b⊆R> : g.b = R ◦b ◦R\R〉 .

To omplete our task, we must show that f<=g<
. That is, we must show that

〈∀a : a⊆R< : 〈∃b : b⊆R> : f.a=g.b〉〉(336)

and vie-versa

〈∀b : b⊆R> : 〈∃a : a⊆R< : f.a=g.b〉〉 .(337)

Riguet's theorem (theorem 334) states that, if R is a stairase relation, both f and g

are linear polar overings of R ; although not stated expliitly there, the ordering on the

elements of both overings is the ordering ⊑ introdued in de�nition 276.

Now, a harateristi feature of a �nite linear ordering is that the suprema and in�ma

of any non-empty set always exist and are the maxima and minima. That is, for all points

a suh that a⊆R<
, the minimum

〈MIN⊑ b
′ : a◦⊤⊤◦b ′⊆R : g.b ′〉

is well-de�ned. More preisely, the minimum value \witnesses" the existentially quanti-

�ed dummy b in the property

〈∀a : a⊆R< : 〈∃b : a◦⊤⊤◦b⊆R : 〈∀b ′ : a◦⊤⊤◦b ′⊆R : g.b⊑g.b ′〉〉〉
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assuming that the ordering ⊑ is a linear ordering of a �nite set. Similarly, for all points

b suh that b⊆R>
, the maximum

〈MAX⊑ a
′ : a ′

◦⊤⊤◦b⊆R : f.a ′〉

exists and \witnesses" the existentially quanti�ed dummy a in the property

〈∀b : b⊆R> : 〈∃a : a◦⊤⊤◦b⊆R : 〈∀a ′ : a ′
◦⊤⊤◦b⊆R : f.a ′⊑ f.a〉〉〉 .

With this knowledge, we an now prove (336). Suppose a⊆R<
. Then

〈∃b : b⊆R> : f.a=g.b〉
= { de�nition of f and g }

〈∃b : b⊆R> : R/R ◦a ◦R = R ◦b ◦R\R〉
⇐ { a◦⊤⊤◦b⊆R ⇒ b⊆R> }

〈∃b : a◦⊤⊤◦b⊆R : R/R ◦a ◦R = R ◦b ◦R\R〉
= { theorem 292 }

〈∃b : a◦⊤⊤◦b⊆R : 〈∀b ′ : a◦⊤⊤◦b ′⊆R : R ◦b ◦R\R ⊑ R ◦b ′ ◦R\R〉〉
= { de�nition of g }

〈∃b : a◦⊤⊤◦b⊆R : 〈∀b ′ : a◦⊤⊤◦b ′⊆R : g.b⊑g.b ′〉〉
⇐ { de�nition of MIN }

〈∃b : a◦⊤⊤◦b⊆R : g.b = 〈MIN⊑ b
′ : a◦⊤⊤◦b ′⊆R : g.b ′〉〉

= { assumption: R is a �nite relation }

true .

We have thus established (336). Property (337) is the onverse dual.

✷

Although theorem 335 assumes that the relation R is �nite, it an of ourse be

applied to the ore |R| of the relation R. From the de�nition of a ore (de�nition 191)

and lemma 193, it is easy to establish the equivalene of properties of a relation and

properties of its ore, in partiular, being a stairase relation and being blok-ordered.

Thus, the theorem is more generally appliable to relations whose ore is �nite.
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12 Discussion

The writing of this paper began after reading a paper by Wolfram Kahl (see [Kah20℄)

whih inluded a setion on \Ferrers-type relations" iting not Riguet [Rig51℄ (where

the notion is introdued) but the textbook by Shmidt and Str�ohlein [SS93℄. Although

Shmidt and Str�ohlein also do not ite [Rig51℄, they do use Riguet's de�nitions. It

was immediately lear that substantial improvements ould be made to Shmidt and

Str�ohlein's alulations by exploiting the properties of the fators of a relation. Fur-

ther study also revealed an obvious error in their \de�nition" [SS93, De�nition 4.4.11℄.

(Shmidt and Str�ohlein's \de�nitions" often inlude what they all \de�nition variants"

whih, in most ases, they deem to be obviously equivalent. This is not the ase here

| see below.) This led to an investigation of the origin of the error whih, in turn, led

to the disovery of the original paper by [Rig51℄. Several more reent publiations were

also disovered where the opportunity to orret Shmidt and Str�ohlein's error is not

taken. Intrigued, it was deided to embark on a thorough investigation of the notions

introdued in [Rig51℄: the notion of the \di��erene" of a relation and the notion of a

\relation de Ferrers" as well as Riguet's \analogie frappante" onneting the two. In

the proess, it beame lear that a more general notion of \blok-ordering" was relevant

than the total ordering demanded by Riguet. This led to the four goals enumerated in

the introdution.

The need for the �rst two goals is lear from a study of Riguet's paper. Although

his work is omprehensive (in partiular [Rig48℄), the typography of publiations written

70 years ago makes them diÆult to read; the notation hosen by Riguet is also often

rather quaint (and in some ases impossible to reprodue!). Ironially in a paper about

\orrespondanes de Galois", Riguet does not introdue the Galois onnetion de�ning

the fators of a relation and, instead, makes opious use of (nested) omplements. Also,

Riguet states many properties without proof: for example, [Rig51℄ lists ten de�nitions of

a \relation de Ferrers" with justi�ation that it is easy to see (\il est faile de voir") that

they are all equivalent. Moreover, subsequent literature leaves many gaps. For example,

we have been unable to �nd any proof of theorem 335, even though we have seen several

publiations that assume the theorem (orretly in the ase of �nite relations).

Experiene shows that the most important onepts |the ones with wide applia-

bility| tend to be disovered and redisovered, often quite independently, in several

di�erent and apparently unrelated ontexts. Di�erent formulations, that turn out to

be equivalent, and di�erent terminology, reeting partiular appliation areas, is intro-

dued, making the task of proper attribution almost impossible. All that an author an

be expeted to do is to ite the publiations that have had a signi�ant inuene on their

own work | whih is what we have done here.

For the reasons given above, the initial steps in the writing of this doument were
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inuened by setion 4.4 of the textbook by Shmidt and Str�ohlein [SS93℄. Like Riguet,

Shmidt and Str�ohlein do not introdue the fator operators and, impliitly, use the

equivalent de�nition in terms of nested omplements. (See lemma 32.) The longest and

arguably most opaque alulation in this setion of Shmidt and Str�ohlein's book is their

proof of proposition 4.4.13(ii). Aside from its extensive use of nested omplements, it

fails to make lear what is being proved, why it is being proved and where and when

assumptions are invoked (at least in our view). The proposition is formulated in theorem

234. Various properties are used in their proof whih we have formulated and proven in

lemma 248 in terms of fators. Properties (249) and |more signi�antly| (250) are not

observed by Shmidt and Str�ohlein. Their derivation of (251) is asymmetri in f and g

and involves several unexplained steps.

We have not been able to avoid the use of omplements altogether. As pointed

out at the time, the equivalene of several di�erent formulations of the notion of a

stairase relation formulated in lemma 304 uses the de�nition of fators in terms of nested

omplements. Also, for onrete examples of (small) �nite relations, suh as examples

223, 224 and 284, the use of omplements often makes alulations easier. Nevertheless

our use of omplements has been minimal.

We have attributed the two prinipal onepts of a \relation difontionelle" and

a \relation de Ferrers" to Riguet ([Rig48℄ and [Rig51℄, respetively) but we have not

explored any publiations prior to Riguet's. Riguet himself ites two papers by Norbert

Wiener, dated 1912{1914 and 1914-1916, as giving an equivalent de�nition of a \relation

de Ferrers" but no other indiation of their ontent is provided (not even their titles).

We have also been unable to �nd publiations on either topi in the forty or so years

following their publiation. (Riguet [Rig51℄ announes a \prohaine Note" that will make

preise a orrespondene between \relations equivalene onjugu�ees" and \relations de

Ferrers" but we have not been able to �nd the publiation.) So the urrent work should

not be regarded as a history of the onepts.

The notion of a difuntional relation is now generally attributed to Riguet [Rig48℄;

Jaoua et al [JMBD91℄ use the name \regular relation" but later publiations [KGJ00℄

use the name \difuntional relation". Voermans [Voe99℄ emphasises their importane

in developing a theory of datatypes with laws; Oliveira [Oli18℄ argues that difuntional

relations are \metaphors" for program spei�ation. Muh of our presentation on difun-

tional relations and non-redundant polar overings is inuened by the goal of gaining a

omplete understanding of Riguet's \analogie frappante" [Rig51℄.

The notions of a retangle and ompletely disjoint retangles, and elementary fats

about difuntional relations, in partiular theorems 141 and 161, are disussed by Riguet

[Rig48℄. The orresponding properties of pers are well-known. The onstrution given

in setion 6.3.3 is not made expliit in [Rig50℄ but was possibly the basis of Riguet's

statement that the haraterisation of difuntional relations as a pair of funtional rela-
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tions (theorem 161) is a generalisation of the theorem that a partial equivalene relation

is haraterised by a single funtional relation (theorem 143). (Evidene for this is that

Riguet e�etively states lemma 174.)

Theorem 161 is also stated in [JMBD91, Proposition 4.12℄ and a proof given. Their

proof assumes the relation is homogeneous; the proof of theorem 173 is inspired by

their proof whilst avoiding the assumption. Winter [Win04℄ assumes theorem 144 and

then uses it to prove theorem 161 (thus making preise Riguet's generalisation). His

(very short and elegant) proof, whih we have reprodued here, gives di�erent |albeit

isomorphi| haraterisations of a difuntional relation. Our ontribution has been

to ompare di�erent algebrai proofs of the theorem: point-free and pointwise proofs.

Perhaps surprisingly, our onlusion is that the pointwise proof is preferable to the

proof that exploits a point-free haraterisation of power transpose. This is beause of

the simpliity of the step from the elementary haraterisation of difuntional relations

(theorem 160) to a set of retangles (\r�eunions de retangles"): see setion 6.3.1.

Theorem 166 is Shmidt and Str�ohlein's proposition 4.4.10(ii) . Their statement of

the theorem is unlear: it appears to state that a difuntional relation has exatly one

representation as a pair of funtional, surjetive relations but they only prove that there

is at most one suh representation. (Both here and in the statement of proposition

proposition 4.4.13(ii) they use the phrase \may be ahieved in essentially one fashion".

The English is ambiguous: \may be ahieved" suggests \at least one" and \in essentially

one fashion" suggests \at most one", the ombination being exatly one. But they only

prove at most one.) Lemma 164 is novel and permits a subtle di�erene in presentation,

in partiular of theorem 166.

There is muh in ommon between our setion 8 and Khh�erif, Gammoudi and Jaoua

[KGJ00℄. Khh�erif, Gammoudi and Jaoua [KGJ00℄ orretly attribute the onept of

the diagonal to Riguet but do not ite [Rig51℄; like Riguet, they de�ne the diagonal

in terms of nested omplements and do not exploit fators. Their notion of a overing

spei�es the retangles to be \maximal". This is the property of not being \obviously

redundant" as disussed immediately following de�nition 209. Slightly onfusingly

16

,

Khh�erif, Gammoudi and Jaoua [KGJ00℄ de�ne two retangles to be \disjoint" when

they are what we all \ompletely disjoint". With this aveat, they list theorem 163 as a

property of difuntional relations. They do not seem to be aware of theorem 211. Their

fous is on what they all \minimal" overings and \isolated points"; \minimal" overings

appear to orrespond to what we all \non-redundant" overings whilst \isolated points"

appear to orrespond to the points of a de�niens of a relation. They seem to suggest a

dihotomy: for eah relation R , either (∆R)< = R<
and (∆R)> = R>

, or ∆R=⊥⊥ . (See

16

The term \disjoint" is ommonly used to desribe sets with an empty intersetion; the onfusion arises

beause relations are sets of pairs.
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[KGJ00, p.161, Problem℄.) Example 223 shows that this is not the ase: it is indeed

possible to onstrut a non-redundant overing of a relation R where (∆R)< 6= R<
so

long as (∆R)> = R>
(and, of ourse, dually when (∆R)> 6= R>

so long as (∆R)< = R<
).

The statements of theorems 1 and 2 in [KGJ00℄ are unlear (in my view), making them

diÆult to verify or refute.

Shmidt and Str�ohlein [SS93, p.80℄ ite the paper by Jaques Riguet [Rig50℄ with the

word \difontionelle" in the title; they also use the same de�nition of a \Ferrers type re-

lation" as Riguet but do not ite [Rig51℄. (They do ite [Rig48℄ earlier in the text but not

in onnetion with difuntional relations.) Shmidt and Str�ohlein appear to laim that

\stairase" and \linearly blok-ordered" are equivalent properties of a relation: Their

de�nition of \Ferrers type" [SS93, De�nition 4.4.11℄ omprises �ve properties onneted

by the symbol \⇔ ". Presumably the symbol denotes logial equivalene (an impliit

universal quanti�ation over all free variables ombined with boolean equality) but it

is nowhere de�ned

17

. From de�nition 2.1.3, and experiene with ommon mathemat-

ial pratie, one infers that Shmidt and Str�ohlein use the keyword \Definition" to

simultaneously introdue a de�nition and to state properties of the de�ned entity that

are deemed to be obvious. The problem is that the equality of the prediates \stair-

ase" and \linearly blok-ordered" is far from obvious and, as we have shown in theorem

319, it is just not true! Other papers that ite Riguet assume that the relations under

onsideration are �nite |in whih ase the equivalene is valid (see lemma 331 and the-

orem 335)| ; onsequently, it would appear that the erroneous laim was introdued by

Shmidt and Str�ohlein.

Winter restates the erroneous laim made by Shmidt and Str�ohlein [SS93, De�nition

4.4.11℄:

A onrete relation of Ferrers type may be written as a Boolean matrix in

stairase blok form by suitably rearranging rows and olumns.

There does not appear to be a de�nition of the word \onrete" in the paper; the use

of the word \matrix" suggests that \onrete" means \�nite". In this ase, the laim

is a speial ase of theorem 335. However, we have been unable to �nd any proof of

the theorem in the published literature: Riguet [Rig51℄ states the theorem but does not

provide a proof; he does make very lear that his de�nition of a \relation de Ferrers"

extends to in�nite relations, spei�ally by giving a onrete example. (In addition to

�niteness, Riguet [Rig51℄ adds a seond ondition that we do not understand.)

17

Page 1 introdues set notation and properties of sets. It uses the symbol \⇒ " |presumably meaning

\only if"| but the symbol is also nowhere de�ned. The symbol \⇔ " �rst appears on p.7 and ontinued

equivalenes �rst appear on p.8 in de�nition 2.1.3 (reexive and irreexive relations). No explanation is

given of how a ontinued equivalene is to be read. (Boolean equality is assoiative and transitive. So a

ontinued equivalene ould be read assoiatively or onjuntionally.)
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Winter is learly aware that the laim is invalid in general beause immediately af-

terwards [Win04, lemma 5℄ states that the laim is invalid for \dense" relations. (Winter

formulates a property of \ dense linear strit-orderings" that is essentially theorem 320.)

Winter does not, however, give the most obvious example of a \dense" relation | the

less-than relation on real numbers. Shmidt [Sh08℄ does observe that the less-than rela-

tion is \dense" but does not take the opportunity to orret the error in [SS93, De�nition

4.4.11℄.

As previously stated, the notion of the diagonal of a relation is due to Riguet [Rig51℄;

Riguet alled it the \di��erene". (See the disussion immediately following lemma 316.)

The notion of a \polar" overing was also introdued by Riguet in [Rig51℄, albeit with a

slightly striter de�nition to �t the topi of his paper (\relations de Ferrers"): he requires

the subset ordering on domains to be total (\linear" in the terminology used here).

Winter [Win04℄ does not give the diagonal funtion a name but denotes the \di��erene"

of relation R by Rd (as do Khh�erif, Gammoudi and Jaoua [KGJ00℄); Winter ites

[Rig51℄ but does not asribe the onept to Riguet. Shmidt [Sh08℄ alls it the \fringe"

of the relation; Shmidt [Sh08℄ does ite Winter [Win04℄ but does not ite Riguet [Rig51℄.

Berghammer and Winter [BW12, p.8℄ state that Riguet's notion of the \di��erene" of a

relation was \introdued" by Winter [Win04℄ and Shmidt [Sh08℄; like Shmidt [Sh08℄,

Berghammer and Winter [BW12℄ do not ite Riguet [Rig51℄. Although Winter [Win04℄

and Berghammer and Winter [BW12℄ de�ne the \di��erene" using residuals, they fre-

quently use Riguet's de�nition in terms of nested omplements.

Theorem 317 introdues two onstraints slightly weaker than those imposed by Shm-

idt and Str�ohlein in their proposition 4.4.13(i); it is also stronger beause it states an

equality rather than an impliation. Lemma 309, in ombination with lemma 314 also

yields a stronger theorem than their proposition 4.4.13(i). (No onstraints are imposed

on the parameters f and g .)

The primary novel ontribution of this paper is the introdution and exploitation of

the notion of the ore of a relation. (See de�nition 191.) Setion 9.1 has been inluded

partly to make Hartmanis and Stearn's [HS66℄ pioneering ontribution to information

siene better known. Their theory of \pair algebras" antiipates results in what has

sine beome known as \onept analysis" [DP90℄, as disussed in setion 10. Some of

the properties of grips presented in setion 10 may be novel but, as mentioned in the

introdution to the setion, we have not been able to determine whether or not this is

the ase. Muh emphasis has been plaed on illustrative examples whih we hope will

make the theory more aessible.

Finally, a few words on notation. The very rih algebrai properties of the onverse

of a relation mean that many notions and properties ome in pairs, eah element of the

pair being the dual mirror-image of the other. For example, we have de�ned both the

left domain and right domain of a relation; lemma 55 is an example of mirror-image
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properties of the relations. Some authors emphasise suh mirroring by their hoie of

notation. Freyd and

�

S�edrov [Fv90℄, for example, denote the soure and target of a

relation R by ✷R and R✷ , respetively.

A onsequene of this is that it is possible to get away with de�ning just one of a

pair of operators, leaving its mirror image to have an \obvious" de�nition in terms of

relational onverse. For example, in setion 3.7 we gave only the de�nition of the \left"

power transpose of a relation, leaving the de�nition of the \right" power transpose to the

reader. Doing this systematially would mean introduing the notation R<
for the left

domain of relation R and then using the notation (R∪)< to denote the right domain of

R . Similarly, one might introdue just the left fator R/S and then write (S∪

/R
∪)∪ for

the right fator R\S . This is, of ourse, very undesirable beause then the assoiativity

of the operators (the rule that R\(S/T) and (R\S)/T are equal, whih we exploit by

using the notation R\S/T ) beomes the very umbersome

((S/T)
∪

/R
∪

)
∪

= (S
∪

/R
∪

)
∪

/ T .

Even worse is when a symmetri notation is used for an operator that has both left and

right variants | as is done by both Freyd and

�

S�edrov [Fv90℄ and Shmidt and Str�ohlein

[SS93, p.80℄ in the ase of the so-alled \symmetri division/quotient" of a relation. By

writing

R
S
(or R÷S ), the reader may be misled into supposing that either the operator

has no mirror image or that the mirror image is

S
R

(or S÷R ). The main drawbak,

however, is that the notation gives |literally and �guratively| a one-sided view of

relation algebra that inhibits progress. The notion of the \ore" of a relation introdued

in setion 7.3 is, so far as we know, novel; the insight leading to its introdution is the

simple formula

R = R≺ ◦R ◦R≻

ombined with the well-known haraterisation of a partial equivalene relation as f
∪
◦ f

for some funtional relation f . It is, in our view, a striking example of the sort of insight

that is obsured using Freyd and

�

S�edrov's or Shmidt and Str�ohlein's notation.
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