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Abstract

In 1971, J.H. Conway introdued the notion of the fators of a language and

the fator matrix of a regular language. Shortly afterwards, the author extended

Conway's fator theory in several ways. The existene of a unique, minimal starth

root of the fator matrix, dubbed the fator graph of the language, was established.

It was also proved that the fator matrix of a fator of a language is a submatrix of

the fator matrix of the language, and the fator graph of a fator of a language is

pathwise homomomorphi to the fator graph of the language. The latter result was

used to derive an algorithm for omputing the fator matrix of a language from its

fator graph with the property that the resulting regular expressions have star-height

at most the yle-rank of the fator graph, and ould be stritly smaller.

Using the simple devie of naming the fator operators, the urrent paper revisits

Conway's and our own work on fator theory in a alulational style. We give expliit

onstrutions of the fator matrix, the fator graph, submatries of the fator matrix

de�ned by subfators and pathwise homomorphisms of fator graphs.

We also extend fator theory beyond this earlier work. We formulate the theory

more abstratly so that we an rigorously justify the use of the syntati monoid

of a language in alulations involving fators. We also present Conway's theory

of approximations of regular languages but extended to this more general abstrat

ontext. When speialised to regular languages, we prove the existene of a unique

minimal approximating funtion (a least approximating funtion) and ompare this

with Conway's maximal onstant+linear approximating funtion.

The losure algorithm we present does not always onstrut regular expressions of

minimal star-height. However, we speulate in the onlusions on how the theory of

approximations might be exploited to develop a novel, e�etive approah to solving

the star-height problem.
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1 Introduction

J.H. Conway [Con71℄ introdued the notion of the fators of a language and showed that

the fator-of relation is reexive and transitive. He also introdued the notion of the

fator matrix of a regular language. This is a matrix of whih every entry is a fator of

the language and whih is reexive and transitive.

More than forty years ago, soon after the publiation of Conway's work, I extended

Conway's fator theory in several ways [Ba75℄. I proved the existene of a unique,

minimal starth root of the fator matrix whih I alled the fator graph of the language.

I also proved that the fator matrix of a fator of a language is a submatrix of the

fator matrix of the language, and the fator graph of a fator of a language is pathwise
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homomomorphi to the fator graph of the language. The latter result was used to derive

an algorithm for omputing the fator matrix of a language from its fator graph with the

property that the resulting regular expressions have star-height at most the yle-rank

of the fator graph, and ould be stritly smaller.

Conway's formulation of fator theory is wordy and, hene, often unlear; our own

work at the time followed Conway's style and an be similarly ritiised. Using the simple

devie of naming the fator operators, the urrent paper revisits Conway's and our own

work on fator theory in a alulational style. We give expliit onstrutions of the

fator matrix, the fator graph, submatries of the fator matrix de�ned by subfators

and pathwise homomorphisms of fator graphs.

We also extend fator theory beyond this earlier work. We formulate the theory more

abstratly so that we an rigorously justify the use of the syntati monoid of a language

in alulations involving fators. We also present Conway's theory of approximations of

regular languages but extended to this more general abstrat ontext and demonstrate

its relevane in pratial appliations. In this way, we hope that fator theory will be

better understood and more widely reognised than is presently the ase.

1.1 A Simple Introductory Example

In order to give an overview of this paper, let us onsider a simple example. Muh of the

terminology in this setion is used in an impreise, informal way, with the onsequene

that some of the explanation may not be ompletely lear on a �rst reading. We make

the terminology preise in later setions, following whih we invite the reader to review

this setion one more.

For our example, we onsider the language denoted by the regular expression

(a+b)∗ a (a+b)∗

over the alphabet {a,b} . (This example is an extension of one used in [Ba16℄.) Let us

denote this language by E and the alphabet by T . Then, using equational properties

of regular languages (with whih we assume the reader is familiar), we have:

E = (a+b)∗ a (a+b)∗ = b∗ a (a+b)∗ = (a+b)∗ ab∗ .

The driving onern in this paper is the development of methods for determining the

\best" regular expression denoting a given language. In this ase, it ould be argued that

the leftmost expression is the \best" beause it onveys most learly that the language

is the set of words that have at least one a . (An alternative expression would be ¬(b∗)

but we exlude this beause we onsider only expressions formed from the symbols of

the alphabet, onatenation, union and star.)
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The redued, deterministi �nite-state automaton reognising E is shown in �g. 1(a).

For brevity, we follow Conway and all it themahine of E . Fig. 1(b) shows the reexive,

transitive losure |the \star"| of �g. 1(a). In other words, the label annotating the

edge from node i to node j in �g. 1(b) denotes the set of words reognised by transitions

from node i to node j in �g. 1(a). The language E is a speial ase: it is the set of

words reognised by transitions from the start state (indiated by an unlabelled arrow)

to the �nal state (indiated by a double irle).

(a) (Anti−)Machine 

a

b a,b

a,b,ε a,b,ε

(d) Cmax+ Lmax

a

b b
ε

(e) Factor Graph

c,ε c,ε

E

T*
T*

(c) Factor Matrix

b* T*

E

φ

a

a,b,ε

(b) Languages Recognised

T*

ε ε

(f) Maximal Approximating Function (g) Minimal Approximating Function

c c

Figure 1: Example: (a+b)∗ a (a+b)∗

For greater simpliity, the example language we have hosen is suh that it is the

reverse of itself. (The reverse of a language is the set onsisting of the reverse of all

words in the language.) This means that the \anti-mahine" of E is idential to its

mahine, as indiated by the aption of �g. 1(a). The \anti-mahine" of a language is
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the mahine of the reverse of the language. Moreover, there are no inadmissible nodes

in the mahine (or anti-mahine) of E ; this means that there are no inadmissible entries

in the fator matrix of E . (A node is inadmissible if it annot be reahed from the start

state or the �nal state annot be reahed from it.)

Construting regular expressions denoting a language inevitably involves onstruting

a transition graph to whih a losure algorithm is applied. The mahine of a language

is a (deterministi) transition graph. Figs. 1(d) and (e) are both transition graphs

whih reognise our example language. Transition graphs have edges that are labelled

by subsets of {ε}∪T , where ε denotes the empty word and T is the alphabet.

We do not give the word \graph" a formal meaning. For us, a graph is a way of

depiting a funtion that has domain a artesian produt N×N for some �nite set (of

so-alled \nodes") N . Another way of depiting a graph is as a two-dimensional array,

ommonly alled a \matrix" in the mathematial literature. The graph shown in �g. 1()

depits what Conway alls the fator matrix of E ; it is depited in the onventional

way as a two-dimensional array below:

[

T ∗ E

T ∗ T ∗

]

Typially, we are only interested in a small number of entries in a matrix. The

advantage of a graph as a means of ommuniation is that we an identify so-alled

\start" and \�nal" nodes whih determine the entries of interest. In eah of the �gures

in �g. 1, there is one start node, indiated by an unlabelled inoming edge, and one �nal

node, indiated by a double irle. Graphs an however quikly beome very luttered,

in whih ase a matrix an be a better means of presentation. We swith between graphs

and matries, using whihever is most onvenient at the time.

In Conway's terminology, �gs. 1(d) and (e) depit \onstant+linear matries". (That

is, the edge labels are either ε or elements of the alphabet.) They share several ommon

properties. Both depit transition graphs that reognise the language E ; both are also

\starth roots" of the fator matrix of E . Fig. 1(d) is Conway's maximal onstant+linear

approximation of E , and �g. 1(e) is our minimal starth root of the fator matrix, the

fator graph of E . Presented as matrix equations, we have:

[

ε+a+b a

ε+a+b ε+a+b

]∗

=

[

b a

ε b

]∗

=

[

T ∗ E

T ∗ T ∗

]

.

Our interest in the fator matrix is as a means of alulating a \best" regular expres-

sion denoting a partiular language, where \best" entails some measure of simpliity. As
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we have already mentioned, suh alulations have two omponents: a transition graph

and the losure algorithm used to ompute the star (reexive-transitive losure) of the

graph. It seems sensible, therefore, to begin with the simplest possible transition graph.

Comparing �gs. 1(d) and (e), it is lear that our fator graph is simpler than Conway's

maximal onstant+linear approximation. Indeed, as we show later, the fator graph of

a regular language E is the minimal starth root of the fator matrix of E and, in this

sense, is the \best" starting point for omputing the fator matrix of E .

The next onsideration is the losure algorithm to be used. Reall that our example

language is denoted by the expressions (a+b)∗a(a+b)∗ , (a+b)∗ab∗
and b∗a(a+b)∗ .

All of these are quite ompat and are useful for ommuniating properties of the lan-

guage. (For example, the equality between the �rst and seond expressions an be used

to explain the fat that any word that has at least one a must have a �nal ourrene

of an a that is followed by a string of b s.) However, if a standard elimination al-

gorithm is used, the resulting regular expressions are typially far from ideal. In this

ase, the mahine and anti-mahine (�g. 1(a)) do result in ompat regular expressions

|from the mahine, we get the expression b∗a(a+b)∗ and, from the anti-mahine, we

get (a+b)∗ab∗
| but applying a standard elimination algorithm to the fator graph (�g.

1(e)), we get the expression b∗a(b+b∗a)∗ or (b+ab∗)∗ab∗
, depending on whether the

leftmost or rightmost node is eliminated �rst. In both ases, the star-height of the result-

ing expression is two, whih is undesirable. Of ourse, were we to apply an elimination

algorithm to Conway's maximal onstant+linear approximation (�g. 1(d)), we would get

yet more ompliated expressions, albeit of the same star-height.

The problem with standard elimination algorithms is that they fail to exploit all

the algebrai properties of regular languages. Suh algorithms have ounterparts in

algorithms for inverting matries in linear algebra [BC75℄. Consequently, they do not

exploit the fat that \addition" of regular languages (the \+ " operator in the above

expressions) is idempotent |its meaning is, after all, set union| sine addition is not

idempotent in linear algebra (i.e. normal arithmeti). Elimination algorithms result in

regular expressions that have star-height at least the so-alled \yle rank" [Egg63℄ of

the graph to whih they are applied. The yle rank of �g. 1(a) is one; the yle rank

of both �gs. 1(d) and (e) is two. Perhaps by inventing a new losure algorithm that

properly exploits the algebrai properties of languages, we an do better than the yle

rank?

When applying the algorithm to the mahine of a language, there is little prospet of

improving on an elimination algorithm preisely beause a mahine is deterministi: the

ambiguity that idempoteny a�ords is not present in the mahine. Only by onsidering

non-deterministi reognisers of a language is there hope of an improved algorithm. The

fator graph of a language is a non-deterministi reogniser of the language (indeed,

in some ases a very pratial reogniser: it is at the heart of the Knuth-Morris-Pratt
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pattern-mathing algorithm [BL76, BL77℄) and, as we show later, there is an algorithm

to alulate its losure that onstruts regular expressions that have star-height at most

the yle rank of the graph and sometimes smaller.

To get a �rst impression of the algorithm, examine the fator matrix of our example

language, shown in �g. 1(). The matrix has just two distint entries, the language itself

and T ∗
. These are the two \fators" of our example language. The fator matrix of

the fator T ∗
is very simple: it is just the 1×1 matrix [T ∗] . Its fator graph is equally

simple: it is [T ] (equivalently, [a+b] ). Moreover, this is a graph of yle rank one, whih

is stritly less than the yle rank of the fator graph of our example language. Most

importantly, the fator matrix of the fator T ∗
is a submatrix of the fator matrix of our

example language. In fat, it ours twie as a submatrix. (Although T ∗
ours three

times, the o�-diagonal entry is formally not a fator matrix aording to our de�nition.)

The example illustrates several properties that hold in general of a regular language:

fators of fators are themselves fators, the fator matrix of a fator is a submatrix of

the fator matrix, and the fator graph of a fator has yle rank at most the yle rank

of the fator graph. These properties are the basis of an algorithm to ompute the fator

matrix of a language that returns regular expressions that have star-height at most the

yle rank of the fator graph of the language and, in many ases, stritly less than the

yle rank.

Our algorithm involves some pre-proessing to determine strutural properties of the

fators of a language. At �rst sight, it might seem that this entails onstruting the

fator matrix and then performing a number of alulations before alulating the fator

matrix one more. Moreover, the intermediate alulations would appear to involve

omparing regular expressions, whih is very muh a non-trivial task. The pre-proessing

is, however, relatively straightforward beause it an be done by exploiting the syntati

monoid of the language. The syntati monoid (aka semi-group) of a language is a

monoid generated by a ongruene relation on words [RS59℄; the monoid is �nite when

the language is regular. Fundamental to our algorithm is that strutural properties of

the fator matrix an be determined by performing alulations in an abstrat regular

algebra (thus not the algebra of regular languages) whose arrier set is the set of subsets

of the arrier set of the syntati monoid. Cruially, when the given language is regular,

the subsets are �nite. This abstrat regular algebra is an example of what we all a

powerset algebra.

Our simple example has a simple syntati monoid. It has just two elements whih

we name 1 and a . The produt operatoris de�ned by 1◦1= 1 , 1◦a= a◦1= a (so 1 is the

unit of the monoid, as its name suggests) and a◦a= a . The element 1 orresponds to

the ongruene lass omprising the words in b∗
and the element a orresponds to the

ongruene lass omprising the words in the example language E (i.e. (a+b)∗a(a+b)∗ ).

In the powerset algebra, it is easy to alulate that
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[

{1} {a}

{1} {1}

]∗

=

[

{1,a} {a}

{1,a} {1,a}

]

.

On the left of this equation is the fator graph of E , represented within the powerset

algebra, and on the right is the fator matrix of E , represented in the same way. From

this representation of eah element of the fator matrix as a �nite set, it is easy to dedue

the strutural properties required by our algorithm.

Muh of the theory developed in this paper is an extension of Conway's theory of

\approximations" of a regular language. So let us onlude this setion with several

examples of suh \approximations".

Our �rst example is the sort of approximation envisaged by Conway. Suppose we

want to \approximate" our example language by the language b∗a . A maximal \ap-

proximation" is the language denoted by (b∗a)+ . This is a funtion of b∗a : it is the

transitive losure of b∗a . Conway de�nes (rather impreisely as we shall see) the notion

of an \approximating funtion" and the \best approximation" of a language by a �nite

set of languages. He then shows how the fator matrix is used to onstrut the \best

approximation".

Figs. 1(f) and (g) depit \approximating funtions" de�ned by the \approximation"

b∗a . Informally, what is meant is this. First note that both graphs have the same

reexive, transitive losure. The language we are interested in is the language de�ned by

the start and �nal nodes. From �g. 1(g), this is learly

1 c∗c . The \best approximation"

is obtained by instantiating c to b∗a ; the \best approximation" is thus (b∗a)∗b∗a

(whih an, of ourse, be simpli�ed to (a+b)∗a ). This language is \best" in the sense

that it is the maximal set of words that is the result of applying an \approximating

funtion" to b∗a and is a subset of (a+b)∗ a (a+b)∗ .

We dislike Conway's use of the word \best". We dislike it partiularly beause his

\best approximating funtion" |illustrated by �g. 1(f)| is learly not \best" sine

�g. 1(g) is simpler. Both graphs have the same reexive, transitive losure, so both

yield the same approximations. Our onern is that regular expressions denoting the

approximations are inevitably more omplex when using Conway's \best" approximation

funtion. Fig. 1(f) is an example of what Conway alls the \fatorial funtion"; our �g.

1(g) is minimal whereas Conway's �g. 1(f) is maximal among a lass of \approximating

funtions", whih we make preise later.

We use the theory of approximations in two other ways. First, Conway's maximal

onstant+linear approximation of E (�g. 1(e)) and our fator graph of E are instanes

of approximating funtions: essentially we onsider the symbols of the alphabet as the

approximating events. The \best" (or, as we prefer to say, \maximal") \approximation"

1

We assume that all losure algorithms exploit the fat that the empty word, ε , is the unit of onate-

nation. In this ase, (c·ε)∗c is simpli�ed to c∗c .
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of E is then E itself. Seond, we use the theory of approximations to formally justify

the use of the syntati monoid in our alulations.

1.2 Overview

This paper is a mixture of three omponents. First, it presents results due to Conway

[Con71℄ on the fator matrix and approximations of regular languages in a alulational

style. It does the same for extensions to Conway's theory �rst presented in the author's

PhD thesis. Finally, it extends Conway's theory of approximations, arguing the ase

for minimal approximating funtions as opposed to Conway's maximal approximating

funtions.

Unlike Conway, our exposition is not solely about regular languages: we begin with a

general ontext and then speialise the ontext in stages to regular languages. In setion

2.2 we give an abstrat de�nition of a \regular algebra" and, in setion 3, we introdue

the \fator matrix" of an event in suh an abstrat algebra. For a gentler introdution

see [Ba16℄. Setion 4 presents properties of the fator matrix of a fator, �rst developed

in the author's PhD thesis [Ba75℄ but not published elsewhere. The main theorem is

that the fator matrix of a fator of an event is a submatrix of the fator matrix of the

event. This theorem is fundamental to later setions on improved losure algorithms.

Our axiomati approah allows us to generalise Conway's and our own theorems. For

example, whilst retaining Conway's terminology, our notion of a \matrix" is not the

traditional �nite-dimensional array of values. This allows us to generalise the theorem

�rst proved in [Ba75℄ on fator matries of fators to situations where an event does not

have a �nite number of fators.

Approximation theorems are presented in setion 5. The results in this setion are

essentially due to Conway. The novelty of this paper is that the results are formulated

in the general ontext of an abstrat regular algebra rather than the spei� ontext of

the algebra of regular languages. This more general formulation is vital to justifying

the use of the syntati monoid in analysing the struture of the fator matrix. Our

alulational presentation with expliit formulation of underlying Galois onnetions also

lari�es Conway's work. As we point out, Conway's presentation has major omissions

and some errors, making it diÆult to understand.

Conway's approah to onstruting maximal approximations to a regular event is to

onstrut approximating \funtions"; suh \funtions" are sets of words, i.e. languages.

Eah word has a length, and this simple fat is exploited to show that there is a \best"

\onstant+linear funtion" approximating the fator matrix of a language. We argue that

Conway's use of the terminology \best" is inappropriate, partiularly with regard to our

goal of onstruting a regular expression denoting a given regular language. Properties of

a regular language that are neessary to our development are �rst introdued in setion
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6: a regular language has a �nite number of fators and the fator matrix has a unique

starth root, whih we all the \fator graph" of the language. The notion of fator

graph was �rst introdued by the author in [Ba75℄. Constrution of the fator graph

is the basis of the well-known Knuth-Morris-Pratt pattern-mathing algorithm and its

generalisation to sets of patterns [KMP77, Wei73, AC75℄, as shown in [BL76, BL77℄. See

also [Ba16℄.

Setion 7 is the �rst of three setions that are entirely original work of the author; it

is about how to exploit the syntati monoid of a regular language in order to onstrut

its fator graph and to perform preproessing of its fator matrix (without atually

onstruting the fator matrix) in order to apply the losure algorithm that is presented

in setion 9. Setion 8 establishes the property that the fator graph of a fator of

a regular language is pathwise homomorphi to the fator graph of the language; this

theorem predits the possibility of deriving a losure algorithm that onstruts regular

expressions denoting the fators of a regular language that have star-height at most, and

sometimes less than, the rank of the language's fator graph. As we show by example in

setion 9, the algorithm often onstruts regular expressions of minimal star-height.

Unfortunately, as we show in setion 9.4, the algorithm does not solve the star-height

problem: it sometimes fails to alulate regular expressions of minimal star-height. In the

onluding setion, we remark that our algorithm does determine regular expressions of

minimal star-height for so-alled pure-group languages (languages for whih the syntati

monoid is a group).

Surprisingly little has been written on Conway's fator theory sine the publiation of

his book in 1971. Apparently, it took more than 25 years before my notion of the \fator

graph" was redisovered: Lombardy and Sakarovith [LS02℄ all it the \�eorh�e". But

many of the results in my thesis remain unknown and unexplored to this day. Setion 10

points out the lose parallels between my work of forty years ago and that of Lombardy

and Sakarovith.

2 Regular Algebra

In this setion, we give a summary of the algebrai properties that we exploit later in

the paper.

We begin in setion 2.2 with an abstrat de�nition of a regular algebra. The de�ni-

tion is equivalent to Conway's Standard Kleene algebra (S -algebra) [Con71, p.27℄, but

emphasises the notion of fatorisation. We don't give a formal proof of the equivalene,

whih follows from well-known properties of Galois onnetions. We assume that the

reader is familiar with the theory of Galois onnetions. For those unfamiliar with the

theory, a de�nition and referene to relevant literature is given in setion 2.1.
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Languages over a given (�nite) alphabet form a regular algebra aording to our

de�nition. However, an abstrat de�nition that enompasses other appliations is vital,

in partiular to justify the use of matries and the syntati monoid. In setions 2.3 and

2.4 , we formulate the onstrution of matrix algebras and powerset algebras from given

regular algebras. The ombination of matries and powersets is formulated in setion

2.5.

Beause we use a variety of regular algebras, often simultaneously, we have to make a

diÆult hoie with regard to notation: do we overload operator symbols (like \

∗
", the

so-alled Kleene star operator) or do we invent a di�erent notation for eah individual

algebra? The hoie is ompounded by the fat that ertain hoies of notation also lash

with notation traditionally assoiated with other well-known operations. For example,

we use the symbol \× " for Cartesian produt (as in S×T where S and T are sets); so

we avoid its use for the produt operator in a regular algebra, in partiular for matrix

multipliation. Suh notational hoies are disussed in setion 2.6. Finally setion

2.7 realls some properties of regular algebras that follow from the properties of Galois

onnetions in ombination with �xed-point alulus.

Various running examples are also introdued in this setion.

2.1 Galois Connections

Galois onnetions feature heavily in this paper. A Galois onnetion omprises two

partially ordered sets (A,� ) and (B ,⊑ ) and two funtions f and g of types A←B

and B←A , respetively, with the property that, for all a in A and all b in B ,

f.b�a ≡ b⊑g.a .

There is extensive literature on Galois onnetions and we assume the reader is familiar

with the onept. In partiular, we assume that the reader is familiar with the theorem

dubbed \the unity of opposites" by the author [Ba02℄.

Note that we use an in�x dot to denote funtion appliation.

2.2 Definition, Factorisation and Suprema

Definition 1 (Regular Algebra) Suppose A is a set. Suppose that (A, · , 1 ) is a

monoid and (A,� ) is a partially ordered set that is moreover a omplete lattie; also,

suppose that A admits fatorisation : that is, there are operators \ and / suh that,

for all X , Y and Z in A ,

(2) X·Y�Z ≡ Y�X\Z
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and

(3) X·Y�Z ≡ X�Z/Y .

We all suh a struture a regular algebra. Elements of the arrier set of a regular

algebra are alled events.

✷

Another name for a regular algebra, aording to Wikipedia, is a unital quantale.

(In the literature on quantale theory, a fator is alled a residual.) The operators / and

\ are pronouned \over" and \under", respetively.

The simplest non-trivial example of a regular algebra has event set the booleans, as

detailed below. We use this as the basis of one of several running examples. See examples

15, 66, 80, 85, 87 and 90.

Example 4 (Running Example: Booleans) Let Bool denote {false,true} . Then

(Bool ,∧ , true ) is a monoid and (Bool ,⇒ ) is a omplete lattie (with disjuntion as

supremum operator). Also, Bool admits fatorisation with \only-if" as the \under" and

\if" as the \over" operator sine

X∧Y⇒Z ≡ Y ⇒ (X⇒Z) and X∧Y⇒Z ≡ X ⇒ (Z⇐Y) .

(On the right side of these equations, read the non-parenthesised \⇒ " term as an order-

ing; the parenthesised ourrene of \⇒ " in the �rst equation is the under operator.)

✷

So far as possible, we formulate theorems in the ontext of an arbitrary regular

algebra (rather than just in the ontext of the algebra of languages as did Conway). In

suh ases, we impliitly assume that the arrier set of the algebra is A , and we use the

notation of de�nition 1 to denote the ordering relation on A , the unit of the monoid,

and the produt and fator operators. That (A,� ) is a omplete lattie means that

every funtion with range A has a supremum. The supremum of funtion f of type

A←B will be denote by Σf . It has the de�ning property

(5) 〈∀a : a∈A : Σf�a ≡ 〈∀b : b∈B : f.b�a〉〉 .

It is onvenient to also use the quanti�er notation 〈Σj :: f.j〉 , where the range of dummy

j is (impliitly) the domain of f , partiularly in the ase that we don't want to name

the funtion f .

When f has type A←2 (where 2 is a two-element set) we use the in�x operator \+ "

to denote the supremum. That is, using subsripting to denote funtion appliation (as is
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onventionally done in suh ases), we write f0+f1 for the supremum of f . Instantiating

(5) with f0 :=x and f1 :=y , we get

(6) 〈∀a : a∈A : x+y�a ≡ x�a ∧ y�a〉 .

In the partiular ase that f has type A←∅ (that is, its domain is the empty set)

we denote its supremum by 0 . Instantiating (5) one again, the innermost universal

quanti�ation is vauously true, so we get

(7) 〈∀a : a∈A : 0�a〉 .

That is, the supremum of a funtion of type A←∅ is the least element of A . Moreover,

0 is the (left and right) zero of produt (i.e. 0·Y= 0=X·0 for all X and Y ), as is easily

veri�ed. For example, we have: for all Y and Z ,

0·Y= 0

= { antisymmetry of � ; (7) with a :=0·Y }

0·Y� 0

= { (3) }

0�0/Y

= { (7) with a :=0/Y }

true .

The use of the symbols \ 0 ", \ 1 ", \+ " and \ · " suggests a strong onnetion with

properties of the well-known arithmeti operators. The regular and arithmeti operators

do share many properties but it is important to reognise that the algebras di�er in

important respets. Indeed, a brief summary of the urrent paper might be that it

fouses on those properties of the regular operators that distinguish them from the

arithmeti operators.

That (A,� ) is a omplete lattie also means that every funtion with range A has an

in�mum. This is a property that beomes important when we speialise the disussion to

powerset algebras. (See setion 2.4.) Choosing to denote binary suprema by the operator

symbol \+ " might suggest that we use \× " (or some other symbol normally assoiated

with multipliation) for binary in�ma. We don't do so in order to avoid onfusion with

the produt operator in a regular algebra, and also the use of \× " to denote artesian

produt.

Our de�nition of a regular algebra does not inlude the so-alled \Kleene star" op-

erator as a primitive. This is not without preedent: Conway studies several di�erent

\Kleene" algebras [Con71, hapter 4, pp34{40℄ all of whih are derivatives of what he
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alls a standard Kleene algebra or S-algebra [Con71, p27℄. An S-algebra has just two

primitive operators, produt and supremum, and, whilst laking our emphasis on admit-

ting fatorisation via expliit naming of the fator operators, is idential to our \regular

algebra". (Conway postulates ertain distributivity properties that are equivalent to

admitting fatorisation.)

In a regular algebra, the \Kleene star" operator an be de�ned in several ways.

For us, the most onvenient de�nition of X∗
is the least �xed-point of the funtion

mapping Y to 1 + X + Y·Y . (Note that we use the same preedene onventions as in

ordinary arithmeti.) By de�nition, X∗
is thus reexive (i.e. 1�X∗

) and transitive (i.e.

X∗ ·X∗ � X∗
). The funtion mapping X to X∗

is also a losure operator: in general, a

funtion f of type B←B , where (B,≤) is a partially ordered set, is a losure operator

if, for all X and Y in B ,

X≤ f.Y ≡ f.X≤ f.Y .

For the star operator, we have:

X�Y∗ ≡ X∗�Y∗ .

These three properties justify the name reexive, transitive losure of X . Similarly,

the transitive losure of X , denoted as usual by X+
, is de�ned to be the least �xed-

point of the funtion mapping Y to X + Y·Y . As the name suggests X+
is transitive

and the funtion mapping X to X+
is a losure operator. Other properties of these

two operators are well-known and will be assumed without further ado throughout the

paper. (For example, we exploit the fat that X∗
is the least �xed point of the funtion

mapping Y to 1 + X·Y and, also, the least �xed point of the funtion mapping Y to

1 + Y·X . Note that many disussions of \Kleene" algebra postulate these properties as

axioms. It is, however, a relatively straight-forward exerise to derive the properties

from the de�nitions we have given as instanes of general properties of �xed points and

Galois onnetions.)

2.3 Event Matrices

Example 4 de�nes a primitive regular algebra. There are several ways to onstrut more

omplex regular algebras from simpler ones [Ba06℄. Fundamental to our de�nition of

a regular algebra is that (square) \matries" over a regular algebra also form a regular

algebra. (This property was also stressed by Conway in his axiomatisations of \Kleene"

algebras.) Beause we do not want to restrit our disussion to languages, we use a more

general de�nition of \matrix" than the standard �nite-dimensional array of values.
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Definition 8 (Event Matrix) Suppose I and J are sets (possibly in�nite) and sup-

pose R is a regular algebra with event set A as in de�nition 1. An event matrix of

dimension I×J and type R is a funtion with domain I×J and range A .

If event matries f and g have the same type, and f has dimension I×J and g has

dimension J×K , for some I , J and K , their produt is the funtion f⊗g of dimension

I×K de�ned by

(f⊗g)(i,k) = 〈Σj :: f(i,j)·g(j,k)〉 .

Event matries with the same dimension and same type are ordered pointwise: if f and

h both have dimension I×J and have the same type,

f _�h ≡ 〈∀ i,j :: f(i,j)�h(i,j)〉 .

A square event matrix of dimension I is an event matrix of dimension I×I for some

(possibly in�nite) set I .

✷

Sine all our matries are event matries, we drop the adjetive \event" from now on.

Theorem 9 The square matries with domain I×I , for some I , and range a regular

algebra themselves form a regular algebra. Produt is matrix produt (de�nition 8) and

the unit is the identity matrix, whih we denote by I . (That is, I(i,i)= 1 and I(i,j)= 0

when i 6= j .) The ordering on matries is the pointwise ordering de�ned above, and the

supremum of a matrix-valued funtion is the pointwise supremum of matrix elements.

See [Ba06, theorem 4.20℄ for spei� formulae de�ning the \over" and \under" operators.

Proof The proof is straightforward. See [Ba06, theorem 4.20℄. Conway [Con71, p.40℄

states that it is trivial. (Stritly, he only makes this laim for �nite-dimensional matries;

however, the �niteness assumption is only relevant for non-standard Kleene algebras.)

✷

An example of \matrix" algebras is a�orded by binary relations. The booleans form a

regular algebra with onjuntion as the produt operator and impliation as the ordering.

(See example 4.) \(Square) matries" of booleans are (homogeneous) binary relations and

the produt operator is relational omposition. Suh \matries" have �nite dimension

exatly when the set on whih the relations are de�ned is �nite. See [DBvdW97℄ for

extensive appliations of fator theory in relation algebra.

In many simple examples of regular algebras, suh as the regular algebra of booleans,

the star operator is so simple that it is rarely onsidered. However, as in this example,

more omplex regular algebras are often onstruted from simpler ones and then the star

operator does beome signi�ant. For the regular algebra of booleans, the star operator

is suh that X∗= true for all X but \star" of a (homogeneous, binary) relation is the

reexive, transitive losure of the relation.
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2.4 Power Set Algebras

Another way of onstruting a regular algebra begins with a monoid and then \extends"

the monoid to a regular algebra with arrier set the set of subsets of the monoid (the

\power set" of the monoid). The appropriate de�nition is as follows:

Definition 10 (Power-set Monoid) Suppose (M, · , 1 ) is a monoid. Let 2M denote

the set of all subsets of M The produt operator is extended to 2M by

X·Y = {x·y | x∈X∧y∈Y} .

It is easily veri�ed that ( 2M , · , {1} ) is a monoid, whih we all a powerset monoid.

✷

Theorem 11 Suppose (M, · , 1 ) is a monoid. Then 2M is the arrier set of a regular

algebra with produt as given by de�nition 10 and the subset relation as the ordering

relation.

Proof As already remarked, ( 2M , · , {1} ) is a monoid; moreover ( 2M ,⊆ ) is a omplete

lattie. In order to show that the algebra admits fatorisation, we begin by introduing

the notion of the derivative of an event

2

with respet to an element of the underlying

monoid. Spei�ally, suppose w∈M . Then the derivative ∂w , a funtion of type

2M← 2M , is de�ned by, for all events N ,

x∈∂wN ≡ w·x∈N .

That is, for all events N and P and all monoid elements w ,

{w}·P ⊆ N ≡ P ⊆ ∂wN .

Then, for all events N , P , and Q ,

N·P ⊆ Q ≡ P ⊆ 〈∩w : w∈N : ∂wQ〉 .

Denoting the event 〈∩w :w∈N :∂wQ〉 by N\Q we thus have

N·P ⊆ Q ≡ P ⊆ N\Q .

That is, the funtion (N· ) has an upper adjoint. Similarly, the funtion ( ·P ) also has

an upper adjoint, whih we denote by the post�x operator ( /M ). That is,

N·P ⊆ Q ≡ N ⊆ Q/P .

2

Reall that an event is an element of the arrier set of a regular algebra. So in this ase an event is a

subset of M .
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(The spei� formula for Q/P involves \anti"-derivatives. We disuss anti-derivatives

in more detail later in the ontext of language theory.) Thus we have shown that the

powerset algebra admits fatorisation.

✷

We exploit theorem 11 to onstrut several regular algebras. We refer to the regu-

lar algebra that is onstruted from a given monoid M as the powerset algebra with

underlying monoid M .

Example 12 The arhetypial example of a powerset regular algebra is the algebra of

languages over a �nite alphabet: Let T be a �nite set. The set T is alled the alphabet

and elements of T are alled letters. A word of length n is a sequene of symbols of

length n . The empty word is the word of length 0 ; we denote it by the symbol ε . The

set of all words is denoted by T ∗
. The set T ∗

is the arrier set of the free monoid over

alphabet T . The produt operation of the free monoid is onatenation of words, whih

is typially denoted by juxtaposition; onatenation is assoiative ( (uv)w=u(vw) ) and

ε is both its left and right unit ( εu=u=uε ). In this ontext, \events" are alled

languages, a language being a subset of T ∗
.

✷

Reasoning about words in a language often involves exploiting properties of the length

of a word. In partiular, the length of the onatenation uv of words u and v is the

sum of the lengths of u and v , and indution on the lengths of words is a valid proof

tehnique. That the monoid is \free" means that we an exploit anellation: if u ,

v and w are words, the statements u=v , uw= vw and wu=wv are all equivalent.

These are simple and well-known properties. Our alulations are less expliit about

their usage. See, for example, the alulations in Appendix A where we prove properties

of matries having entries that are sets of words whose length is zero or one.

Our use of the word \derivative" in the proof of theorem 11 is an aknowledgement

to Brzozowski [Brz64℄ who introdued the notion in the ontext of languages (example

12). Brzozowski enumerated a number of algebrai properties of derivatives of languages

that are very useful for pratial alulation. Some remain valid in any powerset regular

algebra. In partiular, we have the following lemmas:

Lemma 13 For an arbitrary olletion N of subsets of the arrier set of a monoid,

∂w 〈∪i ::N.i〉 = 〈∪i::∂w(N.i)〉 .

In partiular, ∂w∅= ∅ and ∂w(P∪Q)=∂wP∪∂wQ .

Proof We have, for all x ,
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x∈∂w 〈∪i ::N.i〉

= { de�nition of derivative }

w·x∈ 〈∪i ::N.i〉

= { de�nition of set union }

〈∃i :: w·x∈N.i〉

= { de�nition of derivative }

〈∃i ::x∈∂w(N.i)〉

= { de�nition of set union }

x∈ 〈∪i ::∂w(N.i)〉 .

The lemma follows by de�nition of set membership.

✷

Lemma 14 For an arbitrary subset N of the arrier set of a monoid,

∂w(¬N) = ¬(∂wN) .

Proof We have, for all x ,

x ∈ ¬(∂wN)

= { de�nition of set omplement and derivative }

¬(w·x∈N)

= { de�nition of set membership,

distributivity of negation over existential quanti�ation }

〈∀y : y∈N : ¬(w·x=y)〉

= { trading }

〈∀y : w·x=y : ¬(y∈N)〉

= { one-point rule, de�nition of set omplement }

w·x ∈ ¬N

= { de�nition of derivative }

x∈∂w(¬N) .

The lemma follows by de�nition of set membership.

✷



21

It is an immediate orollary of lemmas 13 and 14 that

∂w 〈∩i ::N.i〉 = 〈∩i ::∂w(N.i)〉

(sine set intersetion is the onjugate of set union). Indeed, as Brzozowksi's points out

[Brz64, appendix I℄, the operation of taking derivatives distributes through an arbitrary

Boolean funtion of events | where by \Boolean funtion" is meant any omposition of

supremum, in�mum and omplements.

Using the equation N\Q= 〈∩w :w∈N :∂wQ〉 , the above lemmas enable the pratial

alulation of fators, espeially in the ase that the arrier set of the monoid M is

�nite. Example 16 provides a good illustration, and forms our seond running example.

(See also examples 16, 67, 81, 88, 169.)

Example 15 (Running Example: Booleans) The simplest possible powerset al-

gebra is onstruted by taking the underlying monoid to be the \trivial" monoid with

exatly one element. That is, let M equal {1} and de�ne the produt 1·1 to be 1 .

Then 2M has two elements, the empty set, ∅ , and {1} . Let N be an element of 2M .

(So N is ∅ or {1} .) Then ∅\N=N/∅= {1} . Also, ∂1N=N . Hene, {1}\N=N/{1}=N .

Via the mapping ∅7→false and {1} 7→true , the above powerset algebra is isomorphi

to the regular algebra of Booleans introdued in example 4. That is, the regular algebra

of Booleans is the simplest possible example of a powerset regular algebra: it is the

powerset regular algebra with underlying monoid the \trivial" monoid.

✷

Example 16 (Running Example: Modulo Addition) Let m be a stritly positive

natural number. As is of ourse very well known, the numbers 0 ..m−1 form an Abelian

group, ommonly denoted by ZZm , and thus a monoid, under addition modulo m .

The group (monoid) ZZm is generated by {n} where n is any number that is oprime

with m . For example, {2} is a generator set for ZZ3 but not for ZZ6 . Of ourse, {1} is

always a generator set

3

. See example 140 for further disussion of the generator set.

Let us denote addition modulo m by the symbol ⊕ and subtration modulo m by

the symbol ⊖ (both written as in�x operators). Extend addition to sets by de�ning

I⊕J = 〈∪ i,j : i∈I∧ j∈J : {i⊕j}〉

for all subsets I and J of {0 ..m−1} . This is the basis of the de�nition of the powerset

regular algebra with underlying monoid ZZm . The arrier set is 2{0 .. m−1}
, the set of

subsets of {0 ..m−1} . The operator ⊕ , as just de�ned, is the produt operator. And

sets are ordered by set inlusion. Details of the fator operators are as follows.

3

Here \ 1 " denotes the number 1 and not the unit of the monoid. Overloading of notation an

sometimes be onfusing!
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If I is a subset of {0 ..m−1} and j is an element of {0 ..m−1} , the derivative of I

with respet to j , denoted by ∂jI is de�ned by

∂jI = 〈∪i : i∈I : {i⊖j}〉

and if J is a subset of {0 ..m−1} , the fator I
J
is de�ned by

I

J
= 〈∩j : j∈J :∂jI〉 .

Note arefully: the right side is an intersetion of derivatives, not a union. We have

hosen the notation

I
J
here beause addition is symmetri and so the right fator J\I

and the left fator I/J are equal. (Of ourse, subtration is not symmetri.)

As a onrete example, suppose m= 6 . Consider the powerset regular algebra of

numbers modulo 6 under addition. Then, taking advantage of lemma 14, we have

{1,2,3,4,5}=¬{0} , so

∂1{1,2,3,4,5} = ∂1(¬{0}) = ¬∂1{0} = ¬{0⊖1} = ¬{5} .

Similarly, ∂2{1,2,3,4,5}=¬{0⊖2}= {0,1,2,3,5} , et.

Also,

{1,2,3,4,5}

{1,2}
= ¬{0⊖1}∩¬{0⊖2} = ¬({0⊖1}∪ {0⊖2}) = ¬{5,4} = {0,1,2,3} .

In general,

{1,2,3,4,5}

J
= ¬ 〈∪j : j∈J : {0⊖j}〉 .

Now, for arbitrary subset K of {0,1,2,3,4,5} , we have:

K = ¬ 〈∪j : j∈J : {0⊖j}〉

= { set omplement }

¬K = 〈∪j : j∈J : {0⊖j}〉

= { de�nition of set membership }

〈∪i : i∈¬K : {i}〉 = 〈∪j : j∈J : {0⊖j}〉

⇐ { 0⊖i= j ≡ i= 0⊖j }

J = 〈∪i : i∈¬K : {0⊖i}〉 .

Thus,

K =
¬{0}

〈∪i : i∈¬K : {0⊖i}〉
.
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It follows that every subset of {0,1,2,3,4,5} is a fator of {1,2,3,4,5} and so {1,2,3,4,5}

has 26 fators.

In general, for arbitrary m , the same argument shows that the set {1 ..m−1} in the

powerset regular algebra of numbers under addition modulo m has 2m fators.

✷

We onlude this setion with our third running example: an example of a regular

language, whih was Conway's sole interest.

Example 17 (Running Example: The Language (aa)∗ ) Let alphabet T om-

prise the single symbol a and onsider the language (aa)∗ (the set of all words whose

length is divisible by 2 ). This language has just two distint derivatives: we have that,

for all words w in (aa)∗ , ∂w(aa)
∗=(aa)∗ (for example, ∂aa(aa)

∗=(aa)∗ ) and, for all

words w in a(aa)∗ , ∂w(aa)
∗=a (aa)∗ (for example, ∂a(aa)

∗=a (aa)∗ ). Thus, using

the formula N\Q= 〈∩w :w∈N :∂wQ〉 for arbitrary languages N and Q , it is easy to

verify that there are just four possibilities for N \ (aa)∗ , as N ranges over arbitrary

languages: these are ∅ if N ontains both a word in (aa)∗ and a word in a(aa)∗ ,

(aa)∗ if N is a subset of (aa)∗ , a(aa)∗ if N is a subset of a(aa)∗ , and a∗
if N is

the empty set.

✷

2.5 Set-Valued Matrices

We an, of ourse, ombine the onstrution of square matries (setion 2.3) with the

onstrution of power-set algebras (setion 2.4): if (A, · , 1 ) is a monoid, we an onsider

square matries (of dimension I×I for some I ) over the powerset algebra with underlying

monoid (A, · , 1 ). (That is, funtions with domain I×I and event set 2A . ) This is the

arrier set of a regular algebra whih, for brevity, we denote by MI(A) .

We use this onstrution extensively with two partiular instanes. The �rst is the

standard example of a \Kleene Algebra" introdued in example 12: the languages (sets

of \words") over alphabet T . The seond is where the monoid is the so-alled \syntati

monoid" of a language. (Those not already familiar with the syntati monoid are

reommended to look ahead to setion 7.)

Powerset algebras are, of ourse, omplemented : there is a \omplement" or \nega-

tion" operator \¬ " suh that, for all S , S∩¬S = ∅ and S∪¬S = ¬∅ . Powerset-

matries are also omplemented whereby the negation operator is lifted pointwise. That

is, (¬f)(i,j) is de�ned to be ¬(f(i,j)) . In this ase, we overload the operator and write

¬f(i,j) ; this allows us to silently exploit the ambiguity in the notation.

We speialise the disussion to languages and their syntati monoid from setion

6 onwards. However, part of the urrent investigation has been to explore how far the
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theory of fator matries an be developed for events in the more general ontext of

(matries over) an arbitrary powerset algebra. This is indeed the ase for all the theory

that preedes setion 6.

2.6 Notational Considerations

In this paper we onsider several di�erent instanes of a regular algebra, often at the

same time, and this leads to notational issues about how to denote the many di�erent

produt and supremum operators. Inevitably, we are fored to overload operator symbols

and rely on the reader being able to identify whih operator is meant. It is important

that the reader takes are to do so in order to determine how the operator is de�ned.

We ommonly use R and S for arbitrary regular algebras. When we do, we use A

and B for their arrier sets. When only one suh algebra is involved, we use the notation

of de�nition 1 to denote the produt and fatorisation operators, and the ordering relation

on the arrier set. We also use Σ , as in (5), for the general supremum operator, and

+ , as in (6) for the binary supremum. When two suh algebras are involved in the

disussion, we subsript the operator symbols to distinguish them | but we do not add

subsripts to the fatorisation operators.

When we speialise the disussion to powerset algebras, we use the onventional no-

tation for set union and the subset relation, as in setion 2.4. When we speialise the

disussion to matries, we use ⊗ for the produt operator, as in de�nition 8. (It is

important to have a speial symbol for matrix multipliation beause of its speial de�-

nition.) We add dots above other operator symbols to indiate the pointwise extension

of the operator in the underlying regular algebra of elements. So, for example, when we

onsider an algebra of matries with elements from a powerset algebra, we use

_⊆ for the

ordering relation and

_∪ for the supremum operator.

We use the notation f•g for the omposition of funtions f and g , and we use U◦V

for the omposition of relations U and V . The notation U
∪

is used for the onverse of

relation U . When we wish to view a funtion as a relation, we use relational notation:

so, for example, we might write f
∪
◦U ◦g (where f and g are funtions and U is a

relation, all of appropriate type). This is the relation de�ned by

x (f
∪
◦U ◦g) y ≡ f.x U g.y

for all x and y (of appropriate type).

2.7 Advanced Properties

In this setion we antiipate the use of the syntati monoid of a language in alulations

on the fator matrix/graph of a language. The most signi�ant appliations begin in

setion 7.2 but we also exploit the onepts introdued here in earlier setions.
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In general terms, the theorems in this setion relate alulations in di�erent regular

algebras R and S . The spei� appliation we have in mind is where R is the regular

algebra of languages and S is the powerset algebra onstuted from syntati monoid of

a regular language: typially, a regular language is an in�nite set whereas the syntati

monoid is �nite (and, hene, so is its powerset). In suh ases, the objetive is to translate

alulations in the algebra R into alulations in the algebra S and then \invert" the

results of the alulations bak into R .

Definition 18 (Monoid Homomorphism) Suppose R = (AR , ·R , 1R) and S = (AS , ·S , 1S)

are monoids. Suppose ζ is a funtion with domain AR and range AS . Then, ζ is said

to be a monoid homomorphism from R to S if ζ preserves units:

ζ.1R = 1S

and preserves produt: for all x and y in AR ,

ζ.(x ·R y) = ζ.x ·S ζ.y .

The homomorphism is said to be surjetive (or onto) if ζ ◦ζ∪ = IdAS
.

✷

Definition 19 (Regular Homomorphism) Let R and be regular algebras. Suppose

ζ is a funtion with domain AR and range AS . Then, ζ is a regular homomorphism

from R to S if ζ is a monoid homomorphism (from (AR , ·R , 1R ) to (AS , ·S , 1S )) and

it is the lower adjoint in a Galois onnetion of the orderings �R and �S .

✷

Among several signi�ant onsequenes of the unity-of-opposites theorem of Galois

onnetions is the property that the image set of a lower adjoint is a omplete lattie

if the domain of the adjoint is omplete. The following theorem is a straightforward

appliation of this property.

Theorem 20 Suppose R = (A, · , Σ , ≤ , 0 , 1) is a regular algebra, and S = (B , �)

is a partially ordered set. Suppose B is losed under a binary produt operator \⊗ ".

Suppose m is a funtion with domain A and range B that is ompositional, i.e. for all

x and y in A

m.(x·y) = m.x⊗m.y ,

and is the lower adjoint in a Galois onnetion between the orderings. Let m♯
denote

its upper adjoint and let m.A be the image of A under m . Then m.R = (m.A , ⊗ ,
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⊕ , � , m.0 , m.1 ) is a regular algebra, where the supremum operator in S is given by,

for all funtions f with range B ,

⊕f = m.Σ(m♯
• f) .

Moreover, m is a regular homomorphism from R to m.R .

✷

Lemma 21 Suppose R is the powerset algebra with underlying monoid (R ,×R , 1R ).

Suppose S is a regular algebra with monoid struture ( S ,×S , 1S ) and suppose ζ is a

monoid homomomorphism from (R ,×R , 1R ) to (S ,×S , 1S ). De�ne the extension ζ♭

from 2R to S by

ζ♭.X = 〈Σx : x∈X : ζ.x〉

for all X in 2R . Then ζ♭ is a regular homomorphism from R to S with upper adjoint

ζ♯ de�ned by

ζ♯.U = 〈∪x : ζ.x�U : {x}〉

for all U in S .

Proof We have to show that the extension ζ♭ is a monoid homomorphism and that it

is a lower adjoint in a Galois onnetion between the two orderings. That ζ♭ is a monoid

homomorphism follows straightforwardly from the fat that produt in the algebra S is

universally distributive

4

.

ζ♭.(X ×R Y)

= { de�nition of ζ♭ }

〈Σz : z ∈ X ×R Y : ζ.z〉

= { de�nition of X ×R Y }

〈Σx,y : x∈X∧y∈Y : ζ.(x ×R y)〉

= { ζ is a monoid homomorphism }

〈Σx,y : x∈X∧y∈Y : ζ.x ×S ζ.y〉

= { produt in S is universally distributive }

〈Σx :x∈X : ζ.x〉 ×S 〈Σy :y∈Y :ζ.y〉

= { de�nition }

ζ♭.X ×S ζ♭.Y .

4

Universal distributivity is a onsequene of admitting fatorisation.
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The onstrution of its upper adjoint ζ♯ proeeds as follows.

ζ♭.X � U

= { de�nition of ζ♭ , de�nition of supremum }

〈∀x : x∈X : ζ.x�U〉

= { set omprehension }

X ⊆ {x | ζ.x�U}

= { by de�nition, ζ♯.U = {x | ζ.x�U} }

X ⊆ ζ♯.U .

✷

Theorem 20 was stated and proved in [Ba06, theorem 6.2℄. Lemma 21 was also

stated there [Ba06, theorem 6.3℄ but the onstrution of the upper adjoint was omitted.

We have inluded its onstrution here beause we need the details later.

Reall that our objetive is to translate alulations in an algebra R into alulations

in an algebra S and then \invert" the results of the alulations bak into R . This is

failitated when there is a regular homomorphism from R into S but sometimes this

is not enough. Suppose that ζ♭ is suh a regular homomorphism and ζ♯ is its upper

adjoint. Then, in general ζ♯ and ζ♭ are not inverse funtions: it is the ase that, for

all Y , Y � ζ♯.(ζ♭.Y) but the onverse inlusion is not generally valid. The sets Y suh

that Y = ζ♯.(ζ♭.Y) are alled losed elements of the Galois onnetion and enjoy speial

properties. For our purposes, lemma 22 is one that we exploit.

Lemma 22 Suppose R and S are regular algebras and ζ♭ is a regular homomorphism

from R to S . Suppose ζ♯ is its upper adjoint. Suppose Z in R has the property that

ζ♯.(ζ♭.Z) = Z .

(In words, Z is a losed element of the Galois onnetion.) Then, for all X in R ,

(23) X\Z = ζ♯.(ζ♭.X \ ζ♭.Z) = ζ♯.(ζ♭.(X\Z)) ,

(24) Z/X = ζ♯.(ζ♭.Z / ζ♭.X) = ζ♯.(ζ♭.(Z/X)) and

(25) X\Z/Y = ζ♯.(ζ♭.X \ ζ♭.Z / ζ♭.Y) = ζ♯.(ζ♭.(X\Z/Y)) .

NB: The symbols \ \ " and \ / " are overloaded: on the left of the three equations it is

the fatorisation operator in R and on the right of eah equation it is the fatorisation

operator in S . We also overload symbols denoting the produt and partial ordering

relations in the proof below.

In words, if Z is a losed element of the Galois onnetion, then all right fators, all

left fators, and all fators of Z are losed elements of the Galois onnetion.
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Proof We present the proof of (25). The proofs of (23) and (24) are similar but slightly

less ompliated. (They involve one less variable.)

Suppose W , X , Y and Z are all elements of R and ζ♯.(ζ♭.Z) = Z . Then

W � ζ♯.(ζ♭.X \ ζ♭.Z / ζ♭.Y)

= { ζ♯ is upper adjoint of ζ♭ }

ζ♭.W � ζ♭.X \ ζ♭.Z / ζ♭.Y

= { fators }

ζ♭.X · ζ♭.W · ζ♭.Y � ζ♭.Z

= { ζ♭ is a monoid homomorphism }

ζ♭.(X·W·Y) � ζ♭.Z

= { ζ♯ is upper adjoint of ζ♭ }

X·W·Y � ζ♯.(ζ♭.Z)

= { assumption: ζ♯.(ζ♭.Z) = Z }

X·W·Y�Z

= { fators }

W�X\Z/Y .

It follows by indiret equality that ζ♯.(ζ♭.X \ ζ♭.Z / ζ♭.Y) = X\Z/Y . The seond equality

in (25) follows immediately from the �rst equality by applying the unity-of-opposites

theorem (spei�ally ζ♯ •ζ♭ •ζ♯ = ζ♯ ).

✷

The funtions ζ , ζ♭ and ζ♯ are extended pointwise to matries simply by replaing

funtion appliation by funtion omposition. For example, if G is a matrix of dimension

I×J and i and j are elements of I and J , (ζ♯ •G)(i,j) = ζ♯.(G(i,j)) . A basi property

of the Galois onnetion (ζ♭ , ζ♯) is that ( ζ♭• ) is the lower adjoint and ( ζ♯• ) is the upper

adjoint in a Galois onnetion of pointwise-ordered matries. As a onsequene, we have:

Theorem 26 Suppose R and S are regular algebras and ζ♭ is a regular homomor-

phism from R to S . Suppose ζ♯ is its upper adjoint. Suppose G and H are matries

of events in the algebra R (of the same dimension). Then, assuming that G and H

have appropriate dimensions in eah ase,

ζ♭ • (G+H) = (ζ♭ •G) + (ζ♭ •H) ,

ζ♭ • (G⊗H) = (ζ♭ •G) ⊗ (ζ♭ •H) , and
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ζ♭ •G∗ = (ζ♭ •G)∗ .

Furthermore, if every event in G∗
is losed,

G∗ = ζ♯ • (ζ♭ •G)∗ .

(For onveniene, we make no distintion between the (matrix) produt, supremum and

star operators of R and S in the above statements. We also make no suh distintion

between the operators in the proof.)

Proof The �rst equation is an immediate onsequene of the fat that lower adjoints

preserve suprema, and supremum of matries is de�ned pointwise.

The seond equation is proved as follows:

(ζ♭ • (G⊗H))(i,j)

= { funtion omposition }

ζ♭.((G⊗H)(i,j))

= { de�nition of matrix produt (in R ) }

ζ♭. 〈Σk ::G(i,k)·H(k,j)〉

= { ζ♭ is a lower adjoint, so distributes over supremum }
〈

Σk :: ζ♭.(G(i,k)·H(k,j))
〉

= { ζ♭ is a monoid homomorphism }
〈

Σk :: ζ♭.G(i,k) · ζ♭.H(k,j)
〉

= { de�nition of matrix produt (in S ) }

((ζ♭ •G)⊗(ζ♭ •H))(i,j) .

The third equation is proved using the well-known \fusion" theorem of �xed-point al-

ulus. (See e.g. [Ba06, theorem 3.6℄.)

ζ♭ •G∗ = (ζ♭ •G)∗

⇐ { ζ♭ is a lower adjoint, G∗
is the least �xed point of the funtion

mapping matrix f to I+G+ f⊗f ;

fusion: [Ba06, theorem 3.6℄. }
〈

∀f :: ζ♭ • (IR+G+ f⊗f) = IS + (ζ♭ •G) + ((ζ♭ • f)⊗(ζ♭ • f))
〉

⇐ { ζ♭ is a lower adjoint and so preserves suprema }

ζ♭ • IR = IS ∧
〈

∀f :: ζ♭ • (f⊗f) = (ζ♭ • f)⊗(ζ♭ • f)
〉
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= { ζ♭ is a monoid homomorphism, so ζ♭.1R = 1S ,

ζ♭ is a lower adjoint, so ζ♭.0R = 0S

hene ζ♭ • IR = IS }
〈

∀f :: ζ♭ • (f⊗f) = (ζ♭ • f)⊗(ζ♭ • f)
〉

= { seond equation above with G,H := f ,f }

true .

The �nal equation is now straightforward:

G∗

= { assumption: every element of G∗
is losed }

ζ♯ •ζ♭ •G∗

= { above }

ζ♯ • (ζ♭ •G)∗ .

✷

As remarked earlier, the statement of theorem 26 makes no notational distintion

between the operators in the two algebras. However, the importane of the theorem is

that there is a distintion. For example, the statement

G∗ = ζ♯ • (ζ♭ •G)∗

expresses how to turn a alulation of the star of a matrix in the algebra R into the star of

matrix in the algebra S . A pratial appliation of this is the omputation of the fator

matrix of a regular language by �rst imputing the fator matrix in the powerset algebra

of the syntati monoid of the language. The former (typially) involves omputations

with in�nite sets of words whereas the latter involves �nite sets. See setion 7.2.

2.8 Relations and Selectors

Suppose R is a regular algebra. As we remarked after theorem 9, homogeneous binary

relations on a set form a regular algebra. For alulational purposes, it is useful to

onsider relations as speial ases of events in a matrix algebra. Formally, given a regular

algebra R , we de�ne the funtion Sel mapping relations to event matries. In the

de�nition, 1 denotes the unit of R and 0 its zero event (the least element of the

omplete lattie).
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Definition 27 Suppose M and N are two sets and suppose R is a relation of type

M←N . Then we de�ne the event matrix Sel.R with dimension M×N by, for all i∈M

and j∈N ,

(28) (i Sel.R j = 1 ⇐ i R j) ∧ (i Sel.R j = 0 ⇐ ¬(i R j)) .

We all Sel.R the seletor orresponding to relation R .

We overload the onverse operator on relations, denoted here by the symbol

∪
written

as a post�x to its argument, to denote the onverse seletor (Sel.R)∪ ; if R has type

M←N , this has dimension N×M and is de�ned by

(29) (Sel.R)∪ = Sel.(R∪)

where (R∪
) denotes the onverse of relation R. The onventional terminology for (Sel.R)∪

is the transpose of matrix Sel.R .

✷

We often apply the funtion Sel to funtions, the funtion f of type M←N being

regarded as a speial kind of relation suh that i f j ≡ i= f.j . In this ase, the de�nition

of Sel beomes

(i Sel.f j = 1 ⇐ i= f.j) ∧ (i Sel.f j = 0 ⇐ i 6= f.j) .

It is lear that Sel and Rel map identities to identities.

The use of Sel enables alulations to be so-alled \point-free". That is, we an

alulate with matries without spei� mention of the matrix elements. To this end, it

is useful to formulate properties of relations in terms of Sel . The properties of partiular

interest are listed below. Suppose R is a relation of type M←N . Let IN denote the

identity matrix of dimension N×N and IM the identity matrix of dimension M×M .

Then

(30) R is funtional ≡ Sel.R⊗ (Sel.R)∪ _� IM ,

(31) R is injetive ≡ (Sel.R)∪⊗Sel.R _� IN ,

(32) R is surjetive ≡ IM _� Sel.R⊗ (Sel.R)∪ ,

(33) R is total ≡ IN _� (Sel.R)∪⊗Sel.R .

As an example of how these properties are established, let us prove (32). In order to do

so, we need the pointwise de�nition of surjetive: for relation R of type M←N ,

(34) R is surjetive ≡ 〈∀i : i∈M : 〈∃k : k∈N : i R k〉〉 .

Now we show that the right sides of (32) and (34) are equivalent:
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IM _� Sel.R⊗ (Sel.R)∪

= { de�nition of pointwise ordering }

〈∀ i,j : i∈M∧ j∈M : i IM j � i (Sel.R⊗ (Sel.R)∪) j〉

= { i IM i = 1 , otherwise i IM j = 0 ; 0�x for all x }

〈∀i : i∈M : 1 � i (Sel.R⊗ (Sel.R)∪) i〉

= { de�nition of matrix multipliation }

〈∀i : i∈M : 1 � 〈Σk : k∈N : (i Sel.R k) · (k (Sel.R)∪ i)〉〉

= { by de�nition of Sel.R and (Sel.R)∪ and properties of multipliation,

(i Sel.R k) · (k (Sel.R)∪ i) = 1 ⇐ i Sel.R k = 1

and (i Sel.R k) · (k (Sel.R)∪ i) = 0 ⇐ i Sel.R k = 0 ,

addition is idempotent and 0 6=1 }

〈∀i : i∈M : 0 6= 〈Σk : k∈N : i Sel.R k〉〉

= { by de�nition of Sel.R , i Sel.R k = 1 or i Sel.R k = 0 ,

〈Σk :k∈N :0〉 = 0 }

〈∀i : i∈M : 〈∃k : k∈N : i Sel.R k = 1〉〉

= { de�nition of Sel.R and (34) }

R is surjetive .

(Note that we have used in�x notation for appliation of a matrix to a pair. For example,

we write i Sel.R k and not (Sel.R)(i,k) . This �ts with the onvention of using in�x

notation for relations, as in i R k . It is often helpful to use in�x notation in this way

and, where this is the ase, this is what we do.)

Typially, we use the pointwise de�nition of surjetivity to establish that a relation is

surjetive and then use the point-free de�nition to derive onsequenes of the property.

We do the same for injetivity. Its pointwise de�nition is:

(35) R is injetive ≡ 〈∀ i,j : i∈N∧ j∈N : k R i ∧ k R j ⇒ i= j〉 .

We leave the reader to verify that (35) and (31) are equivalent. Funtionality and totality

are typially by de�nition so that we do not need the pointwise de�nitions.

A relation of type M←N that is funtional and surjetive is ommonly referred to

as a funtion from N onto M . It is easy to see from the point-free formulae that

injetivity of relation R is equivalent to funtionality of R∪
; similarly totality of R is

equivalent to surjetivity of R∪
. A relation R of type M←N that is funtional, injetive,
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total and surjetive is a bijetion between M and N . A synonym for bijetion is (1{1)

orrespondene (pronouned one-to-one orrespondene).

Our use of the terminology \seletor" alludes to one way that seletors are used. As

an example, suppose G is a matrix of dimension M×N and suppose n is an element

of N . De�ne the funtion n of type N←1 , where 1 denotes a set having exatly one

(anonymous) element, to be the onstant funtion that always evaluates to n . Then,

G⊗Sel.n is a matrix of dimension M×1 ; in the onventional terminology, it is the \ol-

umn" of matrix G indexed by n . Similarly, if m is an element of M , (Sel.m)∪⊗G

is the \row" of matrix G indexed by m . Thus (Sel.m)∪⊗G⊗Sel.n is a matrix of di-

mension 1×1 (i.e. a matrix with a single entry); ignoring the formal distintion between

matries of dimension 1×1 and matrix entries, it is the entry of G indexed by the pair

(m,n) . Rather than just seleting individual rows or olumns of a matrix, we use Sel

to selet submatries; the algebrai properties of Sel are exploited to ombine onision

with preision in our alulations. See [BC75, BvdEvG94℄ for further examples of suh

point-free alulations.

Another way that seletors are used is to onstrut so-alled \pathwise homomor-

phisms" of graphs. Suppose that G is a matrix of dimension M×M for some M , and

suppose f is a funtion of type N←M . Then the matrix

Sel.f⊗G⊗ (Sel.f)∪

an be roughly desribed as a matrix formed by oalesing rows and olumns of G that

are mapped to the same value by the funtion f .

Fig. 2 illustrates both uses of seletors. At the top is a square matrix, depited as a

graph, that we will denote by G . The index set of G is {0,1,2} . Now suppose f is the

funtion of type {0,1,2}←{X,Y} de�ned by f.X= 1 and f.Y= 2 . Then

(Sel.f)∪⊗G⊗Sel.f

is the square matrix indexed by {X,Y} de�ned by seleting the rows and olumns of G

indexed by {1,2} . Pituring the matrix as a graph, it is the graph on the bottom-left of

�g. 2. Now suppose h is the funtion of type {X,Y}←{0,1,2} de�ned by h.0=X , h.1=X

and h.2=Y . Then the matrix

Sel.h⊗G⊗ (Sel.h)∪

is the matrix onstruted from G by oalesing the nodes 0 and 1 ; the oalesed node

is renamed X and the node 2 is renamed Y . The result is depited at the bottom-right

of �g. 2.

As an example of point-free alulations using seletors, and for later use, we have

the following lemma. See [BC75, BvdEvG94℄ for similar examples of suh point-free

alulations.
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Figure 2: Use of Sel applied to funtions

Lemma 36 Suppose G is an event matrix of dimension M×M and f is a total

funtion of type N←M . Then

Sel.f⊗G∗⊗ (Sel.f)∪ _� (Sel.f⊗G⊗ (Sel.f)∪)∗ .

Proof

(Sel.f⊗G⊗ (Sel.f)∪)∗

= { de�nition of the star operator }

IN + Sel.f⊗G⊗ (Sel.f)∪⊗ (Sel.f⊗G⊗ (Sel.f)∪)∗

= { leapfrog rule }

IN + Sel.f⊗G⊗ ((Sel.f)∪⊗Sel.f⊗G)∗⊗ (Sel.f)∪

_� { f is total; so, by (33), (Sel.f)∪⊗Sel.f _� IM ;

monotoniity of matrix produt, star and supremum }

IN + Sel.f⊗G⊗ (IM⊗G)∗⊗ (Sel.f)∪

= { IM is the identity of matrix multipliation }

IN + Sel.f⊗G⊗G∗⊗ (Sel.f)∪

_� { f is funtional; so, by (30), IN _� Sel.f⊗ (Sel.f)∪ }

Sel.f⊗ (Sel.f)∪ + Sel.f⊗G⊗G∗⊗ (Sel.f)∪

= { distributivity, de�nition of the star operator }

Sel.f⊗G∗⊗ (Sel.f)∪ .
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✷

It is important to note that the de�nition of Sel depends ritially on the type of the

relation to whih it is applied. For example, if A and B are two unequal sets suh that

A⊇B , we an de�ne the injetion ιA,B of type A←B by ιA,B.b=b , for all b in B . The

seletor Sel.ιA,B then has dimension A×B ; it is thus di�erent from Sel.idB where idB

is the identity funtion of type B←B de�ned by idB.b=b . This di�erene is, of ourse,

ruial to our purpose of seleting submatries of a given matrix.

Lemma 37 The funtion Sel is a monoid homomorphism. That is, Sel maps the

identity relation (of a given type) to the identity event matrix (of the same type) and

maps a omposition of relations into a produt of event matries. Moreover, Sel is

monotoni and ommutes with onverse.

Proof Clearly Sel maps the identity event matrix to the identity relation. Moreover,

for all i and j of appropriate type, Sel.R⊗Sel.S

i Sel.(R ◦S) j

= { de�nition of Sel : (28) }

if i (R ◦S) j→ 1✷¬(i (R ◦S) j)→0 fi

= { de�nition of omposition of relations }

if 〈∃k :: i R k ∧ k S j〉 → 1

✷ ¬ 〈∃k :: i R k ∧ k S j〉 →0

fi

= { de�nition of Sel : (28) }

if 〈∃k :: i Sel.R k= 1 ∧ k Sel.S j=1〉 → 1

✷ ¬ 〈∃k :: i Sel.R k= 1 ∧ k Sel.S j= 1〉 → 0

fi

= { i Sel.R k 6= 1 ≡ i Sel.R k= 0 ,

k Sel.S j 6= 1 ≡ k Sel.S j= 0 ,

prediate alulus }

if 〈∃k :: i Sel.R k= 1 ∧ k Sel.S j=1〉 → 1

✷ 〈∀k :: i Sel.R k= 0 ∨ k Sel.S j=0〉 → 0

fi

= { 1 is unit of produt, 0 is zero of produt and unit of addition,
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addition is idempotent,

de�nition of produt of transition graphs }

i Sel.R⊗Sel.S j .

Next,

Sel.R _�Sel.S

= { de�nition of pointwise ordering }

〈∀ i,j :: i Sel.R j � i Sel.S j〉

= { ase analysis on values of Sel (either 0 or 1 );

0�x for all x }

〈∀ i,j :: i Sel.R j= 1 ⇒ i Sel.S j= 1〉

= { de�nition of Sel }

〈∀ i,j :: i R j ⇒ i S j〉

= { de�nition of ordering of relations }

R⊆S .

Finally,

i (Sel.R)∪ j

= { de�nition of transpose }

j Sel.R i

= { de�nition of Sel.R : (28) }

if j R i→1✷¬(j R i)→0 fi

= { de�nition of onverse }

if i R∪ j→ 1✷¬(i R∪ j)→0 fi

= { de�nition of Sel.R : (28) }

i Sel.(R∪) j .

✷

3 The Factor Matrix

In this setion, we introdue Conway's fator matrix and summarise a number of funda-

mental properties (due to Conway). Our presentation di�ers from Conway's in several



37

ways. First, we have generalised Conway's theorems to arbitrary regular events (as

opposed to regular languages) and give examples to illustrate the relevane of the gen-

eralisation. Seond, our presentation is expliitly alulational. Third, Conway showed

that there is a (1{1) orrespondene between the so-alled \left" and \right" \fators"

of a given regular event; we observe the stronger property of an isomorphism between

the posets of left and right fators. The de�nitions of fators, left and right fators of an

event E are given in setion 3.2.

In summary, for a given event E , Conway's fator matrix is a matrix indexed by the

left fators (or equally the right fators) of E , this index set being �nite in the ase that

E is a regular language (as opposed to A whih may be in�nite). Moreover, E itself

and all left and right fators of E are elements of the matrix.

Before introduing the fator matrix formally in setion 3.4, we present the isomor-

phism between the posets of left and right fators in setion 3.3.

We begin in setion 3.1 by listing a number of elementary properties of fatorisation.

All are easily veri�ed. Typially the properties are instanes of general properties of

Galois onnetions. (Reall that we assume a good knowledge of the theory of Galois

onnetions. See [Ba02℄ for the properties and terminology we assume.)

Throughout this setion we omit the alulations that substantiate the laimed prop-

erties. This is beause they have been given in detail elsewhere: see [Ba16℄.

3.1 Elementary Properties

Let X , Y and Z denote events in a regular algebra R as de�ned in de�nition 1.

Beause (A,� ) is a omplete lattie, all funtions with range A have a supremum and

an in�mum. Denoting the supremum of f by Σf and the in�mum of f by Πf , we have

that produt preserves suprema and the fator operators preserve in�ma. That is, for

all funtions f with range A ,

(38) X · (Σf) = 〈Σx :: X · f.x〉

and

(39) X\(Πf) = 〈Πx :: X\ f.x〉 ∧ (Πf)/X = 〈Πx :: f.x /X〉 .

In partiular, (X\ ) and ( /X ) are both monotoni:

(40) X\Y�X\Z ∧ Y/X�Z/X ⇐ Y�Z .

If we ombine the Galois onnetions in (2) and (3), we get: for all events X , Y and Z ,

Z/Y�X ≡ Y�X\Z .
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Note the swith in the ordering | rewritten in this way in order to more easily identify

the Galois onnetion. It follows that, for all events Z and funtions f with range A ,

(41) Z/(Σf) = 〈Πx :: Z/f.x〉 ∧ (Σf)\Z = 〈Πx :: f.x\Z〉 .

In partiular, Z/ and \Z are so-alled \anti-monotoni" funtions:

(42) X\Z�Y\Z ∧ Z/X�Z/Y ⇐ X�Y .

(The pre�x \anti" signi�es the reversal of the ordering. More long-windedly but tehni-

ally preise, Z/ and \Z are monotoni funtions from (A,� ) to (A,� ).)

We frequently use anellation :

(43) X ·X\Y � Y ∧ X/Y ·Y � X ∧ Y�X\(X·Y) ∧ X� (X·Y)/Y

ommutativity :

(44) (X·Y)\Z = Y\(X\Z) ∧ (X/Z)/Y = X/(Y·Z) ,

and assoiativity :

(45) (X\Y)/Z = X\(Y/Z) .

Property (45) allows us to drop parentheses and write

X\Y/Z

without ambiguity. We do this frequently, using (45) without expliit mention (in the

same way that we write X·Y·Z and exploit the assoiativity of onatenation without

expliit mention).

Two less well-known anellation properties are useful:

(46) X� (Y/X)\Y ∧ X�Y/(X\Y) .

By exploiting the fat that (A, · , 1 ) is a monoid (in partiular 1 is a unit of produt),

the anellation laws all beome equalities in the ase that the variables are idential:

(47) X\(X·X) = X ·X\X = X = X/X ·X = (X·X)/X , and

(48) (X/X)\X = X = X/(X\X) .
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3.2 Left and Right Factors

In this setion, we introdue the notion of a fator, a left fator and a right fator of an

event. Theorem 50 is used extensively, although sometimes without expliit mention.

Definition 49 Let E denote a �xed event of a regular algebra. A fator of E is any

event that an be expressed in the form X\E/Y for some X and Y . (That parentheses

have been omitted here is permitted by virtue of (45).) An event is a left fator of E

if it an be expressed in the form E/Y for some Y and a right fator of E if it an be

expressed in the form X\E for some X .

✷

Theorem 50 The relations fator-of, left-fator-of and right-fator-of are reexive and

transitive. (Reexivity means that every event is a fator of, a left fator of, and a right

fator of itself. Transitivity of the fator-of relation means that a fator of a fator of an

event is a fator of the event. Similarly for left-fator-of and right-fator-of.)

Proof The proof is a simple, introdutory exerise in the use of the laws given above.

For example, the transitivity of the left-fator-of and right-fator-of relations follow from

the ommutativity property (44) and their reexivity from (48). The reexivity of the

fator-of relation is a ombination of the two equations in (48). Spei�ally,

(51) X = (X/X)\X/(X\X)

for all events X . (Note how (45) is used here.) We leave the veri�ation of fator-of

relation to the reader.

✷

Conway [Con71℄ states theorem 50 but his proof-style is quite di�erent. The basi

properties used are the same but the important di�erene is that our existene proofs

are expliitly (rather than impliitly) onstrutive. For example, (51) establishes that an

event is a fator of itself by expliitly exhibiting X/X and X\X as examples of events Y

and Z suh that X = Y\X/Z . This di�erene in proof-style is, in my view, a signi�ant

ontribution of the urrent paper.

3.3 Unity of Opposites

Throughout this and subsequent setions, the event E is a �xed, sometimes impliit,

parameter of several de�nitions and theorems. From now on, we use lower-ase identi�ers

( i , j , k et.) to denote left fators of E . We ontinue to use upper-ase letters at the

end of the alphabet for arbitrary events.
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De�ne the funtions ⊳ and ⊲ by

X⊳ = E/X ,(52)

X⊲ = X\E .(53)

By de�nition, the range of ⊳ is the set of left fators of E and the range of ⊲ is the

set of right fators of E . It is an easy alulation to derive the Galois onnetion: for

all X and Y ,

(54) X�Y⊳ ≡ Y�X⊲ .

Note that beause of the reversal of the ordering, both operators ⊳ and ⊲ are anti-

monotoni. That is,

(55) X⊳�Y⊳ ∧ X⊲�Y⊲ ⇐ X�Y .

Applying the unity-of-opposites theorem [Ba02℄ to the Galois onnetion (54), we dedue

a (1{1) orrespondene between the left and right fators of E :

X⊳⊲⊳ = X⊳ ,(56)

X⊲⊳⊲ = X⊲ .(57)

and an isomorphism between the subset ordering on left fators and the superset ordering

on right fators of E :

X⊳�Y⊳ ≡ X⊳⊲ � Y⊳⊲ ,(58)

X⊲�Y⊲ ≡ X⊲⊳ � Y⊲⊳ .(59)

Additional properties are

E⊳⊲ = E = E⊲⊳ ,(60)

X⊳ \Y⊳ = X⊳⊲ / Y⊳⊲ ,(61)

X⊲ /Y⊲ = X⊲⊳ \ Y⊲⊳ ,(62)

X\Y⊲ = (Y·X)⊲ ,(63)

X⊳ /Y = (Y·X)⊳ .(64)

The rightmost equality in (60) is established as follows. The proof of the leftmost

equality is similar.
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E⊲⊳ = E

= { antisymmetry }

E⊲⊳ ⊆ E ∧ E⊲⊳ ⊇ E

= { X⊆Y⊳ ≡ Y⊆X⊲ with X,Y := E ,E⊲ ,

reexivity of ≥ }

E⊲⊳ ⊆ E

= { de�nition }

E/(E\E)⊆E

⇐ { E/ is an anti-monotoni funtion, E/1=E }

E\E⊇ 1

= { fators, unit }

true .

To establish (61) and (62), and for later use, it is onvenient to observe that (45),

appropriately instantiated, gives the identity

(65) X\(Z⊳) = (X⊲)/Z .

The alulation of (61) is now easy:

X⊳ \Y⊳

= { (56) }

X⊳ \ Y⊳⊲⊳

= { (65) }

X⊳⊲ / Y⊳⊲ .

Property (62) is alulated in the same way. We leave the reader the task of verifying

(63) and (64).

Most properties in this setion formulate as equations theorems that Conway ex-

pressed in words. So, for example, property (60) establishes the theorem that any event

is both a left fator and a right fator of itself. Properties (56) and (57) establish a

(1{1) orrespondene between the left and right fators of E . However, Conway does

not appear to have been aware of the Galois onnetion (54); the (1{1) orrespondene

is a ornerstone of his aount but he does not observe the poset isomorphism expressed

by (58) and (59).



42

Properties (61) and (62) will be disussed in the next setion when we introdue the

fator matrix.

Example 66 (Running Example: Booleans) Reall (example 4) that Bool= {false,true}

is a regular algebra and the over and under operators are, respetively, \if" and \only-if".

Property (60) is thus

((E⇐E)⇒E) = E = (E⇐(E⇒E)) .

The reader an easily hek that this is a valid identity for both ases of E= false and

E= true . The reader is invited to also hek the validity of all the properties (61) thru

(64) for all booleans E , X and Y . (Reall that produt is onjuntion so that, for

example, (64) is the property

((E⇐X) ⇐ Y) = (E ⇐ Y∧X)

for all booleans E , X and Y .)

✷

Example 67 (Running Example: Modulo Addition) Let m be a stritly positive

natural number and onsider the powerset regular algebra with underlying monoid ZZm ,

the Abelian group of numbers modulo m under addition. (See example 16.) As we have

seen, the set ¬{0} has 2m fators. Reall that, beause of the symmetry of addition, we

use the notation

I
J
for fatorisation. In order to verify properties (60) thru (64) for an

arbitrary subset E of {0 ..m−1} , it is neessary to onsider three distint ases: E= ∅ ,

E= {0 ..m−1} and ∅ ⊂ E ⊂ {0 ..m−1} . We leave the �rst two ases to the reader. In

the third ase,

E
E
= {0} and

E
{0}

=E . This establishes the validity of (60) in this ase.

Beause of the symmetry of addition, X⊳=X⊲ for all X . Moreover, beause the monoid

is in fat a group, X⊲⊳=X . So properties (61) and (62) predit that

X⊳
Y⊳

= Y
X
. We leave

the reader to hek these identities from the de�nitions. (Expanding the de�nition of

the ⊳ operator, the properties look like familiar properties of division and subtration

in arithmeti; beause of the very speial nature of the example, this is what one would

expet.)

✷

3.4 Definition and Properties of the Factor Matrix

In this setion, we de�ne the fator matrix of an event and state a number of properties.

The notion of the fator matrix and the properties listed in this setion are due to

Conway [Con71, hapter 6℄. Our presentation di�ers onsiderably in that we ontinue to

give expliit onstrutions witnessing existential properties. See [Ba16℄ for the relevant

alulations.
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Definition 68 (Factor Matrix) Let L.E denote the set of left fators of E . The

fator matrix of E is de�ned to be the binary operator \ restrited to L.E×L.E . Thus,

the fator matrix has dimension L.E×L.E and entries in the matrix take the form i\j

where i and j are left fators of E . It is denoted by |E| .

Formally, |E| = (Sel.(ιA ,L.E))∪ ⊗ under ⊗ Sel.(ιA ,L.E) , where under is the matrix de-

�ned by X under Y=X\Y , for all events X and Y , and ιA ,L.E is the funtion that

injets left fators of E into the arrier set , A , of the algebra R . (Pre-multiplying by

(Sel.(ιA ,L.E))∪ and post-multiplying by Sel.(ιA , L.E) selets the left fators of E .)

✷

An equivalent de�nition of the fator matrix of E is the binary operator / restrited

to T .E×T .E , where T .E denotes the set of right fators of E . Properties (61) and (62)

enode the equivalene.

Suppose that F is a fator, i is a left fator, and R is a right fator of E . We now

onstrut left fators i0 , i1 , i2 , i3 , i4 , i5 suh that

F = i0\i1 ,(69)

i = i2\i3 ,(70)

R = i4\i5 .(71)

Moreover, i2 is independent of i and i5 is independent of R and

(72) E = i2\i5 .

Suppose F is a fator of E . In partiular, suppose that F=U\E/V . We onstrut X

and Y suh that F = X⊳ \Y⊳ as follows.

X⊳ \Y⊳ = U\E/V

= { X\Y⊳ = X⊲ /Y with X,Y := X⊳ , Y , U\E=U⊲ }

X⊳⊲ /Y = U⊲ /V

⇐ { Postulate Y=V }

X⊳⊲ = U⊲

⇐ { U⊲⊳⊲ = U⊲ }

X=U⊲ .

Thus U\E/V = U⊲⊳\V⊳ .

Now onsider the left fator V⊳ . This is written in the form X⊳ \Y⊳ as follows.

V⊳
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= { de�nition }

E/V

= { (60) }

E⊳⊲ /V

= { X\Y⊳ = X⊲ /Y with X,Y := E⊳ , V }

E⊳ \V⊳ .

Thus V⊳ = E⊳ \V⊳ . Finally, onsider the right fator U⊲ . We write this in the form

X⊳ \Y⊳ as follows:

U⊲

= { de�nition }

U\E

= { (60) }

U\E⊲⊳

= { (65) with X,Z := U,E⊲ }

U⊲ /E⊲

= { (57) }

U⊲⊳⊲ /E⊲

= { (65) with X,Z := U⊲⊳ , E⊲ }

U⊲⊳ \E⊲⊳ .

Thus, U⊲ = (U⊲)⊳ \ (E⊲)⊳ .

The terms i2 and i5 in (70) and (71) are thus E⊳ and E . The veri�ation of (72) is

then:

E⊳ \E

= { de�nition }

E⊳⊲

= { (60) }

E .

By these expliit onstrutions, we have established Conway's theorem 4 [Con71, p.48℄.

Let us do some renaming in order to make it easier to ompare our formulation of the
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theorem with Conway's. As always, E denotes a �xed \event" (thus not neessarily a

regular language). Consider the \matrix" de�ned by the binary operator \ indexed by

left fators of E . So, eah \entry" in the matrix has the form i\j for some left fators i

and j of E . Conway uses the notation Eij for suh an entry. Then eah entry is a fator

of E sine j is a left fator of E equivales j = j⊲⊳ = E/ j⊲ and, hene, i\j = i \E/ j⊲ .

Moreover, we have shown that eah fator of E is an entry in the matrix, spei�ally:

(73) U\E/V = U⊲⊳ \V⊳ .

In addition, let l denote the left fator E⊳ and r denote E (whih is a left fator of E

sine E=E⊲⊳ ). Then

(74) E = r = l⊲ = l\r .

In words, E is the left fator r , the right fator orresponding to l , and the (l, r) th

entry in the matrix. Also, for all left fators i of E

(75) i = l\i

and

(76) i⊲ = i\r .

In words, the left fator i is the (l, i) th entry in the matrix and its orresponding right

fator i⊲ is the (i, r) th entry in the matrix.

We onlude by showing that |in Conway's words| any subfatorisation of E is

dominated by a fatorisation of E. In partiular, we show that:

(77) A·B⊆E ≡ A⊆B⊳ ∧ B ⊆ B⊳⊲ .

More generally, we show that, for all X and Y and all U and V ,

(78) X·Y ⊆ U⊳ \V⊳ ≡ 〈∃W :: X ⊆ U⊳ \W⊳ ∧ Y ⊆ W⊳\V⊳〉 .

The proof of (77) is:

A·B⊆E

= { fators, B⊳=E/B ; anellation }

A⊆B⊳ ∧ B⊳ ·B ⊆ E

= { fators, B⊳⊲ = B⊳ \E }

A⊆B⊳ ∧ B ⊆ B⊳⊲ .
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Whene, we prove (78). First, we determine a spei� instane for the existentially

quanti�ed variable W :

X·Y ⊆ U⊳ \V⊳

= { fators, de�nition of V⊳ }

U⊳ ·X ·Y ·V ⊆ E

= { (77) with A,B := U⊳ ·X , Y·V }

U⊳ ·X ⊆ (Y·V)⊳ ∧ Y·V ⊆ (Y·V)⊳⊲

= { fators }

X ⊆ U⊳ \ (Y·V)⊳ ∧ Y ⊆ (Y·V)⊳⊲ /V

= { (65) }

X ⊆ U⊳ \ (Y·V)⊳ ∧ Y ⊆ (Y·V)⊳ \V⊳ .

Then, we have:

X·Y ⊆ U⊳ \V⊳

⇒ { above, W :=Y·V }

〈∃W :: X ⊆ U⊳ \W⊳ ∧ Y ⊆ W⊳\V⊳〉

⇒ { monotoniity of omposition }

〈∃W :: X·Y⊆ (U⊳ \W⊳) · (W⊳\V⊳)〉

⇒ { anellation }

X·Y ⊆ U⊳ \V⊳ .

Let |E| denote the fator matrix of E . From (78) it follows that

|E|⊗|E| _� |E|

and, sine obviously 1� i\i for all i ,

I _� |E|

(where I denotes the identity matrix). Hene

(79) |E| = |E|
∗

.

This ompletes our formulation of Conway's theorems [Con71℄. A \matrix" has been

exhibited ontaining all fators and only the fators of E , indexed by left fators of E ,
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that is reexive and transitive and hene equal to its own star. The import of (75) and

(76) is that the E⊳ \row" of the matrix (the set of entries all having E⊳ as �rst index)

ontains all (and only) the left fators of E , and the E \olumn" of the matrix (the

set of entries all having E as seond index) all (and only) the right fators of E . In

addition, from (72) we see that E is the matrix entry at the intersetion of this row and

olumn.

Example 80 (Running Example: Booleans) For a simple example of the fator

matrix, let us return to the regular algebra of Booleans, introdued in example 4 and

ontinued in example 66. The event true has just itself as left fator; the event false

has two left fators: false and true . The \fator matrix" of true thus has dimension

{true}×{true} and just one \entry": true⇒ true , whih evaluates to true . The \fator

matrix" of false has dimension Bool×Bool . Displayed in the onventional way, it is the

matrix

[

false⇒ false false⇒ true

true⇒ false true⇒ true

]

whih, of ourse, evaluates to

[

true true

false true

]

The left fators l and r in Conway's theorem are, in this ase, true and false , respe-

tively. We invite the reader to verify all the other properties listed above for this simple

example.

✷

Example 81 (Running Example: Modulo Addition) Let m be a stritly positive

natural number and onsider the powerset regular algebra with underlying monoid ZZm ,

the Abelian group of numbers modulo m under addition. (See examples 16 and 67.)

As we have seen, the set ¬{0} has 2m fators. Beause of the symmetry of addition,

the sets of fators, left fators and right fators are all idential. (In other words, every

fator is both a left fator and a right fator.) The left fator l in Conway's theorem

is {0} and ¬{0} is the left fator r . Trivially (sine 0 is the unit of the group), for all

fators i , i= i
{0}
.

✷

Example 82 (Running Example: The Language (aa)∗ ) Let us return to the lan-

guage (aa)∗ over the alphabet {a} . We saw in example 17 that this language has four

right fators, namely ∅ , (aa)∗ , a(aa)∗ and a∗
. The orresponding left fators are
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(aa)∗ / ∅ , (aa)∗ / (aa)∗ , (aa)∗ /a (aa)∗ and (aa)∗ /a∗
. These simplify to a∗

, (aa)∗ ,

a(aa)∗ and ∅ , respetively. (In general, anti-derivatives would be used to alulate

the left fators but in this ase the left-right symmetry of all words in T ∗
makes the

alulations muh easier.)

The fator matrix of (aa)∗ is shown in three ways below. First, as the \under"

funtion indexed by its left fators:











∅\∅ ∅ \ (aa)∗ ∅\a (aa)∗ ∅ \a∗

(aa)∗ \ ∅ (aa)∗ \ (aa)∗ (aa)∗ \a (aa)∗ (aa)∗ \a∗

a (aa)∗\∅ a (aa)∗ \ (aa)∗ a (aa)∗\a (aa)∗ a (aa)∗ \a∗

a∗ \ ∅ a∗ \ (aa)∗ a∗ \a (aa)∗ a∗ \a∗











Seond, as the \over" funtion indexed by right fators:











a∗ /a∗ a∗ / (aa)∗ a∗ /a (aa)∗ a∗ / ∅

(aa)∗ /a∗ (aa)∗ / (aa)∗ (aa)∗ /a (aa)∗ (aa)∗ / ∅

a (aa)∗ /a∗ a (aa)∗ / (aa)∗ a (aa)∗/a (aa)∗ a (aa)∗/∅

∅ /a∗ ∅ / (aa)∗ ∅/a (aa)∗ ∅/∅











Finally, after elimination of the fator operators:











a∗ a∗ a∗ a∗

∅ (aa)∗ a (aa)∗ a∗

∅ a(aa)∗ (aa)∗ a∗

∅ ∅ ∅ a∗











The left fators l and r in equation (72) are both (aa)∗ so that the entry l\r is

(aa)∗ \ (aa)∗ .

✷

We have ritiised Conway for an over-reliane on words. Example 82 is inluded

partly to provide evidene for this ritiism. Conway assumes that left and right fators

are indexed by natural numbers in a way that reets the one-to-one orrespondene.

He uses Li , Ri and Eij to denote the i th left fator, orresponding i th right fator

and (i, j) th element in the fator matrix (where i and j are natural numbers). Then

he states one of the main theorems on the fator matrix as follows [Con71, p.48℄:

Eah Eij is a fator and eah fator is one of the Eij . There exist unique

indies l , r suh that E=Lr=Rl=Elr and Li=Eli and Ri=Eir for eah i .

Hene the fators naturally form a square matrix among the entries of whih

is E .
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The issue here is with the meaning of the words \one" and \unique". Note that

in example 82, the entral 2×2 matrix ontains two ourrenes of (aa)∗ and two

ourrenes of a (aa)∗ , the entral two rows are idential but for an interhange of these

two languages, and the same is true of the entral two olumns. These two rows and

olumns ontain all the left fators and right fators of the language exatly one, and

no other fators. Now Conway's \indies" are numbers, not left or right fators. That

means that there appear to be two hoies for the \unique" indies l , r ! Even worse,

the fator matrix of (am)∗ , for arbitrary, stritly positive, natural number m , o�ers a

hoie of m \unique" (numerial) indies l and r .

The earlier use of the word \one" is an ambiguous use of English: it ould mean that

eah fator ours exatly one in the matrix, but it ould also mean that eah fator

ours at least one in the matrix. Conway ompounds the onfusion by stating on page

49:

The theorem does prevent E from ourring twie in its fator matrix.

There is a missing \not" in this sentene: it should read \The theorem does not prevent

E from ourring twie in its fator matrix."!

In my view, Conway's statement of the theorem is extremely onfusing and easily open

to misinterpretation. The \uniqueness" laimed by Conway depends on the partiular

indexing hosen for the left and right fators: our presentation makes it lear that the

\unique" entry is the entry (aa)∗ \ (aa)∗ , and not the entry a (aa)∗\a (aa)∗ even though

the two entries are equal. By eliminating a spurious, irrelevant and entirely arbitrary

numerial indexing funtion, the exposition is made learer and more preise.

Before leaving this setion, let us briey mention that there is a onnetion between

example 81 and example 82. The onnetion is that the syntati monoid of the language

(aa)∗ is ZZ2 . Note, however, that the syntati monoid of (am)∗ is not ZZm when m is

greater than 2 .

4 The Factor Matrix of a Factor

This setion is the �rst where we present results in the author's PhD thesis [Ba75℄ that

have not previously been published elsewhere.

Suppose F is a fator of E . Equivalently, suppose F is an entry in the fator matrix

of E . We show that the fator matrix of F is a \submatrix" of the fator matrix of E .

Reall, however, that we have de�ned a \matrix" to be a binary funtion. In partiular,

the fator matrix of E is a funtion from pairs of left fators of E to fators of E , and the

fator matrix of F is a funtion from pairs of left fators of F to fators of F . Thus, the
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domain of the fator matrix of F is quite di�erent from the domain of the fator matrix

of E if F 6=E . We must, therefore, say preisely what the meaning of \submatrix" is.

We prefer to say that the fator matrix of F is \represented by a submatrix" of the

fator matrix of E in the following sense.

Definition 83 Suppose G ′
is a funtion of type A←B×B and G is a funtion of

type A←C×C . We say that G ′
is represented by a submatrix of G if there is a set

C ′
suh that C⊇C ′

and a bijetion h of type C ′
←B suh that G ′ = G • h×h .

(Here and elsewhere f×g denotes the funtion from pairs to pairs de�ned by, for all

x and y of appropriate type, (f×g).(x, y)=(f.x , g.y) .)

✷

We apply de�nition 83 exlusively in the speial ase that f and g are square event

matries |indeed, fator matries| but prefer a more general formulation of the de�-

nition.

Informally, the subset C ′
of C identi�es a \submatrix" of G (spei�ally, the entries

indexed by elements of C ′
) and the bijetion h translates indies of the matrix G ′

into

indies of G . For alulational purposes (see, for example, the proof of lemma ), it is

useful to express de�nition 83 in terms of the seletors introdued in de�nition 27.

Lemma 84 Suppose G ′
is a funtion of type A←B×B and G is a funtion of type

A←C×C , where A is the event set of a regular algebra R . Then G ′
is represented

by a submatrix of G if there is an injetive funtion k of type C←B suh that

G ′ = (Sel.k)∪⊗G⊗Sel.k .

Proof Straightforward expansion of the de�nitions. Given injetive funtion k of type

C←B , we let C ′
be the image set of k ; onversely, given bijetion h of type C ′

←B ,

we let k equal ιC,C ′◦h , where ιC,C ′
is the funtion of type C←C ′

that injets elements

of C ′
into C (i.e. ιC,C ′ .x=x for all x ). Then, for all y and z of type B ,

y ((Sel.k)∪⊗G⊗Sel.k) z

= { de�nition of k , distributivity properties of Sel }

y ((Sel.h)∪⊗ (Sel.ιC,C ′)∪⊗G⊗Sel.ιC,C ′ ⊗Sel.h) z

= { de�nition of matrix multipliation, Sel and onverse }

〈Σu,v,w,x :: (y (Sel.h)∪ u)·(u (Sel.ιC,C ′)∪ v)·(v G w)·(w Sel.ιC,C ′ x)·(x Sel.h z)〉

= { de�nition of Sel , onverse and ιC,C ′

1 is the unit and 0 is the zero of multipliation }
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〈Σu,v,w,x : u= v ∧ w=x : (y (Sel.h)∪ u)·(v G w)·(x Sel.h z)〉

= { one-point rule }

〈Σu,x :: (y (Sel.h)∪ u)·(u G x)·(x Sel.h z)〉

= { de�nition of Sel and onverse,

1 is the unit and 0 is the zero of multipliation }

〈Σu,x : u=h.y ∧ x=h.z : u G x〉

= { one-point rule }

h.y G h.z

= { assumption: G ′ = G • h×h }

y G ′ z .

The lemma follows by extensionality (equality of funtions).

✷

De�nition 83 sets the sene for this setion. We assume that F is a fator of E .

Then, supposing that L.E denotes the set of left fators of E and L.F the set of left

fators of F , we alulate a subset M of L.E and a bijetion β of type M←L.F suh

that |F| = (Sel.β)∪⊗ |E|⊗Sel.β . The alulation is ompliated by the fat that fators

may our repeatedly in a fator matrix. This gives us an additional task. Given F we

must �rst loate an ourrene of F in the fator matrix of E with partiular properties.

This task is aomplished in subsetion 4.1; subsetion 4.2 then alulates the subset M

and the bijetion β , leading to the representation theorem, theorem 98.

Example 85 (Running Example: Booleans) As always, we return to our running

example. In example 80 it was observed that the fator matrix of true has exatly one

entry and the fator matrix of false has four entries, of whih three are true . Given one

of the true entries, we need to identify a partiular submatrix (with just one entry) that

is the fator matrix of true .

✷

4.1 Identifying A Suitable Matrix Entry

Throughout this subsetion, we suppose that i and j are left fators of E suh that

F= i\j . (In words, i\j is one of the possibly multiple ourrenes of F in the fator ma-

trix of E .) Let s= j/(i\j) and t=((s⊲ / j⊲) \ s⊲)⊳ . We prove that F= s\t . Importantly,

we prove that s and t have a number of vital properties.
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Lemma 86 Suppose i and j are left fators of E . Let s= j/(i\j) and t=((s⊲ / j⊲) \ s⊲)⊳ .

Then s and t are left fators of E and

i\j= s\t ∧ s = t/(s\t) ∧ t⊲ = (s⊲ / t⊲) \ s⊲ .

Proof It is lear that t is a left fator of E sine it is in the range of ⊳ . It is also the

ase that s is a left fator of E beause it is a left fator of the left fator j and left

fators of left fators are left fators (theorem 50).

We prove the following fats in order:

(a) i\j= s\j

(b) t⊲ = (s⊲ / j⊲) \ s⊲

(c) s\j= s\t

(d) t⊲ = (s⊲ / t⊲) \ s⊲

(e) s = t/(s\t)

The �rst onjunt of the lemma learly follows from (a) and () by transitivity of equality.

The seond onjunt is (e) and the third onjunt is (d).

(a) By mutual inlusion: �rst,

i\j� s\j

= { fators }

s · i\j � j

= { fators }

s� j/(i\j)

= { de�nition of s , reexivity of � }

true .

Seond,

s\j� i\j

⇐ { anti-monotoniity of \ }

s� i

= { de�nition of s , lemma 46 with X,Y := i,j }

true .
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(b)

t⊲

= { de�nition of t }

((s⊲ / j⊲) \ s⊲)⊳⊲

= { (63) }

(s · s⊲ / j⊲)⊲⊳⊲

= { unity of opposites }

(s · s⊲ / j⊲)⊲

= { (63) }

(s⊲ / j⊲) \ s⊲ .

() The proof is entirely symmetri to the proof of (a) with left fators being replaed by

right fators. For ompleteness, we give it anyway. First we translate the proof obligation

from left fators to right fators.

s\j = s\t

= { j , s and t are all left fators; (61) }

s⊲ / j⊲ = s⊲ / t⊲ .

Now we proeed by mutual inlusion. First,

s⊲ / j⊲ � s⊲ / t⊲

= { fators: (3) }

s⊲ / j⊲ · t⊲ � s⊲

= { fators: (3) }

t⊲ � (s⊲ / j⊲) \ s⊲

= { (b) }

true .

Seond,

s⊲ / t⊲ � s⊲ / j⊲

⇐ { anti-monotoniity of / }

t⊲� j⊲
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= { (b) and lemma 46 with X,Y := s⊲ , j⊲ }

true .

(d)

t⊲

= { (b) }

(s⊲ / j⊲) \ s⊲

= { s and j are left fators of E , (61) }

(s\j) \ s⊲

= { () }

(s\t) \ s⊲

= { s and t are left fators of E , (61) }

(s⊲ / t⊲) \ s⊲ .

(e) By mutual inlusion. First,

s � t/(s\t)

= { lemma 46 with X,Y := s,t }

true .

Seond,

t/(s\t)� s

= { de�nition of s and (a) and () }

t/(s\t)� j/(s\t)

⇐ { monotoniity of /(s\t) }

t� j

= { (58), t and j are left fators of E }

t⊲� j⊲

= { (b) and lemma 46 with X,Y := s⊲ , j⊲ }

true .

✷
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Example 87 (Running Example: Booleans) We return one more to our running

example (examples 4, 66, 80).

First, suppose E= false , F= true , i= false and j= true . That is we begin with the en-

try false⇒true in the fator matrix of false and we wish to determine a submatrix that is

the fator matrix of this entry. Then lemma 86 identi�es s as true⇐(false⇒true) , whih

evaluates to true , and t as ((s⊲⇐ j⊲)⇒ s⊲)⊳ . For this instane of E , false⊲= false⊳= true

and true⊲= true⊳= false . Thus t has the value false and the submatrix of the fator

matrix of false that is the fator matrix of true is the single entry false⇒false .

Now, suppose E= false , F= true , i= true and j= true . That is, E and F are un-

hanged but we begin with the entry true⇒true in the fator matrix of false . Then

lemma 86 identi�es both s and t as true . (Details left to the reader.) Thus the sub-

matrix of the fator matrix of false that is identi�ed as the fator matrix of true is the

single entry true⇒true .

In general, fators may appear repeatedly in a fator matrix and the submatrix that

is identi�ed as the fator matrix of a fator will depend on the entry in the matrix with

whih the alulation begins.

✷

Example 88 (Running Example: Modulo Addition) Let m be a stritly positive

natural number and onsider the powerset regular algebra with underlying monoid ZZm ,

the Abelian group of numbers modulo m under addition. (See examples 16, 67 and 81.)

The fator matrix of ¬{0} has 2m×2m entries (sine ¬{0} has 2m left fators). Fators

and fator matries of fators appear repeatedly in the fator matrix of ¬{0} .

Clearly, as m inreases the size of the fator matrix quikly beomes very large. But

we an illustrate the general struture by taking the ase when m is 3 .

As explained in example 67, all subsets of {0,1,2} are left fators, right fators and

fators of ¬{0} (in the powerset regular algebra with underlying monoid ZZ3 ). The fator

matrix of ¬{0} before simpli�ation is thus displayed below in the onventional fashion

as a two-dimensional array of values. (Note the pattern in the entries in eah row and

eah olumn.)
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¬∅

¬∅

¬{0}

¬∅

¬{1}

¬∅

¬{2}

¬∅

{0}

¬∅

{1}

¬∅

{2}

¬∅

∅

¬∅

¬∅

¬{0}

¬{0}

¬{0}

¬{1}

¬{0}

¬{2}

¬{0}

{0}

¬{0}

{1}

¬{0}

{2}

¬{0}

∅

¬{0}
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¬{1}
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¬{1}

¬{1}

¬{1}

¬{2}

¬{1}

{0}

¬{1}

{1}

¬{1}
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¬{1}

∅

¬{1}

¬∅

¬{2}

¬{0}

¬{2}

¬{1}

¬{2}

¬{2}

¬{2}

{0}

¬{2}

{1}

¬{2}

{2}

¬{2}

∅

¬{2}

¬∅

{0}

¬{0}
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¬{1}
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{0}
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{1}

{0}
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{1}
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{1}

∅

{1}

¬∅

{2}

¬{0}

{2}

¬{1}

{2}

¬{2}

{2}

{0}

{2}

{1}

{2}

{2}

{2}

∅

{2}

¬∅

∅

¬{0}

∅

¬{1}

∅

¬{2}

∅

{0}

∅

{1}
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∅

∅
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After elimination of all operators, we get the following matrix:





























{0,1,2} ∅ ∅ ∅ ∅ ∅ ∅ ∅

{0,1,2} {0} {1} {2} ∅ ∅ ∅ ∅

{0,1,2} {2} {0} {1} ∅ ∅ ∅ ∅

{0,1,2} {1} {2} {0} ∅ ∅ ∅ ∅

{0,1,2} {1,2} {0,2} {0,1} {0} {1} {2} ∅

{0,1,2} {0,1} {1,2} {0,2} {2} {0} {1} ∅

{0,1,2} {0,2} {0,1} {1,2} {1} {2} {0} ∅

{0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2}





























The empty set, ∅ , and its omplement, ¬∅ , (i.e. {0 ..m−1} in the general ase and

{0,1,2} in this spei� ase) are entirely analogous to false and true in example 87: the

fator matrix of ∅ has 2×2 entries, the entry ¬∅ ours three times and the fourth

entry is ∅ itself. The fator matrix of ¬∅ has exatly one entry (whih is ¬∅ itself).

In the fator matrix of other subsets of ¬∅ , there is always a row and a olumn

indexed by ∅ and a row and a olumn indexed by ¬∅ (beause both ∅ and ¬∅ are

(left and right) fators of any proper subset of ¬∅ ). In the row indexed by ∅ all entries

are ¬∅ (i.e.

i
∅
=¬∅ for all left fators i , and in the olumn indexed by ∅ all entries are

∅ exept for the row indexed by ∅ (i.e.

∅

i
= ∅ for all non-empty left fators i ); in the

olumn indexed by ¬∅ all entries are ¬∅ (i.e.

¬∅
i
=¬∅ for all left fators i ) and in the

row indexed by ¬∅ all entries are ∅ exept for the olumn indexed by ¬∅ (i.e.

i
¬∅

= ∅
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if left fator i is a proper subset of ¬∅ ). This is apparent in the above matries: see

the border formed by �rst and last rows and �rst and last olumns.

In general, in any regular algebra, the maximal element of the lattie is a left (and

right) fator of all events, and the least element of the lattie is a left (and right) fator of

all events exept for the maximal element of the lattie. When displaying a fator matrix

as a two-dimensional array,. the two orresponding rows and olumns are not of interest

and so we usually omit them. (We see later that, for languages, these orrespond to so-

alled \inadmissible" nodes in the fator graph of the language. That is, they orrespond

to nodes that an be ignored when using the fator graph as a reogniser of the language.)

Ignoring the border of the above array and looking at only the entral 6×6 array,

we see that there are four subarrays, eah of size 3×3 and in eah of whih the entries

are sets of the same size. Two subarrays are idential: the subarrays with entries that

are singleton sets. Together with the border formed by entries indexed by ∅ and ¬∅ ,

these represent the fator matrix of {0} . That is, the fator matrix of {0} displayed as

a two-dimensional array is as shown below.















{0,1,2} ∅ ∅ ∅ ∅

{0,1,2} {0} {1} {2} ∅

{0,1,2} {1} {0} {2} ∅

{0,1,2} {2} {1} {0} ∅

{0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2}















Formally, there are two distint representations of the fator matrix of {0} as a

submatrix of the fator matrix of ¬{0} (in this partiular ase).

✷

This subsetion was begun by an impliit existential quanti�ation over the dummies

i and j . At this point, we lose the sope of the quanti�ation. Subsequent setions

re-use dummies i and j for other purposes.

4.2 Constructing the Representation

Now that we have identi�ed a partiular entry s\t in the fator matrix (see lemma 86),

we identify the submatrix of the fator matrix of E that represents the fator matrix of

s\t . The subset M of the left fators of E de�ned below is what we need.

Definition 89 De�ne the subset M of the left fators of E by

k∈M ≡ k = t/(k\t) ∧ k\t = (s\k)\(s\t) .

✷
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Example 90 (Running Example: Booleans) Suppose, as in the �rst part of exam-

ple 87, that E= false , F= true , i= true and j= true . We reall that lemma 86 identi�es

both s and t as true . Then de�nition 89 de�nes the subset M of the left fators of E

by

k∈M ≡ (k = (true⇐(k⇒true))) ∧ ((k⇒true) = ((true⇒k)⇒(true⇒true))) .

The seond equation is a tautology, and the �rst equation simpli�es to k= true . That

is, M= {true} as expeted.

The reader may wish to hek that when s and t are both false , M is alulated

to be {false} . (See example 87.)

✷

The next step is to show that the submatrix de�ned by the set M represents the

fator matrix of F . This is expressed formally in theorem 98. Informally, our goal is to

show that the submatrix of events k\m , where k and m are both elements of M , is

the fator matrix of s\t . First we establish that s\t is itself an entry in this submatrix.

Lemma 91

s∈M ∧ t∈M .

Proof We have:

s= t/(s\t)

= { lemma 86(e) }

true .

Also,

(s\s)\(s\t)

= { s = t/(s\t) }

(s\t/(s\t))\(s\t)

= { lemma 48 with E := s\t }

s\t .

(Note the impliit use of the assoiativity of the \ and / operators.) This establishes

that s∈M . Now, for t∈M we have:

t= t/(t\t)

= { lemma 48 with X := t }

true ,
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and

(s\t)\(s\t)

= { (61), s and t are left fators of E }

(s⊲ / t⊲) \ s⊲ / t⊲

= { by lemma 86(d): t⊲ = (s⊲ / t⊲) \ s⊲ }

t⊲/ t⊲

= { (61), s and t are left fators of E }

t\t .

✷

Now we observe that the entries s\k in the submatrix are left fators of s\t and the

entries k\t are the orresponding right fators.

Lemma 92

s\k = (s\t)/(k\t) ∧ k\t = (s\k)\(s\t) ⇐ k∈M .

In words, s\k and k\t are orresponding left and right fators of s\t if k∈M .

Proof Immediate from the de�nition of M and s\(t/(k\t))=(s\t)/(k\t) .

✷

Next we show that there is no dupliation in the entries s\k , where k ranges over

elements of M .

Lemma 93

k=k ′
⇐ k∈M ∧ k ′∈M ∧ s\k= s\k ′ .

(In words, the entries in the row indexed by s in the submatrix of the fator matrix of

E de�ned by M are unique.)

Proof Assume k∈M∧k ′∈M . Then

k=k ′

⇐ { de�nition of M , k∈M∧k ′∈M }

t/(k\t) = t/(k ′\t)

⇐ { Leibniz }

k\t = k ′\t



60

= { de�nition of M , k∈M∧k ′∈M }

(s\k)\(s\t) = (s\k ′)\(s\t)

⇐ { Leibniz }

s\k = s\k ′ .

✷

The next step is to establish the onverse of lemma 92. That is, we show that every

left fator of s\t is equal to s\k for some k in M . We exploit the unity of opposites

to onstrut k .

Lemma 94 Suppose L is a left fator of s\t with orresponding right fator R . That

is, suppose

R = L\(s\t) ∧ L=(s\t)/R .

Let k= t/R . Then

L = s\k ∧ R = k\t ∧ k∈M .

In partiular,

R = (t/R)\t .

Proof We establish the three onjunts in order. The �rst onjunt is trivial:

s\k

= { de�nition of k }

s\(t/R)

= { assoiativity }

(s\t)/R

= { de�nition of L }

L .

The seond onjunt is proved by mutual inlusion. First,

k\t�R

= { k= t/R , lemma 46 with X,Y :=R,t }

true .

To prove the onverse inlusion, we exploit the �rst onjunt (i.e. L = s\k ).
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k\t�R

= { R = L\(s\t)= (s\k)\(s\t) , fators }

s · s\k ·k\t � t

= { anellation }

true .

The third onjunt now follows:

k∈M

= { de�nition of M }

k = t/(k\t) ∧ k\t = (s\k)\(s\t)

= { k= t/R , R=k\t , L= s\k }

t/R = t/R ∧ R = L\(s\t)

= { assumption }

true .

The �nal property is an obvious expansion of the equations for R and k .

✷

We have now alulated a bijetion between the left fators of F and the elements of

M :

Theorem 95 Suppose F is a fator of E . Suppose, in partiular, that F= i\j where

i and j are left fators of E. Let s= j/(i\j) and t=((s⊲ / j⊲) \ s⊲)⊳ . Let M be the

subset of left fators of E de�ned in de�nition 89. Then there is a bijetion β from the

set of left fators of F to M suh that, for all left fators L of F ,

L = s\β.L .

Spei�ally,

(96) β.L= t/(L\F) .

Proof This is a ombination of lemmas 93 and 94. Lemma 94 states that if L is a left

fator of F then there is a k in M suh that L= s\k and lemma 93 asserts that suh

a k is unique.

✷

The �nal step is to show that an event is a fator of s\t equivales it equals k\m for

some k and some m . Here we exploit Conway's theorem that every fator of an event
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Z has the form X\Y where X and Y are left fators of Z . Sine we have established

that the left fators of s\t are events of the form s\k for some k in M , this amounts

to the following lemma.

Lemma 97 Suppose k∈M and m∈M . Then

k\m = (s\k)\(s\m) .

Proof

(s\k)\(s\m)

= { k∈M . So k = t/(k\t) ;

m∈M . So m = t/(m\t) }

(s\t/(k\t))\(s\t/(m\t))

= { by lemma 92, s\t/(k\t) and k\t are

orresponding left and right fators of s\t ;

similarly for s\t/(m\t) and m\t

X⊳ \Y⊳ = (X⊳)⊲ / (Y⊳)⊲ with E := s\t }

k\t/(m\t)

= { m∈M . So m = t/(m\t) }

k\m .

(Note that the rule X\(Y/Z)= (X\Y)/Z has been used impliitly at eah step.)

✷

We summarise the foregoing lemmas in the following theorem.

Theorem 98 The fator matrix of a fator F of E is represented by a submatrix of

the fator matrix of E .

Spei�ally, the fator matrix of F is onstruted from the fator matrix of E as

follows. First, identify a pair of left fators i and j of E suh that F= i\j . Then let

s= j/(i\j) and t=((s⊲ / j⊲) \ s⊲)⊳ . Note that, by lemma 86, F= s\t . De�ne the subset

M of the left fators of E as in de�nition 89. Then the matrix k\m where k and m

are elements of M represents the fator matrix of F .

Moreover, letting the funtion β from left fators of F to left fators of E be de�ned

by

β.i ′= t/(i ′\F)



63

for all left fators i ′ of F . Then β is an injetive funtion with domain L.F and image

set M , and

(99) |F| = (Sel.β)∪⊗ |E|⊗Sel.β .

Proof Let L.F denote the set of left fators of F . Then, by de�nition, the fator

matrix of F , denoted |F| is a funtion with domain L.F×L.F . The value of |F| at the

pair (i ′, j ′) , where i ′ and j ′ are left fators of F , is i ′\j ′ . But

i ′\j ′

= { theorem 95 }

(s\β.i ′)\(s\β.j ′)

= { by theorem 95, β.i ′∈M and β.j ′∈M ; lemma 97 }

β.i ′\β.j ′ .

Equation (99) follows from the de�nition of Sel and matrix multipliation. From the

type of β , we onlude that the fator matrix of F is represented by

〈i,j : i∈M∧ j∈M : i\j〉

whih, by de�nition 89, is a submatrix of |E| .

✷

4.3 A Surjective Mapping

In preparation for setion 8, we establish rather more than theorem 98: we exhibit a

surjetive funtion from the left fators of E to the left fators of F . This funtion is

used in setion 8 to prove that the fator graph of a fator F of E has yle rank at

most the yle rank of the fator graph of E .

We ontinue to assume that s and t are the left fators of E de�ned in lemma 86

suh that F= s\t .

Let i be a left fator of E De�ne the funtions γ of type L.F←L.E and α of type

L.E←L.E by

(100) γ.i = F/(i\t) .

and

(101) α.i = t/(γ.i\F) .
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Note that γ has type L.F←L.E |in partiular, γ.i is a left fator of F| and α has

type L.E←L.E |in partiular, α.i is a left fator of E| . Note also that

(102) α = β◦γ

where β is the funtion of type L.E←L.F and image set M identi�ed in orollary 95.

Beause β is injetive, it follows that

(103) γ = β∪ ◦α .

The relations γ and β∪
have the same type. However, they are learly not equal sine

γ is total whereas β∪
is not. Nevertheless:

Lemma 104 The funtion γ inverts the funtion β . That is,

γ◦β = idL.F .

Hene,

γ◦α = γ ∧ α◦α = α ∧ α◦β = β .

Proof Suppose L is a left fator of F . Then

(γ◦β).L

= { de�nition of γ : (100) and β : (96) }

F/((t/(L\F))\t)

= { lemma 94, with R :=L\F }

F/(L\F)

= { L is a left fator of F ,

unity of opposites: (56) with E :=F }

L .

Hene,

γ◦α

= { de�nition of α : (101) }

γ◦β◦γ

= { above, idL.F is unit of omposition }

γ .
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The proof of the �nal two equations is similar.

✷

Informally, our goal is to show that the matrix indexed by the events α.i (where i

ranges over left fators of E ) and the matrix indexed by the events γ.i are both \equal"

to the fator matrix of F . The following lemma is signi�ant beause it asserts that

the range of α is a subset of M whih, we reall from orollary 95, represents the left

fators of F .

Lemma 105 For all i suh that i is a left fator of E ,

γ.i = s\α.i ∧ γ.i\F = α.i\t ∧ α.i∈M .

Proof Immediate from the de�nitions of α and γ , and lemma 94 with L instantiated

to γ.i and R instantiated to γ.i\F . (The variable k in the lemma is α.i .)

✷

Summarising lemma 104 and our previous observation that γ maps left fators of E

to left fators of F , we have:

Theorem 106 The funtion γ is a surjetive funtion from the set of left fators of

E onto the set of left fators of F . That is,

〈∀i : i is a left fator of E : γ.i is a left fator of F〉 .

Moreover,

〈∀L : L is a left fator of F : 〈∃i : i is a left fator of E : L=γ.i〉〉 .

Spei�ally,

〈∀L : L is a left fator of F : L=γ.(β.L)〉

where

β.L = t/(L\F) .

✷

Some additional lemmas give further insight into the funtions γ and α . We observe

some spei� values of α and γ (primarily to gain reassurane about the orretness of

their de�nitions).

Lemma 107

γ.s= s\s ∧ α.s= s ∧ γ.t= s\t ∧ α.t= t .
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Proof First,

γ.s

= { de�nition of γ : (100) }

s\t/(s\t)

= { by lemma 86(e), s = t/(s\t) }

s\s .

Seond,

α.s

= { de�nition of α : (101) }

t/((s\s)\(s\t))

= { s · s\s = s }

t/(s\t)

= { by lemma 86(e), s = t/(s\t) }

s .

Third,

γ.t

= { de�nition of γ : (100) }

s\t/(t\t)

= { lemma 48 }

s\t .

Finally,

α.t

= { de�nition of α : (101) }

t/((s\t)\(s\t))

= { by lemma 91, t∈M ;

so, by de�nition of M (de�nition 89) , (s\t)\(s\t)= t\t }

t/(t\t)

= { lemma 48 }

t .
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✷

The next step is to observe that the matries indexed by events in the ranges of α

and γ are idential. It is onvenient to observe an inlusion at the same time.

Lemma 108 For all left fators i and j of E ,

i\j � γ.i\γ.j = α.i\α.j .

Proof For the inlusion, we have:

i\j � γ.i\γ.j

= { de�nition of γ : (100) }

i\j � (F/(i\t))\F/(j\t)

= { fators }

F/(i\t) · i\j · j\t � F

= { anellation }

true .

Now for the equality:

α.i\α.j

= { de�nition of α : (101) }

(t/(γ.i\F))\t/(γ.j\F)

= { γ.i\F is a right fator of F , lemma 94 }

γ.i \F / (γ.j\F)

= { γ.j is a left fator of F ,

unity of opposites: (56) with E :=F }

γ.i\γ.j .

✷

Lemma 108 is a statement about the fator matrix of E expressed in terms of in-

dividual elements. It is neessary to state it this way as a �rst step beause its proof

unavoidably exploits spei� properties of the elements. However, for subsequent alu-

lations it is unneessary to reason in this way, and a point-free formulation is preferable.

Spei�ally, we have:



68

Lemma 109

(110) |E| _� (Sel.γ)∪⊗ |F|⊗Sel.γ = (Sel.α)∪⊗ |E|⊗Sel.α

Hene,

(111) Sel.γ⊗ |E|⊗ (Sel.γ)∪ _� |F|

and

(112) Sel.α⊗ |E|⊗ (Sel.α)∪ _� |E|

Proof The proof of (110) is straightforward: expand the de�nitions of its omponents

(the pointwise ordering, |E| , |F| et.), taking are to note from theorem 106 that γ is a

surjetive funtion from L.E onto L.F , and then apply lemma 108. The proof of (111)

is as follows.

Sel.γ⊗ |E|⊗ (Sel.γ)∪

_� { (110) and monotoniity of matrix produt }

Sel.γ⊗ (Sel.γ)∪⊗ |F|⊗Sel.γ⊗ (Sel.γ)∪

= { by theorem 106, γ is a surjetive funtion onto L.F ,

so, by (32) and (30), Sel.γ⊗ (Sel.γ)∪ = IL.F }

IL.F⊗ |F|⊗ IL.F

= { IL.F is the identity of multipliation

on matries indexed by L.F }

|F| .

Finally, we prove (112).

Sel.α⊗ |E|⊗ (Sel.α)∪

_� { (110) and monotoniity of matrix produt }

Sel.α⊗ (Sel.α)∪⊗ |E|⊗Sel.α⊗ (Sel.α)∪

_� { α is a funtion of type L.E←L.E ,

so Sel.α⊗ (Sel.α)∪ _� IL.E }

IL.E⊗ |E|⊗ IL.E

= { IL.E is the identity of multipliation

on matries indexed by L.E }

|E| .
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Take are to note the di�erene in the seond step of these alulations. In the �rst of

the two, the �rst equality step ould have been replaed by an inequality, using only the

fat that γ is a funtion (and thus not that it is surjetive). We have established the

stronger equality in order to better illustrate this form of point-free alulation.

✷

Rather than give an expliit formula for α.i , Conway's proof tehnique is to observe

that s\i · i\t is a \subfatorisation" of s\t and then make the laim that there is some

\fatorisation" L·R that \dominates" this subfatorisation. The following lemma shows

that our de�nition of α gives suh a fatorisation.

Lemma 113 For all i suh that i is a left fator of E ,

s\i � s\α.i ∧ i\t � α.i\t

Proof For the �rst onjunt, we have:

s\i � s\α.i

= { lemma 105, F= s\t }

s\i � s\t/(i\t)

⇐ { monotoniity }

i � t/(i\t)

= { lemma 46 with X,Y := i,t }

true .

For the seond onjunt, we have:

i\t � α.i\t

= { lemma 105 }

i\t � (F/(i\t))\F

= { lemma 46 with X,Y := F , i\t }

true .

✷

Theorem 98 shows how the fator matrix of F is represented by a submatrix of the

fator matrix of E using the bijetion β between a subset of L.E and the set L.F . An

informal summary of the following theorem is that γ maps |E| to |F| by oalesing left

fators of E .
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Theorem 114

|F| = Sel.γ⊗ |E|⊗ (Sel.γ)∪ .

Proof The proof is by mutual inlusion. By (111), it suÆes to prove

|F| _� Sel.γ⊗ |E|⊗ (Sel.γ)∪ .

We have:

|F|

= { (99) }

(Sel.β)∪⊗ |E|⊗Sel.β

= { lemma 104, so Sel.(γ◦β)= IL.F }

Sel.(γ◦β)⊗ (Sel.β)∪⊗ |E|⊗Sel.β⊗ (Sel.(γ◦β))∪

= { distributivity of Sel over funtion omposition,

and transpose over Sel and matrix multipliation }

Sel.γ⊗Sel.β⊗ (Sel.β)∪⊗ |E|⊗Sel.β⊗ (Sel.β)∪⊗ (Sel.γ)∪

_� { β is an injetion with image set M ,

so Sel.β⊗ (Sel.β)∪ _� IM ;

monotoniity of matrix multipliation }

Sel.γ⊗ |E|⊗ (Sel.γ)∪ .

The equality follows from the anti-symmetry of the pointwise ordering relation.

✷

4.4 Diagonal Factors

***Under onstrution****

When onstruting the fator graphs of fators of an event E , it suÆes to onsider

the fators on the diagonal of the fator matrix of E . This setion justi�es this laim

and gives a ondition under whih a \diagonal" fator is inseparable from E . First, the

formal de�nition of \diagonal fator":

Definition 115 A fator F of an event E is alled a diagonal fator of E if F equals

i\i for some left fator i of E .

✷
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Lemma 116 Suppose i is a left fator of E . Let s and t be left fators of E de�ned

by s= i/(i\i) and t=((s⊲ / i⊲) \ s⊲)⊳ . (That is, we instantiate lemma 86 with i,j := i,i .)

Then s= i and t= i .

Proof The equation s= i/(i\i) is an instane of the general property (48). In order to

establish that t= i , we need the fat that i is a left fator of E :

((s⊲ / i⊲) \ s⊲)⊳

= { s= i }

((i⊲ / i⊲) \ i⊲)⊳

= { (48) }

(i⊲)⊳

= { i is a left fator of (so equals X⊳ for some X ),

unity of opposites }

i .

✷

In words, the fator matrix of a diagonal fator of E is a diagonal submatrix of the

fator matrix of E . (It is a submatrix suh that, under a suitable reordering of rows and

olumns, it sits on the diagonal when the fator matrix is displayed in the onventional

way as a two-dimensional array.)

5 Approximation Theorems

An important property of the fator matrix is that it failitates \approximation" of one

event by a set of other events.

Conway formulated a theorem [Con71, hapter 6, theorem 8℄ on the use of what

he alled the \fatorial funtion" to determine the \best approximation" to the fator

matrix of an event E by a given set of events. Below, we generalise his theorem to an

arbitrary regular algebra (rather than just the algebra of languages)

When speialised to the algebra of languages, we argue that his use of the word \best"

is unfortunate: for the purpose of minimising star-height, his notion of \best" is ertainly

not the best, and for other appliations the laim is also questionable. We therefore

formulate Conway's theorem as determining a \maximal onstant+linear approximating

funtion"; this is also the terminology we use in the general ase.

For regular languages, we also show in setion 6 how to determine a \minimal on-

stant+linear approximating funtion". Both Conway's maximal and our minimal ap-

proximating funtions are parameterised by a funtion on an alphabet T . When the
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event E is a regular language over alphabet T , we obtain the \fator graph" of E by

speialising the funtion to the identity funtion on T : the fator graph of E is the

unique minimal starth root of the fator matrix of E .

5.1 Conway’s Notion of Approximation

First, let us explain Conway's notion of approximation.

Let T be an alphabet and let R be the algebra of languages over the alphabet T.

Let S be a regular algebra with arrier S . Suppose E is an event in S .

Suppose we are given a set of events in S and we want to \approximate" E by the

set. We begin by enoding the set of events by a funtion ζ from T into S , where T is

an alphabet whose size is the size of the set: the set of events is, in fat, the image set

of ζ . Next, ζ is extended to a funtion from T ∗
into S by de�ning

(117) ζ.ε = 1

and, for all a in T and all u in T ∗
,

(118) ζ.(au) = ζ.a ·ζ.u .

The funtion ζ♭ from R to S is de�ned by

(119) ζ♭.X = 〈Σx : x∈X : ζ.x〉

for all languages X over the alphabet T . Then, by a funtion approximating the event

E is meant a set of words X suh that ζ♭.X � E ; the approximation of E is ζ♭.X .

(The strange terminology is Conway's: the approximation is obtained by applying

the funtion ζ♭ to the approximating \funtion" (a set of words), rather than the other

way around. But Conway does not expliitly mention the extension of ζ to words or

the subsequent extension of ζ to the funtion ζ♭ even though it is a vital element of

his analysis. More importantly, Conway makes no mention of the algebrai properties of

the funtion ζ♭ that enable the evaluation of ζ♭.X to be arried out.)

Conway alls a set of words X a \best approximation" to E if it is a maximal solution

of the equation

X:: ζ♭.X � E .

For reasons disussed further below, we refrain from using the word \best", preferring

instead the terminology \maximal approximating funtion".

(Conway also briey disusses the dual problem of, given a set of words X over some

alphabet T , determine maximal solutions of the equation

ζ:: ζ♭.X � E .
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See [Con71, hapter 6, theorem 9℄. We don't disuss the dual problem any further here.)

The existene of a maximal approximation is guaranteed by observing that ζ♭ is the

lower adjoint in a Galois onnetion. Spei�ally, de�ne the funtion ζ♯ from S to R

by

(120) ζ♯.U = {x | ζ.x�U} .

Then we have the following lemma and theorem:

Lemma 121 The funtion ζ is a monoid homomorphism. That is, ζ.ε = 1 and

ζ.(uv) = ζ.u ·ζ.v , for all u and v in T ∗
.

Proof The �rst equation is by de�nition. The seond equation is an easy indution on

the length of u .

✷

Theorem 122 The funtion ζ♭ is a regular homomorphism from the algebra of lan-

guages over T to S . Moreover, ζ♯ is the upper adjoint of ζ♭ .

Proof The theorem is an instane of lemma 21. Instantiate R in the lemma to the set

of words over alphabet T . Then the algebra R is the algebra of languages over T . The

lemma is appliable on aount of lemma 121.

✷

Note: for all languages X over alphabet T and all events E ,

X ⊆ ζ♯.E ≡ 〈∀x : x∈X : ζ.x�E〉 .

Conway desribes this equation in words (roughly) as follows. Suppose we are given a

set of events ζ.a indexed by a in some set T and we want to �nd the most general

expression for E in terms of these events. De�ning the \best" approximation to E in

terms of ζ as the set of all words x in T ∗
suh that ζ.x�E , the above equation states

that the \best" approximating funtion is the funtion that maps ζ to ζ♯.E .

We have used inverted ommas here beause Conway's notion of \best" approximating

funtion is not the \best" for our purposes. More appropriate terminology is \maximal"

approximating funtion, as illustrated by the following simple example.

Example 123 Suppose E is an event in regular algebra S suh that E=E∗
. Suppose

we want to approximate E by E . Then we take T to be a singleton set, say {a} , and

de�ne ζ by ζ.a=E . The extension of ζ to T ∗
is given by ζ.ε = 1 and, for all u in

T ∗
, ζ.(au) = E . (Note that E=E∗

implies that E=E·E .) Instantiating the de�nition,

of ζ♯ , we �nd that ζ♯.E = T ∗
. Thus Conway's \best" approximating funtion maps ζ

to T ∗
. An alternative approximating funtion is the funtion that maps ζ to T . The
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former is maximal, the latter is minimal. When we interpret the languages by applying

the funtion ζ , both give the same approximation and so ould be desribed as equally

good. But the latter funtion an be argued to be more useful beause it is easier to

interpret.

✷

We onlude this subsetion with a preise de�nition of our terminology.

Definition 124 Given an event E in a regular algebra S , an alphabet T and a

funtion ζ of type S←T ∗
, the language ζ♯.E is alled the maximal approximating

funtion for E , and ζ♭.(ζ♯.E) is alled the maximal approximation of E by ζ .

Similarly, the matrix ζ♯ • |E| is alled the maximal approximating funtion for the

fator matrix of E , and ζ♭ • ζ♯ • |E| is alled the maximal approximation of the fator

matrix of E by ζ .

✷

5.2 Maximal Constant+Linear Matrix

The matrix ζ♯ • |E| is the maximal approximating funtion for the fator matrix of E by

the funtion ζ . In this setion, we formulate and prove Conway's theorem that ζ♯ • |E| is

the reexive, transitive losure of the maximal onstant+linear approximating funtion

for the fator matrix of E by the funtion ζ . See theorem 132. First, we need to de�ne

what the terminology means and to establish some lemmas.

Definition 125 Let I be a set and let R be a regular algebra with arrier set A and

unit 1 . De�ne the funtion Mat from A to MI(A) by

i Mat.U j = U

for all U in A and all elements i , j of I . In words, Mat onstruts a matrix from an

element of A all of whose entries are idential to that element.

✷

The following lemma underpins some of our alulations.

Lemma 126 For all U in A ,

(Mat.U)+ = Mat.(U+) .

Hene,

(Mat.U)∗ = Mat.1 _∪ Mat.(U+) .
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Proof Mat is the lower adjoint in a Galois onnetion: its upper adjoint is the inter-

setion operator of shape I×I . The lemma is then an easy onsequene of the fusion

theorem using the de�nition of U+
as the least �xed point of the funtion mapping X

to U _∪ X⊗X .

✷

Conway alls a matrix of languages that is at most Mat.{ε} a onstant matrix and a

matrix of languages that is at most Mat.T a linear matrix. He alls a matrix of languages

that is at most Mat.{ε} _∪Mat.T a onstant+linear matrix. Although we sometimes use

Conway's terminology (in order to make the link with his work) we prefer to use the

terminology transition graph instead of \onstant+linear matrix". A \transition graph"

that is square and has �nite dimension an be depited in the onventional way as a set

of nodes onneted by edges that are labelled by a subset of {ε}∪T .

When reasoning about onstant and/or linear matries, we frequently give as hint

\length onsiderations". Constant matries are matries eah of whose entries is either

the empty set or the singleton set ontaining the empty word, whih has length 0 .

The set of onstant matries is losed under matrix produt and under reexive and/or

transitive losure. The linear matries are matries eah of whose entries is a (possibly

empty) set of words eah of length 1 . The set of linear matries is thus losed under

produt with a onstant matrix but the produt of two or more linear matries is not

linear. It is these properties that we assume when referring to \length onsiderations".

The following lemma is fundamental to Conway's aount but he does not expliitly

state or prove it. The proof, whih involves well-known tehniques, is given in appendix

A.

Lemma 127 Let A be an arbitrary matrix of languages over the alphabet T . Suppose

A=A∗
. Let C = A _∩Mat.{ε} and L = A _∩Mat.T . Then

C = C∗ ,

L = L⊗C = C⊗L ,

(C _∪L)∗ = C _∪ L+ = C⊗L∗ = L∗⊗C , and

L⊗ (C _∪L)∗ = L+ .

✷

Let us now turn to the properties of the matrix ζ♭ •ζ♯ • |E| , whih we reall is the

maximal approximation of |E| by the funtion ζ . In order to be able to apply lemma

127, we begin by observing that both it and ζ♯ • |E| are their own reexive, transitive

losures:
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Lemma 128

ζ♯ • |E| = (ζ♯ • |E|)∗ , and

ζ♭ •ζ♯ • |E| = (ζ♭ •ζ♯ • |E|)∗ .

Proof Suppose I is the set of left fators of E . We use IS to denote the identity

matrix indexed by I in the algebra S .

ζ♯ • |E| = (ζ♯ • |E|)∗

= { de�nition of

∗
, monotoniity of ( ζ♯• ) }

ζ♯ • |E| _⊇ (ζ♯ • |E|)∗

= { ζ♯ has lower adjoint ζ♭ }

|E| _� ζ♭ • (ζ♯ • |E|)∗

= { ζ♭ is a regular homomorphism (theorem 122),

theorem 26 }

|E| _� (ζ♭ • ζ♯ • |E|)∗

⇐ { IS _� ζ♭ •ζ♯ , monotoniity and transitivity }

|E| _� |E|
∗

= { |E| = |E|
∗

}

true .

The seond equation is an appliation of theorem 26 with G := ζ♯ • |E| (as in the middle

step above).

✷

Now we introdue the maximal onstant and linear approximations to |E| by the

funtion ζ .

Definition 129 (Maximal Constant and Linear Approximations) We de�ne the

onstant matrix Cmax(E,ζ) by

Cmax(E,ζ) = (ζ♯ • |E|) _∩Mat.{ε}

and the linear matrix Lmax(E,ζ) by

Lmax(E,ζ) = (ζ♯ • |E|) _∩Mat.T .

The matries Cmax(E,ζ) and Lmax(E,ζ) are, respetively, the maximal onstant ap-

proximating funtion and the maximal linear approximating funtion for the fator

matrix of E .
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Themaximal onstant approximation of the fator matrix of E by ζ is ζ♭ •Cmax(E,ζ)

and themaximal linear approximation of the fator matrix of E by ζ is ζ♭ •Lmax(E,ζ) .

✷

Lemma 130

Cmax(E,ζ) = (Cmax(E,ζ))
∗ ,

Lmax(E,ζ) = Lmax(E,ζ)⊗Cmax(E,ζ) = Cmax(E,ζ)⊗Lmax(E,ζ) ,

(Cmax(E,ζ) _∪ Lmax(E,ζ))
∗ = Cmax(E,ζ)⊗ (Lmax(E,ζ))

∗ ,

(Cmax(E,ζ) _∪ Lmax(E,ζ))
∗ = (Lmax(E,ζ))

∗⊗Cmax(E,ζ) ,

(Cmax(E,ζ) _∪ Lmax(E,ζ))
∗ = Cmax(E,ζ) _∪ (Lmax(E,ζ))

+
, and

Lmax(E,ζ)⊗ (Cmax(E,ζ) _∪Lmax(E,ζ))
∗ = (Lmax(E,ζ))

+ .

Proof Immediate appliation of lemmas 128 and 127. (Instantiate lemma 127 with

A,C,L :=(ζ♯ • |E|),Cmax(E,ζ),Lmax(E,ζ) .)

✷

We note that the matrix Cmax(E,ζ) is (almost) independent of the funtion ζ :

Lemma 131 For all left fators i and j of E ,

i Cmax(E,ζ) j = if i� j→ {ε}✷¬(i� j)→ ∅ fi .

Hene, for all approximating funtions ζ and ξ with the same domain,

Cmax(E,ζ) = Cmax(E,ξ) .

Proof

ε ∈ i (ζ♯ • |E|) j

= { i |E| j= i\j }

ε ∈ ζ♯.(i\j)

= { de�nition of ζ♯ : (120) }

ζ.ε � i\j

= { de�nition of extension of ζ to T ∗ }

1 � i\j

= { fators and unit }

i� j .



78

The lemma follows by de�nition of Cmax(E,ζ) and Mat.{ε} : all entries in Cmax(E,ζ) are

either {ε} or ∅ .

✷

The quali�ation in lemma 131 that ζ and ξ must have the same domain arises,

of ourse, beause the empty word has a type that depends on the alphabet T (the

notation \ ε " for the empty word is overloaded). Thus, the funtion Cmax retains some

dependeny on its seond argument. Ignoring this dependeny, Cmax depends only

on E . We are tempted to abbreviate the notation to reet this fat, but resist the

temptation. See setion 5.3 for further disussion.

Theorem 132 (Generalised Approximation Theorem) Suppose ζ is a funtion

from alphabet T into S (as in setion 5.1). Then for any event E in S ,

ζ♯ • |E| = Cmax(E,ζ) _∪ (Lmax(E,ζ))
+ = (Cmax(E,ζ) _∪ Lmax(E,ζ))

∗ .

Proof We use indution on the length of words. The indution hypothesis is that, for

all words u of length at most n , and for all left fators i and j of E ,

u ∈ i (ζ♯ • |E|) j ≡ u ∈ i (Cmax(E,ζ) _∪ ((Lmax(E,ζ))
+)) j .

Applying lemma 130, this is the same as

u ∈ i (ζ♯ • |E|) j ≡ u ∈ i (Cmax(E,ζ) _∪Lmax(E,ζ))
∗ j .

It is onvenient to swith between the two formulations of the indutive hypothesis.

For the basis of the indution we have, for all left fators i and j of E ,

ε ∈ i (ζ♯ • |E|) j

= { de�nition of Mat.{ε} and Cmax(E,ζ) }

ε ∈ i Cmax(E,ζ) j

= { words in (ζ♯ ◦ |E|) _∩Mat.T have length at least 1 ,

de�nitions of Cmax(E,ζ) and Lmax(E,ζ) }

ε ∈ i (Cmax(E,ζ) _∪ (Lmax(E,ζ))
+) j .

Now assume the indution hypothesis and suppose v is a word in T ∗
of length n+1.

Then v=au for some symbol a in T and word u in T ∗
of length n . So

v ∈ i (ζ♯ • |E|) j

= { v=au , set membership }

{au} ⊆ i (ζ♯ • |E|) j
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= { de�nition of extension of ζ♯ to matries,

i |E| j = i\j }

{au} ⊆ ζ♯.(i\j)

= { ζ♯ is an upper adjoint with lower adjoint ζ♭ }

ζ♭.{au} � i\j

= { theorem 122 }

ζ♭.{a} ×S ζ♭.{u} � i\j

= { (78) }
〈

∃k :: ζ♭.{a} � i\k ∧ ζ♭.{u} � k\j
〉

= { Galois onnetion }
〈

∃k :: {a} ⊆ ζ♯.(i\k) ∧ {u} ⊆ ζ♯.(k\j)
〉

= { set membership, defn. of extension of ζ♯ to matries,

k |E| j = k\j }
〈

∃k :: a ∈ i (ζ♯ • |E|) k ∧ u ∈ k (ζ♯ • |E|) j
〉

= { a has length 1 , so

a ∈ i (ζ♯ • |E|) k ≡ a∈ i ((ζ♯ • |E|) _∩Mat.T) k

de�nition of Lmax(E,ζ) and indutive hypothesis }

〈∃k :: a∈ i Lmax(E,ζ) k ∧ u ∈ k (Cmax(E,ζ) _∪Lmax(E,ζ))
∗ j〉

= { de�nition of matrix produt,

lemma 127 with A,C,L := ζ♯•|E| , Cmax(E,ζ) , Lmax(E,ζ)

(whih is appliable by lemma 128) }

au ∈ i (Lmax(E,ζ))
+ j

= { au has length at least 1 , elements of Cmax(E,ζ) have length 0 }

au ∈ i (Cmax(E,ζ) _∪ (Lmax(E,ζ))
+) j .

The theorem now follows from the de�nition of equality of matries of languages.

✷
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5.3 The Factorial Function

We onlude this setion with an explanation of Conway's fatorial funtion (again gen-

eralised to an arbitrary regular algebra). We begin with the formal statement of the

theorem.

Theorem 133 (Factorial Function) Suppose S is a regular algebra and T is an

alphabet. Suppose ζ is a funtion from alphabet T into S (as in setion 5.1). Then for

any event E in S ,

ζ♭ •ζ♯ • |E| = Cmax.E⊗ (ζ♭ •Lmax(E,ζ))
∗ = Cmax.E⊗ (ζ♭ • (Lmax(E,ζ))

∗)

where the matrix Cmax.E is de�ned by

i Cmax.E j = if i� j→ 1✷¬(i� j)→0 fi .

Moreover,

i (ζ♭ •Lmax(E,ζ)) j = 〈Σa : a∈T ∧ ζ.a� i\j : ζ.a〉 .

The funtion that maps ζ to Lmax(E,ζ) is alled the fatorial funtion of E .

Proof We apply theorem 26 with G instantiated to Cmax(E,ζ) _∪ Lmax(E,ζ) . First,

we note that all elements of this matrix are losed sine

ζ♯ •ζ♭ • (Cmax(E,ζ) _∪ Lmax(E,ζ))
∗

= { theorem 132 }

ζ♯ •ζ♭ •ζ♯ • |E|

= { unity of opposites }

ζ♯ • |E|

= { theorem 132 }

(Cmax(E,ζ) _∪ Lmax(E,ζ))
∗ .

Next, we note that ζ♭ •Cmax(E,ζ) is independent of ζ . For all left fators i and j ,

i (ζ♭ •Cmax(E,ζ)) j

= { de�nition of funtion omposition }

ζ♭ . (i Cmax(E,ζ) j)

= { lemma 131 }

ζ♭ . (if i� j→ {ε}✷¬(i� j)→∅ fi)



81

= { de�nition of ζ♭ }

if i� j→ 1✷¬(i� j)→ 0 fi

= { de�nition of Cmax.E }

i (Cmax.E) j .

So

ζ♭ •ζ♯ • |E|

= { theorem 132 }

ζ♭ • (Cmax(E,ζ) _∪ Lmax(E,ζ))
∗

= { star deomposition }

ζ♭ • (Cmax(E,ζ))
∗⊗ (Lmax(E,ζ)⊗ (Cmax(E,ζ))

∗)∗

= { by lemma 130, (Cmax(E,ζ))
∗=Cmax(E,ζ)

and Lmax(E,ζ)⊗Cmax(E,ζ)=Lmax(E,ζ) }

ζ♭ • Cmax(E,ζ)⊗ (Lmax(E,ζ))
∗

= { theorem 26 (applied twie) }

(ζ♭ •Cmax(E,ζ))⊗ (ζ♭ •Lmax(E,ζ))
∗

= { by above, ζ♭ •Cmax(E,ζ) = Cmax.E }

Cmax.E⊗ (ζ♭ •Lmax(E,ζ))
∗

= { theorem 26 }

Cmax.E⊗ (ζ♭ • (Lmax(E,ζ))
∗) .

The �nal equation is a straightforward expansion of the de�nitions of ζ♭ and Lmax(E,ζ) .

✷

Let us interpret this theorem in words.

Reall that ζ is a funtion that represents a �nite set of approximating events: the

set orresponding to ζ is the image set of ζ , i.e. {a:a∈T : ζ.a} . The entry in the matrix

ζ♯ • |E| indexed by left fators i and j of E is the maximal set of words w suh that

ζ♭.w � i\j . The entry in the matrix ζ♭ •ζ♯ • |E| that is indexed by left fators i and j of

E is the maximal approximation to the fator i\j by the funtion ζ . In partiular, the

entry indexed by the left fators l and r (where (l, r) is the de�ning ourrene of E

in its fator matrix: see setion 3.4) is the maximal approximation to E by the funtion

ζ .
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The matrix Cmax.E is independent of ζ : it is a matrix of 1 s and 0 s where the entry

is 1 i� the orresponding fator of E is at least 1 . This justi�es omitting the parameter

ζ . (It also gives a seond reason for alling it the maximal \onstant" approximation to

the fator matrix of E . However, Conway's uses the word \onstant" beause the matrix

entries are the \onstants" 1 and 0 and not for this reason.)

Eah entry in the matrix ζ♭ •Lmax(E,ζ) is a sum of linear approximations to the

fators of E : the term ζ.a , where a∈T , is a summand of the (i, j) th entry if the

approximating event represented by a , i.e. ζ.a , is at most the fator i\j .

The theorem gives a reipe for determining the maximal approximation to E by the

events represented by ζ in three steps: First determine the matrix Cmax.E . Next de-

termine ζ♭ •Lmax(E,ζ) . That is, for eah fator F of E , determine the maximal linear

approximation to F by ζ ; enter the result in the matrix ζ♭ •Lmax(E,ζ) in positions or-

responding to ourrenes of F in the fator matrix of E . Finally, ompute the (l, r) th

entry of Cmax.E⊗ (ζ♭ •Lmax(E,ζ))
∗
. This is the maximal approximation to E by the set

of events represented by the funtion ζ . Sine (ζ♭ •Lmax(E,ζ))
∗
and ζ♭ • (Lmax(E,ζ))

∗
are

equal the order in whih the two operators (omposition and star) are applied is irrele-

vant to the result. Note, however, that if the latter formula is used, it will be neessary

to exploit theorem 26 in order to evalute the approximations: the entries of (Lmax(E,ζ))
∗

will typially be evaluated as regular expressions and the theorem is needed to onvert

the expressions to approximations.

Our exposition is substantially longer than Conway's beause he omits any mention

whatsoever of the algebrai properties that are fundamental to the proof of theorem 133

and its exploitation when alulating approximations. The properties are a onsequene

of the fat that ζ♭ is the lower adjoint in a Galois onnetion between the subset ordering

on languages and the partial ordering in the algebra of the event E , but he does not even

de�ne ζ♭ , let alone show that it distributes through supremum, matrix multipliation

and the star operator.

6 Least Approximating Functions and the Factor Graph

Rather than exploit Conway's maximal onstant+linear approximating funtions, we

introdue in this setion the least onstant+linear approximating funtion. Whereas,

the Generalised Approximation Theorem is valid for an event E in an arbitrary regular

algebra, least approximating funtions do not neessarily exist and, so, we are fored

to restrit the lass of events that we onsider to the regular languages. Even then

it is not obvious that suh funtions exist. It depends on the fat that the maximal

onstant approximation funtion enodes the subset ordering on left fators and this

subset ordering has a unique minimal \starth root", i.e. a unique minimal reexive,
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transitive redution.

The next setion de�nes the notion of a \starth root" and gives examples of where

minimal starth roots do not exist. Setion 6.2 then introdues the notion of \de�nite-

ness", whih is the key to establishing the existene of minimal approximating funtion.

Note that we have been areful to use the term \onstant approximating funtion".

It is important to note that our minimal funtion and Conway's maximal funtion yield

the same approximation when the funtions are applied to their arguments.

6.1 Starth Root

Definition 134 (Starth Root) Suppose U is an event of a regular algebra. A starth

root of U is any event V that satis�es V∗=U∗
; it is minimal if no smaller event has

this property. It is least if it is at most all starth roots. Formally, V is a minimal

starth root of U if

V∗=U∗ ∧ 〈∀W : W�V ∧ W∗=U∗ : W=V〉

and V is the least starth root of U if

V∗=U∗ ∧ 〈∀W : W∗=U∗ : V �W〉 .

✷

Note the use of the inde�nite artile (\a") for minimal starth roots, and the de�nite

artile (\the") for least starth roots. It is easily shown that a least starth root is unique,

whih justi�es the use of \the". Moreover, it is lear that the least starth root of U is

a minimal starth root.

By de�nition, every event is a starth root of itself. So starth roots exist for every

event of a regular algebra. In a free regular algebra, it is the ase that every event has

a unique, minimal starth root [Brz67℄ but in general this is not always the ase. Even

when minimal starth roots exist, uniqueness is not guaranteed. For example, a minimal

starth root of a relation is alled a transitive redution of the relation but there may

be several di�erent transitive redutions of a given relation. A spei� example is the

relation {(1, 2),(2, 3),(3, 1)} on {1,2,3} . It is a minimal starth root of itself but so also

is {(2, 1),(3, 2),(1, 3)} . (Confusingly, the literature sometimes refers to the transitive

redution of a relation/graph even though in a ase like this one an arbitrary hoie

must be made.) See example 139 for further explanation. Unique minimal starth roots

(i.e. unique transitive redutions) are guaranteed to exist for well-founded relations on a

�nite set (equivalently, relations that an be represented by a �nite, ayli graph).
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The fat that, nevertheless, the fator matrix of a regular language has a unique

minimal starth root was �rst proved in [Ba75℄ and later, using an improved argument,

in [BL77℄. For reasons that will be explained shortly, the name fator graph was given

to this matrix.

(Note: Conway [Con71, p55℄ inludes minimality in his de�nition of a starth root but

restrits the disussion to regular languages. We prefer to separate out the minimality

requirement.)

Theorem 137 below is the basi starting point for the onstrution of starth roots.

E�etively, the theorem is the basis for Brzozowski's [Brz67℄ proof of the existene of

minimal starth roots of regular languages but we state it more abstratly here beause

minimal starth roots do not neessarily exist in matrix algebras. Example 140, immedi-

ately following theorem 137, illustrates the theorem using the example of the transitive

redution of a relation.

First, we need a ouple of (well-known) lemmas. Reall that we use \∪ " and \∩ "

to denote the supremum and in�mum operators in a powerset algebra, and the symbols

\

_∪ " and \

_∩ " to denote their pointwise extension to matries. In this setion, we use

the symbol \¬ " to denote the omplement of a set. It too an be extended pointwise

to matries, and the extended operators enjoy all the properties of the set operators.

So, although we don't use the dotted notation \

_∪ ", \

_∩ ", et., all the lemmas in this

setion are valid for matries based on a powerset regular algebra, in partiular matries

of languages.

Lemma 135 Let X be an event in a powerset regular algebra with unit 1 . Then

X∗ = (X∩¬1)∗ .

Proof

X∗ = (X∩¬1)∗

⇐ { X ⊇ X∩¬1 , monotoniity of star }

X∗ ⊆ (X∩¬1)∗

= { ∗
is a losure operator }

X ⊆ (X∩¬1)∗

⇐ { 1∪Y⊆Y∗
with Y := X∩¬1 }

X ⊆ 1∪ (X∩¬1)

= { absorption rule }

X ⊆ 1∪X
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= { set alulus }

true .

✷

Lemma 136 Let X and Y be events in a powerset regular algebra with unit 1 . Then

X∗⊆Y∗ ≡ (X∩¬1)+ ⊆ (Y ∩¬1)+ ,

X∗=Y∗ ≡ (X∩¬1)+ = (Y ∩¬1)+ .

Proof First,

(X∩¬1)+ ⊆ (Y ∩¬1)+

= { +
is a losure operator }

X∩¬1 ⊆ (Y ∩¬1)+

= { set alulus }

X ⊆ (Y∩¬1)+ ∪ 1

= { for all Z , Z+∪1 = Z∗
with Z := Y ∩¬1 ,

lemma 135 with X :=Y }

X ⊆ Y∗

= { ∗
is a losure operator }

X∗⊆Y∗ .

The seond property follows immediately from the anti-symmetry of set union.

✷

Theorem 137 (Least Starth Root) Let A be an event in a powerset regular algebra

with unit 1 . Suppose B = A∩¬1 and suppose A∗=(B∩¬(B ·B+))∗ . Suppose X is an

event suh that A∗=X∗
. Then

B∩¬(B ·B+) ⊆ X .

That is, if A∩¬1∩¬((A∩¬1) · (A∩¬1)+) is a starth root of A , it is the least starth

root of A .

Proof For brevity, let C = B∩¬(B ·B+) and Y = X∩¬1 . By applying lemma 135

and inluding the two assumptions, we have

A∗=B∗=C∗=X∗=Y∗ .

Next we note that
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C

= { de�nition of C and B }

A∩¬1∩¬(B ·B+)

= { idempoteny and symmetry of intersetion }

(A∩¬1∩¬(B ·B+)) ∩ ¬1

= { de�nition of C and B }

C ∩ ¬1 .

It follows that we an apply lemma 136 with X,Y :=A,C and X,Y :=C,X to dedue that

B+=C+=Y+ .

We an now proeed with the alulation.

B∩¬(B ·B+) ⊆ X

= { B∩¬(B ·B+) = C = C∩C+ = C∩Y+ }

B∩¬(B ·B+)∩Y+ ⊆ X

= { set alulus }

B∩Y+ ⊆ X ∪ B ·B+

⇐ { B∩Y+ ⊆ Y+ }

Y+ ⊆ X ∪ B ·B+

⇐ { Y+ = Y ∪ Y ·Y+ }

Y⊆X ∧ Y ·Y+ ⊆ B ·B+

= { Y = X∩¬1 }

Y ·Y+ ⊆ B ·B+

= { X ·X+ = X+ ·X+
for all X

(well-known property, simple proof left to reader) }

Y+ ·Y+ ⊆ B+ ·B+

= { B+=Y+
: see above }

true .

✷

Theorem 137 postulates a andidate for a least starth root. In some ases, the an-

didate is indeed a least starth root, as illustrated by example 138 below, but this is not
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always the ase, as illustrated by examples 139 and 140. Fortunately, the andidate is

indeed a starth root in the ase relevant to the urrent disussion: when A is Conway's

maximal approximation funtion. See the subsetions below.

Note that both examples 138 and 139 rely on the fat that Bool is the arrier set

of a powerset algebra, and the homogenous binary relations on a set are the arrier set

of a matrix algebra over Bool . See the disussion following theorem 9. In the ase of

example 138, the \matries" have in�nite dimension.

Example 138 Consider the at-most relation on integers. This is normally denoted by

the symbol \≤ " but it is more onvenient here to use the symbol atmost . The at-most

relation is, of ourse, reexive and transitive. That is, atmost= atmost∗ . Instantiating

the variable A in theorem 137 with atmost , the relation B is the less-than relation.

This normally denoted by the symbol \< " but let us write less instead. The reader

may easily verify that the relation less∩¬(less ◦ less+) is the predeessor relation, pred ,

given by, for all integers i and j ,

i pred j ≡ i+1= j .

The theorem states that, if the predeessor relation is a starth root of the at-most relation,

then it is the least starth root of that relation. And, indeed, pred∗= atmost . So, we

onlude that

〈∀R : R∗= atmost : pred⊆R〉 .

✷

Example 139 Suppose we onsider the universal relation on the set {1,2,3} . Fig. 3(a)

depits the relation as a graph. Figs. 3(b) and () depit starth roots of the relation;

they are both minimal but are distint.

Denoting the universal relation by ⊤⊤ on {1,2,3} and the identity relation on {1,2,3}

by I , the relation ⊤⊤∩¬I∩¬((⊤⊤∩¬I) ◦ (⊤⊤∩¬I)+) is the empty relation and the

reexive-transitive losure of the empty relation is the identity relation. Thus, it is

not a starth root of the universal relation.

(The reader may also wish to explore the ases of {1} and {1,2} . In both ases, the

universal relation on the set does have a least starth root. What this is is predited by

the theorem in the �rst ase but not in the seond.)

On the other hand, it an be shown that if R is a homogeneous binary relation on

a �nite set and the graph of the relation is ayli, then R = R∩¬I and R∩¬(R ◦R+)

is the unique, minimal starth root of R . Although we do not go into the details in this

paper, an ayli relation on a �nite set is an example of what we all a \de�nite" event
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1

2 3

1

2 3

1

2 3

(a) Universal relation

(b) Minimal starth root (c) Minimal starth root 

Figure 3: Distint minimal starth roots of the universal relation

in a regular algebra. (See de�nition 141.)

✷

Example 140 (Running Example: Modulo Addition) The fator matrix of {0}

in the powerset regular algebra with underlying monoid ZZ3 was shown in example 88.

It does not have a unique minimal starth root. This is beause both 1 and 2 are

generators of the group. Taking 1 as the generator, one starth root is shown in the

onventional way as a two-dimensional array below:















{1} ∅ ∅ ∅ ∅

{0} ∅ {1} ∅ ∅

{0} ∅ ∅ {1} ∅

{0} {1} ∅ ∅ ∅

∅ {0} {0} {0} ∅















Taking 2 as the generator, we get a di�erent starth root:















{2} ∅ ∅ ∅ ∅

{0} ∅ ∅ {2} ∅

{0} {2} ∅ ∅ ∅

{0} ∅ {2} ∅ ∅

∅ {0} {0} {0} ∅















We ould, of ourse, have made the example yet simpler sine the fator matrix of

¬∅ (i.e. {0,1,2} ) also does not have a unique starth root: the fator matrix has exatly
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one entry whih is ¬∅ itself, and this has two minimal starth roots, namely the matrix

with single entry {1} and the matrix with single entry {2} . Exploiting this fat gives two

more minimal starth roots of the fator matrix of {0} : interhange the top-left entries in

the matries above.

00

φ

0 0

φ

−φ −φ

0 0

0

0 0

2 2

2

1 1

1

0 0

0

1 2

{0} {0}

{2) {2} {1}{1}

Figure 4: Another example of distint minimal starth roots

Fig. 4 displays the two starth roots above as labelled graphs. (It is muh easier for

human beings to hek that the reexive-transitive losure of eah of the graphs displayed

in �g. 4 is the fator matrix than it is to hek that the reexive-transitive losure of the

two-dimensional array is the fator matrix.)

✷

6.2 Definiteness

Formally, our alulations rely on the fat that ertain (matrix) equations have unique

solutions. We ould formulate the relevant properties in terms of Salomaa's \empty word

property" [Sal66℄, but we prefer the algebrai formulation of \de�niteness" introdued

in [BC75℄. In order to failitate later disussion, we distinguish between \left-" and

\right-"de�nite.

Definition 141 (Left- and Right-Definite) Let A be an event in a regular algebra.

Then A is said to be left-de�nite if, for all events X ,

X�A·X ≡ X� 0

and A is said to be right-de�nite if, for all events X ,

X�X·A ≡ X� 0 .
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Finally, A is said to be de�nite if it is both left- and right-de�nite.

✷

Note that any of the ourrenes of \� " in de�nition 141 an be replaed by equality.

(Of ourse, X� 0 and X= 0 are equivalent. Replaing, eg, X�A·X by X=A·X is an

easy alulation: the hint is multiply both sides by A∗
.)

The importane of the onept of de�niteness is what we have alled the unique

extension property (UEP) of regular algebra.

Theorem 142 (UEP of regular algebra) Suppose A is a left-de�nite event in a

regular algebra. Then, for all events X and B ,

X = (A·X)+B ≡ X = A∗ ·B .

Dually, if A is a right-de�nite event in a regular algebra. Then, for all events X and B ,

X = (X·A)+B ≡ X = B ·A∗ .

✷

Theorem 142 was postulated as an axiom of regular algebra in [BC75℄. Here, a proof

is needed beause the star operator is not a primitive but de�ned in terms of least �xed

points. A proof an be found in [DBvdW97, setion 7℄. Note that [DBvdW97℄ uses the

terminology \well-founded" rather than \right de�nite" in order to �t with the standard

terminology of the priniple appliation onsidered in the paper.

At this point, I would like to be able to laim that a suitably hosen submatrix of

ζ♯ • |E| is both left- and right-de�nite, irrespetive of the regular algebra of events. But I

have failed to �nd a proof. (I have not yet looked for ounter-examples.) Suh a theorem

an, however, be formulated if E is a regular language. See theorem 147. As usual, we

need some preliminary lemmas.

Lemma 143 If A is left-de�nite and B�A , then B is left-de�nite. Dually, if A is

right-de�nite and B�A , then B is right-de�nite.

Proof Suppose A is left-de�nite and B�A . Then, for all X ,

X�B·X

⇒ { B�A , monotoniity }

X�A·X

= { A is left-de�nite }

X� 0

⇒ { 0�B·X }

X�B·X .
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✷

This is the point at whih we must speialise the disussion to regular languages.

Corollary 145 states that, for matries of languages, de�niteness is dependent only on

the \onstant" part of the matrix (i.e. that part of the matrix that is a subset of Mat.{ε} ).

Lemma 144 Suppose A is a square matrix of languages of dimension I×I , and X

is a vetor of languages suh that X _⊆A⊗X and X 6=0 . Then there is a vetor Y suh

that

Y 6=0 ∧ Y _⊆ Mat.{ε} ∧ Y _⊆ (A _∩Mat.{ε})⊗Y .

Proof Consider 〈∪i :: X.i〉 . This set is non-empty sine X 6=0 . Suppose u is a

shortest word in the set. De�ne vetor Y so that, for all y and i ,

y∈Y.i ≡ y= ε ∧ u∈X.i .

Clearly Y 6=0 ∧ Y _⊆ Mat.{ε} . Moreover,

Y _⊆ (A _∩Mat.{ε})⊗Y

= { de�nition of Y , de�nition of

_⊆ and one-point rule }

〈∀i : u∈X.i : ε∈ ((A _∩Mat.{ε})⊗Y).i〉

But,

ε ∈ ((A _∩Mat.{ε})⊗Y).i

= { 〈∀x,y :: ε=xy ≡ ε=x∧ ε=y〉

de�nition of matrix produt and

_∩ }

〈∃j : ε∈ iAj : ε∈Y.j〉

= { ε∈Y.j ≡ u∈X.j }

〈∃j : ε∈ iAj : u∈X.j〉

⇐ { u is a shortest word in 〈∪i :: X.i〉 }

〈∃j :: u ∈ (iAj) ·X.j〉

⇐ { X _⊆A⊗X }

u∈X.i .

Combining the two alulations, we onlude that Y _⊆ (A _∩Mat.{ε})⊗Y .

✷
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Corollary 145 If A is a square matrix of languages then

A is left-de�nite ≡ A _∩Mat.{ε} is left-de�nite

and

A is right-de�nite ≡ A _∩Mat.{ε} is right-de�nite.

Proof We prove the �rst equivalene. The proof of the seond is symmetri.

By applying lemma 143, we have that if A is left-de�nite then A _∩Mat.{ε} is left-

de�nite. But the ontrapositive of this statement is an immediate orollary of lemma

144: if A is not left-de�nite then A _∩Mat.{ε} is not left -de�nite.

✷

6.3 Definiteness of the Maximal Approximation Function

In this setion, we establish the de�niteness of maximal approximation funtions. See

orollary 148.

A possibly onfusing ompliation is that the alphabets of the given regular language

E and the \set" of approximations ζ are typially di�erent. This means that E and any

approximating \funtion" are elements of di�erent algebras, whih formally have di�erent

units. Conventional aounts would silently overload notation so that the di�erene is

hidden. We also overload notation in the same way but observe the overloading at the

appropriate point in the disussion.

Lemma 146 Suppose E is a regular language. Let I denote the identity matrix of

dimension L.E×L.E (where, as usual, L.E is the set of left fators of E ). Then the

matrix Cmax.E _∩¬I is de�nite.

Proof We prove that Cmax.E _∩¬I is left-de�nite. The proof that it is also right-de�nite

is symmetri.

Suppose Cmax.E _∩¬I is not left-de�nite. Applying lemma 144 (and noting that

Cmax.E = Cmax.E _∩Mat.{ε} ), there is a vetor Y suh that

Y 6=0 ∧ Y _⊆ Mat.{ε} ∧ Y _⊆ (Cmax.E _∩¬I)⊗Y .

From the �rst two onjunts, we infer that there is at least one left fator i0 , say, of E

suh that ε∈Y.i0 . Now we exploit the third onjunt. We have, for all left fators i ,

ε∈Y.i

⇒ { Y _⊆ (Cmax.E _∩¬I)⊗Y ,
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de�nition of Mat.{ε} _∩¬I , i |E| j= i\j }

〈∃j : i 6= j : ε ∈ i\j ∧ ε∈Y.j〉

= { ε ∈ i\j ≡ i⊆ j }

〈∃j : i 6= j : i⊆ j ∧ ε∈Y.j〉 .

It follows that we an onstrut a sequene of left fators ik , beginning with i0 , suh

that ik⊆ ik+1 and ik 6= ik+1 . If E is regular, it has only a �nite number of left fa-

tors and so the sequene must eventually repeat itself. That is, there is a subsequene

im, . . . ,im+p of left fators suh that 0<p , im+k 6= im+k+1 whenever 0≤k<p , and

im⊆ im+1⊆ . . . ⊆ im+p⊆ im . It follows by anti-symmetry and transitivity of the subset

relation that all events of the sequene are equal, whih ontradits onseutive events

being di�erent.

✷

Theorem 147 Suppose E is a regular language. Suppose ζ of type S←T is a

funtion enoding a set of events in regular algebra S . (Note that the alphabet T

is typially di�erent from the alphabet of E .) Let I denote the identity matrix of

dimension L.E×L.E in the matrix algebra with underlying algebra S . Then the matrix

Cmax(E,ζ) _∩¬I is de�nite.

Proof We �rst prove that if Cmax(E,ζ) _∩¬I is not left-de�nite then Cmax.E _∩¬I is not

left-de�nite. (NB: the notation \ I " is overloaded here. See below.)

Suppose X is a vetor suh that

X _⊆ (Cmax(E,ζ) _∩¬I)⊗X ∧ X 6=0 .

Note that the dimension of ζ♯ • |E| means that X is neessarily indexed by left fators of

E . However, the alphabet of E is typially di�erent from the alphabet of events in X .

Applying lemma 144 (noting that Cmax(E,ζ) _⊆Mat.{ε} ), there is a vetor Y suh that

Y 6=0 ∧ Y _⊆ Mat.{ε} ∧ Y _⊆ (Cmax(E,ζ) _∩¬I)⊗Y .

We now want to exhibit a vetor Z suh that

Z 6=0 ∧ Z _⊆ Mat.{ε} ∧ Z _⊆ (Cmax.E _∩¬I)⊗Z .

Formally, we are preluded from using Y diretly sine the entries in Cmax(E,ζ) and

the entries in Cmax.E are languages over di�erent alphabets

5

. However, the empty word

5

A simple trik like taking the union of the alphabets doesn't work beause the fator matrix of a

language depends on the alphabet.
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is polymorphi |the ourrenes of \ ε " in the spei�ation of Z has a di�erent type to

the ourrene of \ ε " in the spei�ation of Y| , and so too is the empty set |the two

ourrenes of \ 0 " above have di�erent type| . That is, we an take Z to be idential

to Y exept for an appropriate hange of type of the empty word (and the empty set).

Then, learly, Z 6=0 ∧ Z _⊆ Mat.{ε} . Moreover, applying lemma 131, we have, for all left

fators i and j of E ,

ε ∈ i (ζ♯ • |E|) j ≡ ε ∈ i\j .

(Here the two ourrenes of \ ε " are of di�erent type.) It follows that Cmax(E,ζ) and

Cmax.E are idential matries exept for an appropriate hange of type of the empty

word. The same is thus true of Cmax(E,ζ) _∩¬I and Cmax.E _∩¬I . That is,

Z _⊆ (Cmax.E _∩¬I)⊗Z .

We have thus shown that Cmax.E is not left-de�nite. As before, a symmetri argument

shows that if (Cmax(E,ζ) _∩¬I ) is not right-de�nite, Cmax.E _∩¬I is not right-de�nite.

Taking the ontrapositive of both statements together with theorem 146, we obtain

the theorem.

✷

Corollary 148 If E is a regular language, then the matries Cmax(E,ζ) _∩¬I , Lmax(E,ζ)

and (Cmax(E,ζ) _∪ Lmax(E,ζ))∩¬I are all de�nite.

Proof Theorem 147 states that Cmax(E,ζ) _∩¬I is de�nite, By orollary 145, Lmax(E,ζ)

is de�nite beause Lmax(E,ζ) _∩Mat.{ε} is 0 (the zero of produt). Similarly, (Cmax(E,ζ) _∪ Lmax(E,ζ))∩

is de�nite beause its intersetion with Mat.{ε} equals Cmax(E,ζ) _∩¬I .

✷

6.4 Reducing Maximal to Least

Reall that Cmax(E,ζ) denotes (ζ♯ • |E|) _∩Mat.{ε} and Lmax(E,ζ) denotes (ζ♯ • |E|) _∩Mat.T .

We de�ne Cmin(E,ζ) and Lmin(E,ζ) as follows.

Definition 149 (Least Constant and Linear Approximating Functions) Suppose

E is a regular language. Let

B = (Cmax(E,ζ) _∪ Lmax(E,ζ))∩¬I ,

D = Cmax(E,ζ) _∩¬I ,

Cmin(E,ζ) = D _∩¬(D⊗D+) and
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Lmin(E,ζ) = Lmax(E,ζ) _∩ ¬(D⊗Lmax(E,ζ)) _∩ ¬(Lmax(E,ζ)⊗D) .

The funtion that maps ζ to Cmin(E,ζ) is alled the minimal onstant approximating

funtion for E by ζ , and the funtion that maps ζ to Lmin(E,ζ) is alled the minimal

linear approximating funtion for E by ζ .

✷

Our goal in this setion is to prove that Cmin(E,ζ) _∪ Lmin(E,ζ) is the least starth

root of ζ♯ • |E| . We exploit theorem 137. Spei�ally, Cmin(E,ζ) _∪ Lmin(E,ζ) is the least

starth root of ζ♯ • |E| if it is a starth root of ζ♯ • |E| and

(150) Cmin(E,ζ) _∪Lmin(E,ζ) = B _∩ ¬(B⊗B+) .

(See de�nition 149 for the de�nition of B .) First, lemma 151 proves (150). Then

theorem 154 shows that it is a starth root.

Note that B is de�nite. (Compare the de�nition of B with orollary 148.) This is

ruial to our alulations.

Lemma 151 Let B , D , Cmin(E,ζ) and Lmin(E,ζ) be as in de�nition 149. Then

B = D _∪ Lmax(E,ζ) ,

Cmin(E,ζ) = D _∩¬(B⊗B+) ,

Lmin(E,ζ) = Lmax(E,ζ) _∩ ¬(B⊗B+) , and

Cmin(E,ζ) _∪Lmin(E,ζ) = B _∩ ¬(B⊗B+) .

Proof For brevity, we omit the parameters of Cmax , Cmin , Lmin and Lmax . For

example, throughout the following alulation, Cmax denotes Cmax(E,ζ) . We also let B

and D be the matries de�ned in de�nition 149.

The alulations below exploit \length onsiderations": entries in Cmax and Cmin

are words of length 0 and entries in Lmax and Lmin are words of length 1 . Formally,

if L is a linear matrix (in partiular, Lmax or Lmin ),

L = L _∩Mat.T

and if C is a onstant matrix (in partiular, Cmax or Cmin ),

C = C _∩Mat.{ε} .

We exploit these properties by ombining them with properties of Mat.T and Mat.{ε} .

Examples are:

0 = Mat.T _∩Mat.{ε} = Mat.T _∩ Mat.T ⊗Mat.T
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(where 0 denotes the zero matrix) and, for linear matrix L and arbitrary matrix X .

(152) L _∩¬X = L _∩¬(X _∩Mat.T)

and, for onstant matrix C

(153) C _∩¬X = C _∩¬(X _∩Mat.{ε}) .

Equations (152) and (153) are instanes of the general property (extended pointwise to

matries) that, for all x , y and z suh that y⊆x ,

y∩¬z = y∩¬(z∩x) .

This is proved by the following simple alulation.

y∩¬(z∩x)

= { distributivity of negation over intersetion

and assumption: y⊆x }

y∩x∩ (¬z ∪ ¬x)

= { distributivity of intersetion over union }

y ∩ ((x∩¬z) ∪ (x∩¬x))

= { for all x , x∩¬x = ∅ }

y∩x∩¬z

= { assumption: y _⊆x }

y∩¬z .

Now we an proeed to establish the lemma. For the �rst equation, we have:

B

= { de�nition }

(Cmax _∪ Lmax) _∩¬I

= { distributivity }

(Cmax _∩¬I) _∪ (Lmax _∩¬I)

= { de�nition of D : de�nition 149 }

D _∪ (Lmax _∩¬I)

= { (152) with X := I , I _∩Mat.T = 0 }

D _∪ Lmax .
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We now give a relatively detailed proof of the seond equation so that the reader an see

how length onsiderations are used. First, we have:

Cmin = D _∩¬(B⊗B+)

= { de�nition of Cmin and B = D _∪ Lmax (see above) }

D _∩ ¬(D⊗D+) = D _∩¬(B⊗B+)

= { D is a onstant matrix, (153) }

D _∩ ¬(D⊗D+) = D _∩¬(B⊗B+
_∩ Mat.{ε})

⇐ { Leibniz }

D⊗D+ = B⊗B+
_∩ Mat.{ε} .

We now prove the above equation.

B⊗B+
_∩ Mat.{ε}

= { B = D _∪ Lmax (see above) }

(D _∪ Lmax)⊗ (D _∪ Lmax)
+
_∩ Mat.{ε}

= { distributivity of matrix produt over union,

length onsiderations: spei�ally Lmax _∩Mat.{ε} = 0 }

D⊗ (D _∪ Lmax)
+

_∩ Mat.{ε}

= { de�nition of transitive losure }

(D⊗ (D _∪ Lmax)⊗ (D _∪ Lmax)
∗) _∩ Mat.{ε}

= { distributivity of matrix produt over union,

length onsiderations: spei�ally Lmax _∩Mat.{ε} = 0 }

(D⊗D⊗ (D _∪ Lmax)
∗) _∩ Mat.{ε}

= { star deomposition }

(D⊗D⊗D∗⊗ (Lmax⊗D∗)∗) _∩ Mat.{ε}

= { for all X , X∗ = I _∪ X⊗X∗
with X := Lmax⊗D∗

,

distributivity of matrix produt over union

and length onsiderations }

(D⊗D⊗D∗) _∩ Mat.{ε}

= { de�nition of transitive losure, D is a onstant matrix }

D⊗D+ .
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This ompletes the proof of the seond equation in the lemma. The proof of the penul-

timate equation is similar. We omit the details:

Lmax _∩ ¬((D _∪ Lmax)⊗ (D _∪ Lmax)
+)

= { Lmax is a linear matrix, D is a onstant matrix;

length onsiderations }

Lmax _∩ ¬(D+⊗Lmax _∪ Lmax⊗D+)

= { by lemma 135 and lemma 130, D∗=(Cmax)
∗=Cmax }

Lmax _∩ ¬(D⊗Cmax⊗Lmax _∪ Lmax⊗Cmax⊗D)

= { lemma 130 }

Lmax _∩ ¬(D⊗Lmax _∪ Lmax⊗D)

= { de�nition of Lmin : de�nition 149 }

Lmin .

The �nal equation is a straightforward ombination of the �rst three equations together

with distributivity of union over intersetion.

✷

Lemma 154 Let Cmin(E,ζ) and Lmin(E,ζ) be as in de�nition 149. Then

ζ♯ • |E| = (Cmin(E,ζ) _∪ Lmin(E,ζ))
∗ ,

Cmax(E,ζ) = (Cmin(E,ζ))
∗

and

Lmax(E,ζ) = Cmax(E,ζ)⊗Lmin(E,ζ)⊗Cmax(E,ζ) .

Proof As in the proof of lemma 151, we write Cmin , Cmax , Lmin and Lmax (thus

omitting the parameters).

We �rst note that Cmin _∪ Lmin
_⊆ B . (See lemma 151.) Sine B is both left- and

right-de�nite (orollary 148), it follows from lemma 143 that Cmin _∪ Lmin is both left-

and right-de�nite. Now

ζ♯ • |E| = (Cmin _∪ Lmin)
∗

= { Conway's approximation theorem: theorem 132 }

(Cmax _∪ Lmax)
∗ = (Cmin _∪ Lmin)

∗

= { lemma 135 with X :=Cmax _∪ Lmax ,

(Cmax _∪ Lmax) _∩ ¬I = B }
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B∗ = (Cmin _∪ Lmin)
∗

= { Cmin _∪ Lmin is right-de�nite,

UEP of regular algebra: theorem 142 }

B∗ = I _∪ B∗⊗ (Cmin _∪ Lmin)

⇐ { B∗ = I _∪B+
, Leibniz }

B+ = B∗⊗ (Cmin _∪ Lmin)

= { B is left-de�nite: UEP of regular algebra: theorem 142 }

B+ = (Cmin _∪ Lmin) _∪ B⊗B+

= { lemma 151 }

B+ = (B _∩ ¬(B⊗B+)) _∪ B⊗B+

= { absorption rule of set alulus }

B+ = B _∪ B⊗B+

= { �xed-point de�nition of transitive losure }

true .

The remaining two equations follow from the �rst equation by applying theorem 132:

Cmax

= { de�nition }

(ζ♯ • |E|) _∩ Mat.{ε}

= { ζ♯ • |E| = (Cmin _∪ Lmin)
∗ }

(Cmin _∪ Lmin)
∗
_∩ Mat.{ε}

= { algebra of regular expressions }

((Cmin)
∗

_∪ Lmin⊗ (Cmin _∪ Lmin)
∗) _∩ Mat.{ε}

= { length onsiderations (details omitted) }

(Cmin)
∗
_∩Mat.{ε}

= { Cmin
_⊆Mat.{ε} }

(Cmin)
∗ .

Finally,

Lmax
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= { de�nition }

(ζ♯ • |E|) _∩ Mat.{T }

= { as above }

(Cmin _∪ Lmin)
∗
_∩ Mat.{T }

= { star deomposition }

(Cmin)
∗⊗ (Lmin⊗ (Cmin)

∗)∗ _∩ Mat.{T }

= { length onsiderations (details omitted) }

(Cmin)
∗⊗Lmin⊗ (Cmin)

∗

= { Cmax=(Cmin)
∗
(just proved) }

Cmax⊗Lmin⊗Cmax .

✷

Note the use of both right-de�niteness and left-de�niteness in this proof. These

two notions oinide for �nite matries. For in�nite matries, they are di�erent. (For

example, the less-than relation on natural numbers is well-founded |\left-de�nite"|

but the greater-than relation is not |less-than is not \right-de�nite". This is why we

have been fored to limit the theorems in this setion to regular languages.

Theorem 151 establishes equation (150) as required. So we onlude:

Theorem 155 (Least Factorial Function) Suppose Cmin(E,ζ) and Lmin(E,ζ) are

as de�ned in de�nition 149. Then Cmin(E,ζ) _∪ Lmin(E,ζ) is the least starth root of

ζ♯ • |E| . (That is, it is a minimal starth root and is unique.)

✷

Example 156 (Conway’s Example) To enable diret omparison with Conway's

\best" approximation, this example revisits the example he used [Con71, p49{p53℄. Figs.

5(a) and (b) show the mahine and anti-mahine of the language E denoted by the regular

expression (a+b)∗b(ba)∗ + (ba)∗ . (The mahine and anti-mahine are reprodued from

[Con71, p49℄. The regular expression is not the same as that given by Conway: we have

used the anti-mahine to onstrut a simpler expression.)

Start and �nal nodes have been indiated in the usual way for eah graph.

Figs. 5() and (d) show, respetively, the fator graph of this language and the max-

imal onstant+linear approximation to the fator matrix of the language, but omitting

an inadmissible node. Both are explained in detail in setion 6.5. For the moment,

however, note that the fator graph (�g. 5()) is the reexive-transitive redution of �g.

5(d), and both are starth roots of the fator matrix of the language.
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Figure 5: Conway's Example of Approximation

Fig. 5(e) shows the graph orresponding to Cmin(E,ζ) _∪Lmin(E,ζ) where the alphabet

of the approximating funtion ζ is {c,d,e} and the funtion ζ is de�ned to be ζ.c= {aa} ,

ζ.d= {b} and ζ.e= {ba} . Using this graph, it is easy to onstrut the regular expression

(e + (c+e)∗d)∗ as the \best" approximating funtion to the event E by ζ . The maximal

approximation to E by the languages {aa} , {b} and {ba} is thus (ba + (aa+ba)∗b)∗ .

Conway's \best" approximating funtion [Con71, �g. 6.3℄ is muh more ompliated

than �g. 5(e): the latter is the reexive-transitive redution of the graph onstruted by

Conway. Beause the approximating events in this example are �nite languages (indeed,

singleton sets), it is easy to onstrut �g. 5(e) from �g. 5(). (Note that the leftmost

node is inadmissible.) Spei�ally, the empty-word edges are the same in both �gures,



102

and there is an edge in �g. 5(e) labelled x (where x is one of c , d and e ) from node

i to j in �g. 5(e) if and only if there is a path from node i to j in the linear subgraph

of �g. 5() that spells ζ.x and there is no other suh path of smaller edge length. (The

\linear subgraph" is obtained by omitting the empty-word edges.)

✷

6.5 The Factor Graph

We now introdue the \fator graph" of a regular language, a onept that was �rst

introdued by the author in [Ba75℄ and subsequently, in [BL77℄, shown to form the basis

of the Knuth-Morris-Pratt pattern-mathing algorithm [KMP77℄ and Aho and Corasik's

generalisation [AC75℄ of the KMP algorithm to a set of patterns. (For an example of the

relationship between the KMP algorithm and the fator graph, see setion 9.1.)

Example 156 gave a foretaste of a fator graph; the fator graph of a regular language

E is the minimal \starth root" of the fator matrix of E . The proof of existene of the

fator graph, for arbitrary regular language E , is an elementary instane of theorem 154:

see theorem 158. An e�etive way of onstruting the fator graph is more ompliated.

The full details are given in setion 6.7. Analysing the struture of the fator matrix of

a given language in order to identify the fator graphs of fators of the language is yet

more ompliated sine it involves onstruting the \syntati monoid" of the language.

See setion 7.

The following lemma is essentially due to Conway; in both [Ba75℄ and [Ba16℄, it

is attributed to Conway sine it is a straightforward onsequene of his approximation

theorem. It is, however, never expliitly stated by Conway.

Lemma 157 Suppose E is a language over the alphabet T . Then

|E| = Cmax.E _∪ (Lmax.E)
+ = (Cmax.E _∪ Lmax.E)

∗

where Cmax.E denotes |E| _∩Mat.{ε} and Lmax.E denotes |E| _∩Mat.T .

(Note that our use of Cmax.E here is onsistent with its de�nition in theorem 133.

In that theorem, E is assumed to be an event in a regular algebra S ; we have now

speialised the algebra to the algebra of languages over the alphabet T .)

Proof Instantiate the Generalised Approximation Theorem (theorem 132) with ζ

de�ned to be the \lifted identity" funtion on T . That is, suppose ζ.a= {a} for all a

in T . Then it is easily veri�ed that both ζ♭ and ζ♯ (as de�ned by (119) and (120)) are

equal to the identity funtion on languages. The theorem follows immediately.

✷
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Realling de�nition 124, the matrix ( |E| _∩Mat.{ε} ) is the maximal onstant approx-

imating \funtion" for |E| and the matrix |E| _∩Mat.T is the maximal linear approxi-

mating \funtion" for |E| . Perhaps onfusingly |beause the funtion ζ is the (lifted)

identity funtion| these are also the maximal onstant and linear approximations to

|E| . The fator graph of a regular language E is the pointwise union of the minimal

onstant and linear approximations :

Theorem 158 (The Factor Graph) Suppose E is a regular language over the al-

phabet T . Let

Cmax.E = |E| _∩ Mat.{ε} ,

D = |E| _∩ Mat.{ε} _∩ ¬I and

Cmin.E = D _∩¬(D⊗D+) .

Also, let

Lmax.E = |E| _∩Mat.T and

Lmin.E = Lmax.E _∩ ¬(D⊗Lmax.E) _∩ ¬(Lmax.E⊗D) .

Then

Cmax.E = (Cmin.E)
∗ ,

Lmax.E = Cmax.E⊗Lmin.E⊗Cmax.E , and

|E| = Cmin.E _∪ (Lmin.E)
+ = (Cmin.E _∪ Lmin.E)

∗ .

Moreover, Cmin.E _∪ Lmin.E is the least starth root of the fator matrix of E .

Proof Combine lemma 157, theorem 154 and 155 with ζ de�ned as in lemma 157 to

be the \lifted identity" funtion on T . The theorem follows immediately.

✷

The matrix Cmin.E _∪ Lmin.E is a onstant+linear matrix, i.e. a transition graph,

and so it is appropriate to all it the fator graph of the regular language E .

6.6 Equivalence Relations on Languages

In order to alulate the fator graph of a regular language, it suÆes to alulate the

mahine and anti-mahine of the language. This is explained in setion 6.7. In this

setion, we reall well-known properties that underlie the onstrution of �nite-state

mahines and are ruial to onstruting fator graphs, as we show in setion 6.7. It is

onvenient to also summarise properties of the so-alled \syntati monoid" of a language.
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These properties are exploited in setion 7 as an e�etive means to determine the fator

graphs and fator matries of fators of a regular language.

Suppose E is a language over the alphabet T . Then E de�nes three equivalene

relations on T ∗
|El , Er and Ec| given by, for all x and y in T ∗

:

xEly ≡ 〈∀z : z∈T ∗ : zx∈E ≡ zy∈E〉

xEry ≡ 〈∀z : z∈T ∗ : xz∈E ≡ yz∈E〉

xEcy ≡ 〈∀u,v : u∈T ∗ ∧ v∈T ∗ : uxv∈E ≡ uyv∈E〉

These are the so-alled left-invariant equivalene relation, right-invariant equiva-

lene relation and ongruene relation introdued by Rabin and Sott [RS59℄. Being

equivalene relations, eah partitions T ∗
into equivalene lasses. We all an equivalene

lass modulo El an r -lass of E , an equivalene lass modulo Er an l -lass of E , and

an equivalene lass modulo Ec a c -lass of E . We use Er(x) to denote the l -lass that

inludes word x . Similarly for El(x) and Ec(x) . (To avoid onfusion in explanatory

prose, we use a di�erent font for the relations El , Er and Ec and the funtions El , Er

and Ec . In the ontext of formal statements, whih is intended should be lear.)

Note the swith: an equivalene lass modulo El is an r -lass. The reason for the

swith is the following theorem [Ba75℄:

Theorem 159 Eah left fator of E is a union of l -lasses of E , eah right fator

of E is a union of r -lasses of E , and eah fator of E is a union of c -lasses of E .

Spei�ally, if F is a left fator of E ,

F = 〈∪y :y∈F :Er(y)〉 .

If F is a right fator of E ,

F = 〈∪y :y∈F :El(y)〉 .

Finally, if F is a fator of E ,

F = 〈∪y :y∈F :Ec(y)〉 .

Proof We show that eah left fator of E is a union of l -lasses of E as follows. First,

for all Z , Z⊆ T ∗
,

x∈E/Z

= { de�nition of / }

{x}·Z⊆E

= { de�nition of onatenation }

〈∀z : z∈Z : xz∈E〉 .



105

Hene,

E/Z

= { de�nition }

〈∪x : x∈E/Z : {x}〉

= { xErx , idempoteny of set union }

〈∪x : x∈E/Z : 〈∪y : xEry : {x}〉〉

= { above and nesting }

〈∪x,y : 〈∀z : z∈Z : xz∈E〉 ∧ xEry : {x}〉

= { de�nition of Er and

substitution of equals for equals }

〈∪x,y : 〈∀z : z∈Z : yz∈E〉 ∧ xEry : {x}〉

= { above }

〈∪x,y : y∈E/Z ∧ xEry : {x}〉

= { nesting and de�nition of Er(y) }

〈∪y : y∈E/Z : Er(y)〉 .

The remaining two properties are proved similarly.

✷

(The above alulational proof of theorem 159 was inluded in [Ba16℄ . It is inluded

again here for ompleteness.)

Earlier we showed that a right fator of E is an intersetion of derivatives of E

(spei�ally, L\E= 〈∩w :w∈L :∂wE〉 ). Similarly, a left fator of E is the reverse of an

intersetion of anti-derivatives of E . (The reverse of E is the set of words obtained by

reversing words in E and an anti-derivative of E is a derivative of the reverse of E .)

This is the haraterisation given by Conway. The above haraterisation, introdued

in [Ba75℄, is muh more useful when alulating the fators of a language beause suh

alulations use only representatives of the three types of equivalene lass rather than

the full lass. We see how this works below. The formal theory justifying the use of

representatives is given in setion 7.2.

The basi theorem of regular languages, attributed to J.R.Myhill by Rabin and Sott

[RS59℄, is that the following statements are all equivalent:

� E is regular (i.e. an be denoted by a regular expression).

� The relation El has �nite index.
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� The relation Er has �nite index.

� The relation Ec has �nite index.

It follows that E is regular if and only if it has a �nite number of fators. Thus

the fator \matrix" exists for all languages E but it is only for regular languages that

the use of the word \matrix" omplies with standard onventions: entries are indexed

by pairs of left fators but, preisely when E is a regular language, the left fators an

themselves by indexed by numbers from 1 to n , for some (�nite) number n .

As is well-known, the relation Er de�nes the (\redued, deterministi �nite-state")

mahine of E and the relation El de�nes the anti-mahine of E . The equivalene

lasses of Er are alled the states of the mahine. That is, eah state of the mahine is an

l -lass of E . (Reall the swith: equivalene lasses of Er are l -lasses and equivalene

lasses of El are r -lasses.) Its transition funtion δ maps a state and a symbol of the

alphabet to a state; it is de�ned by δ(Er(x),a)=Er(xa) , for all words x and all symbols

a . (It is easy to verify that this is a valid de�nition, i.e. the hoie of representative

element x of the l -lass Er(x) is irrelevant | formally, Er(xa)=Er(ya)⇐xEry .) The

start state is Er(ε) and Er(x) is a �nal state if x∈E . Similarly, the equivalene lasses

of El are the states of the anti-mahine of E ; its transition funtion

←−
δ is de�ned by

←−
δ (El(x),a)=El(ax) . As suggested by the notation \

←−
δ ", the anti-mahine of E is the

mahine of the reverse of E . We use these fats without further explanation below.

As already mentioned, the relation Ec is a ongruene relation on words. That is,

for all words u , v , w and x , uv Ec wx if u Ec w and v Ec x . This has the important

orollary that the set of equivalene lasses de�ned by Ec is the arrier set of a monoid,

alled the syntati monoid of the language E . Spei�ally, let SM.E denote the set

of equivalene lasses of the relation Ec ; let Ec denote the funtion that maps word u

to the equivalene lass ontaining u , and let 1 denote Ec(ε) . Then

Theorem 160 ( SM.E ,◦, 1 ) is a monoid where produt is de�ned by Ec(u)◦Ec(v)=Ec(uv) .

It is �nitely generated by {a :a∈T :Ec(a)} and the funtion Ec is a monoid homomor-

phism from T ∗
onto SM.E .

✷

Theorem 160 is well-known; we omit the proof, whih is straightforward.

We use the symbol \

◦
" to denote the produt in SM.E beause elements of the

syntati monoid an be identi�ed with relations on l -lasses (or equivalently, relations

on r -lasses) and, indeed, this is how the syntati monoid is onstruted. The details

are somewhat hidden in the �rst part of the proof of Myhill's theorem [RS59, Theorem

1, p.117℄, so let us make them expliit. The fundamental properties are summarised in

the following de�nition and lemma.
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Definition 161 Given language E over alphabet T , we de�ne, for eah word u in

T ∗
, the relation Ctx.u on l -lasses of E by,

〈∀x,y : x∈ T ∗ ∧ y∈ T ∗ : Er(x) Ctx.u Er(y) ≡ Er(xu)=Er(y)〉 .

✷

Of ourse, it is neessary to establish that de�nition 161 is sound: that is, the prop-

erty Er(xu)=Er(y) is independent of the representative element x hosen from the

lass Er(x) . That this is so is an immediate onsequene of the right invariane of Er ,

spei�ally, for all words u ,

Er(xu) = Er(x
′u) ⇐ Er(x) = Er(x

′)

whih we prove as follows. Suppose Er(x) = Er(x
′) . Then, for all words y ,

y∈Er(x
′u)

= { de�nition of Er }

〈∀z : z∈ T ∗ : x ′uz∈E ≡ yz∈E〉

= { assumption: Er(x) = Er(x
′) ,

thus x ′uz∈E ≡ xuz∈E ,

Leibniz }

〈∀z : z∈ T ∗ : xuz∈E ≡ yz∈E〉

= { de�nition of Er }

y∈Er(xu) .

It follows that Er(xu) = Er(x
′u) by set omprehension.

Lemma 162

〈∀u,v : u∈T ∗ ∧ v∈ T ∗ : Ctx.u=Ctx.v ≡ u Ec v〉 .

Proof

Ctx.u=Ctx.v

= { de�nition 161 }

〈∀x,y :: Er(xu)=Er(y) ≡ Er(xv)=Er(y)〉

= { de�nition of Er }
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〈∀x,y :: 〈∀z :: xuz∈E≡yz∈E〉 ≡ 〈∀z :: xvz∈E ≡ yz∈E〉〉

⇒ { y :=xv }

〈∀x :: 〈∀z :: xuz∈E≡xvz∈E〉 ≡ 〈∀z :: xvz∈E ≡ xvz∈E〉〉

= { reexivity of equivales, unit of equivales }

〈∀x :: 〈∀z :: xuz∈E≡xvz∈E〉〉

= { nesting and de�nition of Ec }

u Ec v

= { de�nition of Ec and Er }

〈∀x :: Er(xu)=Er(xv)〉

⇒ { Leibniz }

〈∀x,y :: Er(xu)=Er(y) ≡ Er(xv)=Er(y)〉

= { de�nition 161 }

Ctx.u=Ctx.v .

The lemma follows by mutual impliation.

✷

Lemma 163

〈∀u,v : u∈T ∗ ∧ v∈ T ∗ : Ctx.u ◦Ctx.v = Ctx.uv〉 .

(The symbol \

◦
" here denotes omposition of relations.)

Proof Suppose x∈ T ∗
and z∈T ∗

. Then

Er(x) Ctx.u ◦Ctx.v Er(z)

= { de�niition of omposition of relations }

〈∃y : y∈T ∗ : Er(x) Ctx.u Er(y) ∧ Er(y) Ctx.u Er(z)〉

= { de�nition of Ctx : de�nition 161 }

〈∃y : y∈T ∗ : Er(xu)=Er(y) ∧ Er(yv)=Er(z)〉

= { Er(xu)=Er(y) ∧ Er(yv)=Er(z)

= { de�nition of Er }

〈∀w :: xuw∈E ≡ yw∈E〉

∧ 〈∀w ′ :: yvw ′∈E ≡ zw ′∈E〉
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⇒ { w :=vw ′
, Leibniz }

〈∀w ′ :: xuvw ′∈E ≡ zw ′∈E〉

= { de�nition of Er }

Er(xuv)=Er(z) }

〈∃y : y∈T ∗ : Er(xu)=Er(y) ∧ Er(xuv)=Er(z)〉

= { y :=xu and distributivity of onjuntion over disjuntion }

Er(xuv)=Er(z)

= { de�nition of Ctx : de�nition 161 }

Er(x) Ctx.uv Er(z) .

✷

Lemmas 162 and 163 embody the standard algorithm for onstruting the syntati

monoid. Reall that the equivalene lasses of Er are the states of the mahine of E .

Beginning with the relation Ctx.ε , whih is the identity relation on states of the mahine,

we onstrut the relations Ctx.u for words u in lexiographi order, heking at eah

step that Ctx.u is not equal to Ctx.v for a preeeding word v . Now, by lemma 163, for

u∈T ∗
and a∈T ,

Ctx.ua = Ctx.u ◦Ctx.a

(where \

◦
" denotes the omposition of relations) and

Er(x) Ctx.a Er(y) ≡ δ(Er(x),a)=Er(y) .

Thus, knowing Ctx.u we an alulate Ctx.ua from the transition relation δ de�ned by

the mahine of E . Appendix C gives some examples to illustrate how this is done.

One way of phrasing lemma 162 is that there is an injetive funtion from the equiva-

lene lasses of Ec to relations on the states of the mahine of E . The produt operator

of SM.E , introdued in theorem 160, is suh that, for words u and v ,

Ec(u) ◦Ec(v) = Ec(uv) .

and

Ctx.u ◦Ctx.v = Ctx.uv .

Formally, the two di�erent ourrenes of the symbol \

◦
" have di�erent meanings (be-

ause their types are di�erent) but essentially they are the same. On the other hand, it

is NOT the ase (in general) that Ec(u) ·Ec(v) = Ec(uv) , where the symbol \ · " denotes
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onatenation of languages. (It is the ase that Ec(u) ·Ec(v) ⊆ Ec(uv) but the inlusion

may be proper.) It is for this reason that we have hosen to use the symbol \

◦
" to

denote the produt operator in the syntati monoid.

Note that, although it is onvenient to introdue the syntati monoid here, it is

not relevant to the onstrution of fator graphs. Its onstrution is relevant to the

identi�ation of fator matries/graphs of fators of a language. See setion 7.

6.7 Constructing the Factor Graph

Suppose E is a regular language. The onstrution of the fator graph involves alu-

lating all the left fators of E whilst simultaneously alulating Cmin and Lmin . The

de�nition of Cmin and Lmin in terms of Cmax and Lmax is exploited in this proess

but alulating the full details of the latter matries is avoided as far as possible. In this

setion, we show how this is done.

We illustrate the onstrution using the language ((a+b)∗ ca∗ (a+b))∗ with alphabet

{a,b,c} .

Fig. 6 shows the mahine and anti-mahine for our example language.

l4 l1

l2 l3

a

b

a c
c

b

c

a,b

a,b

r1 r2

r3r4

a,b

c

a

a,b

c

a,b

Figure 6: Mahine and Anti-Mahine of ((a+b)∗ ca∗ (a+b))∗

The mahine and anti-mahine as shown are \all-admissible". This means that in

eah a node has been omitted from whih there is no path to the �nal state. Suh nodes

are said to be inadmissible.

We reall that eah left fator of E is a union of l -lasses of E and eah right fator is

a union of r -lasses of E . Moreover, the l -lasses of E are in one-to-one orrespondene

with the nodes of the mahine of E (the redued, deterministi �nite automaton that

reognises E ) and the r -lasses of E are in one-to-one orrespondene with the nodes of
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the anti-mahine of E (the redued, deterministi �nite automaton that reognises the

reverse of E ). Spei�ally, for a given state of the mahine, the orresponding l -lass is

the set of all words reognised by that state (i.e. the set of all words spelt out by a path

from the start state to the state); for a given state of the anti-mahine, the orresponding

r -lass is the reverse of the set of all words reognised by that state.

The table below names eah l -lass and eah r -lass for our example language.

The names are those used in �g. 6 with the addition of the names l5 and r5 of the

inadmissible states of mahine and anti-mahine, respetively. Next to eah name of an

l -lass or r -lass is an element of the lass. We all these representatives of the lass.

For example, ca is a representative of lass l4 beause the word ca spells out a path

from the start state l1 to the state l4 . Similarly, ca is a representative of r3 beause

its reverse ac spells out a path from the start state r1 to the state r3 .

l-lass representative r-lass representative

l1 ε r1 ε

l2 c r2 a

l3 a r3 ca

l4 ca r4 aca

l5 cc r5 c

After onstruting the mahine and anti-mahine and hoosing representatives of the

l - and r -lasses in this way, the next step is to alulate l⊲ and r⊳ for eah of the

lasses. Eah entry l⊲ is a right fator and thus a union of r -lasses, and eah entry r⊳

is a left fator and thus a union of l -lasses. The table below shows the result of the

alulation for our example language.

l-lass l l⊲ r-lass r r⊳

l1 r1∪ r3∪ r4 r1 l1∪ l4

l2 r2∪ r4 r2 l2∪ l4

l3 r3∪ r4 r3 l1∪ l3∪ l4

l4 r1∪ r2∪ r3∪ r4 r4 l1∪ l2∪ l3∪ l4

l5 ∅ r5 ∅

Calulating the entries is made easy by the use of representatives. Spei�ally, sup-

pose u is the representative of l and v is the representative of r . Then r⊆ l⊲ ex-

atly when uv∈E (whih is easily heked using the mahine of E ). In our example,

l3⊲= r3∪ r4 beause aca and aaca are elements of E but no other onatenation of a
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(the hosen representative of l3 ) and a representative of an r -lass is in E . The same

proess is used to alulate r⊳ for eah r -lass r .

The next step is to determine all the left fators and all the right fators. Simultane-

ously, we alulate the matrix Cmin exploiting the orrespondene between Cmin and

the transitive redution of the subset ordering on left fators. This is the most laborious

proess sine, for eah r -lass r , the set r⊳ is a left fator but there will typially be

more left fators. It is neessary to onsider all subsets of the set of l -lasses to deter-

mine whether or not it is a left fator. Suppose L is a union of l -lasses. Then L is a

left fator of E equivales L = L⊲⊳ . Fortunately this property is straightforward to hek

using the information that has already been omputed. We have

L⊲ = 〈∪l : l⊆L : l〉 ⊲ = 〈∩l : l⊆L : l⊲〉

and, for any R that is a union of r -lasses,

R⊳ = 〈∪r : r⊆R : r〉 ⊳ = 〈∩r : r⊆R : r⊳〉 .

(In these equations, the dummies l and r range over l - and r -lasses, respetively.)

For example,we an ompute from the table above that

(l2∪ l4)⊲ = l2⊲∩ l4⊲ = (r2∪ r4)∩ (r1∪ r2∪ r3∪ r4) = r2∪ r4

and

(r2∪ r4)⊳ = r2⊳∩ r4⊳ = (l2∪ l4)∩ (l1∪ l2∪ l3∪ l4) = l2∪ l4 .

In this way, we have heked that l2∪ l4 is indeed a left fator. However, we have that

(l1∪ l3)⊲ = l1⊲∩ l3⊲ = (r1∪ r2∪ r3)∩ (r3∪ r4) = r3

and

r3⊳ = l1∪ l3∪ l4 .

So (l1∪ l3)⊲⊳ 6= l1∪ l3 and, hene, l1∪ l3 is not a left fator.

Computing the poset of left fators and simultaneously Cmin involves a searh of the

set of subsets of the l -lasses in dereasing order of size. In our example, the sizes of

the subsets range from 5 to 0 . So 25 subsets must be examined. The subsets that are

determined to be left fators are aumulated in a set that we all Γ below.

Beginning with T ∗
(the union of all l -lasses) |whih is always a left fator| as

the only element of Γ , eah subset L is heked for the property L = L⊲⊳ ; if it does,

then the (L, L ′) th entry in Cmin is set to ε for all L ′
in Γ that satisfy L⊆L ′

and there
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is no L ′′
di�erent from L ′

in Γ suh that L⊆L ′′⊆L ′
. On ompletion, all other entries

in Cmin are set to ∅ .

The table below shows for our example language eah left fator as a union of l -

lasses and eah right fator as a union of r -lasses. Fig. 7 shows the reexive-transitive

redution of the subset relation on left fators. The orresponding entries in the matrix

Cmin are ε where there is an edge and ∅ where there is no edge.

Left fator Right fator

L0 T ∗ R0 ∅

L1 l1∪ l2∪ l3∪ l4 R1 r4

L2 l1∪ l3∪ l4 R2 r3∪ r4

L3 l2∪ l4 R3 r2∪ r4

L4 l1∪ l4 R4 r1∪ r3∪ r4

L5 l4 R5 r1∪ r2∪ r3∪ r4

L6 ∅ R6 T ∗

3

6 5

4 2

01

Figure 7: Poset of left fators, Inverted poset of right fators

It is interesting to observe how the onstrution of Cmin provides a non-trivial exam-

ple of the unity of opposites (setion 3.3). Not only is there the one-to-one orrespondene

between left and right fators observed by Conway but there is also an isomorphism be-

tween the poset of left fators and the poset of right fators. Fig. 7 also shows the

reexive-transitive redution of the superset ordering on right fators. Moreover, in�ma

and suprema of left and right fators orrespond in the way predited by the unity-of-

opposites theorem. For example, the supremum of L2 and L3 is L5 ; orrespondingly,

the in�mum of R2 and R3 is R5 .

The next step is to onstrut the matries Lmax and Lmin . Suppose L and L ′
are

left fators; let the fator orresponding to L ′
be R ′

. Then the symbol a is an entry in

the (L, L ′) th position in Lmax if L·a·R ′⊆E . The representatives of the l - and r -lasses
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an be used to hek this property. We have to hek for eah representative u of an

l -lass in L and eah representative v of an r -lass in R ′
whether or not uav∈E . The

symbol a is an entry in the (L, L ′) th position in Lmin if L and R ′
are maximal in

L·a·R ′⊆E . (That is, if left fator L ′′
is suh that L ′′·a·R ′⊆E then L ′′⊆L ′

, and if right

fator R ′′
is suh that L·a·R ′′⊆E then R ′′⊆R ′

.)

The proess of onstruting the fator graph is ompleted by identifying the start and

�nal states: the left fators l and r in (74). The left fator r is the easiest to identify:

formally,

r = 〈∪x :x∈E :Er(x)〉 .

Sine a word x is an element of E if x maps the start state of the mahine of E to a

�nal state, this means that r is the left fator that is represented by the set of l -lasses

orresponding to the �nal states of the mahine. In our example, E= l1∪ l4=L4 , so

this is the value of r . The left fator l is de�ned to be E/E . That is, exploiting the

equation for r ,

l = 〈∪x : Er(x)·E⊆E : Er(x)〉 .

The mahine for E an be used to determine l -lasses that omprise the left fator l .

For eah representative x of an l -lass, determine for eah representative y of an l -lass

in r whether or not xy is an element of E . If this is indeed the ase for all suh y , the

l -lass represented by x is a omponent of the left fator l . In our example, it is easily

veri�ed that the l -lasses l1 and l4 are the only ones that satisfy this riterion. Thus,

E/E= l1∪ l4=L4 . (In general, E=E∗
equivales l= r . This property is appliable to

our example, obviating the need to alulate r separately.)

In summary, the fator graph of our example language is shown in �g. 8.

a,b,c a,b,c

ε

ε

ε

ε

εa

b c

a,b

01

2

3

4

56
ε

ε

Figure 8: Fator Graph
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Before leaving this example, let us note that the fator graph has two inadmissible

nodes: the nodes labelled 0 and 6 in �g. 8 The node labelled 0 is inadmissible be-

ause there are no paths from it to the �nal node of the graph, and the node labelled

6 is inadmissible beause there are no paths to it from the start node of the graph.

\Inadmissible" means that they make no ontribution when using the fator graph as a

(nondeterministi) reogniser of the language.

That ∅ and T ∗
are both left and right fators (and, indeed, also fators) is a general

phenomenon. They an be disregarded in all alulations involving some event E . (For

example, when alulating approximations to E they make no ontribution.) As a result,

we usually omit the orresponding entries in the fator matrix and the orresponding

nodes in the fator graph of an event E .

7 Exploiting the Syntactic Monoid

In setion 6.3, we were fored to speialise the disussion to regular languages (rather

than events in an arbitrary regular algebra). Only by doing so were we able to establish

the existene of a unique starth root of the fator matrix. Calulations with languages

are, however, diÆult. For example, identifying a submatrix of a fator matrix using the

theorems in setion 4 is \deidable" (in the tehnial sense of the word) but deidedly

non-trivial if standard tehniques are used. The alulations beome straight-forward

by translating them into alulations on the \syntati monoid" of the given language.

This setion makes that proess preise.

The main subsetion is setion 7.1 where we relate alulations on fators of a lan-

guage to alulations on the syntati monoid of the language. Setion 7.2 gives several

examples.

7.1 Factors of Sets of c -Classes

We an, of ourse, view the equivalene lasses of Ec as \approximations" of the event

E in the sense of setion 5. Spei�ally, sine the syntati monoid is generated by the

equivalene lasses Ec(a) where a ranges over elements of the alphabet T , the funtion

Ec restrited to domain T is a suitable approximating funtion. The \approximation"

of E that we obtain by instantiating the theorems in setion 5 should then be equal to

E (as a orollary of the fat that E is a union of c -lasses of E ). That is, ontrary to

the normal meaning of the English word \approximation" |whih suggests something

that is less good| , the \approximation" is exat. This is what we do in this setion.

Referring bak to setion 5.1, we make the following instantiations: The alphabet

that indexes approximations is T , the alphabet of E . The algebra R is the algebra

of languages over alphabet T . The algebra S is the powerset algebra with arrier
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set 2SM.E
and underlying monoid (SM.E ,◦, 1 ). (See theorem 160.) The event that we

\approximate" is not E but the set of c -lasses that form E , as de�ned shortly.

The funtion ζc is de�ned by, for all a in T ,

(164) ζc.a = {Ec(a)} .

(We have added the subsript c to emphasise that this is a partiular instane of the

funtion ζ in setion 5.1.)

Note that the extension of ζc to words, as de�ned by equations (117) and (118),

satis�es, for all w in T ∗
,

(165) ζc.w = {Ec(w)} .

The easy proof is by indution on the length of words:

ζc.ε

= { de�nition of the extension of ζc to words }

1S

= { de�nition of powerset algebra S }

{1}

= { Ec is a ongruene relation, ε is the unit of T ∗ }

{Ec(ε)}

and

ζc.(au)

= { de�nition of the extension of ζc to words }

ζc.a ◦ ζc.u

= { de�nition of ζc and indution hypothesis }

{Ec(a)} ◦ {Ec(u)}

= { distributivity of produt over set union in

the powerset algebra of the syntati monoid }

{Ec(a) ◦Ec(u)}

= { Ec is a ongruene relation }

{Ec(au)} .
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Instantiating ζ as above in the de�nitions (119) and (120), we get, for all languages

U ,

(166) ζ
♭

c.U = 〈∪u : u∈U : {Ec(u)}〉

and, for all sets of c -lasses C ,

(167) ζ
♯

c.C = {u | Ec(u)∈C} .

Thus ζ
♭

c.U is a set of c -lasses whilst ζ
♯

c.C is the union of all elements in the c -lasses

in the set C .

For later referene, let us reord the fat that ζ
♭

c distributes through onatenation

of languages:

Lemma 168 For all languages X and Y ,

ζ
♭

c.(X·Y) = ζ
♭

c.X ◦ ζ
♭

c.Y .

Proof We have, for all words u and v ,

ζc.uv

= { (165) }

{Ec(uv)}

= { Ec is a ongruene relation: }

{Ec(u)◦Ec(v)}

= { de�nition of produt in the powerset algebra }

{Ec(u)}◦{Ec(v)}

= { (165) }

ζc.u ◦ζc.v

The lemma follows from theorem 122 with ζ instantiated to ζc
✷

Example 169 (Running Example: Modulo Addition) Fig. 9 is the redued �nite-

state automaton of a regular language. In words, the language E reognised is the set of

strings of a s and b s suh that the di�erene between the number of a s and the number

of b s is not divisible by 6 . Note that we use English rather than regular expressions

to desribe the language E beause this is a lassi example of how omplex regular

expressions an beome. Were we to provide a regular expression denoting the language,

it would be unlikely to be enlightening to the reader!
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a a

a

aa

a

b b

b

bb

b

0

1

2

3

4

5

Figure 9: Automaton reognising indivisibility

The syntati monoid of this language is a group: the group ZZ6 of addition of

numbers in the set {0,1,2,3,4,5} modulo 6 �rst introdued in example 16.

Given a subset N of {0,1,2,3,4,5} , an automaton that reognises the set of words

suh that the di�erene between the number of a s and b s modulo 6 in eah word is an

element of N is obtained simply by hanging the set of �nal states to be those labelled

by an element of N . (The resulting automaton may not be minimal but that is of no

onsequene.) For instane, if the given set N is the empty set, the set of �nal states

would also be hosen to be the empty set. The syntati monoid is either ZZ6 , ZZ3 , ZZ2

or ZZ1 . For instane, if N is {0,1,4,5} , the syntati monoid is ZZ6 and if N is {0,2,4}

the syntati monoid is ZZ2 .

The funtion ζ
♭

c maps an arbitrary language into a subset of {0,1,2,3,4,5} : the number

i is an element of ζ
♭

c.X if there is a word in X suh that the di�erene between the

number of a s and b s in the word is equal to i modulo 6 . Conversely, the funtion ζ
♯

c

maps a subset N of {0,1,2,3,4,5} into a set of words: the set of all words suh that the

di�erene between the number of a s and the number of b s modulo 6 in the word is an

element of N .

In example 16, we explained how to ompute fators in this group. Using theorem 172

below, we an easily alulate fators of the language E as well as fators of fators of E .

For instane, if X is the set of words suh that the di�erene between the number of a s

and the number of b s modulo 6 in the word is 1 or 2 , the fator X\E is ζ
♯

c.
{1,2,3,4,5}

{1,2}
,

whih equals ζ
♯

c.{0,1,2,3} . (Refer bak to example 16 for the alulation of

{1,2,3,4,5}

{1,2}
.)

That is, X\E is the set of words suh that the di�erene between the number of a s and

the number of b s modulo 6 in the word is 0 , 1 , 2 or 3 .

This example an, of ourse, be generalised by replaing \ 6 " by an arbitrary number
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m . As mentioned earlier, eah left fator of ¬{0} orresponds to a subset of {0 ..m−1} .

There are of ourse

(

m
n

)

subsets of {0 ..m−1} of size n . Subsets are divided into groups.

For example, when m= 6 , the subsets {0,2,4} and {1,3,5} form one group, and {0,1,4} ,

{1,2,5} , {2,3,0} , {3,4,1} , {4,5,2} and {5,0,3} form another group. (We leave the reader

the exerise of formulating preisely how many elements there are in eah group given

one element of the group.) The number of times that the fator matrix of {0} ours as

a submatrix of ¬{0} is the number of groups of size m , viz.

〈Σk : 0≤n<m : ⌊
(

m
n

)

/m⌋〉 .

For example, when m= 6 , the the fator matrix of {0} ours as a submatrix of ¬{0} a

total of

0+1+2+3+2+1+0

times (i.e. 9 times). Similar alulations enable the entire struture of the fator matrix

of a language de�ned by a subset N of {0 ..m−1} to be predited. However, only for

the very simplest ase (m= 1 , m= 2 or m= 3 ), is it feasible to display the matrix in

the onventional way; in other ases, it is just too big for human onsumption!

✷

The fat that ζc returns singleton sets means that ζ
♭

c is the left inverse of ζ
♯

c :

Lemma 170 For all sets of c -lasses C ,

ζ
♭

c.(ζ
♯

c.C) = C

Proof

ζ
♭

c.(ζ
♯

c.C)

= { de�nitions (167) and (166) }

〈∪u : u∈ {u |Ec(u)∈C} : {Ec(u)}〉

= { set omprehension }

〈∪u :Ec(u)∈C : {Ec(u)}〉

= { C is a set of c -lasses, de�nition of c -lass }

C .

✷

Conversely, when restrited to fators of E , ζ
♯

c is the inverse of ζ
♭

c :
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Lemma 171 The fators of E are losed elements of the Galois onnetion with

adjoints ζ
♭

c and ζ
♯

c . That is, for all fators F of E ,

ζ
♯

c.(ζ
♭

c.F) = F

Proof Let F be a fator of E . Then

ζ
♯

c.(ζ
♭

c.F)

= { de�nitions: (166) and (167) }

〈∪v :Ec(v)∈ 〈∪u :u∈F : {Ec(u)}〉 : {v}〉

= { assoiativity and symmetry of set union }

〈∪u : u∈F : 〈∪v : Ec(u)=Ec(v) : {v}〉〉

= { Ec is an equivalene relation,

so Ec(u)=Ec(v)≡ v∈Ec(u) }

〈∪u : u∈F : 〈∪v : v∈Ec(u) : {v}〉〉

= { set omprehension }

〈∪u : u∈F : Ec(u)〉

= { F is a fator of E ,

so is a union of c -lasses of E (theorem 159) }

F .

✷

The ombination of lemmas 170 and 171 is that ζ
♭

c and ζ
♯

c are inverse funtions when

restrited to fators of E and sets of c -lasses of E .

As a orollary, we get:

Theorem 172 Let T be an alphabet of symbols and let R denote the powerset

regular algebra with underlying monoid T ∗
. Let E be a language over the alphabet

T with syntati monoid SM.E and let S.E denote the powerset regular algebra with

underlying monoid SM.E . Let ζc be the funtion that maps symbol a in T to {Ec(a)}

as in (164). Then

(173) |E| = ζ
♯

c
• ((ζ

♭

c
• Cmin.E) _∪ (ζ

♭

c
• Lmin.E))

∗ .

Proof

|E|
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= { theorem 158 }

(Cmin.E _∪ Lmin.E)
∗

= { lemma 171 and theorem 26 }

ζ
♯

c
• (ζ

♭

c
• (Cmin.E _∪ Lmin.E))

∗

= { distributivity }

ζ
♯

c
• ((ζ

♭

c
• Cmin.E) _∪ (ζ

♭

c
• Lmin.E))

∗ .

✷

Theorem 172 expresses formally how the syntati monoid is used to alulate the

fator matrix of a language E given the minimal onstant approximation Cmin.E and

the minimal linear approximation Lmin.E .

To understand the signi�ane of the theorem it is vital to observe that the subterm

(ζ
♭

c
• Cmin.E) _∪ (ζ

♭

c
• Lmin.E)

is a matrix in the powerset algebra with underlying monoid SM.E . Thus the alulation

of the reexive, transitive losure of the matrix

(ζ
♭

c
• Cmin.E) _∪ (ζ

♭

c
• Lmin.E)

involves the use of an algorithm that omputes produts and unions of �nite sets of

c -lasses. In partiular, at the level of elements, the star operator maps a �nite set to a

�nite set | unlike for languages where the operator typially maps �nite sets to in�nite

sets. The leftmost term ζ
♯

c then maps the sets of c -lasses into languages. The �rst of

several examples is example 199 below. See, in partiular, �g. 12.

Closure algorithms that an be used are well-known and are doumented in [BC75℄.

But it is not neessary to use a losure algorithm at all sine the elements of the matrix

((ζ
♭

c
• Cmin.E) _∪ (ζ

♭

c
• Lmin.E))

∗

are the fators of ζ
♭

c.E , and these an be alulated diretly in the algebra S . Formally,

this is expressed by theorem 193 below.

Lemma 174 For all fators F of E and all sets of c -lasses C of E ,

C⊆ζ
♭

c.F ≡ ζ
♯

c.C⊆F .

(Note the reversal of

♭
and

♯
. This says that ζ

♭

c is the upper adjoint and ζ
♯

c is the

lower adjoint in a Galois onnetion of the two posets.)

Proof We have:
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C ⊆ ζ
♭

c.F

⇒ { monotoniity }

ζ
♯

c.C ⊆ ζ
♯

c.(ζ
♭

c.F)

= { lemma 171 }

ζ
♯

c.C ⊆ F

⇒ { monotoniity }

ζ
♭

c.(ζ
♯

c.C) ⊆ ζ
♭

c.F

= { lemma 170 }

C ⊆ ζ
♭

c.F .

The lemma follows by mutual impliation.

✷

Lemma 175 For all fators F and G of E ,

F⊆G ≡ ζ
♭

c.F⊆ζ
♭

c.G .

Proof Straight-forward ombination of lemmas 171 and 174.

✷

Lemmas 170, 171, 174 and 175 express in preise, alulational rules the fat that the

lattie of fators of E is represented by a sublattie of the set of sets of c -lasses of E .

In partiular, if E is a regular language and it is required to determine whether or not

F⊆G , for given fators F and G , it suÆes to ompare the �nite sets ζ
♭

c.F and ζ
♭

c.G .

Sine we also know that ζ
♭

c is a regular homomorphism (instantiate theorem 122 with

ζ :=ζc ), the omputation of fators of fators is redued to omputations with �nite sets

using lemma 22. Spei�ally, by instantiating lemma 22 with ζ :=ζc we get:

Lemma 176 For all fators F of E and all languages X and Y ,

(177) X\F/Y = ζ
♯

c.(ζ
♭

c.X\ζ
♭

c.F / ζ
♭

c.Y)

where ζ
♭

c and ζ
♯

c are as de�ned in (166) and (167).

✷

On the right side of (177), ζ
♭

c.X , ζ
♭

c.F and ζ
♭

c.Y are �nite sets of c -lasses (assuming

E is a regular language) and the under and over operators are evaluated in the algebra

S.E (i.e. the powerset algebra with underlying monoid the syntati monoid of E ). Their

omputation thus involves a straight-forward omparison of �nite sets.
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Below we establish additional properties that reverse the roles of ζ
♭

c and ζ
♯

c . In

this way, we establish the preise relationship between alulations with fators and

alulations with sets of c -lasses.

We begin with a negative result: unlike the funtion ζ
♭

c (lemma 168), the funtion

ζ
♯

c does not distribute through produt. We establish this fat by means of an example.

Example 178 (Running Example: The Language (aa)∗ ) Consider the language

(aa)∗ over the alphabet {a} . Its fator matrix (inluding inadmissible entries) was given

in example 82. In �g. 10(b), we show its syntati monoid. This has two elements, whih

we have named \ 1 " and \a ".

{1} {a}

{a}

{1}

a

a
1

a

a
a

{1,a}
{1,a}{1,a}

{1,a}{1,a}

{1,a}
{1,a}

(a) (Anti−)Machine (b) Syntactic Monoid

(c) Factor Matrix

Figure 10: Aspets of the Language (aa)∗

Fig. 10() shows the matrix |ζ♭

c.(aa)
∗| , i.e. the fator matrix

6

where eah entry is

expressed as a set of c -lasses. Now, in the syntati monoid, a◦a= 1 . So, in the

regular algebra S , {a}◦{a}= {1} . Also, ζ
♯

c.{1} = (aa)∗ and ζ
♯

c.{a} = (aa)∗a . If ζ
♯

c were

to distribute over produt, we would have

ζ
♯

c.{a} ·ζ
♯

c.{a} = ζ
♯

c.({a}◦{a}) = ζ
♯

c.{1} = (aa)∗ .

However, this is not the ase. We have:

ζ
♯

c.{a} ·ζ
♯

c.{a} = (aa)∗a(aa)∗a

6

For onsisteny with example 82 we deviate from our usual pratie and inlude edges that are inad-

missible with respet to the language (aa)∗ : these are the edges to or from the top and bottom nodes.
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and

ζ
♯

c.{1}=(aa)∗ .

The two right sides are learly not equal. So we onlude that, in general, ζ
♯

c does not

distribute over produt.

✷

In spite of the above negative result, we an establish an inlusion.

Lemma 179 For all events C and D in the algebra S (i.e. sets of c -lasses),

ζ
♯

c.C · ζ
♯

c.D ⊆ ζ
♯

c.(C ◦D) .

Proof We have, for all events C and D in the algebra S and all words u in T ∗
,

ζ
♯

c.C · ζ
♯

c.D ⊆ ζ
♯

c.(C ◦D)

= { Galois onnetion of ζ
♭

c and ζ
♯

c }

ζ
♭

c.(ζ
♯

c.C · ζ
♯

c.D) ⊆ C ◦D

= { distributity: lemma 168 }

ζ
♭

c.(ζ
♯

c.C) ◦ ζ
♭

c.(ζ
♯

c.D) ⊆ C ◦D

= { lemma 170 }

true .

✷

As a onsequene of lemma 179, ζ
♯

c does distribute through fatorisation.

Lemma 180 For all events B , C and D in the algebra S (i.e. sets of c -lasses),

(181) ζ
♯

c.(B\C) = ζ
♯

c.B\ζ
♯

c.C ,

(182) ζ
♯

c.(C/D) = ζ
♯

c.C/ζ
♯

c.D , and

(183) ζ
♯

c.(B\C/D) = ζ
♯

c.B\ζ
♯

c.C/ζ
♯

c.D .

Proof We show the proof of (181). The other two properties are proved similarly.

First,

ζ
♯

c.(B\C) ⊇ ζ
♯

c.B\ζ
♯

c.C

= { ζ
♯

c is upper adjoint, ζ
♭

c is lower adjoint, fators }

C ⊇ B ◦ ζ
♭

c.(ζ
♯

c.B\ζ
♯

c.C)
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= { lemma 170 }

C ⊇ ζ
♭

c.(ζ
♯

c.B) ◦ ζ
♭

c.(ζ
♯

c.B\ζ
♯

c.C)

= { ζ
♭

c is a monoid homomorphism (theorem 122) }

C ⊇ ζ
♭

c.(ζ
♯

c.B · ζ
♯

c.B\ζ
♯

c.C)

⇐ { fators, monotoniity of ζ
♭

c }

C ⊇ ζ
♭

c.(ζ
♯

c.C)

= { ζ
♭

c is lower adjoint with upper adjoint ζ
♯

c }

true .

Seond,

ζ
♯

c.(B\C) ⊆ ζ
♯

c.B\ζ
♯

c.C

= { fators }

ζ
♯

c.B · ζ
♯

c.(B\C) ⊆ ζ
♯

c.C

⇐ { lemma 179 with C,D := B ,B\C }

ζ
♯

c.(B ◦ B\C)⊆ζ
♯

c.C

⇐ { monotoniity of ζ
♯

c , fators }

true .

The lemma follows by the anti-symmetry of set equality.

✷

As we have just seen, the funtion ζ
♯

c does not distribute through produt but does

distribute through fatorisation (lemma 180). Likewise, the funtion ζ
♭

c distributes

through produt (lemma 168) but |in general| it does not distribute through fatori-

sation. However, if we examine losely the properties of ζ
♯

c that allowed us to prove

lemmas 179 and 180 (for example, it is the upper adjoint in a Galois onnetion with

lower adjoint ζ
♭

c ) we see that the funtion ζ
♭

c enjoys the same properties when its domain

is restrited to the fators of E : see lemmas 174 and 171. Thus we have:

Lemma 184 For all fators F , G and H of E ,

(185) ζ
♭

c.(F\G) = ζ
♭

c.F \ζ
♭

c.G ,

(186) ζ
♭

c.(G/H) = ζ
♭

c.G/ζ
♭

c.H , and

(187) ζ
♭

c.(F\G/H) = ζ
♭

c.F \ζ
♭

c.G/ζ
♭

c.H .
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Proof Repeat the proof of lemma 180 with ζ
♯

c replaed by ζ
♭

c (and vie-versa), hanging

hints as indiated above.

✷

Lemma 188 For all left fators i and j of E ,

ζ
♭

c.i = ζ
♭

c.E / ζ
♭

c.i⊲

and

ζ
♭

c.(i\j) = ζ
♭

c.i \ ζ
♭

c.E / ζ
♭

c.j⊲ .

Thus ζ
♭

c.i is a left fator of ζ
♭

c.E , and ζ
♭

c.(i\j) is a fator of ζ
♭

c.E .

Proof For all sets of c -lasses C and left fators i of E ,

C⊆ ζ
♭

c.i

= { i = i⊲⊳ = E/ i⊲ }

C⊆ ζ
♭

c.(E/ i⊲)

= { lemma 174, fators }

ζ
♯

c.C · i⊲ ⊆ E

= { i⊲ is a fator, lemma 171 (with F := i⊲ ) }

ζ
♯

c.C ·ζ
♯

c.(ζ
♭

c.i⊲) ⊆ E

= { lemma (179) }

ζ
♯

c.(C · ζ
♭

c.i⊲) ⊆ E

= { lemma 174, fators }

C ⊆ ζ
♭

c.E / ζ
♭

c.i⊲ .

Thus, the �rst equality follows by indiret equality. The seond equality follows imme-

diately from (185) and the above equality (with i := j ).

✷

Lemma 188 establishes that ζ
♭

c maps left fators of E to left fators of ζ
♭

c.E . When

restrited to left fators, funtion ζ
♭

c has inverse ζ
♯

c (lemmas 171 and 170). In order to

show that it is an isomorphism it remains to show that ζ
♭

c (restrited to left fators of

E ) is onto the set of left fators of ζ
♭

c.E and, vie-versa, ζ
♯

c (restrited to left fators of

ζ
♭

c.E ) is onto the set of left fators of E . This is shown in lemma 192.
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Lemma 189 For all c -lasses B and D ,

(190) ζ
♭

c.E /D = ζ
♭

c.(E/ζ
♯

c.D) , and

(191) B\ζ
♭

c.E /D = ζ
♭

c.(ζ
♯

c.B\E/ζ
♯

c.D) .

Proof First,

ζ
♭

c.E /D

= { lemma 170 }

ζ
♭

c.(ζ
♯

c.(ζ
♭

c.E /D))

= { (181) }

ζ
♭

c.((ζ
♯

c.(ζ
♭

c.E))/(ζ
♯

c.D))

= { E is a fator of itself, lemma 171 }

ζ
♭

c.(E/(ζ
♯

c.D)) .

The seond part is proved similarly, using (183) instead of (181).

✷

Lemma 192 A set of c -lasses C is a left fator of ζ
♭

c.E equivales C=ζ
♭

c.i for some

left fator i of E . A set of c -lasses C is a right fator of ζ
♭

c.E equivales C=ζ
♭

c.i

for some right fator i of E . The set of c -lasses C is a fator of ζ
♭

c.E equivales

C = ζ
♭

c.i \ζ
♭

c.j for some left fators i and j of E .

Proof We prove the �rst part by mutual impliation. (Dummy D ranges over sets of

c -lasses of E and dummy i ranges over left fators of E .)

C is a left fator of ζ
♭

c.E

= { de�nition }
〈

∃D :: C = ζ
♭

c.E /D
〉

= { (190) }
〈

∃D :: C=ζ
♭

c.(E/(ζ
♯

c.D))
〉

⇒ { (E/(ζ
♯

c.D) ) is a left fator of E , i :=E/(ζ
♯

c.D) }
〈

∃i :: C=ζ
♭

c.i
〉

= { lemma 188 }
〈

∃i :: C = ζ
♭

c.E / ζ
♭

c.i⊲
〉

⇒ { de�nition of left fator }

C is a left fator of ζ
♭

c.E .
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The seond part is proved similarly. For the third part, we alulate as follows. (Dummies

B and D range over sets of c -lasses of E and dummies i and j range over left fators

of E .)

C is a fator of ζ
♭

c.E

= { de�nition }
〈

∃B,D :: C = B\ ζ
♭

c.E /D
〉

= { (191) }
〈

∃B,D :: C = ζ
♭

c.(ζ
♯

c.B\E/ζ
♯

c.D)
〉

⇒ { ( ζ
♯

c.B\E/ζ
♯

c.D ) is a fator of E , (69) }
〈

∃ i,j :: C = ζ
♭

c.(i\j)
〉

= { lemma 184 }
〈

∃ i,j :: C = ζ
♭

c.i \ζ
♭

c.j
〉

⇒ { ζ
♭

c.i and ζ
♭

c.j are left fators of ζ
♭

c.E

(�rst part of this lemma);

fators of fators are fators }

C is a fator of ζ
♭

c.E .

✷

The onlusion is that the fator matrix of E is represented by the fator matrix of

ζ
♭

c.E as expressed formally by:

Theorem 193

(194) |E| = ζ
♯

c
• |ζ

♭

c.E| • ζ
♭

c×ζ
♭

c .

Conversely,

(195) |ζ
♭

c.E| = ζ
♭

c
• |E| • ζ

♯

c×ζ
♯

c .

Finally,

(196) ζ
♭

c
• |E| = |ζ

♭

c.E| • ζ
♭

c×ζ
♭

c

and

(197) ζ
♯

c
• |ζ

♭

c.E| = |E| • ζ
♯

c×ζ
♯

c .
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Proof Reall that |E| is, by de�nition, the under operator ( \ ) in the algebra of

languages restrited to the left fators of E . Similarly, |ζ
♭

c.E| is the under operator in

the algebra S.E (the powerset algebra with underlying monoid the syntati monoid of

E ) restrited to the left fators of ζ
♭

c.E . Equation (194) is thus the statement that for all

left fators i and j of E , ζ
♭

c.i and ζ
♭

c.j are left fators of ζ
♭

c.E and ζ
♯

c.(ζ
♭

c.i \ζ
♭

c.j)= i\j .

(The leftmost under operator is in the algebra S.E and the rightmost under operator

is in the algebra of languages.) It is thus a ombination of lemmas 188, 180 and 171.

Similarly, equation (195) is a ombination of lemmas 180, 188 and 170. Equations (196)

and (197) state, respetively, that the fator matrix of ζ
♭

c.E is obtained by applying

the funtion ζ
♭

c to the entries of the fator matrix of E , and the fator matrix of E is

obtained by applying the funtion ζ
♯

c to the entries of the fator matrix of ζ
♭

c.E .

✷

Corollary 198

|ζ♭

c.E| = ((ζ
♭

c
• Cmin.E) _∪ (ζ

♭

c
• Lmin.E))

∗
• ζ

♯

c×ζ
♯

c .

Proof The theorem is a simple ombination of (195) and (173):

|ζ♭

c.E|

= { (195) }

ζ
♭

c
• |E| • ζ

♯

c×ζ
♯

c

= { (173) }

ζ
♭

c
• ζ

♯

c
• ((ζ

♭

c
• Cmin.E) _∪ (ζ

♭

c
• Lmin.E))

∗ • ζ
♯

c×ζ
♯

c

= { (170) }

((ζ
♭

c
• Cmin.E) _∪ (ζ

♭

c
• Lmin.E))

∗ • ζ
♯

c×ζ
♯

c .

✷

Theorems 172 and 198 form the basis of how we use the syntati monoid to ex-

plore the struture of the fator matrix |E| , for a given event E , before any attempt

to alulating regular expressions denoting eah of its entries. . The matries Cmin.E

and Lmin.E are �rst omputed, and then (by applying the funtion ζ
♭

c to eah entry)

onverted to matries of c -lasses. The losure of this matrix is then alulated in the

algebra S . That is, we ompute

((ζ
♭

c
• Cmin.E) _∪ (ζ

♭

c
• Lmin.E))

∗

in the algebra |�nite| algebra S . (The di�erene between this and the right side of

the equation in orollary 198 is just the indexing of matrix elements: in the former ase,
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elements are indexed by left fators of ζ
♭

c.E and in the latter ase by left fators of E .)

Fators of fators of ζ
♭

c.E an then be omputed and their fator matries identi�ed. The

(1{1) orrespondene between fators of E and fators of ζ
♭

c.E (lemmas (170) and (171))

means that the results an then be used to ompute the fator graphs of the fators of

E .

7.2 Use of the Syntactic Monoid

This setion illustrates the theorems and lemmas in setion 7.1 by means of examples.

Example 199 Consider the language E reognised by the mahine shown in �g. 11(a).

Its anti-mahine and syntati monoid are shown in �gs. 11(b) and (), respetively.

(Inadmissible nodes are omitted in all three of these �gures. See below.) The nodes of

eah graph are labelled by representative elements: those of the mahine are labelled

by a representative element of the l -lass to whih the node orresponds; those of the

anti-mahine are labelled by a representative element of the r -lass to whih the node

orresponds ; and those of the syntati monoid are labelled by a representative element

of the syntati monoid to whih the node orresponds. (The representative of an r -

lass is the reverse of a word from the start state to the orresponding node in the

anti-mahine. In this ase, the simpliity of the anti-mahine means that it is a poor

illustration: in �g. 11, the nodes are labelled ε , a and b . These are the shortest words

from the start state to the orresponding node but all are the reverse of themselves. A

better illustration would be to take, for example, ab as the representative of the r -lass

ontaining b. This is the reverse of the word ba from the start state to the node labelled

b in �g. 11. But this node is inadmissible. For the other two states, all representative

elements are their own reverse.)

The mahine and anti-mahine eah have one inadmissible node: a node from whih

there are no paths to the �nal state. In the mahine, the representative element of

the inadmissible node is bab and in the anti-mahine it is b . Correspondingly, there

is one inadmissible element of the syntati monoid: a c -lass that is an element of

inadmissible fators only. Our pratie is to always omit inadmissible elements from the

�gures sine it is always safe to do so.

In the following table, we ompute the value of l⊲ and r⊳ for eah l -lass l and

eah r -lass r .

l-lass l l⊲ r-lass r r⊳

El(ε) Er(ε)∪Er(a) Er(ε) El(ε)∪El(ba)

El(b) Er(a) Er(a) El(ε)∪El(b)

El(ba) Er(ε)
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a
a

a
ab ab

b

b

a

a

a

a

ε a
a

a
b

b

b

(c) Semigroup (Syntactic Monoid)

ε

ba

b

(b) Anti−machine

b a

(a) Machine

bε b ba
a

a

a

Figure 11: Mahine, Anti-Mahine and Syntati Monoid

From this table, we dedue that E has �ve left fators, whih we divide into two

sets: the empty set ∅ and {a,b}∗ form one set, the inadmissible left fators, and El(ε) ,

El(ε)∪El(b) , and El(ε)∪El(ba) form the seond set, the admissible left fators. (The

language {a,b}∗ is, of ourse, the union of all l -lasses.)

The orresponding right fators of the inadmissible fators are, respetively, {a,b}∗

and ∅ . The orresponding right fators of the admissible left fators are, respetively,

Er(ε)∪Er(a) , Er(a) and Er(ε) .

Conway's best onstant+linear approximation to the fator matrix an now be easily

dedued and then redued to the fator graph. This is shown in �g. 12(a); given start

and �nal nodes (indiated in the usual way), this is a non-deterministi reogniser of the

language E . (Nodes are labelled by representatives of the l -lasses.)

Displayed as a two-dimensional array, and omitting inadmissible rows and olumns,

the matrix

(ζ
♭

c
• Cmin.E) _∪ (ζ

♭

c
• Lmin.E)

in theorem 172 is thus:
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{ε,a,ba,aba}

{ε,aba}

{ε,a,b,ab}

{ε,b}

a
ε ε

a
ε,b b

ε

a

ε,ba

{ε ,a}

{a,ba}

{a,ab}

(b) Factor Matrix(a) Factor Graph

Figure 12: Fator Graph and its Closure in the Algebra S







{a} {ε} {ε}

∅ {b} {a}

∅ {a} ∅







Note that we hoose a shortest word in the orresponding equivalene lass to name

elements of the syntati monoid.

The losure of this matrix |the matrix |ζ
♭

c.E|| is alulated by hasing paths in

the fator graph. The result is shown in �g. 12(b). Hopefully the reader an see how

easily this is done: eah entry is a set of c -lasses, and the representative element u of

a c -lass is an element of the (i, j) th entry if there is a path spelling u from i to j

in the fator graph. More onventionally, displayed as a two-dimensional array, it is the

following:







{ε,a} {ε,a,b,ab} {ε,a,ba,aba}

∅ {ε,b} {a,ba}

∅ {a,ab} {ε,aba}







Note that E is represented by {ε,a,ba,aba} . That is,

E = Ec(ε)∪Ec(a)∪Ec(ba)∪Ec(aba) .

The left fator l in Conway's theorem is El(ε) (whih equals Ec(ε)∪Ec(a) ) and the left

fator r is El(ε)∪El(ba) ; E is the entry indexed by the pair (l, r) (whih, in this ase,

equals r ).

We an use a standard elimination algorithm to ompute entries in the fator matrix

from the fator graph as regular expressions. Eliminating the nodes of �g. 12 from

bottom to top and left to right, the regular expressions obtained for the left fators and
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their orresponding right fators are shown in the table below (in the reverse order of

their alulation).

left fator right fator

a∗ a∗ · ((b+a·a)∗ ·a + ε + a · (b+a·a)∗ ·a)

a∗ · (b+a·a)∗ (b+a·a)∗ ·a

a∗ · ((b+a·a)∗ ·a + ε + a · (b+a·a)∗ ·a) ε + a · (b+a·a)∗ ·a

The language E reognised by �g. 11(a) is the last entry in the list of left fators and

the �rst entry in the list of right fators. (The expressions have been simpli�ed using

the fat that ε is the unit of produt, that ∅∗= ε and that ∅ is the zero of produt. We

assume that these properties are always exploited. No other simpli�ations have been

made.)

As is often the ase with the use of elimination algorithms, the regular expressions

in the above table are quite omplex. By exploiting our insights into fators of fators

together with the syntati monoid, simpler expressions an be obtained | in a non-ad

ho way. Let us explain how this is done.

The fat that the fator graph is not strongly onneted immediately suggests how

to deompose it into simpler fator graphs of fators. Spei�ally, the fator graph (�g.

12(a)) is a ombination of two fator graphs: the fator graphs of a∗
and (b+a·a)∗ .

See �g. 13. (Note that, as is our usual pratie, inadmissible fators ∅ and T ∗
have

been omitted from both graphs. If the alphabet T is {a} , the fator graph of a∗
has no

inadmissible nodes; however, in this ase, the alphabet is {a,b} .)

a

a

a
b

Figure 13: Fator Graphs of Fators

Our algorithm alulates the losure of eah of these fator graphs and then seeks
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to �ll in remaining entries in the fator matrix using the syntati monoid. This is the

motivation for alulating the fator matrix in the algebra S shown in �g. 12(b).

Now, as indiated in �g. 12(b), the entry of interest is {ε,a,ba,aba} . But

{ε,a,ba,aba} = {ε,aba}∪ {a,ba}

and both {ε,aba} and {a,ba} are entries in the fator matrix of (b+a·a)∗ . Reg-

ular expressions denoting these entries are alulated to be ε + a · (b+a·a)∗ ·a and

(b+a·a)∗ ·a , respetively. Thus a regular expression denoting our language E is

(200) ε + a · (b+a·a)∗ ·a + (b+a·a)∗ ·a .

This is simpler than the expression obtained by applying a standard elimination algo-

rithm: the expression

(201) a∗ · ((b+a·a)∗ ·a + ε + a · (b+a·a)∗ ·a)

in the table above. We leave it to the reader to hek that both expressions denote the

same language.

Remark This example is example 2 in [LS02℄. One reason for inluding the example in

detail here is that the fatorisations given in [LS02, example 2℄ obsure a basi property

of the fator matrix, namely that every event is both a left and right fator of itself. This

means that the language reognised by the fator graph should always appear both in

the list of left fators and in the list of right fators. In [LS02, example 2℄, the language

reognised does appear twie but this is far from lear: the list of left fators inludes

the expression

(ε + b∗ ·a) · (a ·b∗ ·a)∗

and the list of right fators inludes the expression

ε + a∗ · (a·a+b)∗ ·a .

In fat, these expressions are equal |in the sense that they denote the same language|

but this is ertainly not obvious

7

. They are also equal to the expressions on the right

sides of (200) and (201). Whih expression is the \best" is not important. What is

important, however, is that the two ourrenes of the language reognised are denoted

by idential expressions.

7

In an earlier draft (January 2017), I laimed that there were \obvious errors" in [LS02, example 2℄,

but without giving further explanation. The \obvious error" I was referring to is that the expressions are

not idential. I should, however, have taken more are to hek whether or not the expressions denote the

same language (whih they do); instead, I jumped to the onlusion that one or both was inorret, for

whih I apologise.
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Another reason for inluding it here is to observe that the fator graph has a unique

start state and a unique �nal state; in [LS02, example 2℄, the graph displayed is Lmax.E

but all three nodes are identi�ed as start states and two nodes are identi�ed as �nal

states. This more fundamental di�erene is disussed further in setion 10.

End of Remark

✷

Example 202 Lombardy and Sakarovith disuss a losely related example [LS08, ex-

ample 5.7℄. Sine the alulations are very similar to those in example 199, we summarise

the alulations briey here, leaving the details to the reader.

Consider the language E denoted by the regular expression

a∗ · (a·a+b)∗ ·a∗ .

The mahine, syntati monoid and fator graph are shown in �g. 14. (The language

is its own reverse so the anti-mahine and mahine are idential. Take are, however,

when hoosing representatives of the r -lasses. The syntati monoid has an additional

element to those shown in the �gure, with representative bab . Sine it is not an element

of the c -lasses of any admissible fator, it has been omitted.)

As in example 199, the languages denoted by a∗
and (a·a+b)∗ are fators; their

fator graphs are shown in �g. 13. The fator matrix, as represented by sets of c -lasses

(that is, the matrix |ζ
♭

c.E| ) is the following :










{ε,a} {ε,a,b,ab} {ε,a,ba,aba} {ε,a,b,ab,ba,aba}

∅ {ε,b} {a,ba} {ε,a,b}

∅ {a,ab} {ε,aba} {ε,a,aba}

∅ ∅ ∅ {ε,a}











(The nodes of the fator graph have been taken in order from bottom to top and

from left to right.) As indiated in the onventional way by the start and �nal nodes in

the fator graph, the language E is represented by {ε,a,b,ab,ba,aba} . Now,

{ε,a,b,ab,ba,aba} = {ε,b}∪ {a,ab}∪ {a,ba}∪ {ε,aba} .

The right side is the set union of the middle four terms in the fator matrix: the four

admissible fators of (a·a+b)∗ . Exploiting this fat, it suÆes to alulate regular

expressions denoting the entries in the fator matrix of (a·a+b)∗ and add them together

to get a regular expression for the language E . This is a slight improvement on the

expression alulated using a standard elimination algorithm.

(Intriguingly, we have

{ε,a,b,ab,ba,aba} = {ε,a}◦{ε,b}◦{ε,a}
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Figure 14: Mahine, Syntati Monoid and Fator Graph

and

ζ
♯

c.{ε,a,b,ab,ba,aba} = ζ
♯

c.{ε,a} ·ζ
♯

c.{ε,b} ·ζ
♯

c.{ε,a} .

So, in this ase, the funtion ζ
♯

c does distribute through produt. The right side gives the

regular expression a∗ · (a·a+b)∗ ·a∗
for the language E . However, as shown in example

178, the funtion ζ
♯

c does not distribute through produt in general. Theorems that

predit when the distributivity law does hold might prove very useful in determining

more ompat regular expressions.)

✷
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8 The Rank of a Subfactor Graph

We showed in setion 4 that the fator matrix of a fator is represented by a submatrix

of the fator matrix. We now turn our attention to the fator graph of a fator of E .

It is not the ase that the fator graph of a fator of E is a subgraph of the fator

graph of E We prove, however, that the so-alled yle rank of the fator graph of a

fator of E is at most the yle rank of the fator graph of E . This then enables us in

setion 9 to derive a losure algorithm that alulates the fator matrix of E from its

fator graph in suh a way that the star-height of all the resulting regular expressions does

not exeed the yle rank of the fator graph and, in some ases, may be stritly smaller.

The basis of our proof is the onstrution of a so-alled pathwise homomorphism of the

fator graph of E .

8.1 Cycle Rank and Pathwise Homomorphism

The notions of yle rank and pathwise homomorphism were introdued by Eggan

[Egg63℄ and MNaughton [MN67℄, respetively. In this subsetion we reall the def-

initions and MNaughton's theorem.

A subgraph of a graph G is a graph determined by a subset of the nodes of G ;

the edges of the subgraph are those edges of G that are both to and from a node in

the given subset. A subgraph is proper of G if it is not equal to G . A graph G is

strongly onneted if there is a path of edge-length at least 1 from x to y for every

pair of nodes x and y in G . A setion of a graph is a strongly onneted subgraph of

G that is not a proper subgraph of any strongly onneted subgraph of G .

Definition 203 (Rank of a Graph) Suppose G is a graph. The (yle) rank of G

is a natural number de�ned as follows.

(i) If G is not strongly onneted, then

(a) If G has no strongly onneted subgraph then the rank of G is 0 .

(b) Otherwise, the rank of G is the maximum rank of all the setions of G .

(ii) If G is strongly onneted, then the rank of G is n+1 where n satis�es

(a) G does not have rank m for any m that is at most n .

(b) G has a node x whose deletion from G results in a graph of rank n .

✷
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Theorem 204 (Eggan’s Theorem) Consider the use of the esalator method

8

to

alulate G∗
for a given transition graph G . Then

(a) for a suitable ordering of the nodes of G , the resulting regular expressions for all

entries i G∗ j have star-height at most the rank of G .

(b) If the graph G is all-admissible for nodes i and j (that is, for every node k in G ,

there is a path from i to k and a path from k to j ) then, for a suitable ordering

of the nodes, the resulting entry i G∗ j has star-height equal to the rank of G .

Proof (Outline) The de�nition of rank determines an order of elimination of the

nodes of G . This is the ordering referred to in the theorem. The proof |whih is

straightforward| proeeds by indution on the rank.

✷

Note that the de�nition of rank makes no referene to the edge labels; it is purely

about the onnetivity of a graph. That is, it is a funtion on the relation on nodes

de�ned by the edges of the graph. Spei�ally, a transition graph G de�nes a binary

relation Rel.G on nodes by i Rel.G j ≡ i G j 6= ∅ for all nodes i and j and it is this

relation on whih the rank is de�ned. Eggan's theorem does, however, assume that the

graph is a transition graph: that is, edges are labelled by subsets of T∪{ε} , where T is

an alphabet of symbols. In fat, Eggan assumes that edge labels are subsets of T . The

theorem is una�eted by allowing the empty word to be inluded

9

; aordingly, we relax

the assumption (as does MNaughton [MN67℄).

We emphasise the use of the esalator method beause it is an instane of what

we all an elimination method. Elimination methods for alulating G∗
all have diret

ounterparts of methods used in linear algebra (for example, so-alled Gauss-Seidel elim-

ination) to invert a (real) matrix [BC75℄. Their validity depends on algebrai properties

ommon to both real numbers and languages. That means they do not exploit properties

of languages like the idempoteny of set union that are not enjoyed by real numbers.

In appendix B, we formulate the essential harateristis of an elimination method and

show that, using any elimination method to ompute G∗
, the rank of the graph reets

the best that one an do in respet of the star-height of the resulting expressions. How-

ever, as we show, there is an algorithm to ompute the losure of the fator graph that

yields regular expressions that have star-height at most the rank of the fator graph and

may have star-height less than its rank.

8

Eggan's paper [Egg63℄ inludes the desription of an algorithm to ompute G
∗
; this algorithm has

beome known as the \esalator method".

9

Stritly, this statement is inorret if the algorithm exploits the property that ε∗ = ε . The opportunity

to exploit this property is rare and ertainly does not our when the transition graph is de�nite, whih

is the ase for fator graphs.
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In this setion we prove that the rank of the fator graph of a fator of E is at most

the rank of the fator graph of E . We appeal to a basi theorem due to MNaughton

[MN69℄, namely that the rank of graph G ′
is at most the rank of graph G if there is

a so-alled \pathwise homomorphism" from G to G ′
.

For our purposes a slightly simpler de�nition of pathwise homomorphism suÆes:

Definition 205 (Pathwise Homomorphism: McNaughton) Suppose G and G ′

are graphs. A pathwise homomorphism of G onto G ′
is a funtion f from the nodes

of G to the nodes of G ′
suh that the following two onditions hold:

(a) If there is an edge in G from u to v then there is an edge in G ′
from f.u to f.v .

(b) If there is a path from node x to node y in G ′
, there is a path from u to v in G

for some nodes u and v suh that f.u=x and f.v=y .

✷

De�nition 205 is simpler than MNaughton's in that MNaughton requires the domain

of f to be the nodes and the edges of G ′
. When applied to an edge of G ′

, MNaughton

allows f to be either an edge of G or a node of G , and weakens requirement (b)

aordingly; de�nition 205 disallows the seond possibility. .

Theorem 206 (McNaughton’s Pathwise Homomorphism Theorem) Suppose G

and G ′
are graphs. Then the rank of G is at least the rank of G ′

if there is a pathwise

homomorphism of G onto G ′
.

Proof It is easy to hek that a pathwise homomorphism aording to our de�nition

is a pathwise homomorphism aording to MNaughton's de�nition. So the theorem

follows from [MN67, theorem 3℄.

✷

We also need the following simple theorem [MN69, theorem 2.4℄.

Theorem 207 The rank of graph G is at most the rank of transition graph G ′
if G

and G ′
have the same set of nodes and the set of edges of G is a subset of the set of

edges of G ′
.

Proof Straightforward from the de�nition of rank.

✷

From a alulational viewpoint, it is desirable to exploit the algebra of regular lan-

guages to the full: spei�ally, the fat that matries of regular events form a regular

algebra. To this end, we reformulate a alulational form of de�nition 205. Spei�ally,

the de�nition of pathwise homomorphism that we use is as follows.
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Definition 208 (Pathwise Homomorphism: Calculational) Suppose G and G ′

are graphs with node sets N and N ′
, respetively. A pathwise homomorphism of G

onto G ′
is a funtion f from N to N ′

suh that the following onditions hold:

(a) IN ′ = f ◦ f∪ ∧ IN ⊆ f∪ ◦ f ,

(b) G _⊆ (Sel.f)∪⊗G ′⊗Sel.f , and

(c) (G ′)∗ _⊆ Sel.f⊗G∗⊗ (Sel.f)∪ .

If a pathwise homomorphism exists from G onto G ′
, we say that G ′

is pathwise

homomorphi to G .

✷

Our de�nition of pathwise homomorphism appears to be striter than MNaughton's

sine the inequality IN ′ ⊆ f ◦ f∪ implied by property 208(a) states formally that f is

surjetive. However, as remarked by MNaughton, beause there is a path from every

node to itself in a graph |the empty path| ondition 208() implies that a pathwise

homomorphism f is neessarily surjetive. The remaining inequalities in 208(a) are

alulational formulations of the property that f is funtional and total. Condition

208(a) is the same as MNaughton's ondition 205(b) and ondition 208() is the same

as 205(b).

8.2 The Pathwise Homomorphism

Suppose F is a fator of E . We show that the fator graph of F has rank at most the

rank of the fator graph of E . Spei�ally, we onstrut a graph G ′
that is pathwise

homomorphi to the fator graph of E and then show that the fator graph of F is a

subgraph of G ′
.

Throughout this setion, we use FG.F to denote the fator graph of F . Similarly for

FG.E . We assume that F= s\t where

(209) s = t/(s\t) ∧ t⊲ = (s⊲ / t⊲) \ s⊲ .

(See lemma 86.) Reall that the nodes of the fator graph of a language are the left

fators of that language.

We de�ne the funtion γ from left fators of E to left fators of F by γ.i = F/(i\t) .

(See (100).) Reall theorem 106 whih states that γ is a total, surjetive funtion

mapping the left fators of E onto the left fators of F . The graph G ′
is de�ned by:

(210) G ′ = Sel.γ⊗FG.E⊗ (Sel.γ)∪ .
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Informally, the nodes of G ′
are the left fators of F ; there is an edge labelled x from

i ′ to j ′ in G ′
if, for some left fators i and j of E , there is an edge labelled x from i

to j in the fator graph of E and

i ′=γ.i ∧ j ′=γ.j .

Formally, for all left fators i ′ and j ′ of F ,

(211) i ′ G ′ j ′ = 〈∪ i,j : i ′=γ.i ∧ j ′=γ.j : i FG.E j〉

where the dummies i and j range over left fators of E .

The graph G ′
ats as an intermediary between the fator graph of E and the fator

graph of F . We begin by relating G ′
to the maximal onstant+linear approximation,

Cmax.F _∪ Lmax.F , to the fator matrix of the event F . Spei�ally:

Lemma 212

G ′
_⊆ Cmax.F _∪ Lmax.F .

Proof

G ′
_⊆ Cmax.F _∪ Lmax.F

= { de�nition: (210) }

Sel.γ⊗FG.E⊗ (Sel.γ)∪ _⊆ Cmax.F _∪ Lmax.F

⇐ { γ is a surjetive funtion onto the set of left fators of F ;

so, by (32) and (30), Sel.γ⊗ (Sel.γ)∪ = IL.F

monotoniity of matrix produt }

FG.E _⊆ (Sel.γ)∪⊗ (Cmax.F _∪ Lmax.F)⊗Sel.γ .

Continuing with the right side of the above inequality, we have:

(Sel.γ)∪⊗ (Cmax.F _∪ Lmax.F)⊗Sel.γ

= { de�nition of Cmax.F _∪ Lmax.F (see theorem 158)

lemma 114 }

(Sel.γ)∪⊗ (Sel.γ⊗ |E|⊗ (Sel.γ)∪ _∩ Mat.(T∪{ε}))⊗Sel.γ

= { Sel.γ is a onstant matrix, length onsiderations }

((Sel.γ)∪⊗Sel.γ⊗ |E|⊗ (Sel.γ)∪⊗Sel.γ) _∩Mat.(T∪{ε})

_⊇ { γ is a total funtion with domain the set of left fators of E ;
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so, by (33), (Sel.γ)∪⊗Sel.γ _⊇ IL.E

monotoniity of matrix produt and intersetion }

|E| _∩Mat.(T∪{ε})

_⊇ { by de�nition (see theorem 158), FG.E _⊆ |E| _∩Mat.(T∪{ε}) }

FG.E .

Combining the two alulations, the proof is omplete.

✷

Lemma 212 exploits the surjetivity of γ to bound G ′
from above. Now we exploit

its totality to bound it from below. We have:

Lemma 213

(FG.F)∗ = Sel.γ⊗ (FG.E)∗⊗ (Sel.γ)∪ _⊆ (G ′)∗ .

Proof

(G ′)∗

= { de�nition: (210) }

(Sel.γ⊗FG.E⊗ (Sel.γ)∪)∗

_⊇ { γ is a total funtion of type L.F←L.E , lemma 36 }

Sel.γ⊗ (FG.E)∗⊗ (Sel.γ)∪

= { FG.E is the fator graph of E ,

so (FG.E)∗ is the fator matrix of E }

Sel.γ⊗ |E|⊗ (Sel.γ)∪

= { theorem 114 }

|F|

= { FG.F is a starth root of |F| }

(FG.F)∗ .

✷

Corollary 214

(FG.F)∗ = (G ′)∗ = |F| .

It follows that FG.F _⊆G ′
and the rank of G ′

is at least the rank of FG.F .
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Proof From lemmas 213 and 212 (and monotoniity of the star operator), we have

(FG.F)∗ _⊆ (G ′)∗ _⊆ (Cmax.F _∪ Lmax.F)
∗ .

But FG.F and Cmax.F _∪ Lmax.F are both starth roots of |F| . (See theorem 158 .) So all

of (FG.F)∗ , (G ′)∗ and (Cmax.F _∪ Lmax.F)
∗
are equal to |F| . It follows that FG.F _⊆G ′

beause FG.F is the least starth root of |F| (theorem 158). That the rank of FG.F is

at most the rank of G ′
is a simple appliation of theorem 207.

✷

Lemma 215 G ′
is pathwise homomorphi to FG.E . Hene, the rank of FG.E is at

least the rank of G ′
.

Proof Referring to the de�nition of pathwise homomorphism (de�nition 208), we

instantiate G to FG.E and the funtion f to γ ; G ′
is as in (210). The funtion γ is,

indeed, a total, surjetive funtion from the left fators of E (the node set of FG.E ) to

the left fators of F (the node set of G ′
), as proved in theorem 106. This is part (a) of

the de�nition. Part (b) is established as follows:

(Sel.γ)∪⊗G ′⊗Sel.γ

= { (210) }

(Sel.γ)∪⊗Sel.γ⊗FG.E⊗ (Sel.γ)∪⊗Sel.γ

_⊇ { γ is total, i.e. (Sel.γ)∪⊗Sel.γ _⊇ IL.E }

FG.E .

Part () is established as follows.

(G ′)∗

= { orollary 214 }

(FG.F)∗

= { lemma 213 }

Sel.γ⊗ (FG.E)∗⊗ (Sel.γ)∪ .

(That is, we have established an equality rather than just an inlusion.) This ompletes

the veri�ation of all three parts of the de�nition of pathwise homomorphism.

Applying MNaughton's theorem (theorem 206) we onlude that the rank of FG.E

is at least the rank of G ′
.

✷
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Theorem 216 The rank of the fator graph of an event is at least the rank of the

fator graph of any fator of the event.

Proof Suppose E is an event and F is a fator of E . Let G ′
be as de�ned in (210),

let FG.F be the fator graph of F and let FG.E be the fator graph of E . By lemma

215, the rank of FG.E is at least the rank of G ′
and, by orollary 214, the rank of G ′

is at least the rank of FG.F . The theorem follows by transitivity of the at-least relation.

✷

9 Closure Algorithm

In this setion we present a losure algorithm for determining the fator matrix of a

regular event that onstruts a regular expression for the event with star-height at most

the rank of the fator graph of the event. We provide examples that demonstrate that

the star-height may be stritly less than the rank of the fator graph. We also provide

an example that shows that the algorithm does not always yield a regular expression of

minimal star-height.

Aside The starting point for our losure algorithm is the fator graph of the given

language. This is a better starting point than Conway's best onstant+linear approxi-

mation to the fator matrix beause, in general, the yle rank of the fator graph may

be stritly smaller than the yle rank of the best onstant+linear approximation. This

is demonstrated by �g. 15 whih depits both the best onstant+linear approximation

to the fator matrix of a∗a (assuming alphabet {a} ) and the fator graph of a∗a .

a a

a a

εε,a

Figure 15: Best onstant+linear approximation (left) and fator graph (right) of a∗a .

The best onstant+linear approximation has yle rank 2 whereas the fator graph

has yle rank 1 . End of Aside

Suppose G is a graph with at least two nodes. Suppose we split the nodes of G into

two distint subsets M and N , say. This splits G into four subgraphs of dimension

M×M , M×N , N×M and N×N . Let these be denote by a , b , c and d , respetively.

Suppose we split G∗
in the same way into four subgraphs of dimension M×M , M×N ,
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N×M and N×N and denote them by A , B , C and D . That is, suppose

[

a b

c d

]∗

=

[

A B

C D

]

Then

B = A ·b ·d∗

C = d∗ ·c ·A

D = d∗ + d∗ · c ·A ·b ·d∗

An elimination method would use the formula

A = (a + b ·d∗ · c)∗

to omplete the set of equations. It is the use of this formula that gives rise to nested

star terms in the resulting regular expressions

10

. If we an use an alternative means of

alulating A then we may be able to do better.

This is indeed the ase when G is the fator graph of an event E and A is the

fator matrix of a subfator F of E . In that ase, let G ′
be the fator graph of F .

Then A=(G ′)∗ . And, of ourse, this proess an be applied reursively both to the

alulation of (G ′)∗ and to the alulation of d∗
.

9.1 An Example

Let us show how this is done. Fig. 16 is the fator graph of T ∗abaab where T = {a,b} ,

omitting inadmissible nodes. It is the reogniser that underlies the Knuth-Morris Pratt

algorithm [KMP77℄ when used to searh for ourrenes of the pattern abaab in a text

11

.

The \bakbone" of the reogniser is formed by the edges labelled in order from left to

right by the suessive symbols of the pattern. The edges labelled by the empty word at

as \failure" transitions: when a symbol in the text fails to math a symbol in the pattern,

the empty-word transitions are followed until a mathing transition beomes possible

[BL77, Ba16℄. Even though some edges are labelled by the empty word, the reogniser

is still \deterministi" in the sense that at no stage is there a hoie of transition and

nor is there ambiguity in when a word has been reognised.

10

We assume that when d is a 1×1 matrix with entry ∅ , the fat that ∅∗ is the unit of produt is

exploited so that b ·d∗ · c is simpli�ed to b·c .
11

For more details of Aho and Corasik's algorithm, see [BL76, BL77℄. Essentially, given a �nite set of

words W over alphabet T , their algorithm omputes the fator graph of T∗·W . But there is a slight

ompliation: there is a left-to-right bias in the Aho-Corasik algorithm. So, to make the orrespondene

preise, it is neessary to append a distinguishing terminal symbol to eah word in W.
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a b a a

b

ε
ε

1 2 3 4 5

ε

ε

Figure 16: Fator Graph of T ∗abaa (omitting inadmissible node).

The yle rank of �g. 16 is 2 . That is, if we use an elimination tehnique to ompute

its losure, the regular expression we obtain for T ∗abaa would have star-height at least

2 . It would be a muh more omplex expression, making it diÆult to reognise that it

denotes the same language! The nodes in �g. 16 have been numbered in the order that

we intend to eliminate them. We now show how we an reover the expression T ∗abaab

from the graph by exploiting theorem 98.

Obviously, T ∗
is a fator of T ∗abaa . Also obvious in �g. 16 is that T ∗

is the set

of words that spell (sequenes of) transitions from node 1 to itself. That is, the fator

matrix of T ∗
is the submatrix of the fator matrix of T ∗abaa identi�ed by the single

node 1 . In other words, the fator matrix of T ∗
is the (1, 1) th entry in the fator matrix

of T ∗abaa . Its fator graph is shown in �g. 17.

1

a,b

Figure 17: Fator Graph of T ∗
.

The remaining left fators of T ∗abaa are T ∗a , T ∗ab , T ∗aba , and T ∗abaa ; their

fator graphs are the subgraphs of �g. 16 de�ned by the subsets {1,2} , {1,2,3} {1,2,3,4} ,

{1,2,3,4,5} , respetively, of the nodes of the graph.

Below we show the submatries of the fator matrix of T ∗abaa obtained by om-

puting the fator matries of T ∗
, T ∗a , T ∗ab , T ∗aba , and T ∗abaa in turn, as detailed

above. From the seond stage onwards, the matrix A is the fator matrix that has just

been omputed. One simpli�ation has been made in the entries: the fat that the empty

word (or, stritly, the set ontaining the empty word) is the unit of multipliation has

been exploited. For example, the entry T ∗a in the seond matrix is a simpli�ation of

εT ∗a .
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[

T ∗

]

[

T ∗ T ∗a

T ∗ ε+ T ∗a

]







T ∗ T ∗a T ∗ab

T ∗ ε+T ∗a (ε+T ∗a)b

T ∗ T ∗a ε+T ∗ab

















T ∗ T ∗a T ∗ab T ∗aba

T ∗ ε+T ∗a (ε+T ∗a)b (ε+ T ∗a)ba

T ∗ T ∗a ε+T ∗ab (ε+ T ∗ab)a

T ∗ T ∗a (ε+T ∗a)b ε + (ε+T ∗a)ba

























T ∗ T ∗a T ∗ab T ∗aba T ∗abaa

T ∗ ε+T ∗a (ε+T ∗a)b (ε+ T ∗a)ba (ε+ T ∗a)baa

T ∗ T ∗a ε+T ∗ab (ε+ T ∗ab)a (ε+ T ∗ab)aa

T ∗ T ∗a (ε+T ∗a)b ε + (ε+T ∗a)ba (ε + (ε+ T ∗a)ba)a

T ∗ ε+T ∗a (ε+T ∗a)b ε + (ε+T ∗a)ba ε + ((ε+T ∗a)baa)















Of ourse, it is only the �rst row that we are interested in. All the other entries are

inluded so that the reader an see that none has star-height greater than 1 . If the

word abaa is lengthened, the star-height of the resulting regular expressions will not

inrease and all the entries in the �rst row will be what one would wish them to be.

Indeed, for any word w , all fators of T ∗w have star-height 1 and our algorithm will

ompute appropriate regular expressions. However, the yle-rank of the fator graph of

T ∗w inreases with the length of the word w and an have unlimited value.

9.2 The Algorithm

In this subsetion, we formulate an algorithm for alulating the fator matrix |E| for a

given regular language E as the reexive, transitive losure of the fator graph of E . The

algorithm is guaranteed to yield a regular expression denoting E that has star-height at

most the yle rank of the fator graph of E and, as our examples illustrate, may have

smaller star-height.

Using the fat that the left fators of E are in one-to-one orrespondene with the

nodes of its fator graph, we deliberately onfuse the two. So, if i is a left fator of E ,

we sometimes refer to \node i " of the fator graph of E .
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Assume that G is the fator graph of event E . (The inadmissible nodes an, of

ourse, be ignored if so desired.) Reall that the set of \nodes" of G is the set L.E of

left fators of E . Reall from setion 7.1 that S.E denotes the powerset algebra with

arrier set 2SM.E
and underlying monoid (SM.E , ◦ , 1 ), where SM.E is the syntati

monoid of E .

Step 0 Construt the syntati monoid SM.E of E . Construt the fator graph G of

E . Construt ζ
♭

c.G (the representation of eah entry of G as a set of c -lasses

of E ). Calulate (ζ
♭

c.G)∗ in the algebra ML.E(S) . Use (ζ
♭

c.G)∗ to onstrut the

\Hasse diagram" of the fators of E : the reexive-transitive redution of the set

of entries in (ζ
♭

c.G)∗ ordered by the subset relation.

Step 1 For eah pair of nodes i and j of G (i.e pair of left fators of E ), use lemma

86 and de�nition 89 to onstrut the set of nodes N.(i, j) that forms a submatrix

of |E| that is the fator matrix of i\j .

The event i\j is the (i, j) th entry in the fator matrix of E . Sine fators typially

our repeatedly in the fator matrix, several di�erent submatries of the fator

matrix may be identi�ed in this way for the same event. This is intentional.

For the purposes of exeuting this step, (ζ
♭

c.G)∗ (alulated in step 0) should be

used.

Step 2 The purpose of this step is to hoose a subset of the set of pairs (i, j) that

represents all the distint submatries of the the fator matrix of E that are fator

matries of the fators of E . The step also onstruts a partial ordering of the

hosen subset.

Consider the set of sets of nodes 〈∪ i,j :: {N.(i, j)}〉 . This is partially ordered by the

subset relation. The greatest element of the set is the set of all nodes of G (sine

G is the fator graph of E , whih equals l\r : see (72)).

De�ne the preorder � on pairs of nodes (i, j) by

(i, j)� (k, l) ≡ N.(i, j)⊆N.(k, l) .

Note that

(i, j)� (k, l) ∧ (k, l)� (i, j) ≡ N.(i, j)=N.(k, l) .

That is, two pairs of nodes are equivalent under the preorder if they have the \same"

fator matrix. In this ase, we say that the fators i\j and k\l are inseparable.

For eah set of nodes M in the set 〈∪ i,j :: {N.(i, j)}〉 , hoose one pair (i, j) suh that

M=N.(i, j) ∧ i∈M ∧ j∈M . (The seond and third onjunts are required beause
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of the ompliation of repeated entries in the fator matrix. It is nevertheless always

possible to hoose at least one suh pair. Otherwise, the hoie is arbitrary.)

Let P denote the funtion that is de�ned in this way. That is, P is hosen so that

M=N.(P.M) . Let Im.P denote the image set of P . That is,

Im.P = 〈∪ i,j :: {P.(N.(i, j))}〉 .

By this onstrution, the set Im.P is partially ordered (as opposed to pre-ordered)

by the � relation.

Step 3 Construt the fator graphs of i\j for eah pair (i, j) in Im.P . The fator graphs

should be onstruted in topologial order aording to the relation � . That is,

fator graphs are onstruted for eah of the sets N.(i, j) in order of inreasing

size.

Step 4 Construt the fator matrix of i\j for eah pair (i, j) in Im.P in the following

way.

We use the variable Done to reord the set of pairs (i, j) for whih a regular

expression denoting i\j has already been omputed. Initially Done :=∅ . We also

use the variable A to reord the fator matrix that has been omputed thus far.

Initially A is the matrix of dimension ∅×∅ .

Now the following step is exeuted in (topologial) order for eah pair (i, j) in

Im.P .

Suppose p=(i, j) . Let M ′ :=N.p and let G ′
be the fator graph of i\j . Let

M := N.p∩Done . Note that M ′
is the set of nodes of G ′

and M is a proper

subset of M ′
. Thus the graph G ′

is split into four subgraphs of dimension

M×M , M×(M ′−M) , (M ′−M)×M and (M ′−M)×(M ′−M) . Let these be de-

note by a , b , c and d , respetively. Suppose we split (G ′)∗ in the same

way into four subgraphs of dimension M×M , M×(M ′−M) , (M ′−M)×M and

(M ′−M)×(M ′−M) . The submatrix of (G ′)∗ of dimension M×M has already

been omputed; it is the matrix A . Suppose we denote the remaining three sub-

matries by B , C and D . That is, suppose

[

d c

b a

]∗

=

[

D C

B A

]

Using (ζ
♭

c.G)∗ and the Hasse diagram of the fators of E , some of the entries in

B , C and D an be expressed as the set union of entries in the matrix A . If so,
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enter these expressions in the appropriate plae. For the remaining entries in B ,

C and D , use the formulae

B = A⊗b⊗d∗

C = d∗⊗c⊗A

D = d∗
_∪ d∗⊗c⊗A⊗b⊗d∗

ombined with a standard elimination method to alulate remaining elements of

d∗
. Although not relevant to the star-height of the resulting regular expressions, it

is onvenient and pratial to exploit the fat that ε is the unit of produt at the

same time. The �nal step in this iterative proedure is to exeute the assignment

Done :=M ′
and to assign to A the value of the fator matrix that has just been

omputed.

The �nal value of A is the required fator matrix. The loop invariant is that A

is the fator matrix of i\j .

The fator graph of an event E might not be strongly onneted, in whih ase the

ayli struture of the setions of the graph should be exploited. We onjeture that

eah setion of the fator graph of E is the fator graph of a fator of E but we have,

as yet, no proof.

9.3 Detailed Example

Consider the event denoted by the regular expression a (a+b)∗ b (a+b)∗ a . We also use

the numeral 3 to denote this event. (So 3 does not denote a number in just the same

way that the symbol + in a regular expression does not denote addition of numbers.)

Step 0 is to onstrut the fator graph and semigroup of the event 3 and then to

onstrut the sets of nodes that form the fator graphs of fators of 3 . The syntati

monoid of the event is depited in �g. 18.

Eah node of �g. 18 is labelled by an element of the c -lass that the node represents.

The produt of two c -lasses is determined by hasing paths. For example, the produt

of the c -lass of ab and the c -lass of ba is the c -lass of aba beause the path that

begins at the node labelled ab and spells ba ends at the node labelled aba .

In antiipation of step 3, whih requires the alulation of the fator graphs as well

as the node sets, Fig. 19 shows the fator graphs of all the fators of the event 3 . In the

�gures, the nodes are labelled by the numerals 1 , 2 , 3 and 4 . As in setion 9.2, we

onfuse the terms \node" and \left fator" so that these four numerals also denote the

left fators of the event 3 .
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a

b

a

a

a

b a

b
b

a

ε

a ab aba

b ba bab

b

b

a

Figure 18: Syntati Monoid of a (a+b)∗ b (a+b)∗ a .

The topmost graph is the fator graph of the event 3 itself. The onventional method

of indiating that it is a reogniser has also been indiated: the event 3 is the set of

words that spell a path from the node 1 (the \start" node indiated by an unlabelled

arrow) to the node 3 (the \�nish" node indiated by a double irle). The set of words

that spell a path from node i to node j is i\j , whih is the (i, j) th element of the fator

matrix of the event 3 . This �ts with Conway's theorem on the fator matrix: for the

event 3 , the left fator l is the event 1 and the left fator r is the event 3 . (See (72)

and (75).) Moreover, 1= 1\1 , 2= 1\2 , 3= 1\3 and 4=1\4 .

Step 1 is ahieved by onstruting the table in �g. 20: it gives the relation between

eah graph and the fators of whih the graph is the fator graph. For example, the

fourth graph from the top has nodes 2 and 4 and is the fator graph of the event 2\4 ,

as shown in the fourth row of the table. Note that all the fators in the right olumn

of the last two rows are equal. As forewarned, they nevertheless de�ne two distint sets

of nodes. See below for how the syntati monoid is used to alulate the olletion of

fator graphs.

The fator matrix of the event 3 , where eah entry is represented by the orrespond-

ing event in the powerset algebra of the syntati monoid, is displayed in �g. 21. (This is

what we alled (ζ
♭

c.G)∗ in the algorithm.) Eah element of the syntati monoid is de-

noted by a word of shortest length in the orresponding c -lass ; the symbol S denotes

the set of all elements of the syntati monoid.

It is easy to alulate the set of c -lasses that omprise eah fator using representa-

tive elements of the c -, l - and r -lasses; one onstruted suh a representation enables
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ε ε ε

a b a
1243

ε ε

a b
a243

ε ε
a

b a
124

ε
a a

b
24

3
ε

a
b4

ε

a
b 2 1

a+b 4 a+b2

Figure 19: Fator graphs of the fators of a (a+b)∗ b (a+b)∗ a .

straight-forward alulation of fator graphs of fators. In this ase, the Hasse diagram

of the fators does not help to simplify regular expressions so we do not display it. (The

fat that S ours repeatedly is the only fat that is exploited.)

Fig. 22 depits the subset ordering on subsets of the nodes that de�ne fator graphs.

Step 2 requires us to hoose one pair (i, j) for eah of these fator graphs: the transition

graph formed from the fator graph by designating node i as start node and node j as

�nish node is a reogniser of i\j . Labels of the form i\j have been added to eah node.

Step 3 (the onstrution of the fator graphs) has already been ompleted so the

�nal step is to alulate regular expressions denoting the entries in the fator matrix.

Applying the algorithm as presribed, we get the following sequene of matries.

First, we ompute the fator matries of 4\4 and 2\2 (whih happen to be equal).
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Nodes, i.e. set of left fators of 3 Fator graph of these fators of 3

{1,2,3,4} {1\3}

{2,3,4} {2\3}

{1,2,4} {1\4}

{2,4} {2\4}

{3,4} {4\3 , 3\3}

{1,2} {1\2 , 1\1}

{4} {4\4 , 3\4}

{2} {2\2 , 3\2 , 4\2 , 2\1 , 3\1 , 4\1}

Figure 20: Nodes and Fator Graphs











{ε,a,ab,aba} {a,ab,aba} {aba} {ab,aba}

S S {ba,aba} {b,ab,ba,aba,bab}

S S {ε,a,ba,aba} S

S S {a,ba,aba} S











Figure 21: Fator Matrix Expressed As Sets Of c -Classes

The omputed expression is also entered wherever 4\4 (or equally 2\2 ) ours in fator

matrix. (It is the entry \S " in the matrix of sets of c -lasses above.) We obtain the

following, where a question mark indiates an entry that has not yet been omputed.











? ? ? ?

(a+b)∗ (a+b)∗ ? ?

(a+b)∗ (a+b)∗ ? (a+b)∗

(a+b)∗ (a+b)∗ ? (a+b)∗











Seond, we ompute missing entries in the fator matries of 2\4 , 4\3 (and 3\3 ) and

1\2 (and 1\1 ):










ε+a(a+b)∗ a(a+b)∗ ? ?

(a+b)∗ (a+b)∗ ? (a+b)∗ b (a+b)∗

(a+b)∗ (a+b)∗ ε+ (a+b)∗a (a+b)∗

(a+b)∗ (a+b)∗ (a+b)∗ a (a+b)∗











Third, we do the same for the fator matries of 2\3 and 1\4 :










ε+a(a+b)∗ a(a+b)∗ ? a(a+b)∗ b(a+b)∗

(a+b)∗ (a+b)∗ (a+b)∗b(a+b)∗a (a+b)∗b(a+b)∗

(a+b)∗ (a+b)∗ ε+ (a+b)∗a (a+b)∗

(a+b)∗ (a+b)∗ (a+b)∗ a (a+b)∗
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1\3
{1,2,3,4}

2\3

4\4

2\4

2\2
{2}

4\3

1\4

1\2
{1,2}

{1,2,3}

(2,4}{3,4}

{2,3,4}

{4}

Figure 22: Ordering of (Sub)Fator Graphs

Finally, we omplete the one remaining entry in the fator matrix of 1\3 :










ε+a(a+b)∗ a(a+b)∗ a(a+b)∗b(a+b)∗a a(a+b)∗ b(a+b)∗

(a+b)∗ (a+b)∗ (a+b)∗b(a+b)∗a (a+b)∗b(a+b)∗

(a+b)∗ (a+b)∗ ε+ (a+b)∗a (a+b)∗

(a+b)∗ (a+b)∗ (a+b)∗ a (a+b)∗











In this way we have alulated the regular expressiona(a+b)∗b(a+b)∗a denoting the

event 1\3 .

9.4 Counterexample

Our algorithm does not always yield a regular expression of minimal star-height. A

neessary ondition for it to do so is that, for all regular languages E all of whose

admissible

12

fators are inseparable from E , the star-height of E is equal to the rank

12

Reall that T∗
and ∅ are typially fators of E . A fator is admissible if it equals U\E/V for some

events U and V both of whih are di�erent from ∅ . The empty set, ∅ , is thus inadmissible exept for

when it equals E ; on the other hand, T∗
may or may not be admissible.
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of the fator graph of E . This setion presents an example for whih this is not the

ase. The example was disovered by testing our algorithm on all languages that others

had investigated as part of their own researh on the problem; the example below was

introdued by MNaughton [MN69℄.

The language denoted by the regular expression (b+aa+ac+aaa+aac)∗ has star-

height one. Its mahine and anti-mahine are shown in �g. 23.

b b

a a

a

b,c a
c

b

a

c

a,c

Figure 23: Mahine and Anti-Mahine

Its fator graph (omitting inadmissible nodes), shown in �g. 24 has yle-rank 2 and

all admissible fators are inseparable. (The nodes have been labelled in order to ease

omparison with its fator matrix.)

a

a

b

c

ε

ε

ε

ε

1 2

3 4

Figure 24: Fator Graph

This an be veri�ed by omparing entries in the fator matrix. For this purpose, we

use the syntati monoid of the language shown in �g. 25.

The fator matrix is shown in �g. 26 (omitting inadmissible fators, as usual). The

shortest word in eah c -lass is hosen as the representative element of the c -lass.
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b

a

a

b,c a
c

b

a

a

b,c a
c

a

c

a

b

a

a

b,c a
c

b

b

b

c a

Figure 25: Syntati Monoid

From this matrix, it is possible to determine that all admissible fators are inseparable.









































{ ε,a,aa,ac,aca} {aa,ac} {a,aa,aca} {aa}

{ ε,a,aa,ac,aca,

b,ba,baa}

{ ε,aa,ac,

b,baa}

{a,aa,aca,

ba,baa}

{aa,

baa}

{ ε,a,aa,ab,ac,aca,

c,ca,caa}

{a,aa,ab,ac,

c,caa}

{ ε,a,aa,aca,

ca,caa}

{a,aa,

caa}

{ ε,a,aa,ab,ac,aca,

b,ba,baa,

c,ca,caa}

{ ε,a,aa,ab,ac,

b,baa,

c,caa}

{ ε,a,aa,aca,

ba,baa,

ca,caa}

{ ε,a,aa,

baa,

caa}









































Figure 26: The Fator Matrix

Sine all (admissible) fators are inseparable, our losure algorithm redues to a stan-

dard elimination tehnique; the star-height of the expression omputed by the algorithm

is thus at least the yle-rank of the graph (whatever the order of elimination of nodes),

whih is greater than the star-height of the language. The onlusion is that our algo-
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rithm is not guaranteed to ompute a regular expression of minimal star-height.

10 The “Universal Automaton”

Conway's \best" onstant+linear approximation to a regular language E , denoted above

by Cmax.E _∪ Lmax.E , has been studied by Lombardy and Sakarovith [LS08℄. It is

fundamental to what they all the \universal automaton". There are many overlaps

between their work and that in my thesis. In partiular, they give the name \�eorh�e" to

what I alled the \fator graph". This setion disusses in some detail the overlap and the

di�erenes between Conway's ontribution, my own ontribution and the ontribution

of Lombardy and Sakarovith.

Before doing so, it is neessary to briey larify the ontribution made by Conway.

In addition, it is neessary to make a number of detailed omments on the terminology

used by Lombardy and Sakarovith. (The di�erenes in terminology ompliate the

omparison we wish to make.)

Although I have always attributed the introdution of Cmax.E _∪ Lmax.E to Conway,

he did not introdue it expliitly. Conway's onern was with the general notion of the

\best onstant+linear" approximation to the event E by a set of events |the image

set of a funtion ζ| whih we denote above by Cmax(E,ζ) _∪Lmax(E,ζ) . The spei�

ase that ζ is the (lifted) identity funtion |that is, the set of approximations is the

alphabet of E| is a very obvious instane. No doubt, Conway did not onsider it worth

mentioning for the simple reason that the \best approximation" to E is then |also very

obviously| E itself. It is beause it is a very obvious instane that I hose to attribute

it to Conway in my thesis without providing further explanation.

10.1 LS-style “Automaton”

The \universal automaton" [LS08℄ is essentially Lmax.E together with adaptations of

the start and �nal states of the automaton that inorporate Cmax.E . As Lombardy and

Sakarovith explain, the \universal automaton" is the topi of other publiations that

make no mention of Conway's fator theory and, indeed, its \unversality" (whih we

disuss shortly) is ertainly not mentioned by Conway. Nevertheless, to anyone familiar

with both Conway's theory and the publiations ited by Lombardy and Sakarovith,

the onnetion is obvious. The preise details are, however, triky to explain beause

Lombardy and Sakarovith have a very urious de�nition of an \automaton" (in ommon

with the papers that they ite).

In my thesis and in this paper, I have used the terminology \transition graph", in a-

ordane with the terminology used by MNaughton [MN67, MN69℄ and many others;

a \transition graph" is exatly what Conway alls a \onstant+linear matrix". Together
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with a set of start states and a set of �nal states, a transition graph de�nes a reogniser

of a language. The entries in the matrix (the edges of the graph) are its \transitions".

Importantly, a transition graph allows empty-word transitions: the empty-word transi-

tions form the \onstant" part of the graph. This is of great pratial importane: in

the Knuth-Morris-Pratt pattern-mathing algorithm [KMP77℄ (and Aho and Corasik's

generalisation [AC75℄), the empty-word transitions are the failure transitions. Lombardy

and Sakarovith [LS08℄ use the terminology \automaton" but, ontrary to the onven-

tion that I am used to, give it a very urious de�nition (whih, as we shall see, they

do not adhere to). Aording to them, an automaton omprises a linear matrix, a set

of start states and a set of �nal states. (Formally, [LS08, p.2℄ states that a transition

of an automaton is an element of Q×A×Q where Q is the set of states and A is the

alphabet.) Below, I all this an LS-style automaton.

Given a transition graph C _∪ L , where C is its onstant part and L is its linear

part, and appropriately de�ned seletors S and F for the start and �nal states (onstant

matries of dimension N×11 where N is the set of nodes and 11 is a set with exatly

one element), the language reognised is

S∪⊗ (C _∪ L)∗⊗F .

(Stritly, the above is a matrix of dimension 11×11 and the language reognised is its

unique entry.) Using the star-deomposition rules, this is equal to

(S∪⊗C∗)⊗ (L⊗C∗)∗⊗F

and to

S∪⊗ (C∗⊗L)∗⊗ (C∗⊗F) .

In this way, the ombination of a transition graph, a set of start states and a set of

�nal states an be transformed into an LS-style automaton: either the set of start states

is augmented so that its seletor beomes S∪⊗C∗
and the transition graph C _∪ L is

replaed by L⊗C∗
(whih is a linear matrix), or the set of �nal states is augmented so

that its seletor beomes C∗⊗F and the transition graph C _∪ L is replaed by C∗⊗L

(whih is a linear matrix).

Now reall that the reexive-transitive losure of the transition graph Cmax.E _∪ Lmax.E

is the fator matrix of E and E is the (l, r) th entry in the fator matrix. Reall also

that

Lmax.E = (Cmax.E)
∗⊗Lmax.E = Lmax.E⊗ (Cmax.E)

∗ .

So, we have that

E = l∪⊗ (Cmax.E _∪ Lmax.E)
∗⊗ r
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where l is the seletor matrix orresponding to the unique start state l and r is the

seletor matrix orresponding to the unique �nal state r and, also,

E = S∪⊗ (Lmax.E)
∗⊗F

where

S = ((Cmax.E)∪)
∗⊗ l

and

F = (Cmax.E)
∗⊗ r .

In this way, the ombination of the transition graph Cmax.E _∪ Lmax.E , start state l and

�nal state r orrespond to an LS-style automaton omprising the linear matrix Lmax.E ,

set of start states given by ((Cmax.E)∪)
∗⊗ l and set of �nal states given by (Cmax.E)

∗⊗ r .

The latter is what Lombardy and Sakarovith all the \universal automaton".

For an example, the reader is invited to ompare the \universal automaton" in [LS02,

�g. 2℄, whih has three start states, two �nal states, and eight edge labels of whih none

is the empty-word, with the fator graph of �g. 12, whih has one start state, one �nal

state and six edge labels of whih two are the empty-word.

(Note that Lombardy and Sakarovith hoose to augment both the set of start states

and the set of �nal states, rather than one or the other. This is valid in this ase but

not in general. One reason for doing so is in order not to introdue a bias between left

and right. There may be other reasons too.)

This then is the basis for our assertion that Lombardy and Sakarovith's \universal

automaton" of a regular language E is essentially Conway's \best linear approximation"

Lmax.E together with adaptations of the start and �nal states of the automaton that

inorporate Conway's \best onstant approximation" Cmax.E .

The \unversality" of the \universal automaton" is the property that there is a \mor-

phism" from any LS-style automaton that reognises any subset of E to Lmax.E . (A

pathwise homomorphism is a \morphism" but not neessarily the other way around.

Lombardy and Sakarovith [LS02, De�nition 3℄ all a pathwise homomorphism |as de-

�ned here rather than MNaughton's de�nition| a \onformal" morphism.)

Conway makes no mention of the \universality" problem. In my view, the prati-

ality of the problem is seriously undermined by the urious de�nition of an LS-style

automaton. As mentioned several times above, the fator graph of T ∗ · {w} , for a given

\pattern" w , de�nes a reogniser that is the basis of the Knuth-Morris-Pattern pattern-

mathing algorithm, but that reogniser is not an LS-style automaton. So the de�nition

exludes the possibly best-known example of the pratial ontribution of automata the-

ory. I suspet that it an be shown that Cmax.E _∪ Lmax.E is \universal" relative to a
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de�nition of \automaton" that allows arbitrary transition graphs but leave that exerise

to the reader.

Lombardy and Sakarovith [LS08℄ do give some redit to Conway but (in my view)

do not do so to the extent that is properly merited. In setion 2.1 of their paper, for

example, they introdue \subfatorisation", \fatorisation", \left fator", \right fator",

et., exatly in the way that Conway does but with no referene to Conway's book.

Several fats about fators due to Conway are stated but using unonventional terminol-

ogy (for example, \left quotient" rather than Brzozowski's [Brz64℄ \derivative"). Later,

in setion 3.1, they introdue the fator matrix but do not redit it to Conway; also,

their proposition 3.2 is an instane of a theorem stated by Conway [Con71, theorem 7,

p.31℄ (sine Cmax.E _∪ Lmax.E is an instane of Cmax(E,ζ) _∪Lmax(E,ζ) ). However, apart

from a brief referene to Conway in the introdution (whih does attribute the \univer-

sal automaton" to Conway), there appears to be no further mention of Conway until

setion 6 when the approximation problem is introdued. But there is no mention of

the fat that the \universal automaton" is obtained by speialising Conway's theory of

approximations.

It has to be said, of ourse, that Conway gives no referenes whatsoever! The prefae

of [Con71℄ serves as an aknowledgement and laims that his work dates from 1966. But

insuÆient information is given for anyone wishing to trae its soure.

10.2 Factor Graph = “Écorché”

Lombardy and Sakarovith [LS08℄ laim that the \�eorh�e" is due to Lombardy and ite

his 2001 PhD thesis (whih I have not read). It is obvious that it is idential to the fator

graph that I introdued in my 1975 PhD thesis and presented in 1977 at a onferene

on Automata, Languages and Programming [Ba75, BL76, BL77℄. Some remarks are,

however, in order.

First, Lombardy and Sakarovith [LS08, De�nition 3.11℄ desribe the \�eorh�e" as an

(LS-style) \automaton". Yet they allow empty-word transitions: the set of transitions

is given as a set DL∪HL
, where L denotes the language (whih Conway and I denote

by E ), DL
orresponds to our Cmin.E and HL

orresponds to our Lmin.E . (They

all empty-word transitions \spontaneous transitions".) Thus an \�eorh�e" is not an

\automaton" aording to their own de�nition but is, indeed, a transition graph (as

it must be) aording to our de�nition. Seond, just as for the fator graph, [LS08,

De�nition 3.11℄ de�nes an \�eorh�e" as having a unique start and a unique �nal state.

Yet the example that follows depits the \�eorh�e" as having multiple start states: the

rightmost �gure of [LS08, Figure 7℄ has two start states. To add to the onfusion, the

leftmost �gure has a unique �nal state, and not two. Yet subsequent examples of the

\�eorh�e" depit both multiple start and multiple �nal states. See, for example, [LS08,
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Figure 11()℄ and [LS08, Figure 15℄.

Lombardy and Sakarovith's only use of the fator graph appears to be as a more

informative way of depiting the \universal automaton", in the same way that a Hasse

diagram is used to depit a partial ordering on a �nite set. They do not study its

properties in the way that I did in my thesis; nor do they appear to reognise its relevane

to the star-height problem. For pure-group events, whih they also study in [LS02℄, the

yle ranks of Cmin.E _∪ Lmin.E and Cmax.E _∪ Lmax.E are equal. So, when the sole

goal is to minimise star-height it makes no di�erene whih is used. Relative to other

measures of the omplexity of the regular expressions obtained, the use of the former is

far superior, but they hoose to use the latter. I suspet that, in ombination with their

urious de�nition of an \automaton", this is why their �gures do not omply with their

de�nition.

10.3 “Complex” and “complicated to compute”

Lombardy and Sakarovith introdue their paper by desribing the universal automaton

as follows.

It is large, it is omplex, it is ompliated to ompute.

I would dispute this, in partiular the laim that it is ompliated to ompute. As

pointed out above, the very pratial pattern mathing algorithms developed by Knuth,

Morris and Pratt [KMP77℄ and Aho and Corasik [AC75℄ boil down to omputing the

fator graph of a simple regular language. These algorithms are ingenious but not om-

pliated.

In the general ase, the use of representative elements of l - and r - lasses of the

given language E in the proess of alulating Cmax.E , Lmax.E and the fator graph

of E makes the alulations very straightforward. Although Lombardy and Sakarovith

begin with Conway's haraterisation of fators as intersetions of derivatives [LS08,

Proposition 2.1℄, they do appear to have reognised that fators are unions of c -lasses

[LS08, Proposition 3.5(iii) and Example 3.7℄ and that left fators are unions of l -lasses

[LS08, setion 4.1, paragraph preeding theorem 4.1℄. They do not, however, provide

any examples of how these fats are exploited: [LS08, setion 4℄, entitled \Constrution

of the universal automaton", is devoid of examples.

The reality is that the hardest part of onstruting the fator graph is the onstrution

of the mahine and anti-mahine. These are, indeed, non-trivial tasks (for example, the

onstrution of the mahine and anti-mahine involve identifying \similar" derivatives

of regular expressions [Brz64, De�nition 5.2℄) but they are tasks that are frequently

asked of students of automata theory and, one ompleted, the remaining tasks are

straight-forward manipulations of �nite sets. The beauty of the KMP algorithm (and
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Aho and Corasik's generalisation) is that it avoids the diÆult task of onstruting the

appropriate mahine. It may therefore be the ase that onstruting the fator graph of

other quite di�erent lasses of languages is similarly easy and of pratial importane.

Identifying the fator graphs and fator matries of the fators of a language exploits

the syntati monoid of the language and thus adds an extra layer of omplexity to the

alulations (both in theory and in pratie, beause the number of c -lasses may be an

exponential funtion of the number of l - or r -lasses, and this bound is often attained).

Even so, although the alulations may be long and tedious, they are straightforward.

10.4 Pure-group Events

My work in 1972 and 1973 was strongly motivated by MNaughton's algorithm [MN67℄

for determining the star-height of a pure-group event (a language whose syntati monoid

is a group). Very roughly, his algorithm involves searhing a spae of transition graphs,

so-alled µ -graphs, de�ned by sets of c -lasses of the given language. The \universal

automaton" is a partiular example of a µ -graph. My onjeture was that it would

be suÆient to onsider just one graph rather than engage in a massive ombinatorial

searh of all µ -graphs. The step from Cmax.E _∪ Lmax.E to the fator graph was an

obvious �rst step in exploring this onjeture, and the seond step was to develop a

novel losure algorithm that fully exploits the algebrai properties of languages. This

strategy was supported by examining the example with whih MNaughton ended his

paper: the example of modulo addition (in partiular addition modulo 6 ) that I have

used as a running example here. My onjeture was that the fator graph would suÆe

in all ases, and not just for pure-group events. But that onjeture proved to be false

(see setion 9.4)! My disappointment was suh that I did not return to the pure-group

events.

Lombardy and Sakarovith [LS02, LS08℄ do show that it suÆes to onsider just the

\universal automaton", but their algorithm still involves a ombinatorial searh. On

the basis of my, as yet limited, understanding of their paper, I strongly believe that the

algorithm presented above is guaranteed to onstrut regular expressions of minimal star-

height for all pure-group events but I have not attempted to �nd a proof. The algorithm

is, however, likely to be of no pratial value sine regular expressions denoting pure-

group events are typially very ompliated and, therefore, have little value.

11 Conclusion

This paper has been about revisiting the results �rst formulated by the author more

than forty years ago [Ba75℄, exploiting an improved understanding of the underlying

theory. In the proess, I have taken the opportunity to expand on and extend the theory.
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However, the primary ontribution is to present the theory in a alulational style, taking

full advantage of the experiene I have gained in developing regular algebra in appliation

areas quite di�erent from regular languages.

I began this exerise after being asked to ontribute to a festshrift dediated to

Jos�e Nuno Oliveira [Ba16℄. Jos�e is a devotee of algebra and, in partiular, of Galois

onnetions. So, to me, an obvious soure of material was my thesis: although I had

not been aware of the notion of a Galois onnetion when onduting the researh for

my PhD thesis (in 1972 and 1973), I began to reognise its relevane soon after the

publiation of Cousot and Cousot's [CC77, CC79℄ work on stati analysis. The relevane

beame fully lear to me in the late 1980s when I began researh on a relational theory of

datatypes. (The algebra of relations is a speial ase of a regular algebra.) This led, for

example, to the development of a alulational theory of well-foundedness [DBvdW97℄.

But by then I was too oupied with other developments to spare the time to revisit my

thesis in detail.

As already mentioned, muh of the ontent of this paper is a re-presentation of the

results published

13

forty years ago in my thesis. The proof-style is substantially di�erent

but onepts and most theorems are unhanged.

Adopting a di�erent proof-style has the advantage of o�ering a semi-independent

hek on the veraity of the laimed results. I am pleased to say that I have not found

any errors in the thesis. (I had hoped that I might �nd an error in the example presented

in setion 9.4 demonstrating that I had been unable to solve the star-height problem.

However, that was not to be!)

A major novel ontribution of this paper is the exposition of Conway's theory of

approximations in setion 5. I felt it neessary to inlude beause Conway's work appears

to be little understood but might o�er new insights on the star-height problem I also

wanted to use it as another example of Galois onnetions | one that does not appear

to have been reognised even now, so long after the publiation of Conway's book.

Some of the examples have hanged | I have added additional examples but also

omitted some examples | but, more importantly, modern tehnology

14

has enabled me

13

The meaning of the word \published" has hanged in the last forty years. Forty years ago, a PhD

thesis was regarded as a refereed publiation: theses were readily available via opyright libraries suh as

the Siene Museum Library in London (whih I used often); publiations in a journal ould take several

years to appear and it was vital to keep abreast of other theses in order to verify the originality of one's

own work. Nowadays, given the vastly greater number of onferenes and journals (and the greater speed

of publiation), a thesis is unlikely to be regarded as a \publiation".

14

Forty years ago, a hand-written manusript was turned into a type-sript using a golfball type-writer.

Mathematial symbols and ordinary text were entered using di�erent \golf-balls". This was extremely

time-onsuming and error-prone. In ontrast, this doument was prepared almost entirely on-sreen using

Math∫pad [BVW97℄, a system that enables WYSIWYG-like editing of mathematial douments whih are

then exported into L

A

T

E

X.
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to expand in muh more detail on the examples I present. For instane, the running

example of modulo addition �rst introdued in example 16 is a substantial ampli�ation

of the presentation in my thesis.

The losure algorithm presented in setion 9 has been improved: e�etively, the

algorithm proposed in my thesis involved searhing for an optimal total ordering of the

sets in the set 〈∪ i,j :: {N.(i, j)}〉 ; instead, the algorithm presented here proesses these

sets in topologial order, making more use of the syntati monoid to optimise the regular

expressions that are obtained. The primary onlusion of setion 9 is una�eted: Eggan's

notion of yle-rank is an inappropriate measure on the fator graph of a language sine,

using the algorithm, it is possible to onstrut regular expressions denoting the given

language that may have star-height stritly less than the yle-rank of the graph. The

hange does not, however, a�et the onlusion that the algorithm may not onstrut a

regular expression of minimal star height.

As mentioned in the introdution, surprisingly little has been written on Conway's

fator theory sine the publiation of his book in 1971, and it appears to have taken

more than 25 years before my notion of the \fator graph" was redisovered. I �nd this

surprising beause, for me, the property that the fator matrix is its own star immediately

suggested investigating whether or not it has a minimal starth root. Indeed, the pratial

lesson I had learnt from investigating the relation between losure algorithms in regular

algebra and algorithms for inverting matries in linear algebra [BC75℄ was that, given

a matrix A , one should try to avoid alulating A∗
at all osts: it is muh more

informative to alulate its starth root! (For example, a Hasse diagram of a partial

ordering is muh more useful than a graph depiting the partial ordering.) This is how

I onluded my presentation at the ICALP meeting in 1977 and it remains the most

important onlusion to this day.
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Appendix A. Properties of Constant and Linear Ma-

trices

Here we prove lemma 127. Reall that A=A∗
, C = A _∩Mat.{ε} and L = A _∩Mat.T .

First,

C = C∗

= { for all X , X _⊆X∗ }

C _⊇ C∗

⇐ { de�nition of

∗ }

C _⊇ I _∪ C⊗C

= { C _⊇ I

= { de�nition of C }

A _⊇ I ∧ Mat.{ε} _⊇ I

= { A=A∗
_⊇ I ; de�nition of Mat }

true . }

C _⊇ C⊗C

= { de�nition of C , de�nition of

_∩ }

A _⊇ C⊗C ∧ Mat.{ε} _⊇ C⊗C

= { Mat.{ε} _⊇ C⊗C

⇐ { Mat.{ε} _⊇ C , monotoniity and transitivity }

Mat.{ε} _⊇ Mat.{ε}⊗Mat.{ε}

= { de�nition of Mat.{ε} }

true . }

A _⊇ C⊗C

⇐ { A=A∗
. So A _⊇A⊗A , monotoniity of produt }

A _⊇ C

= { de�nition of L and C }

true .

The proof that L = L⊗C is very similar to the latter part of the above proof:

L = L⊗C
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= { A=A∗
_⊇ I , so I _⊆C , monotoniity of produt }

L _⊇ L⊗C

= { L = A _∩Mat.T , Mat.T _⊇ Mat.T ⊗C }

A _⊇ L⊗C ∧ Mat.T _⊇ L⊗C

= { Mat.T _⊇ L⊗C

⇐ { Mat.{T } _⊇ L , Mat.{ε} _⊇ C ,

monotoniity and transitivity }

Mat.{T } _⊇ Mat.{T }⊗Mat.{ε}

= { de�nitions of Mat.{T } and Mat.{ε} }

true .

Mat.T _⊇ Mat.T ⊗C _⊇ L⊗C }

A _⊇ L⊗C

⇐ { A=A∗
. So A _⊇A⊗A , monotoniity of produt }

A _⊇ L ∧ A _⊇ C

= { de�nition of L and C }

true .

A symmetri alulation shows that L = C⊗L . Now,

(C _∪L)∗

= { star deomposition }

C∗⊗ (L⊗C∗)∗

= { C = C∗
, L = L⊗C }

C⊗L∗

= { L∗ = I _∪ L⊗L∗
, distributivity, }

C _∪ C⊗L⊗L∗

= { L = C⊗L }

C _∪ L⊗L∗ .

This establishes that (C _∪L)∗ = C⊗L∗ = C _∪ L+
. That (C _∪L)∗ = L∗⊗C follows by

using the symmetri form of star deomposition in the �rst step. Finally,

L⊗ (C _∪L)∗
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= { (C _∪L)∗ = C _∪ L+
, distributivity }

L⊗C _∪ L⊗L+

= { L = L⊗C , L+ = L _∪ L⊗L+ }

L+ .

Now we prove lemma 151.

Appendix B

Here we demonstrate that the algorithms for �nding G∗
that are loosely alled \elimi-

nation methods" invariably result in regular expressions having star-height at least the

rank of G . We begin by abstrating the salient features of an elimination method and

then show that any elimination method de�nes an \order of elimination of edges". We

then investigate in detail the e�et of eliminating edges of the graph, and �nally show

how we an build an \analysis" of the edges. (The assumption in this setion is that

graphs are �nite and a \matrix" is a square �nite-dimensional array.)

Before doing so, we need some de�nitions and a fundamental theorem from M-

Naughton [MN69℄. A subgraph of a graph G is de�ned by a subset of the nodes of G :

the set of edges of the subgraph is the set of all edges that are to and from a node in the

given subset. A setion of a graph is a maximal onneted omponent of the graph. An

analysis of a graph G is a partial ordering of pairs (N ′,G ′) , where G ′
is a strongly

onneted omponent of G and N ′
is a node of G ′

, having the following properties:

1. For eah setion H of G there is a node N of H suh that (N,H) is maximal in

the partial ordering.

2. For no subgraph H are there two nodes N and N ′
suh that (N,H) and (N ′, H)

our in the partial ordering.

3. If (N,H) ours and K is a setion of that subgraph that has all the nodes of H

exept N , then, for some N ′
, (N ′, K) is an immediate inferior of (N,H) in the

ordering.

4. All of the immediate inferiors of (N,H) are of the kind mentioned in 3.

An analysis of a graph is always a forest of as many trees as the graph has setions.

The height of the analysis is the length of the maximal length hain in the partial

ordering.

Theorem 217 (McNaughton [McN69]) The rank of a graph is the minimumheight

of all analyses of the graph.
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✷

Our aim is to show how an \elimination"method de�nes an analysis of the graph suh

that the height of the analysis is at most the maximum star-height of regular expressions

omputed by the method. First we state more preisely what we mean by an elimination

method.

Definition 218 An elementary matrix is a matrix whose non-null elements all lie in

the same row, or the same olumn. An elementary graph is a graph whose edges are all

from or all to a single node.

✷

Clearly, elementary matries represent elementary graphs.

We note that it is \elementary" to �nd the losure of a row or olumn matrix using

the identity (H⊗K)∗ = I _∪ H⊗ (K⊗H)∗×K . (Hint: an n×n row or olumn matrix an

always be deomposed into H⊗K where H and K have dimensions n×1 and 1×n ,

respetively. Then K⊗H is a 1×1 matrix | i.e. a single entry.) Hene the terminology.

Definition 219 An elementary elimination step is a step in an algorithm that

involves solely the omputation of the losure of an elementary matrix.

✷

We an abstrat three essential features of the methods disussed in [BC75℄.

1. The star-deomposition rules

(220) (C _∪D)∗ = (C∗⊗D)∗⊗C∗

and

(221) (C _∪D)∗ = C∗⊗ (D⊗C∗)∗

are applied exlusively to derive an expression for A∗
as a produt

(222) J∗1 ⊗ J∗2 ⊗ . . . ⊗ J∗m

of elementary matries.

If at some stage in the derivation of the produt form the matrix B is split into matries

C and D suh that B=C _∪D , and one of the two star-deomposition rules is used, then

C and D are hosen so that

2. C is null wherever D is non-null and, vie-versa, D is null wherever C is non-null,

and
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3. if (220) is used, C∗⊗D is null wherever C is non-null and vie-versa, and if (221) is

used D⊗C∗
is null wherever C is non-null and vie-versa.

Some terminology is useful here. We refer to alulating the losure C∗
of C as

eliminating C . Evaluating the produt C∗⊗D (or D⊗C∗
, as the ase may be) is

alled forward substitution of C in D , and �nding the produt (C∗⊗D)∗⊗C∗
(or

C∗⊗ (D⊗C∗)∗ ) is alled bak substitution of D in C . An elimination method onsists

of expressing the omputation of A∗
as a sequene of forward and bak substitutions and

elementary elimination steps, in whih subsequenes of these steps may be interpreted

olletively as eliminating C for some matrix C .

The de�nition of an elimination method has a number of impliations whih we now

onsider. Firstly, an elimination method always de�nes an ordering on the edges of G

that we all the order of elimination of the edges. Spei�ally, if at some stage (220)

(or (221)) is used we say that the edges of C are eliminated before the edges of D . By

virtue of 2 and 3 this ordering is well-de�ned and total, exept that the edges of eah

elementary matrix J are inommensurate | these are eliminated simultaneously.

Seondly, onditions 2 and 3 imply that we an always evaluate the non-null elements

of J1 , J2 , . . . , Jm by suessive transformations of G . Spei�ally, we an set M(0)
to

G , then perform in-situ modi�ations of the elements of M to transform it to a matrix

M(f)
whih ontains the non-null elements of the matries J∗1 , J∗2 , . . . , J∗m (other than

the empty-word entries on the diagonal) in their appropriate positions. If, for instane,

at some stage in the derivation of (222) the formula (220) is used, the appropriate ation

would be to evaluate C∗⊗D (possibly using additional storage) and store the non-null

elements of this matrix in the appropriate positions of M . The remaining elements of

M are left unhanged. One M(f)
has been alulated, G∗

an be alulated using

(222). (This may not be the most eÆient way of evaluating G∗
by the partiular

elimination method but our onern here is solely with the star-height of the resulting

regular expressions.)

From the order of elimination of the edges of G we an onstrut an analysis of G .

We begin with the edges eliminated �rst and proeed in order to the edges eliminated

last. Suppose at some stage we have onsidered the edges of the subgraph G1 and

have onstruted an analysis of G1 . Suppose the onstituent trees of this analysis have

roots given by the set R1 . Suppose that J is the set of edges to be eliminated in the

next elementary elimination step, and all edges in J are in row/olumn i ; suppose

G2=G1∪J . If the edge (i, i) is not in J then do not alter the analysis . Otherwise,

onsider the largest subset R of R1 suh that eah node r in R is strongly onneted

to node i in the graph G2 . If R is non-empty, add a new root labelled i to the forest

and onnet it by branhes to eah element of R . If R is empty and the (i, i) th element

of M is not the empty set before elimination, add a new root labelled i to the forest



172

(but do not onnet it to any other roots); if the (i, i) th element of M is the empty set

before elimination do not alter the analysis. Finally, in all ases reset G1 to G2 .

Now we need to related the height of the analysis to the star-height of expressions in

G∗
.

To investigate what atually happens when we perform an elimination step, let us

suppose that at some stage

M =







M11 M12 M13

M21 M22 M23

M31 M32 M33







where M11 , M22 and M33 are square matries. We make no assumptions about the

size of the various submatries.

Suppose that the next step is to eliminate some subset of these 9 submatries. A

number of remarks are in order.

Remark 1. If the submatrix Mij is an element of the subset to be eliminated, the result

of all previous eliminations will have been forward-substituted into Mij .

(To see this onsider the ontext-free grammar

E ::= EfEb ; E ::= e

where f represents forward substitutions, b represents bak substitutions, and e

represents elementary eliminations. An elimination algorithm for �nding G∗
may

be regarded as onstruting a left-to-right, bottum-up parse of a sentene of this

grammar. If an E has just been reognised an f must follow, possibly preeded

by b s, before a new E may be reognised. The remark may now be proved by

indution on the length of the derivation of the urrent state of the parse.)

Remark 2. No submatrix Mij for i 6= j may be eliminated before either Mii or Mjj is

eliminated without violating ondition 3.

(Suppose otherwise. By remark 1, the result of elimination Mij must be forward-

substituted into Mii and Mjj before they are eliminated. But this will result in a

modi�ation of Mij itself, thus violating ondition 3 | either it is pre-multiplied

b Mii or post-multiplied by Mjj depending on whih of (220) or (221) is used at

the time.)

Remark 3. If Mii and Mij have been eliminated, Mji may not be eliminated after

Mjj .
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(If Mii and Mij have been eliminated then, by remark 1, the results must be

forward-substituted into Mji before this is eliminated. This involves pre- or post-

multiplying Mji by M∗
ii ·Mij . However, post-multipliation hanges Mii , violat-

ing ondition 3. Pre-multipliation hanges Mjj and thus also violates ondition 3

unless Mjj has not already been eliminated. Hene the remark.

Remark 4. Mik and Mji , where k 6= i and j 6= i , may not both be eliminated using a

single appliation of (220) or (221) without violating ondition 3 sine this would

in general a�et Mjk .

Remark 5. The star-height of elements of M is inreased if and only if an elementary

elimination step is exeuted in whih the edge (k, k) is eliminated for some k .

This is obvious beause substitutions only involve multipliation of submatries of

M.

A onsequene of the above remarks is that, without loss of generality, we may assume

that some subset of the matries M11 , M12 , M13 , M21 , M31 is to be eliminated (i.e.

some subset of the �rst row or the �rst olumn of M ).

Let us suppose, the next step is to eliminate M11 and M12 . (The ase of eliminating

M11 and M21 an be onsidered similarly.) That is, suppose the step is to exeute the

assignment

M :=







M∗
11 M∗

11⊗M12 M13

M21 M22 M23

M31 M32 M33







In view of remark 5, we would like to see what e�et this has on M22 and M33 . Suppose,

therefore, that at some later stage we wish to eliminate the edges of M22 . By remark 3,

we must already have eliminated M21 or must do it simultaneously with the elimination

of M22 . Hene, by remark 1, M∗
11 and M∗

11⊗M12 must already have been forward-

substituted into M21 and M22 . In order not to violate ondition 3, this an only be

done by post-multiplying by M∗
11 and M∗

11⊗M12 . Thus after the forward substitution

M ⊇







M∗
11 M∗

11⊗M12 M13

M21⊗M∗
11 M22 _∪ M21⊗M∗

11⊗M12 M23

M31 M32 M33







(Containment rather than equality is used here beause the elements of M may also have

been hanged between the elimination of M11 and M12 and their forward substitution

into M21 and M22 .) Note that the same result will be obtained if we onsider M21 and

M22 eliminated separately or simultaneously.
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Thus we see that the star-height of expressions obtained by eliminating submatries of

M22 will now depend on the star-height of elements in M11 provided M21⊗M∗
11⊗M12

is non-null. In ontrast, if we eliminate submatries of M33 before eliminating M31 or

M13 , the star-height of the resulting regular expressions will not depend on the star-

height of elements of M11 sine forward substitution of M21 and M11 does not a�et

M33 .

We restate this in the form of a lemma on the elements of the matrix M .

Lemma 223 At some stage in the elimination proesss, let M= [mij] and let the

set of edges that have urrently been eliminated be G1 . Suppose edge (r, r) is the last

diagonal edge to have been eliminated in an elementary elimination step, and the next

step in the elimination proess involves the elimination of the edge (i, i) . Suppose after

this step the set of eliminated edges is G2 . Then the entry mii has the form

u + v mrr w

(after possibly exploiting the symmetry of addition of regular expressions) for some

expression u and some non-empty expressions v and w , if node i is strongly onneted

to node r in G2 .

Proof The lemma follows from the previous disussion by onsidering r as a node of

M11 and i as a node of M22 . The onditions on r imply that the (i, i) th entry of

M21⊗M∗
11⊗M12 is a sum of regular expressions, one of whih is v mrr w .

✷

Lemma 224 The star-height of mii after elimination of (i, i) is 0 if i is not a node

in the analysis and otherwise isa at least the height of the tree with root i .

Proof This follows easily from lemma 223 by indution on the height of the tree.

If the height is 0 or 1 , the lemma is obvious. Otherwise, realling the onstrution

of the analysis, eah node r in the subset R satis�es the properties in lemma 223.

Hene after elimination of (i, i) , the (i, i) th entry of M is an expression of the form

(u + v mrr w)∗ . (It has this form for eah r in R after, of ourse, rearranging terms in

the summation. For example, if R has two elements r and s , the entry would have the

form (u + v mrr w + x mss y)
∗
for some u , v , w , x and y .) By indution, for eah

r in R , mrr has star-height at least the height of the tree with root r . Hene mii has

star-height at least 1 greater than this. Hene the lemma.

✷

We ould strengthen the lemma to an equality, as did Eggan [Egg63℄ for the esalator

method, but this is not relevant here.

Combining theorem 217 and lemma 224, we have our theorem:
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Theorem 225 If an elimination method is used to �nd G∗
for a graph G , then G∗

will ontain regular expressions having star-height at least the rank of G .

✷
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Appendix C

This setion gives pratial advie on how to alulate the syntati monoid of a language

given a mahine for the language. The advie is partiularly relevant for hand alulations

when the size of the syntati monoid is not too large.

Fig. 27(a) is the mahine for the language (aa+b)∗ . The start and �nal states are

not marked beause the information is irrelevant to the onstrution of the syntati

monoid.) There is also one inadmissible state whih has also been omitted from the

diagram.

The onstrution of the syntati monoid involves onstruting graphs that depit

Ctx.u for words u in inreasing lexiographi order. Formally, Ctx.u is a total relation

on the states of the mahine. However, it is safe to ignore the inadmissible state of the

mahine; Ctx.u is then a partial relation on the admissible states of the mahine.

The relation Ctx.ε is the identity relation, shown in �g. 27(b). The other relations

that form the admissible elements of the syntati monoid are shown in �gs. 27() thru

(g). Comparison of these �gures with transitions in the mahine should enable the reader

to see how they are onstruted. For example, the graph of Ctx.a is the subgraph of the

mahine de�ned by the a -transitions, and similarly for Ctx.b . The graph of Ctx.ab has

only one edge beause there is only one path in the mahine that spells the word ab .

Missing are inadmissible elements of the syntati monoid: words u suh that Ctx.u

restrited to admissible states of the mahine is the empty relation. Examples are bab

and abab .

The graphs in �g. 27 form a omplete set beause no new graphs are generated by

words greater in the lexiographi order. Fig. 28 shows the omplete syntati monoid,

exept for the one inadmissible element. The nodes are labelled by a representative

element of the c -lass. The graph depits post-multipliation: in order to ompute the

value of u◦v , start from the node labelled u and follow the path spelled by v . (If there

is no suh path, the value of u◦v is the inadmissible element of the syntati monoid.)

Of ourse, the same proess an be applied starting with the anti-mahine. In that

ase, the graph obtained depits pre-multipliation in the syntati monoid.
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(b) Ctx. ε

(d) Ctx.b(c) Ctx.a

(e) Ctx.ab (f) Ctx.ba

(g) Ctx.aba

a

a

b

(a) Machine

Figure 27: Mahine and Individual Elements of the Syntati Monoid

Appendix D

Example 226 This example is based on [LS08, example 5.7℄. Consider the language

reognised by the nondeterministi �nite-state mahine shown in �g. 29. Lombardy and

Sakarovith have given the name Z3 to this automaton.

Note that �g. 29 omits one inadmissible node: there is no b -edge from the node

labelled 0 . Throughout the following disussion, inadmissible values (nodes, lasses,

et.) are omitted everywhere.

Our interest in this example is in alulating a regular expression of minimal star-

height denoting the language reognised by this mahine. The transition graph in �g.

29 has yle rank two, so our objetive is to onstrut a regular expression of star-height
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b

b

a

a

aba
a

aa

a
a

b

b

ba

b abε

Figure 28: The Syntati Monoid

one.

Lombardy and Sakarovith [LS02, LS08℄ use this example as one of a series that

demonstrates how big fator graphs an grow. Its size preludes us from giving all the

details of the appliation of our losure algorithm. Our presentation may therefore seem

somewhat ad ho, but this is not the ase.

Fig. 30 is the (deterministi) mahine. Its anti-mahine is idential. Note that there

are a -transitions from every state but no b -transition from the state labelled baba.

The table below names admissible l - and r -lasses and selets a representative of eah.

Omitted from the graph is the inadmissible l -lass of whih a representative element is

babab .

l-lass representative r-lass representative

l1 ε r1 ε

l2 b r2 b

l3 ba r3 ab

l4 baa r4 aab

l5 bab r5 bab

l6 baab r6 baab

l7 baba r7 abab

The following table shows orresponding left and right fators. Eah is represented

by a subset of l - or r -lasses. The symbol \¬ " denotes omplement with respet to the

admissible lasses. For example, ¬{baba,bab} is {ε,b,ba,baa,baab} and, in the left-

fator olumn, ¬∅ denotes the set of all admissible l -lasses, and, in the right-fator

olumn, ¬∅ denotes the set of all admissible r -lasses. (The primary reason for using

this notational trik is to emphasise symmetries rather than for greater brevity.)

There are 18 entries in the table. Together with the two inadmissible left/right



179

a

aa

b

b

0

2

1

Figure 29: Nondeterministi Finite-State Mahine

fators there are thus 20 left/right fators. The fator graph thus has a total of 20

nodes but, as usual, we hoose not to depit the inadmissible nodes.
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a

b

b

a

a

a

b

b

b

a

a

a

b

b

baa

ba

baab

bab

babaε

Figure 30: Mahine

Left fator Right Fator

{ε} ¬∅

{ε,b} ¬{abab}

{ε,ba} ¬{bab}

{ε,baa} ¬{baab}

{ε,b,ba} ¬{abab,bab}

{ε,b,ba} ¬{abab,baab}

{ε,b,ba} ¬{bab,baab}

{ε,b,ba,bab} {ε,b,aab,baab}

{ε,b,baa,baab} {ε,b,ab,bab}

{ε,ba,baa,baba} {ε,ab,aab,abab}

¬{bab,baba} {ε,b,ab}

¬{baab,baba} {ε,b,aab}

¬{bab,baab} {ε,ab,aab}

¬{baba} {ε,b}

¬{bab} {ε,ba}

¬{baab} {ε,baa}

¬∅ {ε}

The syntati monoid is shown in �g. 30. The nodes are labelled by a representative

element of the orresponding c -lass.

Eah l -lass is a union of c -lasses. The table below shows the relationship. For

example, the �rst entry summarises the property

El(ε) = Ec(ε)∪Ec(a)∪Ec(aa) .
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a

a
a

a
a

a

a

a
a

a

a
a

a
a

a

a

a

a

b

b

b

b

b

b

b

b

b

b

b

a

aa

b

baa

ba

bab

baab

baaba

baabaa

b

b ab

aab

aba

abaa

aaba

aabaa

abab

aabaab

ababa

b

ε

b

b

b

b

baba

babaa

a

a
a

Figure 31: Syntati Monoid

This fat is not exploited in our algorithm for onstruting the fator graph but is useful

for heking alulations | partiularly, as in this ase, the alulations are rather long

and tedious.

l-lass c-lasses

ε ε,a,aa

b b,ab,aab

ba ba,aba,aaba

baa baa,abaa,aabaa

bab bab,abab,aabab

baab baab,abaab,aabaab

baba baba,ababa,aababa
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The fator graph |inluding inadmissible nodes| of the event reognised by the

mahine in �g. 30 is shown in [LS08, �g. 11℄. (Lombardy and Sakarovith label every

admissible node

15

as both a start and a �nal node. One inadmissible node is labelled

as a �nal node only, and the other inadmissible node is labelled as a start node only.

As explained in setion 10.2, a unique start and a unique �nal state identify the fator

graph as a (non-deterministi) reogniser of the event \Z3 ": the start state is the state

they name \012" and the �nal state is the state they name \0,1,2".)

The fator graph (exluding inadmissible nodes) has 8 setions. Five of these have

three nodes and three have one node. Fig. 32 depits these setions: the graph with one

node ours three times, the rightmost of the graphs with three nodes ours one, and

the remaining two our twie.

b b

b

aa

a a

aa a a

a

a

Figure 32: Setions of the Fator Graph

Every setion of the fator graph is a fator graph of a fator. Taking the topmost

node as both start and �nal node in eah of the graphs in �g. 32, and expressing the

fator in terms of c -lasses, the fators are the events represented by the sets of c -lasses

{ε,b} , {ε} , {ε,abaa,aaba,ababa} and {ε,a,aa} .

The reexive-transitive losure (\star") of eah of these graphs is easily omputed

in the powerset algebra with underlying monoid the syntati monoid shown in �g. 31.

These are shown in �gs. 33, 34, 35 and 36. (The graphs in �g. 32 have been taken in

order from left to right and top to bottom.) One entry in �g. 35 has been highlighted in

15

Atually, almost every admissible node To be onsistent, the nodes named \02" and \12" in their

diagram should be both start and �nal nodes. As a reogniser, this mistake has no e�et: their labelling

is a gross overkill. See setion 10.1 for the justi�ation of this remark.
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{ε,{ε,

{ε,b}

aaba} abaa}

{a,aabaa}

{aa,aba}

{aa,aab}

{a,ab}
{a,ba}

{aa,baa}

Figure 33: Star of Top-Left Setion

{ε}

{ε}{ε}

{a}

{a}

{aa}

{aa} {a}{aa}

Figure 34: Star of Top-Middle Setion

the usual way by identifying partiular start and �nal nodes.

***To be ompleted***

✷



184

ε{ ,aaba,abaa,ababa}

,b,aaba,baabaε{ }ε{ ,b,abaa,babaa}

{a,ab,ba,bab}

{aa,aab,baa,baab}

{a,ab,aabaa,aabaab}

{a,ba,aabaa,baabaa}

{aa,aba,baa,baba} {aa,aba,aab,abab}

Figure 35: Star of Top-Right Setion

{ε, a,aa}

Figure 36: Star of Bottom-Middle Setion


